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Abstract

Thes paper describes the first successful atlempl, of which we are
aware, o deline an automalic, lype-based static amalysis of resource
bounds for lazy functional programs. Our analysis uses the au-
omatic amortisation approach developed by Hofmann and Josi,
which was previously restricied o eager evaluation. In this paper,
we extend this work Lo 2 lazy selting by capluring the costs of un-
evaluated expressions in lype annotations and by amortising the
payment of these costs using 2 notion of lazy potential. We present
our analysis as 2 proof system for predicling heap allocations of
2 minimal funclional language (including higher-order functions
amxl recursive dats types) and defline a formal cost model based on
Launchbury's natural semantics for lazy evaluation. We prove the
soundness of our analysis with respect to the cost model. Our ap-
proach 1s tllustrated by & number of representative amd non-trivial
examples thal have been analysed using a protolype implementa-
tion of our analysis

This paper makes the following novel conlributions:

a) we present the first successful attempt, of which we are aware,
to produce an automatic, Lype-based, static analysis of resource
bounds for lazy evaluation;

B) we introduce a cost model for hesp allocations for & minimal
lazy functional language based on Launchbury’s natural seman-
tics for lazy evaluation [30), and use this as the basis for devel-
oping a resource analysis;

¢) we have proved the soundness of our analysis with respect o
the cost-instrumented semantics (due Lo space limilations, we
present only & peoof sketch); and

d) we provide results froen a protolype implementation to show the
applicability of our analysis 1o some non-trivial examples.”

Qur amortised analysis derives costs with respect 1o a cost seman-
tics for lazy evaluation that derives from Launchbury's natural op-
erational semantics of graph reduction. It deals with both fist-order
anxl higher-order functions, bul does nol consider polymorphism.
For simplicity, we restrict our allenlion to heap allocations”, but
previous results have shown that the amortised analysis spproach
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Research Objectives
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* Predict cost bounds for Lazily Evaluated Programs
— Haskell is an example of such a language

 Initially heap allocation costs, but later
— stack high-watermarks
— deallocation costs
— garbage collection
— execution time

« Allows costs of pure functional programs to be determined a-priori
— lazy functional programs are bounded and predictable
— can be used for embedded systems
— assists parallelisation
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Why is this Important?
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 Laziness supports compositionality and reuse
— valuable for design, prototyping and ease of change

« Parallelism is much easier for pure (functional) programs
— but laziness is necessary to support e.g. /O

 Opens new application areas
— e.g. embedded systems, real-time systems

John Hughes: “Why Functional Programming Matters”
The Computer Journal, 32(2):98-107, 1989.
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(Incredibly) Simple Example
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let x =[1..20000000] in

 How many heap cells are allocated?
— assume each list element and each integer takes one cell
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Heap Allocation Costs
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main = let x = [1..20000000] in
print x 40M 40M 40M

main = let x = [1..20000000] in
print (x,x) 40M 40M 80M

main = let x = [1..20000000] in

Call by Value (eager evaluation) evaluate even if not needed
Call by Need (lazy evaluation) evaluate only if needed

Call by Name (string reduction) evaluate whenever needed
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Why Costing Lazy Evaluation is Hard
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* In a lazy language, we need to know
— which expressions are needed
— whether expressions have previously been evaluated

» This is dynamic
— we need to know the evaluation context
— we also need to know about sharing
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Key Technical Contributions
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First automatic static analysis for predicting lazy evaluation costs
— Type-based

Uses lazy potential to track evaluation status
— thunk types allow pre-paid execution costs to be stored for later use

Tracks sharing of evaluation costs

Deals with higher-order functions

Is cost-preserving: analysis doesn’t alter execution costs

Prototype Implementation
http://kashmir.dcc.fc.up.pt/cqi/aalazy.cqgi
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The Core Language
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e = x | MAxe | ex

let x = e in e

letcons x = ¢(y) in e

match ey with ¢(X) —> e; otherwise e»

« Based on Launchbury’s 1993 Semantics for Lazy Evaluation
— plus letcons to expose constructor allocations
— function arguments are normalised (must be identifiers)
» simplifies analysis without affecting power
» easy transformation/compiler simplification
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Execution Example

let z =z in (Az. A\y.y) 2

let z = 2z in (AX . Ay. v ) 2z
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=> (Ax . A\y. y ) z (where z = z) NEW HEAP CELL (THUNK)
=> (Ay. y) [z/x] (where z = z)
= (Ay.y)

only /et and letcons allocate memory
one cell for a thunk
one cell for a constructor

(let)
(letcons)

Kevin Hammond, University of St Andrews
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Example Operational Semantics Rule
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¢ is fresh e, = e1[¢/x] e, = e[l/X]
H[— €],... — e, | w,H'

H,... —letx=e1ine | w,H

(LETy)

HF— e 4 w, H

means that given initial heap H, e reduces to w, with new heap H’
w is either Ax.e or c("y))
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Corresponding Cost Rule
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¢ is fresh e, = e1[¢/x] e, = e[l/X]
H[l— €],... & e, J w,H

— : , (LETy)
H,... - — letx=e1inex | w,H
Counts the number of heap allocations
m is the potential before evaluation
m’ is the potential remaining after evaluation
EmBounded
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Costing Example

Univef:rsity
Ol
St Andrews

let z =2z in (Az. A\y.y) 2

- If evaluated eagerly, the cost will be infinite
 The semantics gives

H,8,L 5 letz=zin (Az. \y.y) z | A\y.y, H[l3 — £3]

* This shows that we allocate precisely 7 cell (for the thunk 2)
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Cost Rule for LetCons
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¢ is fresh y{ = Y; [E/:c] e =e[l/x]
K[l — c(y)], 8, L F=r e | w, H’
H,8,L F= letcons z = c() ine § w, H'

(LETCONSy)

Counts the number of heap allocations
m is the potential before evaluation
m’ is the potential remaining after evaluation
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LetCons Example
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let one = 1in
letcons ones = Cons (one,ones) in
(AX. Ay. y) ones

 The semantics gives a cost of 2
— one for the let
— one for the letcons
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Building an Automatic Analysis
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 Type-based approach
— one type rule per language construct
— annotated types associate the potential with constructs

 Types and annotations are inferred automatically
— normal Hindley-Milner type inference determines the types
» and also exposes constraints on cost annnotations

— the constraints are then solved using a standard linear solver (e.g. Ip-solve)
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Annotated Types
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A B, C = X variable
uX.Act1:(g1,B1)1---1¢cn:(gn,Bn)} datatype
A B function
p
T(A) thunk
d: future costs inferred for processing data (potential)

p, p° cost annotations

Examples of data types:
Naturals pX.{Zero: (qo,()) | Succ: (gs, T¥X))}
Lists pX.{Nil: (gn, () | Cons : (e, (TXA), T{X)))}
Maybe pX.{Nothing : (gn,()) | Just: (g;, T{A))}

EmBounded
Kevin Hammond, University of St Andrews 19/32



Key Type Rules

* Full details in paper
— including soundness proofs

F-e: A A xTHA) Hrex: C

p
A letx=ejine: C

(LETY)

A,x:Tg(A)ni,e:C A:NX{-.-|c-(q,§)|...}

y:B, A H*2*% letcons x = ¢(j)ine: C
(LETCONS®)

TP (A) oz : A (VAR)
p p

Kevin Hammond, University of St Andrews

Univef:rsity
Ol
St Andrews

EmBounded
20/32



Prepay Type Rule
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* Lets us pay up-front for all or part of the cost of a thunk

— so we can record possible costs for lazy evaluation
and share costs among multiple uses

rox:TY (A) IZ—
r qu°+q‘(A) £ e: C

(PREPAY)
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Demonstration

Choose an example: | Infinite list of numbers  + || Select |

Run Analysis

-~ Construct the infinite list 0, 1, 2, ...
let succ = (let one=1in \n -> n + one)
inlet nats = \n -> letn' = succn
inlett = nats n'
in letcons r = Cons(n,t)
inr

in let force = \ | => match | with
Nil O -=> letcons ys = Nil ) inys

| Cons(x,xs) -> force xs

in let zero=0 in

let a = nats zero in

a

Kevin Hammond, University of St Andrews
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Demonstration
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Analysis output

Constructing initial basis...
Size of triangular part = 627

0: obj = 4.000000000e+00 infeas = 1.500e+01 (0)
* 171: obj = 8.000000000e+00 infeas = 0.000e+00 (0)
* 211: obj = 8.000000000e+00 infeas = 0.000e+00 (O0)

-- Amortized type analysis
-= LP metrics follow

-=- # constraints: 627

-=- # wvariables : 427

-= Invoking LP solver

-- Annotated typing

st—succ : T(Int) -> Int = let one : Int = 1 in \n -> n + one in
let nats : T(Int) ->@3/0 Rec{Cons:(T(Int),T@3/0(#)) | Nil:()}

\n ->
let n' : Int = succ n in
let t : Rec{Cons:(T(Int),T@3/0(#)) | Nil:()} = nats n' in
let r : Rec{Cons:(T(Int),T@3/0(#)) | Nil:()} = Cons(n,t) in r
in
let zero : Int = 0 in

let a : Be TSH=T @3/0(#)) | Nil:()} = nats zero in a
: Rec{Cons] Nil:()} /\
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Demonstration

Choose an example:

Infinite list of numbers + || Select |

| Run Analysis |

-~ Construct the infinite list 0, 1, 2, ...
let succ = (let one=1in\n -> n + one)
inlet nats = \n -> letn' = succn
inlett = nats n'
in letcons r = Cons(n,t)
inr

in let force = \ | -> matkh | with
Nil O => letcons ys = Nil 0 inys

| Cons(x,xs) -> force xs

in let zero=0 in

let a = nats zero in

force a
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Analysis output

Constructing initial basis...
Size of triangular part = 1241
0: obj = 5.000000000e+00 infeas
408: obj = 1.200000000e+01 infeas
glp simplex: unable to recover undefined

-- Amortized type analysis
~= LP metrics follow

-=- # constraints: 1241

-=- # variables : 848

-=- Invoking LP solver

Kevin Hammond, University of St Andrews

runanalysis: LP solver failed: NoPrimalFeasible

Demonstration

1.700e+01 (0)
3.000e+00 (0)
or non-optimal solution
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Conclusions
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* IT IS NOW POSSIBLE TO (ACCURATELY) COST
LAZILY EVALUATED PROGRAMS

— Heap Allocations Only
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Conclusions
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o First automatic static analysis for costing lazy evaluation

— Guaranteed worst-case bounds for all possible inputs

— NOT simply symbolic execution / profiling

o Full soundness proof against (a variant of) Launchbury’s 1993 semantics

o Prototype implementation available
— http:/lkashmir.dcc.fc.up.pt/cgi/aalazy.cgi

e Accurate against a range of simple examples:
— Finite/infinite lists
— Higher-order functions
— Functional queues
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Ongoing/Future Work
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* Deallocation
— use e.g. an explicit reuse primitive as in Hofmann and Jost (POPL 2003)

* Non-Linear Bounds/Wider range of applications
— e.g. Hoffmann, Aehrig and Hofmann’ s approach (POPL 2012)
— incorporate Campbell’ s give-back annotations for stacks

« Garbage Collection
— Adapt region-based approach to give countable costs
— Lifetime/Pointer Safety Analysis
» An issue if regions are seen as a programmer level notation
» Notreally an issue if the mechanisms are to be handled automatically/for experimental testbed purposes

* Multicore/Manycore
— We are looking at new statistical ways to combine worst-case information
— We are also looking at costs for patterns of parallelism
— Energy usage is also interesting
— We need to find the right balance between lazy and eager evaluation

« Extend towards Haskell
— additional language constructs
— polymporphic types
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