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Research Objectives 

•  Predict cost bounds for Lazily Evaluated Programs 
–  Haskell is an example of such a language 

•  Initially heap allocation costs, but later 
–  stack high-watermarks 
–  deallocation costs 
–  garbage collection 
–  execution time 

•  Allows costs of pure functional programs to be determined a-priori 
–  lazy functional programs are bounded and predictable 
–  can be used for embedded systems 
–  assists parallelisation 
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Why is this Important? 

•  Laziness supports compositionality and reuse 
–  valuable for design, prototyping and ease of change 

•  Parallelism is much easier for pure (functional) programs 
–  but laziness is necessary to support e.g. I/O 

•  Opens new application areas 
–  e.g. embedded systems, real-time systems 

John Hughes: “Why Functional Programming Matters”  
The Computer Journal, 32(2):98-107, 1989. 
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(Incredibly) Simple Example 

 
let x = [1..20000000] in  

 … 

•  How many heap cells are allocated? 
–  assume each list element and each integer takes one cell 
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Heap Allocation Costs 

 
main = let x = [1..20000000] in  

 print (x,x) 

 
main = let x = [1..20000000] in  

 print x 

 
main = let x = [1..20000000] in  

 print () 

eager 
40M 

lazy 
40M 

string 
40M 

eager 
40M 

lazy 
40M 

string 
80M 

eager 
40M 

lazy 
0 

string 
0 

Call by Value (eager evaluation)  evaluate even if not needed 
Call by Need (lazy evaluation)  evaluate only if needed 
Call by Name (string reduction)  evaluate whenever needed 
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Why Costing Lazy Evaluation is Hard 

•  In a lazy language, we need to know 
–  which expressions are needed 
–  whether expressions have previously been evaluated 

•  This is dynamic 
–  we need to know the evaluation context 
–  we also need to know about sharing 
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Key Technical Contributions 

•  First automatic static analysis for predicting lazy evaluation costs 
–  Type-based 

•  Uses lazy potential to track evaluation status 
–  thunk types allow pre-paid execution costs to be stored for later use 

•  Tracks sharing of evaluation costs 

•  Deals with higher-order functions 

•  Is cost-preserving: analysis doesn’t alter execution costs 

 Prototype Implementation 
http://kashmir.dcc.fc.up.pt/cgi/aalazy.cgi 
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The Core Language 

•  Based on Launchbury’s 1993 Semantics for Lazy Evaluation 
–  plus letcons to expose constructor allocations 
–  function arguments are normalised (must be identifiers) 

»  simplifies analysis without affecting power 
»  easy transformation/compiler simplification 
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Execution Example 

!let z = z in (λx . λy. y ) z!
=> !(λx . λy. y ) z !(where z = z) NEW HEAP CELL (THUNK)!
=> !(λy. y) [z/x] !(where z = z)!
= !(λy.y)!
!
!  only let and letcons allocate memory 

  one cell for a thunk   (let) 
  one cell for a constructor  (letcons) 
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Example Operational Semantics Rule 

 means that given initial heap H, e reduces to w, with new heap H’ 
 w is either λx.e or c(⃗y)) 

H       e  ⇓  w, H′ 
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Corresponding Cost Rule 

 Counts the number of heap allocations 
  m is the potential before evaluation 
  m’ is the potential remaining after evaluation 
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Costing Example 

•  If evaluated eagerly, the cost will be infinite 
•  The semantics gives 

•  This shows that we allocate precisely 1 cell (for the thunk z) 
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Cost Rule for LetCons 

 Counts the number of heap allocations 
  m is the potential before evaluation 
  m’ is the potential remaining after evaluation 
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LetCons Example 

•  The semantics gives a cost of 2 
–  one for the let 
–  one for the letcons 

let one = 1 in 
letcons ones = Cons (one,ones) in 
(λx. λy. y) ones 
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Building an Automatic Analysis 

•  Type-based approach 
–  one type rule per language construct 
–  annotated types associate the potential with constructs 

•  Types and annotations are inferred automatically 
–  normal Hindley-Milner type inference determines the types  

»  and also exposes constraints on cost annnotations 

–  the constraints are then solved using a standard linear solver (e.g. lp-solve) 
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Annotated Types 

qi  future costs inferred for processing data  (potential) 
p, p′  cost annotations  
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Key Type Rules 

•  Full details in paper 
–  including soundness proofs 

(VAR)!
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Prepay Type Rule 

•  Lets us pay up-front for all or part of the cost of a thunk 
–  so we can record possible costs for lazy evaluation 

and share costs among multiple uses  
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Demonstration 
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Demonstration 
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Demonstration 
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Demonstration 
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Conclusions 

•  IT IS NOW POSSIBLE TO (ACCURATELY) COST 
LAZILY EVALUATED PROGRAMS 

– Heap Allocations Only 
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Conclusions 

•  First automatic static analysis for costing lazy evaluation 
– Guaranteed worst-case bounds for all possible inputs 

–  NOT simply symbolic execution / profiling 

•  Full soundness proof against (a variant of) Launchbury’s 1993 semantics 

•  Prototype implementation available 
–  http://kashmir.dcc.fc.up.pt/cgi/aalazy.cgi 

•  Accurate against a range of simple examples: 
–  Finite/infinite lists 
–  Higher-order functions 
–  Functional queues 
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Ongoing/Future Work 

•  Deallocation 
–  use e.g. an explicit reuse primitive as in Hofmann and Jost (POPL 2003) 

•  Non-Linear Bounds/Wider range of applications 
–  e.g. Hoffmann, Aehrig and Hofmann’s approach (POPL 2012) 
–  incorporate Campbell’s give-back annotations for stacks 

•  Garbage Collection 
–  Adapt region-based approach to give countable costs 
–  Lifetime/Pointer Safety Analysis 

»  An issue if regions are seen as a programmer level notation 
»  Not really an issue if the mechanisms are to be handled automatically/for experimental testbed purposes 

 
•  Multicore/Manycore 

–  We are looking at new statistical ways to combine worst-case information 
–  We are also looking at costs for patterns of parallelism 
–  Energy usage is also interesting 
–  We need to find the right balance between lazy and eager evaluation 

•  Extend towards Haskell 
–  additional language constructs 
–  polymporphic types 
–  ... 
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