»rSicsa*

Univef:rsity
O
St Andrews

Automatic Amortised Analysis of Dynamic Memory
Allocation for Lazy Functional Programs

Kevin Hammond
University of St Andrews, Scotland

Hugo Simoes, Steffen Jost, Pedro Vasconcelos, Mario Florido
Universidad do Porto, Ludwig-Maximilians Universitat

http://www.embounded.orqg

http://www.hume-lang.org

crSRC) 4 EmBounded
) L

MMNet Workshop, Edinburgh, May2013

Full Technical Details can be found in

Univef:rsity
[©
St Andrews

Association for

Computing Machinery
Automatic Amortised Analysis

of Dynamic Memory Allocation
for Lazy Functional Programs

ICFP 2012:
ACM
International
Conference
on Functional

Kevin Hammond

University of St Andrews,
St Andrews, UK
kh@cs st-andrews.ac.uk

Hugo Simdes Steffen Jost
Pedro Vasconcelos
Mirio Flonido

LIACC, Universidade do Porto,

Ludwig Maximllians Universitil,
Munich, Germany
jost@tes.ifiImu.de

Porio, Portugal
{hrsimoes,pbv,amf}@dec. fcup.pt

Abstract

Thes paper describes the first successful atlempl, of which we are
aware, o deline an automalic, lype-based static amalysis of resource
bounds for lazy functional programs. Our analysis uses the au-
omatic amortisation approach developed by Hofmann and Josi,
which was previously restricied o eager evaluation. In this paper,
we extend this work Lo 2 lazy selting by capluring the costs of un-
evaluated expressions in lype annotations and by amortising the
payment of these costs using 2 notion of lazy potential. We present
our analysis as 2 proof system for predicling heap allocations of
2 minimal funclional language (including higher-order functions
amxl recursive dats types) and defline a formal cost model based on
Launchbury's natural semantics for lazy evaluation. We prove the
soundness of our analysis with respect to the cost model. Our ap-
proach 1s tllustrated by & number of representative amd non-trivial
examples thal have been analysed using a protolype implementa-
tion of our analysis

This paper makes the following novel conlributions:

a) we present the first successful attempt, of which we are aware,
to produce an automatic, Lype-based, static analysis of resource
bounds for lazy evaluation;

B) we introduce a cost model for hesp allocations for & minimal
lazy functional language based on Launchbury’s natural seman-
tics for lazy evaluation [30), and use this as the basis for devel-
oping a resource analysis;

¢) we have proved the soundness of our analysis with respect o
the cost-instrumented semantics (due Lo space limilations, we
present only & peoof sketch); and

d) we provide results froen a protolype implementation to show the
applicability of our analysis 1o some non-trivial examples.”

Qur amortised analysis derives costs with respect 1o a cost seman-
tics for lazy evaluation that derives from Launchbury's natural op-
erational semantics of graph reduction. It deals with both fist-order
anxl higher-order functions, bul does nol consider polymorphism.
For simplicity, we restrict our allenlion to heap allocations”, but
previous results have shown that the amortised analysis spproach

Programming
Copenhagen
Sept. 2012

EmBounded
Kevin Hammond, University of St Andrews 2/32

Research Objectives

Univefrsity
St Andrews

* Predict cost bounds for Lazily Evaluated Programs
— Haskell is an example of such a language

 Initially heap allocation costs, but later
— stack high-watermarks
— deallocation costs
— garbage collection
— execution time

« Allows costs of pure functional programs to be determined a-priori
— lazy functional programs are bounded and predictable
— can be used for embedded systems
— assists parallelisation

EmBounded
Kevin Hammond, University of St Andrews 3/32

Why is this Important?

Univefrsity
St Andrews

 Laziness supports compositionality and reuse
— valuable for design, prototyping and ease of change

« Parallelism is much easier for pure (functional) programs
— but laziness is necessary to support e.g. /O

 Opens new application areas
— e.g. embedded systems, real-time systems

John Hughes: “Why Functional Programming Matters”
The Computer Journal, 32(2):98-107, 1989.

EmBounded
Kevin Hammond, University of St Andrews 4/32

(Incredibly) Simple Example

Univefrsity
St Andrews

let x =[1..20000000] in

 How many heap cells are allocated?
— assume each list element and each integer takes one cell

EmBounded
Kevin Hammond, University of St Andrews 5/32

Heap Allocation Costs

Univefrsity
St Andrews

main = let x = [1..20000000] in
print x 40M 40M 40M

main = let x = [1..20000000] in
print (x,x) 40M 40M 80M

main = let x = [1..20000000] in

Call by Value (eager evaluation) evaluate even if not needed
Call by Need (lazy evaluation) evaluate only if needed

Call by Name (string reduction) evaluate whenever needed

Em Bo@
Kevil 6/32,

Why Costing Lazy Evaluation is Hard

Univef:rsity
Ol
St Andrews

* In a lazy language, we need to know
— which expressions are needed
— whether expressions have previously been evaluated

» This is dynamic
— we need to know the evaluation context
— we also need to know about sharing

EmBounded
Kevin Hammond, University of St Andrews 7/32

Key Technical Contributions

Univef:rsity
Ol
St Andrews

First automatic static analysis for predicting lazy evaluation costs
— Type-based

Uses lazy potential to track evaluation status
— thunk types allow pre-paid execution costs to be stored for later use

Tracks sharing of evaluation costs

Deals with higher-order functions

Is cost-preserving: analysis doesn’t alter execution costs

Prototype Implementation
http://kashmir.dcc.fc.up.pt/cqi/aalazy.cqgi

EmBounded
Kevin Hammond, University of St Andrews 8/32

The Core Language

Univefrsity
St Andrews

e = x | MAxe | ex

let x = e in e

letcons x = ¢(y) in e

match ey with ¢(X) —> e; otherwise e»

« Based on Launchbury’s 1993 Semantics for Lazy Evaluation
— plus letcons to expose constructor allocations
— function arguments are normalised (must be identifiers)
» simplifies analysis without affecting power
» easy transformation/compiler simplification

EmBounded
Kevin Hammond, University of St Andrews 9/32

Execution Example

let z =z in (Az. A\y.y) 2

let z = 2z in (AX . Ay. v) 2z

Univef:rsity
Ol
St Andrews

=> (Ax . A\y. y) z (where z = z) NEW HEAP CELL (THUNK)
=> (Ay. y) [z/x] (where z = z)
= (Ay.y)

only /et and letcons allocate memory
one cell for a thunk
one cell for a constructor

(let)
(letcons)

Kevin Hammond, University of St Andrews

EmBounded
10/32

Example Operational Semantics Rule

Univef:rsity
Ol
St Andrews

¢ is fresh e, = e1[¢/x] e, = e[l/X]
H[— €],... — e, | w,H'

H,... —letx=e1ine | w,H

(LETy)

HF— e 4 w, H

means that given initial heap H, e reduces to w, with new heap H’
w is either Ax.e or c("y))

EmBounded
Kevin Hammond, University of St Andrews 11/32

Corresponding Cost Rule

Univef:rsity
Ol
St Andrews

¢ is fresh e, = e1[¢/x] e, = e[l/X]
H[l— €],... & e, J w,H

— : , (LETy)
H,... - — letx=e1inex | w,H
Counts the number of heap allocations
m is the potential before evaluation
m’ is the potential remaining after evaluation
EmBounded

Kevin Hammond, University of St Andrews 12/32

Costing Example

Univef:rsity
Ol
St Andrews

let z =2z in (Az. A\y.y) 2

- If evaluated eagerly, the cost will be infinite
 The semantics gives

H,8,L 5 letz=zin (Az. \y.y) z | A\y.y, H[l3 — £3]

* This shows that we allocate precisely 7 cell (for the thunk 2)

EmBounded
Kevin Hammond, University of St Andrews 13/32

Cost Rule for LetCons

Univef:rsity
Ol
St Andrews

¢ is fresh y{ = Y; [E/:c] e =e[l/x]
K[l — c(y)], 8, L F=r e | w, H’
H,8,L F= letcons z = c() ine § w, H'

(LETCONSy)

Counts the number of heap allocations
m is the potential before evaluation
m’ is the potential remaining after evaluation

EmBounded
Kevin Hammond, University of St Andrews 14/32

LetCons Example

Univef:rsity
Ol
St Andrews

let one = 1in
letcons ones = Cons (one,ones) in
(AX. Ay. y) ones

 The semantics gives a cost of 2
— one for the let
— one for the letcons

EmBounded
Kevin Hammond, University of St Andrews 15/32

Building an Automatic Analysis

Univefrsity
St Andrews

 Type-based approach
— one type rule per language construct
— annotated types associate the potential with constructs

 Types and annotations are inferred automatically
— normal Hindley-Milner type inference determines the types
» and also exposes constraints on cost annnotations

— the constraints are then solved using a standard linear solver (e.g. Ip-solve)

EmBounded
Kevin Hammond, University of St Andrews 17/32

Annotated Types

Univef:rsity
Ol
St Andrews

A B, C = X variable
uX.Act1:(g1,B1)1---1¢cn:(gn,Bn)} datatype
A B function
p
T(A) thunk
d: future costs inferred for processing data (potential)

p, p° cost annotations

Examples of data types:
Naturals pX.{Zero: (qo,()) | Succ: (gs, T¥X))}
Lists pX.{Nil: (gn, () | Cons : (e, (TXA), T{X)))}
Maybe pX.{Nothing : (gn,()) | Just: (g;, T{A))}

EmBounded
Kevin Hammond, University of St Andrews 19/32

Key Type Rules

* Full details in paper
— including soundness proofs

F-e: A A xTHA) Hrex: C

p
A letx=ejine: C

(LETY)

A,x:Tg(A)ni,e:C A:NX{-.-|c-(q,§)|...}

y:B, A H*2*% letcons x = ¢(j)ine: C
(LETCONS®)

TP (A) oz : A (VAR)
p p

Kevin Hammond, University of St Andrews

Univef:rsity
Ol
St Andrews

EmBounded
20/32

Prepay Type Rule

Univef:rsity
Ol
St Andrews

* Lets us pay up-front for all or part of the cost of a thunk

— so we can record possible costs for lazy evaluation
and share costs among multiple uses

rox:TY (A) IZ—
r qu°+q‘(A) £ e: C

(PREPAY)

EmBounded
Kevin Hammond, University of St Andrews 21/32

Demonstration

Choose an example: | Infinite list of numbers + || Select |

Run Analysis

-~ Construct the infinite list 0, 1, 2, ...
let succ = (let one=1in \n -> n + one)
inlet nats = \n -> letn' = succn
inlett = nats n'
in letcons r = Cons(n,t)
inr

in let force = \ | => match | with
Nil O -=> letcons ys = Nil) inys

| Cons(x,xs) -> force xs

in let zero=0 in

let a = nats zero in

a

Kevin Hammond, University of St Andrews

Em

Univef:rsity
[©
St Andrews

’Bo@

Demonstration

Univef:rsity
[©
St Andrews

Analysis output

Constructing initial basis...
Size of triangular part = 627

0: obj = 4.000000000e+00 infeas = 1.500e+01 (0)
* 171: obj = 8.000000000e+00 infeas = 0.000e+00 (0)
* 211: obj = 8.000000000e+00 infeas = 0.000e+00 (O0)

-- Amortized type analysis
-= LP metrics follow

-=- # constraints: 627

-=- # wvariables : 427

-= Invoking LP solver

-- Annotated typing

st—succ : T(Int) -> Int = let one : Int = 1 in \n -> n + one in
let nats : T(Int) ->@3/0 Rec{Cons:(T(Int),T@3/0(#)) | Nil:()}

\n ->
let n' : Int = succ n in
let t : Rec{Cons:(T(Int),T@3/0(#)) | Nil:()} = nats n' in
let r : Rec{Cons:(T(Int),T@3/0(#)) | Nil:()} = Cons(n,t) in r
in
let zero : Int = 0 in

let a : Be TSH=T @3/0(#)) | Nil:()} = nats zero in a
: Rec{Cons] Nil:()} /\

EmBounded
Kevin Hammond, University of St Andrews 26/32

Demonstration

Choose an example:

Infinite list of numbers + || Select |

| Run Analysis |

-~ Construct the infinite list 0, 1, 2, ...
let succ = (let one=1in\n -> n + one)
inlet nats = \n -> letn' = succn
inlett = nats n'
in letcons r = Cons(n,t)
inr

in let force = \ | -> matkh | with
Nil O => letcons ys = Nil 0 inys

| Cons(x,xs) -> force xs

in let zero=0 in

let a = nats zero in

force a

Kevin Hammond, University of St Andrews

Univef:rsity
O
St Andrews

2

Em /Bou/ncg
27/3

Analysis output

Constructing initial basis...
Size of triangular part = 1241
0: obj = 5.000000000e+00 infeas
408: obj = 1.200000000e+01 infeas
glp simplex: unable to recover undefined

-- Amortized type analysis
~= LP metrics follow

-=- # constraints: 1241

-=- # variables : 848

-=- Invoking LP solver

Kevin Hammond, University of St Andrews

runanalysis: LP solver failed: NoPrimalFeasible

Demonstration

1.700e+01 (0)
3.000e+00 (0)
or non-optimal solution

Em

Univef:rsity
[©
St Andrews

'Bo@

Conclusions

Univef:rsity
Ol
St Andrews

* IT IS NOW POSSIBLE TO (ACCURATELY) COST
LAZILY EVALUATED PROGRAMS

— Heap Allocations Only

EmBounded
Kevin Hammond, University of St Andrews 29/32

Conclusions

Univef:rsity
Ol
St Andrews

o First automatic static analysis for costing lazy evaluation

— Guaranteed worst-case bounds for all possible inputs

— NOT simply symbolic execution / profiling

o Full soundness proof against (a variant of) Launchbury’s 1993 semantics

o Prototype implementation available
— http:/lkashmir.dcc.fc.up.pt/cgi/aalazy.cgi

e Accurate against a range of simple examples:
— Finite/infinite lists
— Higher-order functions
— Functional queues

EmBounded
Kevin Hammond, University of St Andrews 30/32

Ongoing/Future Work

Univefrsity
St Andrews

* Deallocation
— use e.g. an explicit reuse primitive as in Hofmann and Jost (POPL 2003)

* Non-Linear Bounds/Wider range of applications
— e.g. Hoffmann, Aehrig and Hofmann’ s approach (POPL 2012)
— incorporate Campbell’ s give-back annotations for stacks

« Garbage Collection
— Adapt region-based approach to give countable costs
— Lifetime/Pointer Safety Analysis
» An issue if regions are seen as a programmer level notation
» Notreally an issue if the mechanisms are to be handled automatically/for experimental testbed purposes

* Multicore/Manycore
— We are looking at new statistical ways to combine worst-case information
— We are also looking at costs for patterns of parallelism
— Energy usage is also interesting
— We need to find the right balance between lazy and eager evaluation

« Extend towards Haskell
— additional language constructs
— polymporphic types

EmBounded
Kevin Hammond, University of St Andrews 31/32

Some Papers

Univefrsity
St Andrews

Automatic Amortized Analysis of Dynamic Memory Allocation for Lazy Functional Programs
Hugo Simoes, Pedro Vasconcelos, Mario Florido, Steffen Jost, and Kevin Hammond
Proc. ACM Conf. on Functional Programming. (ICFP 2012), Copenhagen, Sept. 2012.

Static Determination of Quantitative Resource Usage for Higher-Order Programs
Steffen Jost, Hans-Wolfgang Loidl, Kevin Hammond, Norman Scaife, and Martin Hofmann
Proc. ACM Symp. on Principles of Prog. Langs. (POPL 2010), Madrid, January 2010.

“Carbon Credits” for Resource-Bounded Computations using Amortised Analysis
Steffen Jost, Kevin Hammond, Hans-Wolfgang Loidl, and Martin Hofmann
Proc. 2009 Conf. on Formal Methods (FM 2009), Eindhoven, The Netherlands, November 2009.

Resource-safe Systems Programming with Embedded Domain Specific Languages,

Edwin Brady and Kevin Hammond,
Fourteenth International Symposium on Practical Aspects of Declarative Languages: PADL 2012. ACM

Inferring Costs for Recursive, Polymorphic and Higher-Order Functional Programs
Pedro Vasconcelos and Kevin Hammond
Proc. 2003 Intl. Workshop on Implementation of Functional Languages (IFL ‘03), Edinburgh,
Springer-Verlag LNCS, 2004. Winner of the Peter Landin Prize for best paper

Predictable Space Behaviour in FSM-Hume,

Kevin Hammond and Greg Michaelson,
Proc. 2002 Intl. Workshop on Implementation of Functional Languages (IFL ‘02), Madrid, Spain, Sept. 2002,

Springer-Verlag LNCS 2670, ISBN 3-540-40190-3, 2003, pp. 1-16

EmBounded
Kevin Hammond, University of St Andrews 32/32

SEVENTH FRAMEWORK
PROGRAMME

crSRC

BAE SYSTEMS

Funded by

€1.3M grant under EU Framework 6
EmBounded: IST-2004-510255, 2005-2009 M Bounded

\

-ADVANCE

StatArch

€2.5M grant under EU Framework 7

Advance: I1ST-248828, 2010-2013
£1.25M grants from the UK’ s EPSRC

MetaHume: EP/C001346/0,2005-2008

Adaptive Hardware Systems: EP/F020657, 2008-2011
£650K grants from the UK’ s Ministry of Defence

Sensor Applications for Autonomous Vehicles, SEN002
Dynamic, Cost-directed Reconfiguration of Multi-Asset Systems, SEN015

Travel grants/Fellowships from the Royal Society of Edinburgh,
British Council, CNRS etc.

