
Haskell Implementation

A Parallel Concordance Benchmark

Design

• Data Structure :
- Hash table is used for organizing the concordance data.

Two versions with different hash tables :

1- Haskell hash table (Data.Hashtable)

2- Glib Hash table through (FFI)

{-# LANGUAGE ForeignFunctionInterface #-}

Two main Phases :
1- ProduceSeq → generating list of pairs representing sequences with it start

indices . [(String , Int)]

2- main_process → taking the list produced and insert or update the hash table

. [(String , Int)] - > IO ()

Malak Aljabri

Design

• FFI:
-Haskell's FFI is used to call functions from other languages .

• foreign import ccall "ht_init" ht_init :: IO ()

• foreign import ccall "ht_insert" ht_insert :: CString -> Int -> IO ()

• Calling functions : ht_init and ht_insert from C code :

• void ht_init ()

• void ht_insert (char *key, int value)

Malak Aljabri

Evaluation Platform

• HardWare : The programs have been measured on a common multi-

core architecture, eight-core machine, comprising two Intel Xeon

E5410 quad-core processors, running at 2.33 GHz, with a 1998 MHz

front-side bus 6144 KB and 8GB RAM running under CentOS release

5.5 .

• Software : The compiler used is the ghc version 6.12.3 . For the Glib

based version , the Glib library version used is 2.24.1

• Text File : For the reported experiments , the text file used is : bible.txt (4.6

MB) which has 800000 words .

Malak Aljabri

Sequential Implementation

Malak Aljabri

Data.Hashtable Vs Glib Hash table :

Run Time

N Glib hash table Data.Hashtable

1 4.6 3.6

2 6.3 9.1

3 8.5 19.0

4 10.9 30.0

5 13.2 45.6

6 16.0 58.8

7 18.8 72.4

8 22.3 104.6

9 24.8 120.8

10 27.9 138.9

Sequential Implementation

Malak Aljabri

Data.Hashtable Vs Glib Hash table

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10

Sequence Length

Runtime

Glib Data.Hash

Parallel Implementation

Malak Aljabri

Parallelizing ProduceSeq :
1- Glib based version :-

For sequence length = 7 Glib –based

N RunTime Relative

Speedup

1 42.1 1

2 33.7 1.2

3 28.4 1.4

4 27.3 1.5

5 26.5 1.58

6 26.2 1.6

7 25.2 1.67

8 25.8 1.63

Parallel Implementation

Malak Aljabri

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6 7 8
Number of Cores

Speedup

Conclusion

Malak Aljabri

ØPerformance difference between Data.Hashtable and using Glib through FFI .

ØUsing Lists for concordance is faster than both versions of hash tables Thomas

code : http://www.mathematik.uni-marburg.de/~horstmey/sicsa/ConcordanceTH.hs

ØParallelizing (produceSeq function) of the Haskell code using strategies was

simple to use and apply .

produceSeq n seq = (concat $ map tak tai) `using` parListChunk cSize rdeepseq

where tak = (takesns n)

tai = (tails seq)

cSize = 1000

Conclusion

Malak Aljabri

Øfurther parallelization :

Parallelizing main_process function :

would need splitting hash table and Using locks

ØHaskell-level locks

ØC locks using mutex .

OpenMP

Implementation

A Parallel Concordance Benchmark

Design

• Data Structure :

• Hash table is used for organizing the concordance data.

• Single linked list for storing the indices numbers since.

Malak Aljabri

Implementation

• OpenMP is a de facto standard (API) used mainly with shared memory

architecture to provide parallel applications.

• It is a specification that can be added to some programming languages

such as Fortran , C and C++ to specify the coordination aspects of a

parallel program.

• OpenMP consists of a set of compiler directives, supporting library

routines and environment variables to specify the parallelism, and

program runtime characteristics .

• OpenMP is widely used for fine grain loop-level parallelism since it

supports incremental development as well as being easy to implement .

#pragma omp parallel for

• Some code changes beyond pragmas are needed for performance tuning .

Malak Aljabri

Implementation

Malak Aljabri

. The Hash table is implemented in C + OpenMP version using Glib hash table

• OpenMP is implemented in Single Program Multiple Data (SPMD) model

by spawning the specified number of threads in the parallel region.

• Each thread uses its id value, for specifying the area of a text on which the

thread has to work.

• This is based on the OpenMP parallel directive to encloses the parallel

region.

• #pragma omp parallel shared(sequences) private(file, tId , worker type ,

offset)

Evaluation Platform

• HardWare : The programs have been measured on a common multi-core

architecture, eight-core machine, comprising two Intel Xeon 5410 quad-

core processors, running at 2.33 GHz, with a 1998 MHz front-side bus

6144 KB and 8GB RAM running under CentOS release 5.5 .

• Software : The compiler used is the gcc version 4.1.2 . for profiling the

benchmarks , ompP 0.7.1 profiling tool [1] is used .

• Text Files : For all the reported experiments, two samples of files were

used with different sequence lengths :

1. 18 MB and the sequences of up to 10 words.

2. 1 MB and the sequences of up to 50 words.

Malak Aljabri

Profiling Tool (ompP)

• OmpP is a profiling tool designed to help the programmer to understand

the scalability behavior of the OpenMP applications on shared memory

architecture http://www.cs.utk.edu/~karl/ompp.html

• The ompP plays a great role in discovering and analyzing different kinds of

overhead which limit the application's scalability.

• It determines the execution times for all OpenMP directives.

• It also analyses the overhead for each parallel region separately as well as

for the whole program, and generates a profiling report upon the

completion of the program execution

• The ompP overhead analysis report shows four overhead categories :

Synchronization, Imbalance, Limited parallelism and Thread Management

overhead

Malak Aljabri

Implementation

Malak Aljabri

Naïve Parallelism :

-One shared hash table protected using mutual exclusion construct :

#pragma omp critical

- Poor performance !

Number of Cores Runtime (Seconds)

1 48.35

2 42.7

3 47

4 52.1

5 56.7

6 61.8

7 74.2

8 82.6

Sequential 39

Performance Analysis

• different Potential reasons for poor performance in OpenMP

programs :

1. effect of the synchronization overhead -> waiting for long time

2. the critical construct is the most expensive synchronization construct

supported by OpenMP

3. the compiler and the runtime system overhead

Malak Aljabri

SP
E

E
D

U
P

Performance Analysis

• ompP Profiling Results :

Malak Aljabri

SP
E

E
D

U
P

Performance Tuning

• One way of reducing the synchronization overhead is to divide the hash

table into multiple hash tables, and use a different lock for each one .

Malak Aljabri

i = select_hashtable (k)

#pragma omp critical (i)

insert(sequences[i],k,current_s);

……

Performance Tuning

• -> significantly reducing the waiting time

Malak Aljabri

Number of Hash tables Synchronization

Overhead

Speedup on 8 cores

1 63% 0.58

8 27.65% 1.65

54 21.6% 3.3

364 12.47% 4.2

657 4.86% 4.38

Final Results

• the measured runtime with the number of cores compared to the

• sequential version for the final OpenMP implementation for Experiment 1

and Experiment 2.

Malak Aljabri

File 1 File 2

Final Results

• the speedup for the final OpenMP implementation of Experiment 1 and
Experiment 2 .

Malak Aljabri

Speedup

Conclusion

Malak Aljabri

• OpenMP is simple to learn and to use with little programming effort.

Moreover, it provides high-performance applications that are able to be

run on different shared memory platforms and by different numbers of

threads.

• OpenMP allows parallelization to be carried out incrementally

• Although OpenMP is considered a high level parallel programming model,

the parallelization task is not always easy and straightforward. The

programmer still needs to think carefully of how to exploit parallelism

efficiently , and reducing different kind of overheads .

