
Motivation Overview Overview Code Performance Conclusions

Parallel Concordance in C#
SICSA MultiCore Challenge 2010

Hans-Wolfgang Loidl
<hwloidl@macs.hw.ac.uk>

School of Mathematical and Computer Sciences,
Heriot-Watt University,

Edinburgh

December, 2010

Hans-Wolfgang Loidl <hwloidl@macs.hw.ac.uk> Parallel Concordance in C#

Motivation Overview Overview Code Performance Conclusions

Why C#

The Parallel Pattern approach for C# advocates a
high-level parallel programming model.
In essence, these are skeletons in disguise.
From .Net 4.0 onwards this is supported through
the Task Parallel Library (TPL).
This acknowledges that more user-friendly
approaches to parallel programming are desirable in
the age of desktop parallelism on multi-cores.
Based on the recent book: “Parallel Programming
with Microsoft .NET — Design Patterns for
Decomposition and Coordination on Multicore
Architectures”, by C. Campbell, R. Johnson, A.
Miller, S. Toub. Microsoft Press. August 2010.
http://msdn.microsoft.com/en-us/library/ff963553.aspx

Hans-Wolfgang Loidl <hwloidl@macs.hw.ac.uk> Parallel Concordance in C#

http://msdn.microsoft.com/en-us/library/ff963553.aspx

Motivation Overview Overview Code Performance Conclusions

DotNet Structure

Hans-Wolfgang Loidl <hwloidl@macs.hw.ac.uk> Parallel Concordance in C#

Motivation Overview Overview Code Performance Conclusions

Focus of the implementation

Explore the claim of easy parallelism.
Test the sequential efficiency of the Mono
implementation of C# and .NET under Linux.
Not: optimised sequential implementation.
No serious parallel performance tuning is done.

Hans-Wolfgang Loidl <hwloidl@macs.hw.ac.uk> Parallel Concordance in C#

Motivation Overview Overview Code Performance Conclusions

Structure of the program

Read from file
Split into words (Split)
Normalise words (all lower case, no punctuation)
Add all possible subsequences to a hashtable
mapping strings to lists of indices

Hans-Wolfgang Loidl <hwloidl@macs.hw.ac.uk> Parallel Concordance in C#

Motivation Overview Overview Code Performance Conclusions

Data Parallelism with C#’s Patterns

var options = new ParallelOptions() {
MaxDegreeOfParallelism = k };

Parallel.For(m, n, options, i =>
{

...
});

Hans-Wolfgang Loidl <hwloidl@macs.hw.ac.uk> Parallel Concordance in C#

Motivation Overview Overview Code Performance Conclusions

Top-level Concordance Method

public static void concordanceParallel(string file,
int n, int k) {

words = Concordance.readFile(file);
/* Parallel version, using only k tasks */
var options = new ParallelOptions() {

MaxDegreeOfParallelism = k };
Parallel.For(0, len-1, options, i => {

for (int j = i+1; j<Math.Min(i+n,len); j++) {
if (words[i].Length>0) {

Concordance.addSequence(file, words, i, j, i); }
}

});
}

Hans-Wolfgang Loidl <hwloidl@macs.hw.ac.uk> Parallel Concordance in C#

Motivation Overview Overview Code Performance Conclusions

Top-level Concordance Method

Easy to use data-parallelism over the outer for-loop.
Implicit load-balancing based on the options passed
to the parallel loop.
To avoid bottlenecks, an array of hashtables is used
in addSequence.

Hans-Wolfgang Loidl <hwloidl@macs.hw.ac.uk> Parallel Concordance in C#

Motivation Overview Overview Code Performance Conclusions

Hardware and Software Setup

Hardware:
Eight-core Intel Xeon E5410,
2.33GHz,
8GB RAM,
6MB L2 cache

Software:
CentOS 5.5
Mono C# & JIT compiler version 2.8.0.0
Mono RTE & JIT compiler (to amd64) version
2.8.0.0

Hans-Wolfgang Loidl <hwloidl@macs.hw.ac.uk> Parallel Concordance in C#

Motivation Overview Overview Code Performance Conclusions

Performance Results

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7 8

S
pe

ed
up

Number of Cores

Concordance (using C# and Mono) Speedups

bible.txt (800kWords, 4.8MB) with N=5
bible.txt (800kWords, 4.8MB) with N=3
bible.txt (800kWords, 4.8MB) with N=2

Hans-Wolfgang Loidl <hwloidl@macs.hw.ac.uk> Parallel Concordance in C#

Motivation Overview Overview Code Performance Conclusions

Conclusions

Parallel patterns make heavy use of delegates in
C# to realise skeletons, i.e. higher-order functions
with parallel execution.
Many more patterns exist: Pipeline,
Divide-and-Conquer, Futures etc.
A small set of control parameters can be used to
tune parallel performance.
Without serious tuning the relative speedups are
humble: ca 3.5 on 8 cores

Hans-Wolfgang Loidl <hwloidl@macs.hw.ac.uk> Parallel Concordance in C#

Motivation Overview Overview Code Performance Conclusions

Further Work

Use a customised TaskScheduler to tune the
parallelism. By default it uses a workpools (both
local and global) and thread stealing.
Compare performance with an explicitly threaded
version.
Compare performance with Microsoft’s C#
implementation on Windows.
Use optimised C front-end as tokenizer and call it
from within C#.

Hans-Wolfgang Loidl <hwloidl@macs.hw.ac.uk> Parallel Concordance in C#

Motivation Overview Overview Code Performance Conclusions

An Example of Parallel Aggregates

var options = new ParallelOptions() {
MaxDegreeOfParallelism = k};

Parallel.ForEach(seq /* sequence */, options,
() => 0, // The local initial partial result
// The loop body
(x, loopState, partialResult) => {

return Fib(x) + partialResult; },
// The final step of each local context
(localPartialSum) => {

// Protect access to shared result
lock (lockObject)

{
sum += localPartialSum;

}
});

Hans-Wolfgang Loidl <hwloidl@macs.hw.ac.uk> Parallel Concordance in C#

	Motivation
	Overview
	Overview
	Code
	Performance
	Conclusions

