
From C/C++11 to POWER and ARM:

What is Shared-Memory Concurrency, Anyway?

Susmit Sarkar
University of St Andrews

MMnet, Heriot Watt

May, 2013



Shared Memory Concurrency: Since 1962

Burroughs D825 (first multiprocessing computer)

Outstanding features include truly modular hardware with
parallel processing throughout.

FUTURE PLANS
The complement of compiling languages is to be expanded.

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 2 / 34



And Since 2011: In C/C++

ISO C/C++11: introduces a new concurrency model

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 3 / 34



Example: Message Passing

Initially: d = 0; f = 0;

Thread 0 Thread 1

d = 1;

f = 1;

while (f == 0)

{};
r = d;

Finally: r = 0 ??

Programmer would hope this is Forbidden

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 4 / 34



Example: Message Passing (racy)

Initially: d = 0; f = 0;

Thread 0 Thread 1

d = 1;

f = 1;

while (f == 0)

{};
r = d;

Finally: r = 0 ??

Programmer would hope this is Forbidden

In C/C++11, this has undefined semantics

Data race on d and f variables

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 4 / 34



C11: A Data Race Free Model

Idea: Programmer mistake to write Data Races

Basis of C11 Concurrency

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 5 / 34



Example (contd.): mark atomics

Mark atomic variables (accesses have memory order parameter)

Initially: atomic d = 0; f = 0;

Thread 0 Thread 1

d.store(1,sc);

f.store(1,sc);

while (f.load(sc) == 0)

{};
r = d.load(sc);

Finally: r = 0 ??

Races on Atomic Accesses ignored (now have defined semantics)

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 6 / 34



Shared Memory Concurrency

Multiple threads with a single shared memory

Question: How do we reason about it?

Answer [1979]: Sequential Consistency

. . . the result of any execution is the same
as if the operations of all the processors
were executed in some sequential order,
respecting the order specified by the pro-
gram.

[Lamport, 1979]

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 7 / 34



Sequential Consistency

Thread 0 Thread 1 Thread 2 Thread 3

(Shared) Memory

Traditional assumption (concurrent algorithms, semantics,
verification): Sequential Consistency (SC)

Implies: can use interleaving semantics

False on modern (since 1972) multiprocessors, or with optimizing
compilers

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 8 / 34



Sequential Consistency

Thread 0 Thread 1 Thread 2 Thread 3

(Shared) Memory

Traditional assumption (concurrent algorithms, semantics,
verification): Sequential Consistency (SC)

Implies: can use interleaving semantics

False on modern (since 1972) multiprocessors, or with optimizing
compilers

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 8 / 34



Our world is not SC

Not since IBM System 370/158MP (1972)

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 9 / 34



Our world is not SC

Not since IBM System 370/158MP (1972)

. . . . . . Nor in x86, ARM, POWER, SPARC, Itanium, . . .

. . . . . . Nor in C, C++, Java, . . .

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 10 / 34



Example (contd.): mark atomics relaxed

Mark atomic variables as relaxed (a memory-order parameter)

Initially: atomic d = 0; f = 0;

Thread 0 Thread 1

d.store(1,rlx);

f.store(1,rlx);

while (f.load(rlx) == 0)

{};
r = d.load(rlx);

Finally: r = 0 ??

(Forbidden on SC)

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 11 / 34



Example (contd.): mark atomics relaxed

Mark atomic variables as relaxed (a memory-order parameter)

Initially: atomic d = 0; f = 0;

Thread 0 Thread 1

d.store(1,rlx);

f.store(1,rlx);

while (f.load(rlx) == 0)

{};
r = d.load(rlx);

Finally: r = 0 ??

(Forbidden on SC)

Defined, and possible, in C/C++11

Allows for hardware (and compiler) optimisations

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 11 / 34



C11 Concurrency: An Axiomatic Model

Complete executions are considered
(threadwise operational, reading arbitrary values)

Relations defined over memory events (e.g. happens-before)

Predicate says whether execution is consistent

Further, no consistent execution should have races

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 12 / 34



Example (contd.): release-acquire synchronization

Mark release stores and acquire loads

Initially: atomic d = 0; f = 0;

Thread 0 Thread 1

d.store(1,rlx);

f.store(1,rel);

while (f.load(acq) == 0)

{};
r = d.load(rlx);

Finally: r = 0 ??

(Forbidden on SC)

Forbidden in C/C++11 due to release-acquire synchronization

Implementation must ensure result not observed

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 13 / 34



Example (contd.): release-acquire synchronization

Mark release stores and acquire loads

Initially: atomic d = 0; f = 0;

Thread 0 Thread 1

d.store(1,rlx);

f.store(1,rel);

while (f.load(acq) == 0)

{};
r = d.load(rlx);

Finally: r = 0 ??

(Forbidden on SC)

Forbidden in C/C++11 due to release-acquire synchronization

Implementation must ensure result not observed

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 13 / 34



Implementation of acquire/release on POWER

Initially: d = 0; f = 0;

Thread 0 Thread 1

st d 1;

lwsync;

st f 1;

loop: ld f rtmp;

cmp rtmp 0;

beq loop;

isync;

ld d r;

Finally: r = 0 ??

Forbidden (and not observed) on POWER7, and ARM

lwsync prevents write reordering

control dependency with isync prevents read speculation

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 14 / 34



Correct implementations of C/C++ on hardware

Can it be done?
I . . . on highly relaxed hardware?

What is involved?
I Mapping new constructs to assembly

I Optimizations: which ones legal?

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 15 / 34



Correct implementations of C/C++ on hardware

Can it be done?
I . . . on highly relaxed hardware? e.g. POWER/ARM

What is involved?
I Mapping new constructs to assembly

I Optimizations: which ones legal?

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 15 / 34



Implementing C/C++11 on POWER: Pointwise Mapping

C/C++11 Operation POWER Implementation

Store (non-atomic)
Load (non-atomic)

st
ld

Store relaxed
Store release
Store seq-cst

st
lwsync; st
lwsync; st

Load relaxed
Load consume
Load acquire
Load seq-cst

ld
ld (and preserve dependency)
ld; cmp; bc; isync
hwsync; ld; cmp; bc; isync

Fence acquire
Fence release
Fence seq-cst

lwsync
lwsync
hwsync

CAS relaxed

CAS seq-cst

loop: lwarx; cmp; bc exit;
stwcx.; bc loop; exit:

hwsync; loop: lwarx; cmp; bc exit;
stwcx.; bc loop; isync; exit:

. . . ...

(From Paul McKenney and Raul Silvera)

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 16 / 34



Implementing C/C++11 on POWER: Pointwise Mapping

C/C++11 Operation POWER Implementation

Store (non-atomic)
Load (non-atomic)

st
ld

Store relaxed
Store release
Store seq-cst

st
lwsync; st
lwsync; st

Load relaxed
Load consume
Load acquire
Load seq-cst

ld
ld (and preserve dependency)
ld; cmp; bc; isync
hwsync; ld; cmp; bc; isync

Fence acquire
Fence release
Fence seq-cst

lwsync
lwsync
hwsync

CAS relaxed

CAS seq-cst

loop: lwarx; cmp; bc exit;
stwcx.; bc loop; exit:

hwsync; loop: lwarx; cmp; bc exit;
stwcx.; bc loop; isync; exit:

. . . ...

Is that mapping correct?

(From Paul McKenney and Raul Silvera)

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 16 / 34



Implementing C/C++11 on POWER: Pointwise Mapping

C/C++11 Operation POWER Implementation

Store (non-atomic)
Load (non-atomic)

st
ld

Store relaxed
Store release
Store seq-cst

st
lwsync; st
lwsync; hwsync; st

Load relaxed
Load consume
Load acquire
Load seq-cst

ld
ld (and preserve dependency)
ld; cmp; bc; isync
hwsync; ld; cmp; bc; isync

Fence acquire
Fence release
Fence seq-cst

lwsync
lwsync
hwsync

CAS relaxed

CAS seq-cst

loop: lwarx; cmp; bc exit;
stwcx.; bc loop; exit:

hwsync; loop: lwarx; cmp; bc exit;
stwcx.; bc loop; isync; exit:

. . . ...

Answer: No!

(From Paul McKenney and Raul Silvera)

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 16 / 34



Implementing C/C++11 on POWER: Pointwise Mapping

C/C++11 Operation POWER Implementation

Store (non-atomic)
Load (non-atomic)

st
ld

Store relaxed
Store release
Store seq-cst

st
lwsync; st

hwsync; st

Load relaxed
Load consume
Load acquire
Load seq-cst

ld
ld (and preserve dependency)
ld; cmp; bc; isync
hwsync; ld; cmp; bc; isync

Fence acquire
Fence release
Fence seq-cst

lwsync
lwsync
hwsync

CAS relaxed

CAS seq-cst

loop: lwarx; cmp; bc exit;
stwcx.; bc loop; exit:

hwsync; loop: lwarx; cmp; bc exit;
stwcx.; bc loop; isync; exit:

. . . ...

Is that mapping correct?

Answer: Yes!

(From Paul McKenney and Raul Silvera)

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 16 / 34



Implementing C/C++11 on POWER: Pointwise Mapping

C/C++11 Operation POWER Implementation

Store (non-atomic)
Load (non-atomic)

st
ld

Store relaxed
Store release
Store seq-cst

st
lwsync; st
hwsync; st

Load relaxed
Load consume
Load acquire
Load seq-cst

ld
ld (and preserve dependency)
ld; cmp; bc; isync
hwsync; ld; cmp; bc; isync

Fence acquire
Fence release
Fence seq-cst

lwsync
lwsync
hwsync

CAS relaxed

CAS seq-cst

loop: lwarx; cmp; bc exit;
stwcx.; bc loop; exit:

hwsync; loop: lwarx; cmp; bc exit;
stwcx.; bc loop; isync; exit:

. . . ...

Is that the only correct mapping?

Answer: No!

(From Paul McKenney and Raul Silvera)

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 16 / 34



Implementing C/C++11 on POWER: Pointwise Mapping

C/C++11 Operation POWER Implementation

Store (non-atomic)
Load (non-atomic)

st
ld

Store relaxed
Store release
Store seq-cst

st
lwsync; st
hwsync; st

Alternative

hwsync; st; hwsync;

Load relaxed
Load consume
Load acquire
Load seq-cst

ld
ld (and preserve dependency)
ld; cmp; bc; isync
hwsync; ld; cmp; bc; isync ld; hwsync

Fence acquire
Fence release
Fence seq-cst

lwsync
lwsync
hwsync

CAS relaxed

CAS seq-cst

loop: lwarx; cmp; bc exit;
stwcx.; bc loop; exit:

hwsync; loop: lwarx; cmp; bc exit;
stwcx.; bc loop; isync; exit:

. . . ...

All compilers must agree for separate compilation
Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 16 / 34



Implementing C/C++11 on POWER correctly

Theorem: For any sane, non-optimising compiler following the mapping:

C/C++ prog

POWER prog

C/C++11 execution
observations

POWER execution
observations

C/C++11 semantics

POWER semantics

compilation ⊆

Showed previous mapping incorrect

Easily adapt proof for an alternative mapping

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 17 / 34



Benefits of a formal proof

Reasoning about industrial-strength concurrency

Enables:

Confidence in C/C++ and Power concurrency models

Confidence in compiler implementations [gcc]

Reasoning about C/C++ and Power

(Path to) Reasoning about ARM ??

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 18 / 34



POWER: Hardware Modeling

Hard to see an axiomatic characterisation

Model the microarchitecture (operational model)

But, have to be abstract

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 19 / 34



POWER operational model

Thread • • • Thread

Storage Subsystem

Write request
Read request
Barrier request

Read response
Barrier ack

Operational model of POWER [PLDI’11]

Abstract view of microarchitecture

I Abstract (topology-independent) Storage Subsystem
I Speculation in threads visible

Labelled transition systems, synchronising on messages

2500 lines of formal mathematics, described in 3 pages of prose

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 20 / 34



Topology-Independent Storage Subsystem

RW

W

W

W

W
R

R

R

R W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

Thread1

Memory1

M
em

ory
2

Memory3Me
mo
ry

4

M
em

or
y 5

T
hread

2

Thread3Th
rea
d4

T
hr
ea
d 5

Do not expose topology

Equivalently: Copy of memory per thread

Have to take into account barriers/ordering instructions

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 21 / 34



Cumulativity: Programming on many threads

Initially: d = 0; f = 0;

Thread 0 Thread 1 Thread 2

st d 1 ld rd d

lwsync

st f 1

loop: ld r1 f;

cmp r1 1;

beq loop;

isync;

ld r r2;

Finally: rd = 1 ∧ r1 = 1 ∧ r = 0 ??

The lwsync is cumulative: it keeps the stores in order for all threads
Flipping the dependency and barrier does not recover SC

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 22 / 34



A (slightly) More Complex Example

Initially: data = 0; flag = 0;

Thread 0 Thread 1

data = 1;

lwsync;

flag = 1;

while (flag == 0)

{};
tmp = 1;

r1 = tmp;

r = data + (r1 ⊕ r1);

Finally: r = 0 ??

Is that behaviour Allowed? Observable?

Observed on Power7; Allowed by the model

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 23 / 34



A (slightly) More Complex Example

Initially: data = 0; flag = 0;

Thread 0 Thread 1

data = 1;

lwsync;

flag = 1;

while (flag == 0)

{};
tmp = 1;

r1 = tmp;

r = data + (r1 ⊕ r1);

Finally: r = 0 ??

Is that behaviour Allowed? Observable?

Observed on Power7; Allowed by the model

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 23 / 34



Overall Model Size

Explanation in ∼3 pages of prose

Microarchitectural intuitions

No extraneous concrete details

∼2500 lines of machine-processed math

In LEM [ITP’11], a simple new semantic metalanguage

Can extract executable code, and theorem-prover code

With OCaml harness: interactive and exhaustive checker

Compilable to browser!

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 24 / 34



Validating the model

Extract executable code from definition, exhaustively enumerate
possible behaviours of tests

Run many iterations of tests on real hardware (Power G5, 6, 7)

Excerpt of results:

Test Model POWER 6 POWER 7

WRC+sync+addr Forbid ok 0 / 16G ok 0 / 110G
WRC+data+sync Allow ok 150k / 12G ok 56k / 94G

PPOCA Allow unseen 0 / 39G ok 62k / 141G
PPOAA Forbid ok 0 / 39G ok 0 / 157G

LB Allow unseen 0 / 31G unseen 0 / 176G

Agreed with key IBM Power designers/architects

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 25 / 34



Validating the model

Extract executable code from definition, exhaustively enumerate
possible behaviours of tests

Run many iterations of tests on real hardware (Power G5, 6, 7)

Excerpt of results:

Test Model POWER 6 POWER 7

WRC+sync+addr Forbid ok 0 / 16G ok 0 / 110G
WRC+data+sync Allow ok 150k / 12G ok 56k / 94G

PPOCA Allow unseen 0 / 39G ok 62k / 141G
PPOAA Forbid ok 0 / 39G ok 0 / 157G

LB Allow unseen 0 / 31G unseen 0 / 176G

Agreed with key IBM Power designers/architects

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 25 / 34



Validating the model

Extract executable code from definition, exhaustively enumerate
possible behaviours of tests

Run many iterations of tests on real hardware (Power G5, 6, 7)

Excerpt of results:

Test Model POWER 6 POWER 7

WRC+sync+addr Forbid ok 0 / 16G ok 0 / 110G
WRC+data+sync Allow ok 150k / 12G ok 56k / 94G

PPOCA Allow unseen 0 / 39G ok 62k / 141G
PPOAA Forbid ok 0 / 39G ok 0 / 157G

LB Allow unseen 0 / 31G unseen 0 / 176G

Agreed with key IBM Power designers/architects

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 25 / 34



C/C++11 Implementation Proof

And Its Consequences



Proof outline

Theorem: For any sane, non-optimising compiler following the mapping:

DRF C/C++ prog

POWER prog

C/C++11 execution
observations

POWER execution
observations

C/C++11 semantics

POWER semantics

compilation ⊆

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 27 / 34



Proof outline

Theorem: For any sane, non-optimising compiler following the mapping:

DRF C/C++ prog

POWER prog

C/C++11 execution
observations

POWER execution
observations

C/C++11 semantics

POWER semantics

compilation ⊆
Preserves memory accesses;
Uses the mapping table;
Respects the thread local semantics of C/C++, preserving
dependencies

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 27 / 34



Proof outline

Theorem: For any sane, non-optimising compiler following the mapping:

DRF C/C++ prog

POWER prog

C/C++11 execution
observations

POWER execution
observations

C/C++11 semantics

POWER semantics

compilation ⊆

From POWER trace, build key relations (happens-before, SC
order)

Required properties from abs. machine properties

If trace looks like it produces data race, build the C/C++
data race for contradiction

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 27 / 34



Building up happens-before (outline)

C11 Power correspondence

Base case: release-acquire lwsync and isync

Transitive (multiple rel/acq) Cumulativity of lwsync

Release-consume with dependencies lwsync and dependencies

Special rules for CAS coherence-point reasoning

. . . . . .

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 28 / 34



Using Proofs for Hardware Design

Previously, similar C11 proof for x86-TSO
I There, much simpler

What properties of Hardware were necessary?

Turns out: x86 Compare-and-Swap have strong properties

Weakening guarantees: Better implementation, just as good
programming [PLDI’13]

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 29 / 34



Using Proofs for Hardware Design (2)

Initially: data = 0; flag = 0;

Thread 0 Thread 1

data = 1;
sync;

flag = 1;

while (flag == 0)

{};
atomically (flag = 2);

r1 = flag;

r = data + (r1 ⊕ r1);

Finally: r = 0 ??

Is that Allowed? Observable?

C11/C++11 mapping would break (and no good way of fixing)

Fortunately, current hardware does not do this

. . . and now we know why future hardware should not

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 30 / 34



Using Proofs for Hardware Design (2)

Initially: data = 0; flag = 0;

Thread 0 Thread 1

data = 1;
sync;

flag = 1;

while (flag == 0)

{};
atomically (flag = 2);

r1 = flag;

r = data + (r1 ⊕ r1);

Finally: r = 0 ??

Is that Allowed? Observable?

C11/C++11 mapping would break (and no good way of fixing)

Fortunately, current hardware does not do this

. . . and now we know why future hardware should not

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 30 / 34



Conclusion

Reasoning about industrial-strength concurrency

Correct compilation of C/C++ concurrency primitives on Power

Confidence in both models

Compiler implementation relevance

Isolate relevant properties of h/w (Path to Hardware Design)

Reasoning about machine code at C/C++ level

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 31 / 34



Thank You!

More details at:
http://www.cl.cam.ac.uk/~pes20/cppppc

Understanding POWER Multiprocessors [PLDI’11]

Clarifying and Compiling C/C++ Concurrency: From C++11 to POWER
[POPL’12]

Synchronising C/C++ and POWER [PLDI’12]

Fast RMWs for TSO: Semantics and Implementation [PLDI’13]

The ppcmem tool at:
http://www.cl.cam.ac.uk/~pes20/ppcmem

http://www.cl.cam.ac.uk/~pes20/cppppc
http://www.cl.cam.ac.uk/~pes20/ppcmem


Model Excerpt

Propagate write to another thread
The storage subsystem can propagate a write w (by thread tid) that it has seen
to another thread tid ′, if:

the write has not yet been propagated to tid ′;

w is coherence-after any write to the same address that has already been
propagated to tid ′; and

all barriers that were propagated to tid before w (in
s.events propagated to (tid)) have already been propagated to tid ′.

Action: append w to s.events propagated to (tid ′).

Explanation: This rule advances the thread tid ′ view of the coherence
order to w , which is needed before tid ′ can read from w , and is also
needed before any barrier that is in tid ’s view after w (has w in its “Group
A”) can be propagated to tid ′.

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 33 / 34



Model Excerpt

Propagate write to another thread

let write_announce_cand m s w tid’ =

(w IN s.writes_seen) &&

(tid’ IN s.threads) &&

(not (List.mem (SWrite w) (s.events_propagated_to tid’))) &&

(forall (w’ IN s.writes_seen).

if List.mem (SWrite w’) (s.events_propagated_to tid’) && w.w_addr = w’.w_addr

then (w’,w) IN s.coherence

else true) &&

(forall (b IN barriers_seen s).

if (ordered_before_in (s.events_propagated_to w.w_thread)

(SBarrier b) (SWrite w))

then List.mem (SBarrier b) (s.events_propagated_to tid’) else true)

let write_announce_action s w tid’ =

let events_propagated_to’ = funupd s.events_propagated_to tid’

(add_event (s.events_propagated_to tid’) (SWrite w)) in

<| s with events_propagated_to = events_propagated_to’ |>

Susmit Sarkar (St Andrews) From C/C++11 to POWER and ARM: May 2013 34 / 34


