
Game Model & System Architecture Model

Fief management
The fief is the historical unit of generating wealth, producing
money and people, thus enabling the player to hire armies
and NPCs.

Household management

To ensure his survival in the game, the player must marry and sire
heirs. It is also advisable to obtain the services of talented NPCs.

System architecture

A basic client-server architecture was chosen due
to: i) its simplicity to implement; ii) security

(anti-cheating); iii) centralised control; iv) the
ability to host the game on a dedicated server.

Riak was chosen as the backend database
management system (details in next section).

It was decided to investigate the use of external
services for operations such as inter-player

communication and account functions, removing
the need to embed them into the JominiEngine.

C# was chosen as the development language. It
boasts a well-developed catalogue of supporting

libraries, and enables the integration of the game
client into the Unity framework.

Army management
Armies provide both security for the player’s fiefs and the

means to ‘acquire’ new fiefs from his enemies.

The value of wargames and historical simulations as tools for the
teaching of conflict simulation and decision-making has been
recognised since Georg von Reisswitz first introduced his
wargaming rules in the early 19th Century, and in the last half of the
Twentieth Century their popularity as pastimes also grew markedly.

The arrival of computer gaming in the 1980’s resulted in a
significant increase in popularity for this type of game; in particular,
with the advent of the Internet, the last two decades have seen a
dramatic increase in the global player-base of MMORPGs, and the
associated commercial rewards.

The development of a historical MMORPG presents the developer with challenges in the areas of:

Context

Challenges

• Game design, in which a balance has to be reached between historical accuracy and player enjoyment.

• System architecture, which poses significant challenges with regard to system complexity and
scalability.

Design Goals
Goal: The JominiEngine is an emerging, distributed, scalable game engine for historical massive

multiplayer online role-playing games (MMORPGs). Core game and system design principles of this engine
are historical accuracy of the game model and scalability of the system to large numbers of players. The
intended application domain is education in history, to provide an "interactive history“ experience.
Specifically, the engine has been instantiated to a concrete game, Overlord: Age of Magna Carta, a game
set on mainland Britain in the time period of 1194-1225.

Key considerations of game and system design
1. Ensure historical accuracy, to provide educational value and enhance player immersion.

2. Ensure modularity, to allow for the future expansion of the JominiEngine in subsequent projects.

3. Address scalability, ensuring the game supports high usage at an acceptable level of performance.

Design and Implementation of the JominiEngine:
Towards a historical Massively Multiplayer Online Role-Playing Game

Dave Bond (D.A.Bond@hw.ac.uk), Hans-Wolfgang Loidl (H.W.Loidl@hw.ac.uk) and
Heriot-Watt University

Sandy Louchart (S.Louchart@gsa.ac.uk)
Glasgow School of Art

Code : http://www.macs.hw.ac.uk/~hwloidl/Projects/JominiEngine/

Backend DBMS: Why Riak?

Performance Distributed

Riak is a key-value, NoSQL (non-relational) DBMS. For an MMO game
engine, its reduced reliability (NoSQL DBMS’s are not ACID
compliant) is more than compensated for by its inherent advantages:

It is distributed, which allows for
scalability (by adding nodes and
clusters), and reduced latency (by
being located close to its user-
base), whilst providing built-in
redundancy in case of component
failure.

It is designed for the fast
throughput of small operations,
without the overheads
associated with maintaining
relational integrity. There is also
less need for structural changes
to the database due to
modification of program code.

Outcomes

State of the project
A game model was developed that stipulated basic class types, key game roles (king, herald, system administrator), component mechanics, rules and victory
conditions. UML-style diagrams were used extensively, ensuring a well-documented basis for subsequent work.

System architecture:

Game model and engine:

Ongoing and future work

A system architecture was developed, using the NoSQL, distributed DBMS, Riak, as the backend database. Such usage is relatively novel, and should help to
address the issue of scalability through its ability to both sustain high performance, and to reduce latency through its distributed nature. The use of external
services for operations such as inter-player communication and account functions, should also help with scalability.

A core game engine (the JominiEngine) was developed and implemented that allowed players to interact with the game world, as defined by the game model.
Modularity was facilitated through the provision of thorough documentation and clear interfaces to game and system components, and existing protocols
were used where possible. Formulas used in the game mechanics were, where possible, historically authentic and realistic, and historically accurate data was
imported into the JominiEngine to allow Overlord to be fully instantiated.

A Unity-embedded game client has been produced as front-end, communicating with a game server on a separate machine.

• The introduction of game content authoring, or ‘modding’ (for example, by using Lua scripting).

• Enhancements to the graphical game client to improve player experience.

• The expansion of existing mechanics; for example, the introduction of a more nuanced character model, expanding the role
of women, or the introduction of sea movement.

• The introduction of new mechanics; for example, religion (a very important aspect of medieval life).

• The exploration of enhanced artificial intelligence for NPCs, increasing player immersion.

The implementation of the game engine focuses on modularity, extensibility and scalability, so that it can
be instantiated for different time periods, and extended to also cover different application domains. We
therefore view this game engine as a "motherboard“ for developing educational tools with varying topic
areas and learning objectives. Technically outstanding features of the implementation are the use of Riak
as a non-SQL database and of C# as a programming language.

