Haskell Implementation

* Data Structure :
- Hash table is used for organizing the concordance data.
Two versions with different hash tables :

1- Haskell hash table (Data.Hashtable)

2- Glib Hash table through (FFI)

{-# LANGUAGE ForeignFunctioninterface #-}

Two main Phases :

1- ProduceSeq - generating list of pairs representing sequences with it start
indices . [(String , Int)]

2- main_process —» taking the list produced and insert or update the hash table
. [(String , Int)] ->10()

Malak Aljabri

W# Design

L

* FFI.
-Haskell's FFl is used to call functions from other languages .
e foreign import ccall "ht_init" ht_init :: 10 ()

» foreign import ccall "ht_insert" ht_insert :: CString -> Int -> 10 ()

Calling functions : ht_init and ht_insert from C code :
void ht_init ()
void ht_insert (char *key, int value)

Malak Aljabri

"’ Evaluation Platform

* HardWare : The programs have been measured on a common multi-
core architecture, eight-core machine, comprising two Intel Xeon
E5410 quad-core processors, running at 2.33 GHz, with a 1998 MHz

front-side bus 6144 KB and 8GB RAM running under CentOS release
5.5.

* Software : The compiler used is the ghc version 6.12.3 . For the Glib
based version , the Glib library version used is 2.24.1

* Text File : For the reported experiments , the text file used is : bible.txt (4.6
MB) which has 800000 words .

Malak Aljabri

"' Sequential Implementation

4

Data.Hashtable Vs Glib Hash table :

T

N Glib hash table Data.Hashtable
1 4.6 3.6

2 6.3 9.1

3 8.5 19.0
4 10.9 30.0
5 13.2 45.6
6 16.0 58.8
7 18.8 72.4
8 223 104.6
9 24.8 120.8
10 27.9 138.9

Malak Aljabri

\J Sequential Implementation

=

Data.Hashtable Vs Glib Hash table

160 Runtime

| —'=— Glib —o—:Datu.Hcshl

140
120

100 /
80

60 //

1 2 3 4 5 6 7 8 9 10

Malak Aljabri

‘ Parallel Implementation

&

Parallelizing ProduceSeq :
1- Glib based version :-
For sequence length = 7 _ Glib —based

RunTime Relative

Speedup

1 42.1 1

2 33.7 1.2

3 28.4 1.4

4 27.3 1.5

5 26.5 1.58

6 26.2 1.6

7 25.2 1.67

8 25.8 1.63

Malak Aljabri

‘ Parallel Implementation

&

5 Speedup
1.8
1.6 Ay
1.4 /
12 /
1 z/
0.8
0.6
0.4
0.2
0 T T
1 2 3 Nur4nber of Cores 6 7 8

Malak Aljabri

Conclusion

&

~Performance difference between Data.Hashtable and using Glib through FFI .

~Using Lists for concordance is faster than both versions of hash tables Thomas
code : http://www.mathematik.uni-marburg.de/~horstmey/sicsa/ConcordanceTH.hs

~Parallelizing (produceSeq function) of the Haskell code using strategies was
simple to use and apply .

produceSeq n seq = (concat S map tak tai) ‘using’ parListChunk cSize rdeepseq
where tak = (takesns n)

tai = (tails seq)

cSize = 1000

Malak Aljabri

¥ Conclusion

&

>further parallelization :

Parallelizing main_process function :

would need splitting hash table and Using locks
~Haskell-level locks

»C locks using mutex .

Malak Aljabri

A Parallel Concordance Benchmark

OpenMP
.. Implementation

e Data Structure :

* Hash table is used for organizing the concordance data.
* Single linked list for storing the indices numbers since.

KEY (WALUE]

[Freauency] (Indices]
: ; LT T} —
= 2 -]
BIG 13 ‘*4] - }_.I 7[;] ____:A
—— Lo [T-]
TALL 17 —-[I = }—’[I = }—_‘ o
L o T

{ o=+ Tet—

Malak Aljabri

Implementation
y P

* OpenMPis a de facto standard (API) used mainly with shared memory
architecture to provide parallel applications.

* ltis a specification that can be added to some programming languages
such as Fortran, C and C++ to specify the coordination aspects of a
parallel program.

* OpenMP consists of a set of compiler directives, supporting library
routines and environment variables to specify the parallelism, and
program runtime characteristics .

* OpenMP is widely used for fine grain loop-level parallelism since it
supports incremental development as well as being easy to implement .

#pragma omp parallel for
* Some code changes beyond pragmas are needed for performance tuning .

Malak Aljabri

‘ Implementation
y P

. The Hash table is implemented in C + OpenMP version using Glib hash table

* OpenMP is implemented in Single Program Multiple Data (SPMD) model
by spawning the specified number of threads in the parallel region.

* Each thread uses its id value, for specifying the area of a text on which the
thread has to work.

* This is based on the OpenMP parallel directive to encloses the parallel
region.

* {#ipragma omp parallel shared(sequences) private(file, tid , worker type,
offset)

Malak Aljabri

‘ Evaluation Platform

 HardWare : The programs have been measured on a common multi-core
architecture, eight-core machine, comprising two Intel Xeon 5410 quad-
core processors, running at 2.33 GHz, with a 1998 MHz front-side bus
6144 KB and 8GB RAM running under CentOS release 5.5 .

» Software : The compiler used is the gcc version 4.1.2 . for profiling the
benchmarks , ompP 0.7.1 profiling tool [1] is used .

* Text Files : For all the reported experiments, two samples of files were
used with different sequence lengths :

=

18 MB and the sequences of up to 10 words.

N

1 MB and the sequences of up to 50 words.

Malak Aljabri

w Profiling Tool (ompP)

L

* OmpPis a profiling tool designed to help the programmer to understand
the scalability behavior of the OpenMP applications on shared memory
architecture http://www.cs.utk.edu/~karl/ompp.html

* The ompP plays a great role in discovering and analyzing different kinds of
overhead which limit the application's scalability.

* |t determines the execution times for all OpenMP directives.

* |t also analyses the overhead for each parallel region separately as well as
for the whole program, and generates a profiling report upon the
completion of the program execution

* The ompP overhead analysis report shows four overhead categories :
Synchronization, Imbalance, Limited parallelism and Thread Management
overhead

Malak Aljabri

‘4 Implementation

Naive Parallelism :

-One shared hash table protected using mutual exclusion construct :
#pragma omp critical
- Poor performance !

?

8 8 8 8§ 8 3 8 B

) Number of Cores | Runtime (Seconds)

48.35
42.7
47
52.1
56.7
61.8
74.2
82.6
Sequential 39

I'\(“ —'—OpenMP
v 4 r . < i3

—=Sequential

[y
=

Number of Cores

=
-
-
-
-
-

00 N O Ll D W N R

Malak Aljabri

Performance Analysis

different Potential reasons for poor performance in OpenMP
programs :
effect of the synchronization overhead -> waiting for long time

the critical construct is the most expensive synchronization construct
supported by OpenMP

3. the compiler and the runtime system overhead

Malak Aljabri

ompP Profiling Results :

— ompP Overhead Analysis REPOYT = ———=———=m—cm—ee e

Total runtime (wallclcck) : 271.48 sec [& cthreads]
Number of parallel regions : 2
Farallel coverage : 263.58 sec (97.09%)

Farallel regions sorted by wallclock time:

Type Location Wallclock (%)

RO0003 PARALLEL firstomp.c (115-139) 263.3% (97.02)
RO0D001I PARALLEL firstomp.c (101-103) 0.19 (0.07)
SuM 263.58 (97.09)

Cverheads wrt. each individual parallel region:

Total Cvhds (%) = Synch (%) + Imbal (%) =+ Lixpar (%) - Mgmt (%)
ROCOO3 2107.11 1781.10 (84.53) 1388.33 (65.89) 256.31 (12.16) 0.00 (0.00) 136.495 (6.48)
ROO0OO1 1.56 1.56 (100.00) 0.00 (0.00) 0.47 (30.20) 0.00 (0.00) 1.09 (62.80)

Overheads wrt. whole program:

Total Ovhds (%)~ Synch (%) = Imbal (%) + Limpar (%) + Mgmc (%)

RO0003 2107.11 1781.10 (82.025.1388.33 (63.92) 256.31 (11.80) 0.00 (0.00) 136.45 (6.28)
RO0O001 1.56 1,56 (0.97) 0. 3_7—37567 0.47 (0.02) 0.00 {(0.00) 1.09 (0.05)
SUM 2108.67 1782.66 (82.08) 1388.33 (63.92) 256.78 (11.82) 0.00 (0.00) 137.54 (€.33)

Malak Aljabri

Performance Tuning

One way of reducing the synchronization overhead is to divide the hash
table into multiple hash tables, and use a different lock for each one .

1 = select hashtable (k)
#pragma omp critical (i)
insert (sequences|[i], k,current s);

Malak Aljabri

¥

W

L

Performance Tuning

-> significantly reducing the waiting time

Number of Hash tables | Synchronization Speedup on 8 cores
Overhead

1

54

364
657

63%

27.65%

21.6%

12.47%
4.86%

0.58

1.65

3.3

4.2
4.38

Malak Aljabri

Final Results

* the measured runtime with the number of cores compared to the

* sequential version for the final OpenMP implementation for Experiment 1
and Experiment 2.
Runfime

A A s A A A
\ o W B W o W

0 T 20 .
10 r 10 — —f—qi
ﬂ T Li T T T Li 0 LI T L] T LI T
1 4 5 7 8 1 2 3 ! 5 6 1 8
Number of Cores Number of Cores

== (OpenMP =t=Sequential

Malak Aljabri

* |
y Final Results

* the speedup for the final OpenMP implementation of Experiment 1 and
Experiment 2.

6 Speedup

X o 7‘“\'//
0 I L) L] L) L] L]
1 2 4 5 6 7 8
Number of Cores

Malak Aljabri

y Conclusion

* OpenMP is simple to learn and to use with little programming effort.
Moreover, it provides high-performance applications that are able to be
run on different shared memory platforms and by different numbers of
threads.

* OpenMP allows parallelization to be carried out incrementally

* Although OpenMP is considered a high level parallel programming model,
the parallelization task is not always easy and straightforward. The
programmer still needs to think carefully of how to exploit parallelism
efficiently , and reducing different kind of overheads .

Malak Aljabri

