
1/32 Kevin Hammond, University of St Andrews

Automatic Amortised Analysis of Dynamic Memory
Allocation for Lazy Functional Programs!

MMNet Workshop, Edinburgh, May2013

Kevin Hammond
University of St Andrews, Scotland

Hugo Simoes, Steffen Jost, Pedro Vasconcelos, Mario Florido

Universidad do Porto, Ludwig-Maximilians Universität

http://www.embounded.org!
http://www.hume-lang.org!

2/32 Kevin Hammond, University of St Andrews

Full Technical Details can be found in

ICFP 2012:
ACM
International
Conference
on Functional
Programming
Copenhagen
Sept. 2012

3/32 Kevin Hammond, University of St Andrews

Research Objectives

•  Predict cost bounds for Lazily Evaluated Programs
–  Haskell is an example of such a language

•  Initially heap allocation costs, but later
–  stack high-watermarks
–  deallocation costs
–  garbage collection
–  execution time

•  Allows costs of pure functional programs to be determined a-priori
–  lazy functional programs are bounded and predictable
–  can be used for embedded systems
–  assists parallelisation

4/32 Kevin Hammond, University of St Andrews

Why is this Important?

•  Laziness supports compositionality and reuse
–  valuable for design, prototyping and ease of change

•  Parallelism is much easier for pure (functional) programs
–  but laziness is necessary to support e.g. I/O

•  Opens new application areas
–  e.g. embedded systems, real-time systems

John Hughes: “Why Functional Programming Matters”
The Computer Journal, 32(2):98-107, 1989.

5/32 Kevin Hammond, University of St Andrews

(Incredibly) Simple Example

let x = [1..20000000] in

 …

•  How many heap cells are allocated?
–  assume each list element and each integer takes one cell

6/32 Kevin Hammond, University of St Andrews

Heap Allocation Costs

main = let x = [1..20000000] in

 print (x,x)

main = let x = [1..20000000] in

 print x

main = let x = [1..20000000] in

 print ()

eager
40M

lazy
40M

string
40M

eager
40M

lazy
40M

string
80M

eager
40M

lazy
0

string
0

Call by Value (eager evaluation) evaluate even if not needed
Call by Need (lazy evaluation) evaluate only if needed
Call by Name (string reduction) evaluate whenever needed

7/32 Kevin Hammond, University of St Andrews

Why Costing Lazy Evaluation is Hard

•  In a lazy language, we need to know
–  which expressions are needed
–  whether expressions have previously been evaluated

•  This is dynamic
–  we need to know the evaluation context
–  we also need to know about sharing

8/32 Kevin Hammond, University of St Andrews

Key Technical Contributions

•  First automatic static analysis for predicting lazy evaluation costs
–  Type-based

•  Uses lazy potential to track evaluation status
–  thunk types allow pre-paid execution costs to be stored for later use

•  Tracks sharing of evaluation costs

•  Deals with higher-order functions

•  Is cost-preserving: analysis doesn’t alter execution costs

 Prototype Implementation
http://kashmir.dcc.fc.up.pt/cgi/aalazy.cgi

9/32 Kevin Hammond, University of St Andrews

The Core Language

•  Based on Launchbury’s 1993 Semantics for Lazy Evaluation
–  plus letcons to expose constructor allocations
–  function arguments are normalised (must be identifiers)

»  simplifies analysis without affecting power
»  easy transformation/compiler simplification

10/32 Kevin Hammond, University of St Andrews

Execution Example

!let z = z in (λx . λy. y) z!
=> !(λx . λy. y) z !(where z = z) NEW HEAP CELL (THUNK)!
=> !(λy. y) [z/x] !(where z = z)!
= !(λy.y)!
!
! only let and letcons allocate memory

 one cell for a thunk (let)
 one cell for a constructor (letcons)

11/32 Kevin Hammond, University of St Andrews

Example Operational Semantics Rule

 means that given initial heap H, e reduces to w, with new heap H’
 w is either λx.e or c(⃗y))

H e ⇓ w, H′

12/32 Kevin Hammond, University of St Andrews

Corresponding Cost Rule

 Counts the number of heap allocations
 m is the potential before evaluation
 m’ is the potential remaining after evaluation

13/32 Kevin Hammond, University of St Andrews

Costing Example

•  If evaluated eagerly, the cost will be infinite
•  The semantics gives

•  This shows that we allocate precisely 1 cell (for the thunk z)

14/32 Kevin Hammond, University of St Andrews

Cost Rule for LetCons

 Counts the number of heap allocations
 m is the potential before evaluation
 m’ is the potential remaining after evaluation

15/32 Kevin Hammond, University of St Andrews

LetCons Example

•  The semantics gives a cost of 2
–  one for the let
–  one for the letcons

let one = 1 in
letcons ones = Cons (one,ones) in
(λx. λy. y) ones

17/32 Kevin Hammond, University of St Andrews

Building an Automatic Analysis

•  Type-based approach
–  one type rule per language construct
–  annotated types associate the potential with constructs

•  Types and annotations are inferred automatically
–  normal Hindley-Milner type inference determines the types

»  and also exposes constraints on cost annnotations

–  the constraints are then solved using a standard linear solver (e.g. lp-solve)

19/32 Kevin Hammond, University of St Andrews

Annotated Types

qi future costs inferred for processing data (potential)
p, p′ cost annotations

20/32 Kevin Hammond, University of St Andrews

Key Type Rules

•  Full details in paper
–  including soundness proofs

(VAR)!

21/32 Kevin Hammond, University of St Andrews

Prepay Type Rule

•  Lets us pay up-front for all or part of the cost of a thunk
–  so we can record possible costs for lazy evaluation

and share costs among multiple uses

25/32 Kevin Hammond, University of St Andrews

Demonstration

26/32 Kevin Hammond, University of St Andrews

Demonstration

27/32 Kevin Hammond, University of St Andrews

Demonstration

28/32 Kevin Hammond, University of St Andrews

Demonstration

29/32 Kevin Hammond, University of St Andrews

Conclusions

•  IT IS NOW POSSIBLE TO (ACCURATELY) COST
LAZILY EVALUATED PROGRAMS

– Heap Allocations Only

30/32 Kevin Hammond, University of St Andrews

Conclusions

•  First automatic static analysis for costing lazy evaluation
– Guaranteed worst-case bounds for all possible inputs

– NOT simply symbolic execution / profiling

•  Full soundness proof against (a variant of) Launchbury’s 1993 semantics

•  Prototype implementation available
– http://kashmir.dcc.fc.up.pt/cgi/aalazy.cgi

•  Accurate against a range of simple examples:
– Finite/infinite lists
– Higher-order functions
– Functional queues

31/32 Kevin Hammond, University of St Andrews

Ongoing/Future Work

•  Deallocation
–  use e.g. an explicit reuse primitive as in Hofmann and Jost (POPL 2003)

•  Non-Linear Bounds/Wider range of applications
–  e.g. Hoffmann, Aehrig and Hofmann’s approach (POPL 2012)
–  incorporate Campbell’s give-back annotations for stacks

•  Garbage Collection
–  Adapt region-based approach to give countable costs
–  Lifetime/Pointer Safety Analysis

»  An issue if regions are seen as a programmer level notation
»  Not really an issue if the mechanisms are to be handled automatically/for experimental testbed purposes

•  Multicore/Manycore

–  We are looking at new statistical ways to combine worst-case information
–  We are also looking at costs for patterns of parallelism
–  Energy usage is also interesting
–  We need to find the right balance between lazy and eager evaluation

•  Extend towards Haskell
–  additional language constructs
–  polymporphic types
–  ...

32/32 Kevin Hammond, University of St Andrews

Some Papers

Automatic Amortized Analysis of Dynamic Memory Allocation for Lazy Functional Programs
Hugo Simoes, Pedro Vasconcelos, Mario Florido, Steffen Jost, and Kevin Hammond
Proc. ACM Conf. on Functional Programming. (ICFP 2012), Copenhagen, Sept. 2012.

Static Determination of Quantitative Resource Usage for Higher-Order Programs

Steffen Jost, Hans-Wolfgang Loidl, Kevin Hammond, Norman Scaife, and Martin Hofmann
Proc. ACM Symp. on Principles of Prog. Langs. (POPL 2010), Madrid, January 2010.

“Carbon Credits” for Resource-Bounded Computations using Amortised Analysis

Steffen Jost, Kevin Hammond, Hans-Wolfgang Loidl, and Martin Hofmann
Proc. 2009 Conf. on Formal Methods (FM 2009), Eindhoven, The Netherlands, November 2009.

Resource-safe Systems Programming with Embedded Domain Specific Languages,

 Edwin Brady and Kevin Hammond,
Fourteenth International Symposium on Practical Aspects of Declarative Languages: PADL 2012. ACM

Inferring Costs for Recursive, Polymorphic and Higher-Order Functional Programs
Pedro Vasconcelos and Kevin Hammond
Proc. 2003 Intl. Workshop on Implementation of Functional Languages (IFL ‘03), Edinburgh,
Springer-Verlag LNCS, 2004. Winner of the Peter Landin Prize for best paper

Predictable Space Behaviour in FSM-Hume,

 Kevin Hammond and Greg Michaelson,
Proc. 2002 Intl. Workshop on Implementation of Functional Languages (IFL ‘02), Madrid, Spain, Sept. 2002,
 Springer-Verlag LNCS 2670, ISBN 3-540-40190-3, 2003, pp. 1-16

Funded by

€1.3M grant under EU Framework 6
 EmBounded: IST-2004-510255, 2005-2009

€2.5M grant under EU Framework 7

 Advance: IST-248828, 2010-2013
£1.25M grants from the UK’s EPSRC

 MetaHume: EP/C001346/0, 2005-2008
 Adaptive Hardware Systems: EP/F020657, 2008-2011

£650K grants from the UK’s Ministry of Defence
 Sensor Applications for Autonomous Vehicles, SEN002
 Dynamic, Cost-directed Reconfiguration of Multi-Asset Systems, SEN015

Travel grants/Fellowships from the Royal Society of Edinburgh,
British Council, CNRS etc.

