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Shared Memory Concurrency: Since 1962

Burroughs D825 (first multiprocessing computer)

Outstanding features include truly modular hardware with
parallel processing throughout.

FUTURE PLANS
The complement of compiling languages is to be expanded.
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And Since 2011: In C/C++

ISO C/C++11: introduces a new concurrency model
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Example: Message Passing

Initially: d = 0; f = 0;

Thread 0 Thread 1

d = 1;

f = 1;

while (f == 0)

{};
r = d;

Finally: r = 0 ??

Programmer would hope this is Forbidden
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Example: Message Passing (racy)

Initially: d = 0; f = 0;

Thread 0 Thread 1

d = 1;

f = 1;

while (f == 0)

{};
r = d;

Finally: r = 0 ??

Programmer would hope this is Forbidden

In C/C++11, this has undefined semantics

Data race on d and f variables
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C11: A Data Race Free Model

Idea: Programmer mistake to write Data Races

Basis of C11 Concurrency
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Example (contd.): mark atomics

Mark atomic variables (accesses have memory order parameter)

Initially: atomic d = 0; f = 0;

Thread 0 Thread 1

d.store(1,sc);

f.store(1,sc);

while (f.load(sc) == 0)

{};
r = d.load(sc);

Finally: r = 0 ??

Races on Atomic Accesses ignored (now have defined semantics)
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Shared Memory Concurrency

Multiple threads with a single shared memory

Question: How do we reason about it?

Answer [1979]: Sequential Consistency

. . . the result of any execution is the same
as if the operations of all the processors
were executed in some sequential order,
respecting the order specified by the pro-
gram.

[Lamport, 1979]
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Sequential Consistency

Thread 0 Thread 1 Thread 2 Thread 3

(Shared) Memory

Traditional assumption (concurrent algorithms, semantics,
verification): Sequential Consistency (SC)

Implies: can use interleaving semantics

False on modern (since 1972) multiprocessors, or with optimizing
compilers
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Our world is not SC

Not since IBM System 370/158MP (1972)
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Our world is not SC

Not since IBM System 370/158MP (1972)

. . . . . . Nor in x86, ARM, POWER, SPARC, Itanium, . . .

. . . . . . Nor in C, C++, Java, . . .
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Example (contd.): mark atomics relaxed

Mark atomic variables as relaxed (a memory-order parameter)

Initially: atomic d = 0; f = 0;

Thread 0 Thread 1

d.store(1,rlx);

f.store(1,rlx);

while (f.load(rlx) == 0)

{};
r = d.load(rlx);

Finally: r = 0 ??

(Forbidden on SC)
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Example (contd.): mark atomics relaxed

Mark atomic variables as relaxed (a memory-order parameter)

Initially: atomic d = 0; f = 0;

Thread 0 Thread 1

d.store(1,rlx);

f.store(1,rlx);

while (f.load(rlx) == 0)

{};
r = d.load(rlx);

Finally: r = 0 ??

(Forbidden on SC)

Defined, and possible, in C/C++11

Allows for hardware (and compiler) optimisations
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C11 Concurrency: An Axiomatic Model

Complete executions are considered
(threadwise operational, reading arbitrary values)

Relations defined over memory events (e.g. happens-before)

Predicate says whether execution is consistent

Further, no consistent execution should have races
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Example (contd.): release-acquire synchronization

Mark release stores and acquire loads

Initially: atomic d = 0; f = 0;

Thread 0 Thread 1

d.store(1,rlx);

f.store(1,rel);

while (f.load(acq) == 0)

{};
r = d.load(rlx);

Finally: r = 0 ??

(Forbidden on SC)

Forbidden in C/C++11 due to release-acquire synchronization

Implementation must ensure result not observed
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Example (contd.): release-acquire synchronization

Mark release stores and acquire loads

Initially: atomic d = 0; f = 0;

Thread 0 Thread 1

d.store(1,rlx);

f.store(1,rel);
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{};
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Finally: r = 0 ??
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Implementation of acquire/release on POWER

Initially: d = 0; f = 0;

Thread 0 Thread 1

st d 1;

lwsync;

st f 1;

loop: ld f rtmp;

cmp rtmp 0;

beq loop;

isync;

ld d r;

Finally: r = 0 ??

Forbidden (and not observed) on POWER7, and ARM

lwsync prevents write reordering

control dependency with isync prevents read speculation
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Correct implementations of C/C++ on hardware

Can it be done?
I . . . on highly relaxed hardware?

What is involved?
I Mapping new constructs to assembly

I Optimizations: which ones legal?
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Correct implementations of C/C++ on hardware

Can it be done?
I . . . on highly relaxed hardware? e.g. POWER/ARM

What is involved?
I Mapping new constructs to assembly

I Optimizations: which ones legal?
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Implementing C/C++11 on POWER: Pointwise Mapping

C/C++11 Operation POWER Implementation

Store (non-atomic)
Load (non-atomic)

st
ld

Store relaxed
Store release
Store seq-cst

st
lwsync; st
lwsync; st

Load relaxed
Load consume
Load acquire
Load seq-cst

ld
ld (and preserve dependency)
ld; cmp; bc; isync
hwsync; ld; cmp; bc; isync

Fence acquire
Fence release
Fence seq-cst

lwsync
lwsync
hwsync

CAS relaxed

CAS seq-cst

loop: lwarx; cmp; bc exit;
stwcx.; bc loop; exit:

hwsync; loop: lwarx; cmp; bc exit;
stwcx.; bc loop; isync; exit:

. . . ...

(From Paul McKenney and Raul Silvera)
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Store relaxed
Store release
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st
lwsync; st
lwsync; st

Load relaxed
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Load acquire
Load seq-cst

ld
ld (and preserve dependency)
ld; cmp; bc; isync
hwsync; ld; cmp; bc; isync

Fence acquire
Fence release
Fence seq-cst

lwsync
lwsync
hwsync

CAS relaxed

CAS seq-cst

loop: lwarx; cmp; bc exit;
stwcx.; bc loop; exit:

hwsync; loop: lwarx; cmp; bc exit;
stwcx.; bc loop; isync; exit:

. . . ...

Is that mapping correct?

(From Paul McKenney and Raul Silvera)
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Implementing C/C++11 on POWER: Pointwise Mapping

C/C++11 Operation POWER Implementation

Store (non-atomic)
Load (non-atomic)

st
ld

Store relaxed
Store release
Store seq-cst

st
lwsync; st
lwsync; hwsync; st

Load relaxed
Load consume
Load acquire
Load seq-cst

ld
ld (and preserve dependency)
ld; cmp; bc; isync
hwsync; ld; cmp; bc; isync

Fence acquire
Fence release
Fence seq-cst

lwsync
lwsync
hwsync

CAS relaxed

CAS seq-cst

loop: lwarx; cmp; bc exit;
stwcx.; bc loop; exit:

hwsync; loop: lwarx; cmp; bc exit;
stwcx.; bc loop; isync; exit:

. . . ...

Answer: No!

(From Paul McKenney and Raul Silvera)
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Is that mapping correct?

Answer: Yes!

(From Paul McKenney and Raul Silvera)
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Implementing C/C++11 on POWER: Pointwise Mapping

C/C++11 Operation POWER Implementation

Store (non-atomic)
Load (non-atomic)

st
ld

Store relaxed
Store release
Store seq-cst

st
lwsync; st
hwsync; st

Load relaxed
Load consume
Load acquire
Load seq-cst

ld
ld (and preserve dependency)
ld; cmp; bc; isync
hwsync; ld; cmp; bc; isync

Fence acquire
Fence release
Fence seq-cst

lwsync
lwsync
hwsync

CAS relaxed

CAS seq-cst

loop: lwarx; cmp; bc exit;
stwcx.; bc loop; exit:

hwsync; loop: lwarx; cmp; bc exit;
stwcx.; bc loop; isync; exit:

. . . ...

Is that the only correct mapping?

Answer: No!

(From Paul McKenney and Raul Silvera)
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Implementing C/C++11 on POWER: Pointwise Mapping

C/C++11 Operation POWER Implementation

Store (non-atomic)
Load (non-atomic)

st
ld

Store relaxed
Store release
Store seq-cst

st
lwsync; st
hwsync; st

Alternative

hwsync; st; hwsync;

Load relaxed
Load consume
Load acquire
Load seq-cst

ld
ld (and preserve dependency)
ld; cmp; bc; isync
hwsync; ld; cmp; bc; isync ld; hwsync

Fence acquire
Fence release
Fence seq-cst

lwsync
lwsync
hwsync

CAS relaxed

CAS seq-cst

loop: lwarx; cmp; bc exit;
stwcx.; bc loop; exit:

hwsync; loop: lwarx; cmp; bc exit;
stwcx.; bc loop; isync; exit:

. . . ...

All compilers must agree for separate compilation
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Implementing C/C++11 on POWER correctly

Theorem: For any sane, non-optimising compiler following the mapping:

C/C++ prog

POWER prog

C/C++11 execution
observations

POWER execution
observations

C/C++11 semantics

POWER semantics

compilation ⊆

Showed previous mapping incorrect

Easily adapt proof for an alternative mapping
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Benefits of a formal proof

Reasoning about industrial-strength concurrency

Enables:

Confidence in C/C++ and Power concurrency models

Confidence in compiler implementations [gcc]

Reasoning about C/C++ and Power

(Path to) Reasoning about ARM ??
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POWER: Hardware Modeling

Hard to see an axiomatic characterisation

Model the microarchitecture (operational model)

But, have to be abstract
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POWER operational model

Thread • • • Thread

Storage Subsystem

Write request
Read request
Barrier request

Read response
Barrier ack

Operational model of POWER [PLDI’11]

Abstract view of microarchitecture

I Abstract (topology-independent) Storage Subsystem
I Speculation in threads visible

Labelled transition systems, synchronising on messages

2500 lines of formal mathematics, described in 3 pages of prose
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Topology-Independent Storage Subsystem

RW

W

W

W

W
R

R

R

R W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

Thread1

Memory1

M
em

ory
2

Memory3Me
mo
ry

4

M
em

or
y 5

T
hread

2

Thread3Th
rea
d4

T
hr
ea
d 5

Do not expose topology

Equivalently: Copy of memory per thread

Have to take into account barriers/ordering instructions
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Cumulativity: Programming on many threads

Initially: d = 0; f = 0;

Thread 0 Thread 1 Thread 2

st d 1 ld rd d

lwsync

st f 1

loop: ld r1 f;

cmp r1 1;

beq loop;

isync;

ld r r2;

Finally: rd = 1 ∧ r1 = 1 ∧ r = 0 ??

The lwsync is cumulative: it keeps the stores in order for all threads
Flipping the dependency and barrier does not recover SC

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 22 / 34



A (slightly) More Complex Example

Initially: data = 0; flag = 0;

Thread 0 Thread 1

data = 1;

lwsync;

flag = 1;

while (flag == 0)

{};
tmp = 1;

r1 = tmp;

r = data + (r1 ⊕ r1);

Finally: r = 0 ??

Is that behaviour Allowed? Observable?

Observed on Power7; Allowed by the model
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Overall Model Size

Explanation in ∼3 pages of prose

Microarchitectural intuitions

No extraneous concrete details

∼2500 lines of machine-processed math

In LEM [ITP’11], a simple new semantic metalanguage

Can extract executable code, and theorem-prover code

With OCaml harness: interactive and exhaustive checker

Compilable to browser!
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Validating the model

Extract executable code from definition, exhaustively enumerate
possible behaviours of tests

Run many iterations of tests on real hardware (Power G5, 6, 7)

Excerpt of results:

Test Model POWER 6 POWER 7

WRC+sync+addr Forbid ok 0 / 16G ok 0 / 110G
WRC+data+sync Allow ok 150k / 12G ok 56k / 94G

PPOCA Allow unseen 0 / 39G ok 62k / 141G
PPOAA Forbid ok 0 / 39G ok 0 / 157G

LB Allow unseen 0 / 31G unseen 0 / 176G

Agreed with key IBM Power designers/architects
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C/C++11 Implementation Proof

And Its Consequences



Proof outline

Theorem: For any sane, non-optimising compiler following the mapping:

DRF C/C++ prog

POWER prog

C/C++11 execution
observations

POWER execution
observations

C/C++11 semantics

POWER semantics

compilation ⊆
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Proof outline

Theorem: For any sane, non-optimising compiler following the mapping:

DRF C/C++ prog

POWER prog

C/C++11 execution
observations

POWER execution
observations

C/C++11 semantics

POWER semantics

compilation ⊆
Preserves memory accesses;
Uses the mapping table;
Respects the thread local semantics of C/C++, preserving
dependencies
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Proof outline

Theorem: For any sane, non-optimising compiler following the mapping:

DRF C/C++ prog

POWER prog

C/C++11 execution
observations

POWER execution
observations

C/C++11 semantics

POWER semantics

compilation ⊆

From POWER trace, build key relations (happens-before, SC
order)

Required properties from abs. machine properties

If trace looks like it produces data race, build the C/C++
data race for contradiction
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Building up happens-before (outline)

C11 Power correspondence

Base case: release-acquire lwsync and isync

Transitive (multiple rel/acq) Cumulativity of lwsync

Release-consume with dependencies lwsync and dependencies

Special rules for CAS coherence-point reasoning

. . . . . .
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Using Proofs for Hardware Design

Previously, similar C11 proof for x86-TSO
I There, much simpler

What properties of Hardware were necessary?

Turns out: x86 Compare-and-Swap have strong properties

Weakening guarantees: Better implementation, just as good
programming [PLDI’13]
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Using Proofs for Hardware Design (2)

Initially: data = 0; flag = 0;

Thread 0 Thread 1

data = 1;
sync;

flag = 1;

while (flag == 0)

{};
atomically (flag = 2);

r1 = flag;

r = data + (r1 ⊕ r1);

Finally: r = 0 ??

Is that Allowed? Observable?

C11/C++11 mapping would break (and no good way of fixing)

Fortunately, current hardware does not do this

. . . and now we know why future hardware should not
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Conclusion

Reasoning about industrial-strength concurrency

Correct compilation of C/C++ concurrency primitives on Power

Confidence in both models

Compiler implementation relevance

Isolate relevant properties of h/w (Path to Hardware Design)

Reasoning about machine code at C/C++ level
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Thank You!

More details at:
http://www.cl.cam.ac.uk/~pes20/cppppc

Understanding POWER Multiprocessors [PLDI’11]

Clarifying and Compiling C/C++ Concurrency: From C++11 to POWER
[POPL’12]

Synchronising C/C++ and POWER [PLDI’12]

Fast RMWs for TSO: Semantics and Implementation [PLDI’13]

The ppcmem tool at:
http://www.cl.cam.ac.uk/~pes20/ppcmem

http://www.cl.cam.ac.uk/~pes20/cppppc
http://www.cl.cam.ac.uk/~pes20/ppcmem


Model Excerpt

Propagate write to another thread
The storage subsystem can propagate a write w (by thread tid) that it has seen
to another thread tid ′, if:

the write has not yet been propagated to tid ′;

w is coherence-after any write to the same address that has already been
propagated to tid ′; and

all barriers that were propagated to tid before w (in
s.events propagated to (tid)) have already been propagated to tid ′.

Action: append w to s.events propagated to (tid ′).

Explanation: This rule advances the thread tid ′ view of the coherence
order to w , which is needed before tid ′ can read from w , and is also
needed before any barrier that is in tid ’s view after w (has w in its “Group
A”) can be propagated to tid ′.
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Model Excerpt

Propagate write to another thread

let write_announce_cand m s w tid’ =

(w IN s.writes_seen) &&

(tid’ IN s.threads) &&

(not (List.mem (SWrite w) (s.events_propagated_to tid’))) &&

(forall (w’ IN s.writes_seen).

if List.mem (SWrite w’) (s.events_propagated_to tid’) && w.w_addr = w’.w_addr

then (w’,w) IN s.coherence

else true) &&

(forall (b IN barriers_seen s).

if (ordered_before_in (s.events_propagated_to w.w_thread)

(SBarrier b) (SWrite w))

then List.mem (SBarrier b) (s.events_propagated_to tid’) else true)

let write_announce_action s w tid’ =

let events_propagated_to’ = funupd s.events_propagated_to tid’

(add_event (s.events_propagated_to tid’) (SWrite w)) in

<| s with events_propagated_to = events_propagated_to’ |>
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