The OpenMP Profiler ompP: User Guide and Manual

Version 0.7.0, March 2009

Karl Fuerlinger
Innovative Computing Laboratory
Department of Computer Science

University of Tennessee
|karl|at|cs|utk|edul

Contents

1 Introduction 2
2 Installation 2
3 Usage 2
3.1 Instrumenting and Linking Applications with ompP 2
3.1.1 Instrumenting User-Defined Regions 3
3.1.2 Explicit Measurement Initialization 3
3.2 Running Applications 3

3.2.1 Disable the collection of performance data for certain types of OpenMP
constructs oL 4
3.2.2 Selecting the Output Format 4
3.2.3 Specifying the Name of the Report File 5
3.2.4 Disable Output 5
3.2.5 Using Hardware Counters with ompP 5
3.2.6 Using evaluators with ompP 6
3.2.7 Incremental Profiling L. 6
4 The Contents of ompP’s Profiling Report 7
4.1 General Information L 8
4.2 Region Overview 9
4.3 Callgraph 10
4.4 Flat Region Profiles 11
4.5 Callgraph Region Profiles 14
4.6 Overhead Analysis Report 15
4.7 Performance Properties Report 17

5 Analyzing ompP’s Profiling Reports 19

6 Known Issues 19
7 Future Work 20
8 Changelog 20

1 Introduction

ompP is a profiling tool for OpenMP applications written in C/C++ or FORTRAN.
ompP’s profiling report becomes available immediately after program termination in a
human-readable format. ompP supports the measurement of hardware performance coun-
ters using PAPI [1] and supports several advanced productivity features such as overhead
analysis and detection of common inefficiency situations (performance properties).

2 Installation
Please see the file “INSTALL” for detailed instructions on how to install ompP on your

system.

3 Usage

3.1 Instrumenting and Linking Applications with ompP

ompP is implemented as a static library that is linked to your application. To capture
OpenMP execution events, ompP relies on Opari [3] for source-to-source instrumentation.
A helper script kinst-ompp or kinst-ompp-papi! is included that hides the details of
invoking Opari from the user. To instrument your application with Opari and link it with
ompP’s monitoring library simply prefix any compile or link command with kinst-ompp
or kinst-ompp-papi. l.e., on a shell prompt:

$> icc -openmp foo.c bar.c -o myapp
becomes
$> kinst-ompp icc -openmp foo.c bar.c -o myapp

Similarly, to use ompP with Makefiles, simply replace the compiler specification like
CC=icc with CC=kinst-ompp icc.

!Based on similar scripts from the SCALASCA and KOJAK packages, courtesy of Bernd Mohr, FZ
Juelich

3.1.1 Instrumenting User-Defined Regions

User-defined regions (both on a block level as well as whole functions) can be instru-
mented with Opari’s pragma handling mechanism. The pragma #pragma pomp inst
begin(name) marks the begin of the region and #pragma pomp inst end(name) marks
its end. For example:

int foo() {
#pragma pomp inst begin(foo)

#pragma pomp inst end(foo)
return 1;

3

To mark an alternative exit point of a region (such as an addtional return statement) use
the #pragma pomp inst altend(name) pragma. For FORTRAN the syntax is:

I$POMP INST BEGIN (name)
['$POMP INST ALTEND(name)]

I$POMP INST END(name)

3.1.2 Explicit Measurement Initialization

ompP will per default start monitoring when the first call to an OpenMP construct (or
user-instrumented region) is made. To explicitly start monitoring (typically in main()),
use the Opari #pragma pomp inst init pragma. This is especially useful for programs
that do a significant amount of sequential work before entering the parallel regions. Plac-
ing #pragma pomp inst init at the beginning of main() will guarantee that some timing
results (such as the parallel coverage, see Sect. 4.6) will be reported correctly by ompP
in this case.

3.2 Running Applications

Invoke the instrumented OpenMP application like a regular OpenMP application. Make
sure OMP_NUM_THREADS is set to the desired number of OpenMP threads. For an application
called myapp, ompP will per default write the profiling report to myapp.n-m.ompp.txt,
where n is the number of threads used and m is a consecutive number starting with 0.
Consecutive numbering is used because ompP does not per default overwrite existing
profiling reports. See Sect. 4 for the contents of ompP’s profiling report.

The following Environment variables influence the execution of the monitored application:

3.2.1 Disable the collection of performance data for certain types of OpenMP
constructs

By setting the environment variable OMPP_DISABLE construct, the collection of perfor-
mance data for this type of construct is disabled. Example:

$> export OMPP_DISABLE_ATOMIC=1
or

$> export OMPP_DISABLE_ATOMIC=yes

This will disable the collection of performance data for atomic constructs (both examples
are for the bash shell). To re-enable data collection either un-set the environment variable
or set it to 0. L.e,,

$> unset OMPP_DISABLE_ATOMIC
or
$> export OMPP_DISABLE_ATOMIC=0

Constructs which can be disabled are: ATOMIC, BARRIER, CRITICAL, FLUSH, LOOP, MASTER,
SECTIONS, SINGLE, WORKSHARE, USER_REGION, and LOCK. 2
3.2.2 Selecting the Output Format

Use the environment variable OMPP_OQUTFORMAT to select the format of ompP’s report. Two
formats are currently specified plaintext ASCII (default) and comma separated values
(CSV). To select output specify CSV or csv as the value of the OMPP_OUTFORMAT variable,

e.g.
$> export OMPP_QUTFORMAT=CSV
$> export OMPP_QUTFORMAT=csv

If a different string is specified or OMPP_OUTFORMAT is not specified at all, plaintext ASCII
will be generated.

2Instead of specifying OMPP_DISABLE LOCK you can also specify OMPP_DISABLE LOCKS (plural form).

3.2.3 Specifying the Name of the Report File

OMPP_APPNAME can be used to specify the name of the target application. ompP uses
the application name to infer the name of the report file (e.g., myapp.n-m.ompp.txt).
Sometimes ompP fails to derive the correct name of the target application, e.g., when the
application is not invoked directly but via another command like for example dplace.
Use OMPP_APPNAME to specify the applications name in such cases.

OMPP_OUTDIR can be used the specify the directory in which to place the report files.
OMPP_QVERWRITE can be specified to overwrite existing report files instead of incrementally
numbering them report-1.ompp.txt report-2.ompp.txt, etc.

If OMPP_REPORTFILE is set, this will be used as the name of the report file.

3.2.4 Disable Output

To force ompP to give no warning, error or status messages set the environment variable
OMPP_QUIET to any value not equal to 0. No message will be given on output on stdout
or stderr.

3.2.5 Using Hardware Counters with ompP

Hardware counters can be used with ompP by setting the environment variables OMPP_CTRn
to the names of PAPI predefined or platform-specific event names. For example:

$> export OMPP_CTR1=PAPI_L2_DCM

The number of hardware counters that can be recorded simultaneously by ompP is a
compile time constant set to 4 per default, see the definition of OMPP_PAPI_MAX_CTRS in
file ompp.h if you want to increase this limit.

During startup ompP will display a message whether registering the specified counter(s)
was successful:

ompP: successfully registered counter PAPI_L2_DCM

If the specified event name(s) are either not recognized or cannot be counted together,
ompP will issue a warning:

ompP: PAPI name-to-code error
for an unrecognized event name, or:
ompP: Error adding event to eventset

for conflicting events that cannot be counted together by the underlying hardware.

3.2.6 Using evaluators with ompP

Evaluators are a convenience feature of ompP to transform hardware performance counter
based data into more readable forms directly in the profiling tool. An evaluator is an
arithmetic formula in string form that can involve hardware counter date. For example:

$> OMPP_EVAL1=PAPI_FP_0PS/1000000 # compute the megaflop rate

$> OMPP_EVAL1=1-L2_MISSES/L2_REFERENCES # L2 hit rate (Itanium)

$> OMPP_EVAL1=1-(L3_MISSES-L3_WRITES_L2_WB_MISS)/
(L3_REFERENCES-L3_WRITES_L2_WB_ALL) # L3 hit rate (Itanium)

ompP will extract hardware counter names from evaluator strings and program PAPI
to collect the necessary data. In addition to PAPI event counter names, evaluators can
contain numeric constants and they can contain references to EXECT and EXECC. Those two
special variables denote the execution time and counts for the region for which hardware
counter data was acquired.

ompP uses libmatheval® to evaluate the numeric values of the evaluator strings and
those values appear as additional columns in the profiling report similar to plain hardware
counters (see Sects. 4.4 and 4.5).

3.2.7 Incremental Profiling

Incremental profiling refers to the method of continuously capturing profiling reports while
the program is running. While pure (“one-shot”) profiling does usually not allow one to
uncover and explain reason and temporal relationship of performance phenomena, this is
possible with full event tracing and to some extent also with incremental profiling. Hence,
incremental profiling can be a good compromise between full tracing and pure one-shot
profiling as it usually is less intrusive and generates smaller amounts of performance data.
Incremental profiling is enabled in ompP by setting the environment variable OMPP_DUMP _-
INTERVAL to the desired duration (in seconds) between capture points. The duration is
given in seconds and must be at least 0.1 seconds, shorter intervals would likely cause too
much overhead to produce usable results.

$> export OMPP_DUMP_INTERVAL=1

The profiling reports are delivered in the same format as normal ompP profiling reports
(see Sect. 4). The data contained in a profiling dump at time x contains performance data
as it is available at time x. Since ompP’s region statistics are always updated when regions
are exited, the incremental profiling reports always only contains the fully executed region
instances.

3http://www.gnu.org/software/libmatheval/

4 The Contents of ompP’s Profiling Report

ompP’s profiling report contains the following parts which will be discussed in detailed in
this section.

e General Information (Header)

Region Overview

Callgraph

Flat Region Profile

Callgraph Region Profiles

Overhead Analysis Report

Performance Properties Report

4.1 General Information

Example:

-——- ompP General Information @ ------"""-----——————————————————
Start Date : Tue Apr 17 18:45:57 2007
End Date : Tue Apr 17 18:46:13 2007
Duration 16.46 sec

User Time : 15.56 sec

System Time : 0.63 sec

Max Threads 1 4

ompP Version : 0.6.0

ompP Build Date : Apr 17 2007 18:36:24
PAPI Support : available

Max Counters 1 4

PAPI Active . yes

Used Counters 2

OMPP_CTR1 : PAPI_L2_DCM

OMPP_CTR2 : not set

OMPP_CTR3 : PAPI_TOT_INS

OMPP_CTR4 : not set

Max Evaluators : 4

Used Evaluators : O

OMPP_EVAL1 : not set

OMPP_EVAL2 : not set

OMPP_EVAL3 : not set

OMPP_EVAL4 : not set

This section of the profiling report lists general data about the profiling report. This
includes the times of the start and end of the program run and its duration (in seconds
wallclock time). The number of threads used for the execution, the date when the ompP
library was built and the ompP version used. The ompP version string is represented as
three numbers (major.minor.revision).

The “PAPI Support” line indicates if ompP was built with PAPI support “available” or
not “not available”. If PAPI support is present, the header also contains information
about the used counters (if any). If no HW counters are used, the PAPI Active line
will be “no”, otherwise it will be “yes” and the reset of the header will show how many
and which counters are used. The Max Counters lists the maximal number of counters
supported by ompP. This is a compile-time constant and can be changed by adapting the
definition of OMPP_PAPI MAX CTRS in file ompp.h of the source code distribution. For the
usage of evaluators please see Sect. 3.2.6.

4.2 Region Overview

PARALLEL: 7 regions:

* RO0016 zcopy.F (46-78)
RO0007 muldoe.F (63-145)
R00004 muldeo.F (63-145)
RO0013 zaxpy.F (48-81)
R0O0001 dznrm2.F (109-145)
R00019 zdotc.F (50-82)
R00022 zscal.F (42-69)

* ¥ X X * X

PARALLEL LOOP: 3 regions:
* RO0010 rndcnf.F (48-52)

This section lists all OpenMP regions identified by ompP. An ompP region is the lexical
extent of an OpenMP language construct. All OpenMP constructs are supported by ompP
and their accompanying regions are represented by region identifiers (e.g., R00016). The
region overview lists the different region types in the report, gives their region identifies
with their source code location. For most ompP regions the source code location is given
as a file name and two line numbers (begin and end). For barrier regions the location is
specified by only one number. Locks are identified by their memory address.

4.3 Callgraph

Inclusive (%) Exclusive (%)

16.46 (100.0%) 5.45 (33.08%) [310.wupwise: 4 threads]
0.33 (2.00%) 0.33 (2.00%) PARLOOP |-R00010 rndcnf.F (48-52)
0.65 (3.95%) 0.65 (3.95%) PARLOOP |-R00012 uinith.F (77-114)
0.12 (0.74%) 0.12 (0.74%) PARLOOP [|-R00011 rndphi.F (50-54)
0.60 (3.68%) 0.00 (0.01%) PARALLEL |-R00016 zcopy.F (46-78)

0.06 (0.37%) 0.06 (0.37%) LOOP | |-R0O0018 zcopy.F (72-76)
0.54 (3.30%) 0.54 (3.30%) LOOP | +-R0O0017 zcopy.F (53-57)
4.09 (24.87%) 0.00 (0.01%) PARALLEL |-R00007 muldoe.F (63-145)
1.83 (11.13%) 1.83 (11.13%) LOOP | |-R0O0008 muldoe.F (68-102)

The callgraph view of ompP’s profiling report shows the callgraph or (-tree) of the ex-
ecution of the application profiled by ompP. Note that the callgraph only shows the
OpenMP regions visible to ompP and does not contain normal user functions unless the
user manually instruments the functions (see Sect. 3.1.1).

The right part of the callgraph shows a graphical representation of child—parent relation-
ships of the callgraph. Regions are identified by their region number and the source code
location of the corresponding OpenMP construct. The root of the tree is implicitly the
entire application. It is often advisable to manually instrument the main() function of
an application (see Sect. 3.1.1). If this is done, the user region corresponding to main()
will appear as the one and only child of the application and the other regions will appear
below main().

The left part of the callgraph view shows inclusive and exclusive times spent in each of
the regions. Inclusive means the sum of the current region and all of its children, while
exclusive is only the time of the current region (this is often called “self” time). The times
reported in this section are “sequential” in the sense that, for example for a critical section
the time listed is the summed execution time over all threads divided by the number of
threads. This makes the execution times of the parallel execution comparable to the
wallclock execution time of the total run. All percentages are computed with respect the
wallclock duration of the entire run also.

Note, finally, that the shown callgraph is the “union” of all callgraphs encountered by
OpenMP threads. That is, in principle OpenMP threads can execute independent con-
structs (of course synchronizing at implied synchronization points). The callgraph shown
by ompP is the union of all individual callgraphs. Each node of the callgraph was visited
by at least one thread, possibly more.

10

4.4 Flat Region Profiles

R0O0010 rndcnf.F (48-52) PARALLEL LOOP

TID execT execC bodyT exitBarT startupT shutdwnT
0 0.33 1 0.33 0.00 0.00 0.00

1 0.33 1 0.32 0.01 0.00 0.00
0.33 1 0.33 0.00 0.00 0.00

3 0.33 1 0.32 0.01 0.00 0.00
SUM 1.32 4 1.29 0.02 0.01 0.00

This section lists flat profiles for each OpenMP construct in a per-region basis. The
profiles in this section are flat. I.e., the times and counts reported are those incurred for
the particular construct, irrespective of how the construct was executed. For example,
imagine a critical section c in a function foo(). If foo() is called from two different
parallel regions r1 and r2, the flat profile for ¢ will show summary data for both calls.
L.e., it is not possible to distinguish between the calls from r1 or r2 in this view. The
callgraph region profiles section of ompP’s profiling report offers the ability to distinguish
data based on the callgraph (see Sect. 4.3).

The first line the flat region profile lists the region identifier and the source code loca-
tion and region type. The next line is the header for the data entries, then data ap-
pears on a per-thread basis, the thread IDs correspond to those delivered by OpenMP’s
omp_get_thread num() call.

The columns reported by ompP depend on the type of the OpenMP region. Timing entries
end with a capital T (e.g., execC) while counts end with a capital C (e.g., execC). The
table below lists which timing and count categories are reported for the various OpenMP

11

constructs.

e e +
| main | enter | body | exit |
| | s | | s | s I e | s
| | t | | e | e s | s x | h
| e | a | | ¢ | ¢ il i i u
eleln|lrlblt]ltlnlnltl|lelt
x|l xltltlolililglglBIlx]|d
e | e el uld] ol o 111 a |l il w
clxlrlplylnlnlelelr|tln
(construct) T|Ccl|TI|TI|ITI|TI|ICI|TICITI|TIT
+ __
MASTER *C| * | I | I I I I I I I
ATOMIC *x | ok | I | I | I I I I I
BARRIER * | x| I | I | I I I I I
FLUSH * | x| | | I I I I I I I
USER_REGION *C| * | I | I I I I I I I
CRITICAL x | ox | x| | *C| | I I I | * |
LOCK * | ok | x| | *C| | I I I [* |
LOOP * | x| I | *C| I I I | * | I
WORKSHARE x | x| I | *C| | I I | * | I
SECTIONS x | kx| I | | *C| * | I | * |
SINGLE * | x| I I I I | *C| * | * | I
PARALLEL * | x| | = | *C]| I I I | * | | *
PARALLEL_LQOOP x | x| | * | *C]| | I I | * | | *
PARALLEL_SECTIONS * | x| | * | | *C| * | I | * | | *
PARALLEL_WORKSHARE | * | * | | * | *C| I I I | x| | *
e e e et e L Lt L e D e e e e +

This table shows which timing categories and counts are reported for
the various OpenMP constructs. The ’C’ indicates for which sub-region

hardware counter data is reported (if any).

As a general rule, each region is thought of being composed of smaller sub-regions and
this corresponds to the times and counts reported the composition as follows:

main

L.e., main corresponds to the whole construct (e.g., zcopy.F (46-78)) and contains all
other sub-regions. The other sub-regions arleznot nested and do not overlap, hence main

= enter + body + barrier + exit.

The enter subregion corresponds to entering or starting a construct. For critical sections
this is the time required to enter the sections and for parallel regions and combined
worksharing-parallel regions this is the time for thread startup.

Similarly, the exit subregion corresponds to leaving a construct (signalling the critical
section or lock as available) or for shutting down threads.

The barrier subregion is present for worksharing regions and represents the time wait-
ing at implicit exit barriers of those worksharing constructs (unless a nowait clause is
specified)

The body is the part of the construct where the actual work gets done. Some constructs
such as USER_REGION do not have enter, barrier or exit sub-regions. In this case only main
is reported.

Finally, the counts and times for each sub-region are reported with different names to
reflect their meaning for different OpenMP constructs. For example, the time in the enter
subregion is reported as enterT for locks and critical sections but as startupT for parallel
regions. Please refer to the table above for a detailed list of reported times and counts
for all OpenMP constructs.

Also note that the times and counts are always reported left to right such that main is
followed by body, followed by barrier, followed by enter, and exit. execT and execC are
reported for any construct and the time reported by execT should always be the sum of
all other times reported for all threads...

If hardware counter events are selected for monitoring (see Sect. 3.2.5), the hardware
counter data appears in the form of additional columns in the profiling report:

R0O0018 zcopy.F (72-76) LOOP

TID execT PAPI_L2_DCM PAPI_TOT_INS
0 0.06 (other 82 15.736.041
1 0.06 columns T4 15.736.049
2 0.06 skipped) 93 15.736.074
3 0.06 108 15.736.080
SUM 0.25 357 62.944 .244

The counter are displayed in the order in which they are specified (OMPP_CTR1 to OMPP_CTR4,
for example), unset counters are skipped. Note that for easier human interpretation the
numbers are grouped by thousands, millions, etc. This grouping is not performed in the
CSV (comma separated values) output format (see Sect. 3.2.2).

ompP always collects counter data for the sub-region where the actual work is performed
(i.e., the region that contains user-code). Some constructs do not actually contain user
code, such as the barrier construct. For other regions it would not make sense to acquire
counters for performance reasons, an example for this is the atomic construct. The table
above marks the sub-region for which hardware counter data is reported with a C.

13

4.5 Callgraph Region Profiles

[*00] 310.wupwise
[+01] R00016 zcopy.F (46-78) PARALLEL
[=02] R00017 zcopy.F (53-57) LOOP

TID execT execC bodyT/I bodyT/E exitBarT
0 0.54 9 0.53 0.53 0.02
1 0.54 9 0.53 0.53 0.01
2 0.54 9 0.54 0.54 0.01
3 0.54 9 0.53 0.53 0.01
SUM 2.17 36 2.12 2.12 0.05

The data displayed in this section is largely similar to the flat region profiles. However,
the data displayed represents the summed execution times and counts only of the current
execution graph.

The path of the root of the callgraph to the current region is shown as the first lines for
each region. The lines have the format [sxy], where xy denotes the level in the hierarchy,
starting with O (the root) and the symbol s has the following meaning: * stands for root
of the callgraph + denotes that this entry has children in the call-graph, while = denotes
that this region has no child entries in the callgraph (it is a leaf of the callgraph).

The data entries displayed for callgraph region profiles are similar to the ones shown for
flat profiles. However, for selected columns both inclusive and exclusive data entries are
displayed. Inclusive data represents this region and all descendants, while exclusive data
excludes any descendants. In the example shown above the data is displayed for a leaf
node and hence inclusive and exclusive times for bodyT are the same.

Hardware counter data is handled similar to timing data, i.e., a /I or a /E is appended
to the counter name, for example PAPI_L2 DCM/I and PAPI_L2 _DCM/E.

14

4.6 Overhead Analysis Report

Total runtime (wallclock) : 16.38 sec [4 threads]
Number of parallel regions : 10
Parallel coverage : 10.93 sec (66.73%)

Parallel regions sorted by wallclock time:

Type Location Wallclock (%)
RO0004 PARALLEL muldeo.F (63-145) 4.01 (24.45)
RO0007 PARALLEL muldoe.F (63-145) 3.99 (24.34)
RO0013 PARALLEL zaxpy.F (48-81) 0.70 (4.30)
RO0012 PARLOOP uinith.F (77-114) 0.66 (4.03)
RO0016 PARALLEL zcopy.F (46-78) 0.61 (3.71)

Overheads wrt. each individual parallel region:

Total Ovhds (%) = Synch (%)+ Imbal (%)+ Limpar (%)+ Mgmt (%)
RO0004 16.02 0.16 (1.02) 0.00 (0.00) 0.16 (1.01) 0.00 (0.00) 0.00 (0.01)
RO0007 15.95 0.22 (1.40) 0.00 (0.00) 0.22 (1.39) 0.00 (0.00) 0.00 (0.01)

Overheads wrt. whole program:

Total Ovhds (%) = Synch (%)+ Imbal (%)+ Limpar (%)+ Mgmt (%)
RO0007 15.95 0.22 (0.34) 0.00 (0.00) 0.22 (0.34) 0.00 (0.00) 0.00 (0.00)
RO0004 16.02 0.16 (0.25) 0.00 (0.00) 0.16 (0.25) 0.00 (0.00) 0.00 (0.00)

The overhead analysis report offers various interesting insights into where an application
wastefully spends its time. The first part of the overhead analysis report shows the total
runtime (this corresponds to the duration report of overview section of the profiling report
(Sect. 4.2). Then the total number of parallel regions is reported (this includes combined
worksharing-parallel regions) and then the parallel coverage is listed. The parallel coverage
is the amount of execution time spent in parallel regions. A low parallel coverage limits
the speedup that can be achieved by parallel execution.

The next part of the overhead analysis report lists all parallel regions, sorted by their
wallclock execution time. Again, both parallel regions and combined worksharing-parallel
regions are included here. The list is sorted with decreasing wallclock execution time.
The percentage gives the amount of total time spent in a particular parallel region.

The following two sections lists overheads according to a classification scheme described in
detail in [2]. The difference between these two sections is the order in which parallel regions

15

are listed and the way in which percentages are computed. The absolute times reported
are the same for both sections. In the “Overheads wrt. each individual parallel region”
section, the parallel regions appear in the same order as in the “Parallel regions sorted
by wallclock time” part (i.e., with decreasing overall execution time). The first column
Total is the wallclock time times the number of threads used in the parallel region and
hence corresponds to the overall totally consumed execution time of the parallel region.
The listed overheads are similarly summed over all threads. Four overhead category are
distinguished (synchronization, imbalance, limited parallelism and thread management).
The Ovhds column is the sum of all the other four overhead categories and all percentages
are computed with respect to each individual parallel region. That is, in the shown
example, R0O0004 the summed execution time over all threads is 16.02 seconds, and of
this 0.16 seconds (again summed over all threads) is spent in some overheads. This is a
percentage of 1.02 lost execution time.

The “Overheads wrt. whole program” sections lists the same overhead times but the
percentages are computed with respect to the total execution time (i.e., duration x number
of threads) in this section. Also, the regions are sorted by their overheads in this part.
Hence this section allows the easy identification of those regions that cause most overheads.
In the example, RO0O007 contributes most overheads to this application’s execution with

16

0.22 seconds (or 0.34 percent of total execution time).

Overhead classification scheme of ompP:
- M is thread managemen overhead

- S is synchronization overhead

- L is limited parallelism overhead
- I is imbalance overhead

et ettt +
| main | enter | body | exit |
| | | s | | s | s | | | e | | s
I I | t | lelels|s | x| | h
I | e | a | | clc | i | i] i | u
elelnlrlbdblt]ltlnlnltl|lelt
x| x|l tltlolililglglBIlx]|d
eleleluldlolollll|laldilw
clxlrlplylnlnlelelr|tln
(construct) T|C|TI|ITITITICI|]TICITITIT
+ __
MASTER *x | x| I | I | I I I I I
ATOMIC S | * | | | I I I I I I I
BARRIER S | *x | | I I | I | I I I
FLUSH S | * | I | I I I I I I I
USER_REGION * | x| I | I | I I I I I
CRITICAL * | x| S | | * | | I I I | M |
LOCK * | x| S| | * | I I I I | M |
LOOP *x | x| I | * | I I I | I | I
WORKSHARE x| x| I [* | | I I | I | I
SECTIONS * | x| | I | * | * | I |I/L]
SINGLE * | x| I | I I | * | = | L | I
PARALLEL x | kx| | M | * | I I I | I | | M
PARALLEL_LOQOP * | x| | M | * | I I I | I | | M
PARALLEL_SECTIONS x | x| | M | | x| *x | I |I/LI | M
PARALLEL_WORKSHARE | * | * | | M | * | I I I | I | | M
o ————— +

17

Property PO000O1 ’ImbalancelInParallelloop’ holds for
’LOOP muldoe.F (68-102)’, with a severity (in percent) of 0.1991

This section reports so-called “performance properties” that are detected automatically
for the application. Performance properties capture common situations of inefficient exe-
cution, they are based on the profiling data that is reported for each region.

Properties have a name (ImbalanceInParallelLoop) and a context for which they have
been detected (LOOP muldoe.F (68-102)). Each property carries a severity value, which
represents the negative impact on overall performance a property exhibits. The severity
value is given in percentage of total accumulated execution time (over all threads) and
the properties are reported with decreasing severity values.

The code that checks the for the ImbalanceInParallelLoop’ property sums the exitBarT
for all threads and the severity is this given by the ratio of this sum to the total execution
time of the application. Hence it detects situations with imbalanced (wrt. threads)
amounts of work. Here is a list of all properties defined for ompP:

WaitAtBarrier
This property checks for idle threads at explicit (programmer-added barriers)

ImbalanceInParallelRegion
ImbalanceInParallelLoop
ImbalanceInParallelWorkshare
ImbalanceInParallelSections

Those properties check for situations of imbalanced work in parallel regions and in work-
sharing regions.

ImbalanceDueToNotEnoughSections,
ImbalanceDueToUnevenSectionDistribution,

Those two properties try to uncover the reason for a situation of imbalanced execution
in a Sections construct more precisely. ImbalanceDueToNotEnoughSections is detected
when the number of individual section constructs in an enclosing sections construct is
not sufficient to provide all threads with work. Conversely, ImbalanceDueToUneven-
SectionDistribution is detected if there are enough sections but they can not be evenly
distributed among all threads.

CriticalSectionContention
LockContention

Those properties check for contention for entering critical sections or for acquiring locks.
They are based ont he enterT of the corresponding profiling data structures.

18

FrequentAtomic

This property is detected if an atomic construct is executed with a frequency higher than
a predefined threshold

InsufficienWorkInParallelLoop

This property checks the amount of work (i.e., execution time) that is performed in a
parallel region. Usually the amount of work should be big enough to amortize the cost of
spawning threads. The InsufficienWorkInParallelLoop property warns if this not the
case.

UnparallelizedInMasterRegion
UnparallelizedInSingleRegion

Those two properties detect situations of serialized execution in master and single regions
respectively. In a single region, only one thread executes code, other threads have to wait
at the exit barrier unless a nowait is specified. For master the situation is somewhat
different. Only the master thread executes the master region but there is no synchroniza-
tion point implied at the end of worksharing threads. Hence it is not know if the other
threads are idle or performing useful work while the master thread executes inside the
master construct. Hence this property does not actually point out an actual inefficiency
situation but merely points to potential case for such a case.

5 Analyzing ompP’s Profiling Reports

A set of utilities (perl scripts) will be included in a forthcoming releas to allow for easier
analysis and visualization of ompP’s profiling reports.

6 Known Issues

Pathscale C/C++ compiler incompatibility with expanding preprocessor macros in OpenMP
pragmas:

user@host$ kinst-ompp pathcc -mp -o test c_simple.c
c_simple.c: In function ’main’:
c_simple.c:7: error: expected ’#pragma omp’ clause before ’POMP_DLIST_00001’

Workaround: Invoke the kinst-ompp script as
user@host$ kinst-ompp -nodecl -- pathcc -mp -o test c_simple.c

instead. -nodecl is an option to kinst-ompp to not use preprocessor definitions and --
signifies the end of options to kinst-ompp.

19

7

Future Work

Support for other additional output formats, e.g., XML.
Write converter of profiling reports into the CUBE format.

Allow named evaluators, for example missrate=L2 MISSES/MEM REFERENCES, use
name of evaluator as the column head then.

Instead of displaying inclusive and exclusive data in callgraph region profiles, display
data differentiating into self / descendants (children). This might make manual
reasoning easier. Example bodyT/S and bodyT/C.

Changelog
ompP v0.6.0, May 2007: Initial public release.

ompP v0.6.1, June 2007: Some minor bug fixes and tweaks.

ompP v0.6.2, July 2007:

— Fixed a bug in which FORTRAN workshare constructs were not properly
maintained on the call stack (thanks to Alan Morris for reporting this).

— Fixed a bug in which loop constructs with a nowait clause would not show up
with any monitoring data.

References

[1] Shirley Browne, Jack Dongarra, N. Garner, G. Ho, and Philip J. Mucci. A portable

programming interface for performance evaluation on modern processors. Int. J. High
Perform. Comput. Appl., 14(3):189-204, 2000.

Karl Fiirlinger and Michael Gerndt. Analyzing overheads and scalability characteris-
tics of OpenMP applications. In Proceedings of the Seventh International Meeting on
High Performance Computing for Computational Science (VECPAR’06), pages 39-51,
Rio de Janeiro, Brasil, 2006. LNCS 4395.

Bernd Mohr, Allen D. Malony, Sameer S. Shende, and Felix Wolf. Towards a per-
formance tool interface for OpenMP: An approach based on directive rewriting. In
Proceedings of the Third Workshop on OpenMP (EWOMP’01), September 2001.

20

