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Part 1.
Haskell Introduction
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Characteristics of Functional Languages

GpH (Glasgow Parallel Haskell) is a conservative extension to the
purely-functional, non-strict language Haskell.
Thus, GpH provides all the of the advanced features inherited from
Haskell:

Sophisticated polymorphic type system, with type inference

Pattern matching

Higher-order functions

Data abstraction

Garbage-collected storage management

Most relevant for parallel execution is referential transparency :

The only thing that matters about an expression is its value, and
any subexpression can be replaced by any other equal in value.
[Stoy, 1977]
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Consequences of Referential Transparency

Equational reasoning:

Proofs of correctness are much easier than reasoning about state as in
procedural languages.

Used to transform programs, e.g. to transform simple specifications into
efficient programs.

Freedom from execution order:

Meaning of program is not dependent on execution order.

Lazy evaluation: an expression is only evaluated when, and if, it is needed.

Parallel/distributed evaluation. Often there are many expressions that can
be evaluated at a time, because we know that the order of evaluation
doesn’t change the meaning, the sub-expressions can be evaluated in parallel
(Wegner 1978)

Elimination of side effects (unexpected actions on a global state).
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Characteristics of Functional Languages
Like other modern functional languages e.g. F# or Racket, Haskell
includes advanced features:

Sophisticated polymorphic type system, with type inference.

length :: [a] → Int

Pattern matching.

length :: [a] → Int
length [] = 0
length (x : xs) = 1 + length xs

Higher-order functions.

map (∗2) [1, 2, 3, 4]

Data abstraction.

data MyList a = Nil
| Cons a (MyList a)

Garbage-collected storage management.
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Preliminaries

Basic types in Haskell:

Bool : boolean values: True und False

Char : characters

String : strings (as list of characters)

Int: fixed precision integers

Integer : arbitrary precision integers

Float: single-precision floating point numbers
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Preliminaries

Compound types:

Lists: [·], e.g. [Int] list of (fixed precision) integers;

Tupels: (·, · · · ), e.g. (Bool , Int) tupel of boolean values and integers;

Records: · { ·, · · · }, e.g. BI { b :: Bool , i :: Int } a record of boolean
values and integers;

Functions: a → b, e.g. Int → Bool

Typesynonyms can be defined like this:

type IntList = [Int]
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Haskell Types & Values

Note that all Haskell values are first-class: they may be passed as
arguments to functions, returned as results, placed in data structures.

Example

Example Haskell values and types:

5 :: Integer
′a′ :: Char
True :: Bool
inc :: Integer → Integer
[1, 2, 3] :: [Integer ]
(′b′, 4) :: (Char , Integer)

N.B: The ”::” can be read “has type.”
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Function Definitions

Functions are normally defined by a series of equations. Giving type
signatures for functions is optional, but highly recommended.

inc :: Integer → Integer
inc n = n + 1

To indicate that an expression e1 evaluates to another expression e2, we
write

Evaluation

e1 ⇒e2

Evaluation

inc (inc 3) ⇒5
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User-defined Types
Data constructors are introduced with the keyword data.
Nullary data constructors, or enumerated types:

data Bool = False | True
data Color = Red | Green | Blue
data Day = Mon | Tue |Wed | Thu | Fri | Sat | Sun

Pattern matching over such data types is frequently used to make a case
distinction over a user-defined (algebraic) data-type:

next :: Day → Day
next Mon = Tue
next Tue = Wed
next Wed = Thu
next Thu = Fri
next Fri = Sat
next Sat = Sun
next Sun = Mon
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User-defined Types

A recursive data constructor:

data Tree a = Leaf a | Branch (Tree a) (Tree a)

fringe :: Tree a → [a]
fringe (Leaf x) = [x ]
fringe (Branch left right) = fringe left + + fringe right

Here ++ is the infix operator that concatenates two lists.
N.B: type constructor names must be capitalised.
N.B: This is the same declaration in SML:

datatype ′a binTree = leaf
| node of ′a ∗ ′a binTree ∗ ′a binTree;
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Type Synonyms

Type synonyms are names for commonly used types, rather than new
types, and defined with the keyword type:

type String = [Char ]
type Person = (Name,Address)
type Name = String

data Address = None | Addr String

Syntactic support is provided for strings, e.g. ‘‘bye’’

⇒[’b’,’y’,’e’], and list operations operations can be applied to them,
e.g. length ‘‘bye’’ ⇒3.
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Pattern Matching

A pattern may contain a wildcard, e.g. to chose just the first n elements
of a list,

Evaluation

take 2 [1,2,3] ⇒[1,2]

take 0 = []
take [] = []
take n (x : xs) = x : take (n − 1) xs
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Guarded Patterns

A pattern may contain a guard: a condition that must be true for the
pattern to match, e.g.

sign x | x > 0 = 1
| x == 0 = 0
| x < 0 = − 1
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Lists

Constructed from cons (:) and nil ([]), e.g.

1 : []
1 : 2 : 3 : []
′b′ :′ y ′ :′ e ′ : []

having types [Integer ], [Integer] and [Char]. Lists are commonly
abbreviated:

[1]
[1, 2, 3]
[′b′,′ y ′,′ e ′]
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Lists

A list can be indexed with the !! operator:

Evaluation

[1, 2, 3] !! 0⇒ 1
[′b′,′ y ′,′ e ′] !! 2⇒ ′e ′

A list can be enumerated:

Evaluation

[1 .. 5]⇒ [1, 2, 3, 4, 5]
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List Comprehensions

“List comprehensions” are a short-hand notation for defining lists, with
notation similar to set comprehension in mathematics. They have been
introduced as ZF-comprehensions in Miranda, a pre-cursor of Haskell, and
are also supported in Python.
Example: List of square values of all even numbers in a given list of
integers xs:

sq even xs = [x ∗ x | x ← xs, even x ] sq even xs = [x ∗ x | x ← xs, even x ] sq even xs = [x ∗ x | x ← xs, even x ] sq even xs = [x ∗ x | x ← xs, even x ]

The expression x ∗ x is the body of the list comprehension. It defines the
value of each list element.
The expression x ← xs is the generator and binds the elements in xs to
the new variable x , one at a time.
The condition even x determines, whether the value of x should be used in
computing the next list element.
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List comprehension example

List comprehensions enable list functions to be expressed concisely:

quicksort [] = []
quicksort (x : xs) =

quicksort [y | y ← xs, y < x ] + +
[x ] + +
quicksort [y | y ← xs, y >= x ]
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Polymorphic Functions

A polymorphic function (generic method in Java or C#) can operate on
values of many types, e.g.

length :: [a] → Integer
length [] = 0
length (x : xs) = 1 + length xs

Evaluation

length [1, 2, 3]⇒ 3
length [′b′,′ y ′,′ e ′]⇒ 3
length [[1], [2]]⇒ 2

N.B: a is a type variable, that can stand for any type.
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Local Definitions

Haskell, like SML has a mutually recursive let binding, e.g.

let y = a ∗ b
f x = (x + y)/y

in f c + f d

The Haskell where binding scopes over several guarded equations:

f x y | y > z = ...
| y == z = ...
| y < z = ...

where z = x ∗ x
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Layout

Haskell lays out equations in columns to disambiguate between multiple
equations, e.g. could previous definition be:

let y = a ∗ b f
x = (x + y)/y

in f c + f d

Key rule: declarations start to the right of where or let.
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Curried & Infix Functions

Currying : a function requiring n arguments can be applied to fewer
arguments to get another function, e.g.

add x y = x + y
inc :: Integer → Integer
inc = add 1

Example

Define the sum over list of squares over all even numbers:

sqs even :: [Integer ] → Integer

sqs even [] = 0
sqs even (x : xs)| even x = x2 + sqs even xs

| otherwise = sqs even xs
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Higher Order Functions

Functions are first class values and can be passed as arguments to other
functions and returned as the result of a function.
Many useful higher-order functions are defined in the Prelude and libraries,
including most of those from your SML course, e.g.
filter takes a list and a boolean function and produces a list containing
only those elements that return True

filter :: (a → Bool) → [a] → [a]

filter p [] = []
filter p (x : xs)| p x = x : filter p xs

| otherwise = filter p xs

Evaluation

filter even [1,2,3]⇒[2]

Hans-Wolfgang Loidl (Heriot-Watt Univ) Milan’15 24 / 210



The higher-order function map
map applies a function f to every element of a list

map :: (a → b) → [a] → [b]

map f [] =[]
map f (x : xs) =(f x) : map f xs

Evaluation

map inc [2,3]
⇒(inc 2) : map inc [3]
⇒(inc 2) : (inc 3) : map inc []
⇒(inc 2) : (inc 3) : []
. . .
⇒[3,4]

In general:

Evaluation

map f [x0, x1, . . . , xn] =⇒ [f x0, . . . , f xn]
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map example

Example: sum over list of squares over all even numbers:

sqs even :: [Integer ] → Integer
sqs even xs = sum (map (λ x → x ∗ x) (filter even xs))
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The higher-order function foldr
foldr applies a binary function to every element of a list:

foldr :: (a → b → b) → b → [a] → b

foldr f z [] = z
foldr f z (x : xs) = f x (foldr f z xs)

Example:

Evaluation

foldr add 0 [2,3]
⇒add 2 (foldr add 0 [3])
⇒add 2 (add 3 (foldr add 0 []))
...
⇒5

In general: foldr replaces every : in the list by an f , and the [] by an v :

Evaluation

foldr ⊕ v(x0 : . . . : xn : []) =⇒ x0 ⊕ . . .⊕ (xn ⊕ v)
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zip converts a pair of lists into a list of pairs:

zip :: [a] → [b] → [(a, b)]

Evaluation

zip [1,2,3] [9,8,7] ⇒[(1,9),(2,8),(3,7)]

zipWith takes a pair of lists and a binary function and produces a list
containing the result of applying the function to each ’matching’ pair:

Evaluation

zipWith ⊕ (x0 : . . . : xn : []) (y0 : . . . : yn : [])
=⇒ (x0 ⊕ y0) : . . . : (xn ⊕ yn)

Example

dotProduct xs ys = sum (zipWith (*) xs ys)
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Lambda Abstractions

Functions may be defined “anonymously” via a lambda abstraction (fn in
SML). For example definitions like

inc x =x + 1
add x y =x + y

are really shorthand for:

inc = \ x → x + 1
add = \ x y → x + y

Lambda Expressions
SML: Haskell:

fn x => ... \ x -> ...
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Infix Operators
Infix operators are really just functions, and can also be defined using
equations, e.g. list concatenation:

(++) :: [a] → [a] → [a]

[] + + ys = ys
(x : xs) + + ys = x : (xs + +ys)

and function composition:

(.) :: (b → c) → (a → b) → (a → c)
f . g = \ x → f (g x)

Lexically, infix operators consist entirely of “symbols,” as opposed to
normal identifiers which are alphanumeric.

Function composition
SML: Haskell:

f o g f . g
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Sections

Since operators are just functions, they can be curried, e.g. (parentheses
mandatory)

(x+) = \ y → x + y
(+y) = \ x → x + y
(+) = \ x y → x + y

Example

The sum over list of squares of all even numbers:

sqs even :: [Integer ] → Integer
sqs even = foldr (+) 0 .map (λ x → x ∗ x) . filter even
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Lazy Functions
Most programming languages have strict semantics: the arguments to a
function are evaluated before the evaluating the function body. This
sometimes wastes work, e.g.

f True y = 1
f False y = y

It may even cause a program to fail when it could complete, e.g.

Evaluation

f True (1/0) ⇒ ?

It may even cause a program to fail when it could complete, e.g.

Evaluation

f True (1/0) ⇒1

Haskell functions are lazy : the evaluation of the arguments is delayed, and
the body of the function is evaluated and only if the argument is actually
needed (or demanded) is it evaluated.
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“Infinite” Data Structures
As an example of lazy evaluation, consider the following function:

foo x y z = if x < 0 then abs x
else x + yfoo x y z = if x < 0 then abs x
else x + yfoo x y z = if x < 0 then abs x
else x + y

Evaluation order:

Evaluating the conditional requires the evaluation of x < 0 which in
turn requires the evaluation of the argument x .

If x < 0 is True, the value of abs x will be returned; in this case
neither y nor z will be evaluated.

If x < 0 id False, the value of x + y will be returned; this requires the
evaluation of y .

z won’t be evaluated in either of these two cases.

In particular, the expression foo 1 2 (1 ‘div ‘ 0) is well-defined.
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“Infinite” Data Structures
Data constructors are also lazy (they’re just a special kind of function),
e.g. list construction (:)

Non-strict constructors permit the definition of (conceptually) infinite data
structures. Here is an infinite list of ones:

ones = 1 : ones

More interesting examples, successive integers, and all squares (using infix
exponentiation):

numsFrom n = n : numsFrom (n + 1)
squares = map (^2) (numsFrom 0)

Any program only constructs a finite part of an infinite sequence, e.g.

Evaluation

take 5 squares ⇒[0,1,4,9,16]
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Infinite Data-structures
The prelude function for selecting the n-the element of a list:

[] !! = error ”Empty list”
(x : ) !! 0 = x
( : xs) !! n = xs !! (n − 1)

Here is the evaluation order of [0..]!!2:

Evaluation

[0..]!!2 =⇒ is the list empty?
(0 : [1..])!!2 =⇒ is the index 0?
[1..]!!1 =⇒ is the list empty?
(1 : [2..])!!1 =⇒ is the index 0?
[2..]!!0 =⇒ is the list empty?
(2 : [3..])!!0 =⇒ is the index 0?
2

Hans-Wolfgang Loidl (Heriot-Watt Univ) Milan’15 35 / 210

Example Sieve of Erathostenes

Compute a list of all prime numbers by,

1 starting with a list of all natural numbers,

2 take the first number in the list and cancel out all its multiples,

3 repeat Step 2 forever.

-- iteratively remove all multiples of identified prime numbers

sieve :: [Integer] -> [Integer]

sieve (p:xs) = p : sieve (removeMults p xs)

-- remove all multiples of a given number

removeMults :: Integer -> [Integer] -> [Integer]

removeMults p xs = [ x | x <- xs, not (x ‘rem ‘ p == 0) ]

-- define an infinite list of prime numbers

primes :: [Integer]

primes = sieve [2..]

Hans-Wolfgang Loidl (Heriot-Watt Univ) Milan’15 36 / 210



An example of an infinite data structure

The goal is to create a list of Hamming numbers, i.e. numbers of the form
2i3j5k for i , j , k ∈ N
hamming = 1 : map (2*) hamming ‘union ‘

map (3*) hamming ‘union ‘

map (5*) hamming

union a@(x:xs) b@(y:ys) = case compare x y of

LT -> x : union xs b

EQ -> x : union xs ys

GT -> y : union a ys

Note, that hamming is an infinite list, defined as a cyclic data structure,
where the computation of one element depends on prior elements in the
list.

0Solution from Rosetta code
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Normal Forms

Normal forms are defined in terms of reducable expressions, or redexes, i.e.
expressions that can be simplified e.g. (+) 3 4 is reducable, but 7 is not.
Strict languages like SML reduce expressions to Normal Form (NF), i.e.
until no redexes exist (they are “fully evaluated”). Example NF
expressions:

5
[4, 5, 6]
\ x → x + 1

Lazy languages like Haskell reduce expressions to Weak Head Normal
Form (WHNF), i.e. until no top level redexes exist. Example WHNF
expressions:

(:) 2 [2 + 1] usually written as 2 : [2 + 1]
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Examples

Example non-WHNF expressions:

(+) 4 1
(\ x → x + 1) 3

Example WHNF expressions that are not in NF :

(∗) ((+) 4 1)
\ x → 5 + 1
(3 + 1) : [4, 5]
(22) : (map (2) [4, 6])

N.B: In a parallel non-strict language threads, by default, reduce
expressions to WHNF.
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In addition to the parametric polymorphism already discussed, e.g.

length :: [a] → Int

Haskell also supports ad hoc polymorphism or overloading, e.g.

1, 2, etc. represent both fixed and arbitrary precision integers.

Operators such as + are defined to work on many different kinds of
numbers.

Equality operator (==) works on numbers and other types.

Note that these overloaded behaviors are different for each type and may
be an error, whereas in parametric polymorphism the type truly does not
matter, e.g. length works for lists of any type.
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Declaring Classes and Instances
It is useful to define equality for many types, e.g. String, Char, Int,
etc, but not all, e.g. functions.
A Haskell class declaration, with a single method:

class Eq a where
(==) :: a → a → Bool

Example instance declarations, integerEq and floatEq are primitive
functions:

instance Eq Integer where
x == y = x ‘integerEq‘ y

instance Eq Float where
x == y = x ‘floatEq‘ y

instance (Eq a)⇒ Eq (Tree a) where

Leaf a ==Leaf b = a == b
(Branch l1 r1) ==(Branch l2 r2) = (l1 == l2) && (r1 == r2)

== = False
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Number Classes

Haskell has a rich set of numeric types and classes that inherit in the
obvious ways. The root of the numeric class hierarchy is Num.

Integer in class Integral: Arbitrary-precision integers

Int in class Integral: Fixed-precision integers

Float in class RealFloat: Real floating-point, single precision
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Input/Output
To preserve referential transparency, stateful interaction in Haskell (e.g.
I/O) is performed in a Monad .
Input/Output actions occur in the IO Monad, e.g.

getChar :: IO Char
putChar :: Char → IO ()
getArgs :: IO [String ]
putStr , putStrLn :: String → IO ()
print :: Show a⇒ a → IO ()

Every Haskell program has a main :: IO () function, e.g.

main = putStr ”Hello”

A do statement performs a sequence of actions, e.g.

main :: IO ()
main =do c ← getChar

putChar c
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Useful I/O
Many useful IO functions are in the system module and must be imported,
see below.

show :: (Show a)⇒ a → String

converts values of most types into a String, e.g.

Evaluation

show 3 ⇒“3”

read :: (Read a)⇒ String → a

parses a value of most types from a String.
A program returning the sum of its command line arguments:

main = do args ← getArgs
let x = read (args!!0)
let y = read (args!!1)
putStrLn (show (x + y))
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How to read monadic code
Monadic code enforces a step-by-step execution of commands, operating
on a hidden state that is specific to the monad
⇒ this is exactly the programming model you are used to from other
languages.

In functional languages, monadic code is a special case, and typically used
when interacting with the outside world. We need to distinguish between
monadic and purely functional code. This distinction is made in the type,
e.g.

readFile :: FilePath → IO String

Read this as: “the readFile function takes a file-name, as a full file-path,
as argument and performs an action in the IO monad which returns the
file contents as a string.”

NB: Calling readFile doesn’t give you the string contents, rather it
performs an action
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Another example of monadic code

Read a file that contains one number at each line, and compute the sum
over all numbers.

myAction :: String -> IO Int -- define an IO-action , that takes a string as input

myAction fn =

do -- this starts a block of monadic actions

str <- readFile fn -- perform an action , reading from file

let lns = lines str -- split the file contents by lines

let nums = map read lns -- turn each line into an integer value

let res = sum nums -- compute the sum over all integer values

print res -- print the sum

return res -- return the sum

NB: the ← operator (written <-) binds the result from executing monadic
code to a variable.
The let constructs assigns the value of a (purely functional) computation
to a variable.
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Example: Caesar Cipher
To summarise:

to encrypt a plaintext message M, take every letter in M and
shift it by e elements to the right to obtain the encrypted letter;
to decrypt a ciphertext, take every letter and shift it by d = −e
elements to the left

As an example, using e = 3 as key, the letter A is encrypted as a D, B as
an E etc.

Plain: ABCDEFGHIJKLMNOPQRSTUVWXYZ

Cipher: DEFGHIJKLMNOPQRSTUVWXYZABC

Encrypting a concrete text, works as follows:

Plaintext: the quick brown fox jumps over the lazy dog

Ciphertext: WKH TXLFN EURZQ IRA MXPSV RYHU WKH ODCB GRJ

More formally we have the following functions for en-/de-cryption:

Ee(x) = x + e mod 26

De(x) = x − e mod 26
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Characteristics of Caesar’s Cipher

Note the following:

The sets of plain- and cipher-text are only latin characters. We
cannot encrypt punctuation symbols etc.

The en- and de-cryption algorithms are the same. They only differ in
the choice of the key.

The key strength is not tunable: shifting by 4 letters is no more safe
than shifting by 3.

This is an example of a symmetric or shared-key cryptosystem.

Exercise

Implement an en-/de-cryption function based on the Caesar cipher.
Implement a function that tries to crack a Caesar cipher, ie. that retrieves
plaintext from ciphertext for an unknown key.
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Program header and import statements

module Caesar where

import Data.Char

import Math.Algebra.Field.Base

import Data.List

import Test.QuickCheck

The import statement makes all definitions from a different module
available in this file.

Hans-Wolfgang Loidl (Heriot-Watt Univ) Milan’15 49 / 210

Helper functions

-- convert a character to an integer , starting with 0 for ’a’ etc

let2int :: Char -> Int

let2int c = ord c - ord ’a’

-- convert an index , starting with 0, to a character , e.g ’a’

int2let :: Int -> Char

int2let n = chr (ord ’a’ + n)

-- shift a character c by n slots to the right

shift :: Int -> Char -> Char

shift n c | isLower c = int2let ((( let2int c) + n) ‘mod ‘ 26)

| otherwise = c

The shift function is the basic operation that we need in the Caesar
Cipher: it shifts a character by given number of steps through the
alphabet.
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The encoding function

-- top -level string encoding function

encode :: Int -> String -> String

encode n cs = [ shift n c | c <- cs ]

percent :: Int -> Int -> Float

percent n m = (fromIntegral n / fromIntegral m)*100

-- compute frequencies of letters ’a’..’z’ in a given string

freqs :: String -> [Float]

freqs cs = [percent (count c cs) n | c <- [’a’..’z’] ]

where n = lowers cs

The function freqs determines the frequencies of all letters of the
alphabet in the given text cs.
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The decoding function

-- chi -square function for computing distance between 2 frequency lists

chisqr :: [Float] -> [Float] -> Float

chisqr os es = sum [((o-e)^2)/e | (o,e) <- zip os es]

-- table of frequencies of letters ’a’..’z’

table :: [Float]

table = [8.2, 1.5, 2.8, 4.3, 12.7, 2.2, 2.0,

6.1, 7.0, 0.2, 0.8, 4.0, 2.4,

6.7, 7.5, 1.9, 0.1, 6.0, 6.3, 9.1,

2.8, 1.0, 2.4, 0.2, 2.0, 0.1]

The chisqr function formalises the intuition of matching two curves and
returning a value that represents a “distance” between the two curves.
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The decoding function

-- top -level decoding function

crack :: String -> String

crack cs = encode (-factor) cs

where factor = head (positions (minimum chitab) chitab)

chitab = [ chisqr (rotate n table ’) table

| n <- [0..25] ]

table ’ = freqs cs

In the crack function, we try all possible shift values, and match the curve
for each value with the known frequency of letters, taken from an English
dictionary.
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More helper functions

-- rotate a list by n slots to the left; take , drop are Prelude functions

rotate :: Int -> [a] -> [a]

rotate n xs = drop n xs ++ take n xs

-- the number of lower case letters in a given string

lowers :: String -> Int

lowers cs = length [ c | c <- cs , isLower c]

-- count the number of occurrences of c in cs

count :: Char -> String -> Int

count c cs = length [ c’ | c’ <- cs, c==c’]

-- find list of positions of x in the list xs

positions :: Eq a => a -> [a] -> [Int]

positions x xs = [ i’ | (x’, i’) <- zip xs [0..n], x==x’ ]

where n = length xs - 1

These are the helper functions, needed by crack.
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Case Study

To test the program, start the Haskell interpreter ghci:

# ghci -package HaskellForMaths -package QuickCheck caesar.hs

Now, inside the interpreter try these commands:

#> let s1 = "a completely random text string"

#> let c1 = encode 3 s1

#> c1

#> let d1 = crack c1

#> d1

#> let s2 = "unusal random string"

#> let c2 = encode 7 s2

#> c2

#> let d2 = crack c2

#> d2
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Part 2.
Parallel Programming Overview
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Performance: The Free Lunch is over!
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The Free Lunch is over!

Don’t expect your sequential program to run faster on new processors
(Moore’s law: CPU/memory speed doubles every 18 months)

Still, processor technology advances

BUT the focus now is on multiple cores per chip

Today’s desktops typically have 8 cores.

Today’s servers have up to 64 cores.

Expect 100s of cores in the near future.

Additionally, there is specialised hardware such as multi-byte vector
processors (e.g. Intel MMX - 128 bit) or high-end graphics cards
(GPGPUs)

Together, this is a heterogeneous, high-performance architecture.
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Power usage is the show stopper!
Power consumption of an Intel i7 processor:

NB: Exponential increase in transistor power!
0Source: http://forums.anandtech.com/showthread.php?t=2195927
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Typical multi-core architecture today

18 cores (PU) on one chip

several levels of caches

some of them are shared between cores

shared memory, BUT

non-uniform memory access (NUMA) to this shared memory
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Shared-memory architectures

Multi-core, shared-memory servers are now common-place.

Shared-memory is easier to program than distributed memory.

Shared-memory architecture:

CPU CPU CPU

Memory Memory Memory

Bus

Hans-Wolfgang Loidl (Heriot-Watt Univ) Milan’15 61 / 210

NUMA architectures
Memory access costs depend very much on which memory bank (“NUMA
region”) is accessed.

Here: 24-cores, BUT in 4 NUMA regions with 6 cores each.
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State-of-the-art Servers are multi-cores
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Even high-end laptops are multi-cores
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NUMA costs

NUMA architectures pose a challenge to parallel applications.
I Asymmetric memory latencies
I Asymmetric memory bandwidth between different memory regions.

Memory access times between different NUMA regions1

node 0: 1: 2: 3: 4: 5: 6: 7:
0: 10 16 16 22 16 22 16 22

1: 16 10 22 16 22 16 22 16

2: 16 22 10 16 16 22 16 22

3: 22 16 16 10 22 16 22 16

4: 16 22 16 22 10 16 16 22
5: 22 16 22 16 16 10 22 16

6: 16 22 16 22 16 22 10 16

7: 22 16 22 16 22 16 16 10

1Measured using numactl -H
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Distributed memory architectures

CPU CPU CPU

Memory Memory Memory

Network

advantage: highly scalable

disadvantage: explicit data communication is relatively slow

Example: “Beowulf” clusters of commodity desktop hardware with an GB
Ethernet network.
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Hector supercomputer
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Supercomputers

The Hector supercomputer at the Edinburgh Parallel Computing Center
(2011):

total of 464 compute blades;

each blade contains four compute nodes,

each with two 12-core AMD Opteron 2.1GHz Magny Cours
processors.

Total: 44,544 cores

Upgraded in 2011 to 24-core chips with a total of 90,112 cores

See the TOP500 list of fastest supercomputers for the most recent picture.
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Supercomputers
Hector is out-dated and will be turned off in March 2014. The new
supercomputer at EPCC is Archer:

Cray XC30 architecture

uses Intel Xeon Ivy Bridge processors

total of 3008 compute nodes

each node comprises two 12-core 2.7 GHz Ivy Bridge multi-core
processors,

Total: 72,192 cores

Peak performance: 1.56 Petaflops

each node has at least 64 GB of DDR3-1833 MHz main memory,

scratch disk storage: Cray Sonexion Scalable Storage Units (4.4PB at
100GB/s)

all compute nodes are interconnected via an Aries Network Interface
Card.

1For details on Archer see:
https://www.epcc.ed.ac.uk/media/publications/newsletters/epcc-news-74

and www.archer.ac.uk
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The fastest super-computer today: TianHe-2 (MilkyWay-2)

located at the National Super Computer Center in Guangzhou, China

16,000 nodes, each with 2 Ivy Bridge multi-cores and 3 Xeon Phis

3,120,000 cores in total!

Linpack performance: 33.86 PFlop/s

Theoretical peak perf: 54.90 PFlop/s (ca 733k× my laptop)

Power: 17.8 MW
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Trends in Parallel Hardware

hundreds of (light-weight) cores (today’s servers have 48–64 cores)

NUMA-structured shared-memory with partially shared caches

probably not all of the being used at the same time (dark silicon)

attached many-core co-processors (Xeon-Phi, Parallela)

attached general purpose GPUs (for data-parallel floating point
performance)

possibly soft cores (in the form of FPGAs)

highly heterogeneous

Such architectures are challenging to program
⇒ we need high-level programming models to simplify that task
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Xeon Phi

Example of a many-core co-processor

Acts similar to a graphics card, plugged into the main board

Provides 60 cores on one board

Can be programmed like a network of 60 machines

Similar, but cheaper products come onto the market: Parallela
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Parallel Programming: implicit parallelism

Implicit parallelism:

compiler/run time system exploits parallelism latent in program
e.g. High Performance Fortran

avoids need for programmer expertise in architecture/communication

identifying parallelism in programs is hard and undecidable in general

requires complex usage analysis to ensure independence of potentially
parallel components

typically look for parallelism in loops

check that each iteration is independent of next

advantages

I no programmer effort

disadvantages
I parallelising compilers very complex
I beyond common patterns of parallelism, often human can do better
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Example Code

A good example:

for (i=0; i<n; i++)

a[i] = b[i]*c[i]

no dependency between stages

could execute a[i] = b[i]*c[i] on separate processors

A bad example:

for (i=1; i<n; i++)

a[i] = a[i-1]*b[i]

each stage depends on previous stage so no parallelism

Hans-Wolfgang Loidl (Heriot-Watt Univ) Milan’15 74 / 210

Parallel Programming: explicit parallelism

Explicit parallelism:

programmer nominates program components for parallel execution

three approaches

I extend existing language
I design new language
I libraries
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Parallel Programming: extend existing languages

Extend existing languages

add primitives for parallelism to an existing language

advantage:
I can build on current suite of language support e.g. compilers, IDEs etc
I user doesn’t have to learn whole new language
I can migrate existing code

disadvantage
I no principled way to add new constructs
I tends to be ad-hoc,
I i.e. the parallelism is language dependent

e.g. many parallel Cs in 1990s

none have become standard, yet

an emerging standard is Unified Parallel C (UPC)
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Parallel Programming: language independent
extensions

Use language independent extensions

Example: OpenMP

for shared memory programming, e.g. on multi-core

Host language can be Fortran, C or C++

programmer marks code as
I parallel: execute code block as multiple parallel threads
I for: for loop with independent iterations
I critical: critical section with single access
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Parallel Programming: compiler directives

Compiler directives

advantage

I directives are transparent so can run program in normal sequential
environment

I concepts cross languages

disadvantage
I up to implementor to decide how to realise constructs
I no guarantee of cross-language consistency
I i.e. the parallelism is platform dependent
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Parallel Programming: Develop new languages

Develop new languages

advantage:

I clean slate

disadvantage
I huge start up costs (define/implement language)
I hard to persuade people to change from mature language

Case study: sad tale of INMOS occam (late 1980’s)
I developed for transputer RISC CPU with CSP formal model
I explicit channels + wiring for point to point CPU communication
I multi-process and multi-processor
I great British design: unified CPU, language & formal methodology
I great British failure
I INMOS never licensed/developed occam for CPUs other than

transputer
I T9000 transputers delivered late & expensive compared with other

CPUs libraries
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Parallel Programming: Language independent
libraries

Language independent libraries:

most successful approach so far
I language independent
I platform independent

Examples:
I Posix thread library for multi-core
I Parallel Virtual Machines (PVM) for multi-processor
I Message Passing Interface (MPI ) for multi-processor

widely available for different languages under different operating
systems on different CPUs
e.g. MPICH-G: MPI for GRID enabled systems with Globus

we will use C with MPI on Beowulf
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Parallel Programming Examples

As an example of low-level vs high-level parallel programming , we want to
compute a Taylor series in parallel:

ez = lim
n→∞

Σ∞
n=1

zn

n!

The basic idea is to compute the components of the sum in parallel.
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Sequential C version

/* exponential function */

double power_e(long z) {

long n;

double sum , old_sum , eps;

for (n=0, sum=0.0, eps =1.0; eps > EPSILON; n++) {

old_sum = sum;

sum += (( double)pow_int(z,n)) / (( double) fact(n));

eps = sum - old_sum;

}

return sum;

}

Simple code, but soon overflows ⇒ we need arbitrary precision integers.
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Seq. C with GMP for arbitrary precision integers

We use the GNU multi-precision library (GMP) to get arbitrary precision.

/* exponential function , result will be stored in res */

void power_e(mpq_t res , ui z, ui d) {

mpq_t sum , old_sum , eps;

mpq_t tmp_num , tmp_den , tmp , tmpe , epsilon;

ui n;

mpq_init(epsilon); mpq_init(eps); mpq_init(sum); \ldots

pow_int(tmpe , 10l, d); mpq_inv(epsilon , tmpe); // 10^-d

mpq_set_ui(sum , 0l, 1l); mpq_set_ui(eps , 1l, 1l);

for (n=0; mpq_cmp(eps , epsilon) >0; n++) {

mpq_set(old_sum , sum);

pow_int(tmp_num , z, n);

fact(tmp_den , n);

mpq_div(tmp , tmp_num , tmp_den);

mpq_add(sum , sum , tmp);

mpq_set(eps , tmp);

}

mpq_clear(tmp_num); mpq_clear(tmp_den); \ldots

mpq_set(res ,sum);

}

Same structure as before, but harder to read due to lack of syntactic sugar.

Hans-Wolfgang Loidl (Heriot-Watt Univ) Milan’15 83 / 210

Basic Point to Point Communication in MPI

MPI (the Message Passing Interface) offers two basic point to point
communication functions:

MPI Send(message, count, datatype, dest, tag, comm)

I Blocks until count items of type datatype are sent from the message
buffer to processor dest in communicator comm.

F message buffer may be reused on return, but message may still be in
transit!

MPI Recv(message, count, datatype, source, tag, comm, status)

I Blocks until receiving a tag-labelled message from processor source in
communicator comm.

I Places the message in message buffer.
F datatype must match datatype used by sender!
F Receiving fewer than count items is OK, but receiving more is an error!

Aside: These are the two most important MPI primitives you have to know.
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Send and Receive in more Detail

int MPI Send(

void * message,

int count,

MPI Datatype datatype,

int dest,

int tag,

MPI Comm comm)

int MPI Recv(

void * message,

int count,

MPI Datatype datatype,

int source,

int tag,

MPI Comm comm,

MPI Status * status)

message pointer to send/receive buffer
count number of data items to be sent/received
datatype type of data items
comm communicator of destination/source processor

I For now, use default communicator MPI COMM WORLD

dest/source rank (in comm) of destination/source processor
I Pass MPI ANY SOURCE to MPI Recv() if source is irrelevant

tag user defined message label
I Pass MPI ANY TAG to MPI Recv() if tag is irrelevant

status pointer to struct with info about transmission
I Info about source, tag and #items in message received
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Parallel C+MPI version: Master
The master distributes the work and collects results.

// start the timer

MPI_Barrier(MPI_COMM_WORLD);

elapsed_time = - MPI_Wtime ();

/* General: use p-1 workers , each computing every (p-1)-th element of the series */

long from , step , last_n , max_n; int len , l; double *times; MPI_Status status;

max_n = (long)p-1;

step=(long)(p-1);

for (i=1; i<p; i++) {

from=(long)(i-1);

MPI_Send (&z, 1, MPI_LONG , i, 0, MPI_COMM_WORLD); /* send input to worker i */

MPI_Send (&d, 1, MPI_LONG , i, 0, MPI_COMM_WORLD); /* send input to worker i */

MPI_Send (&from , 1, MPI_LONG , i, 0, MPI_COMM_WORLD);/* send input to worker i */

MPI_Send (&step , 1, MPI_LONG , i, 0, MPI_COMM_WORLD);/* send input to worker i */

}

times = (double *) malloc(p*sizeof(double));

for (i=1; i<p; i++) {

MPI_Recv (&len , 1, MPI_INT , i, 0, MPI_COMM_WORLD , &status); /* recv result from

worker i */

MPI_Recv (&res_str , len , MPI_CHAR , i, 0, MPI_COMM_WORLD , &status);

MPI_Recv (&last_n , 1, MPI_INT , i, 0, MPI_COMM_WORLD , &status);

MPI_Recv (&time , 1, MPI_DOUBLE , i, 0, MPI_COMM_WORLD , &status);

res_str[len] = ’\0’;

/* unmarshall the GMP data */

if (gmp_sscanf(res_str ,"%Qd" ,&res)==0) {

fprintf(stderr ,"[%d] Error in gmp_sscanf", id); MPI_Abort(MPI_COMM_WORLD , 2);

}
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Parallel C+MPI version: Master (cont’d)

times[i] = time;

max_n = (last_n >max_n) ? last_n : max_n;

mpq_add(result , result , res);

}

/* Q: how can we determine in general that this is close enough to the solution? */

// Maybe use an epsilon returned by the last PE to decide whether to compute more

// mpq_set_ui(eps2 , 1l, 1l); // eps2 = 1/1

// stop the timer

elapsed_time += MPI_Wtime ();
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Parallel C+MPI version: Worker
The workers do the actual computation.

mpq_init(res); mpq_init(eps);

// start the timer

MPI_Barrier(MPI_COMM_WORLD);

// elapsed_time = - MPI_Wtime ();

MPI_Recv (&z, 1, MPI_LONG , 0, 0, MPI_COMM_WORLD , &status); /* receive input */

MPI_Recv (&d, 1, MPI_LONG , 0, 0, MPI_COMM_WORLD , &status); /* from master */

MPI_Recv (&from , 1, MPI_LONG , 0, 0, MPI_COMM_WORLD , &status);

MPI_Recv (&step , 1, MPI_LONG , 0, 0, MPI_COMM_WORLD , &status);

// start the timer

elapsed_time = - MPI_Wtime ();

power_e_step(res , eps , &max_n , z, d, from , step , id); // result of our

interval

if ((len = gmp_sprintf(buf ,"%Qd", res))==0 || len >= GMP_STR_SIZE) { // marshall to

string

fprintf(stderr ,"[%d] Error in gmp_sprintf", id);

MPI_Abort(MPI_COMM_WORLD , 2);

}

// stop the timer

elapsed_time += MPI_Wtime ();

MPI_Send (&len , 1, MPI_INT , 0, 0, MPI_COMM_WORLD); /* send result */

MPI_Send(buf , len , MPI_CHAR , 0, 0, MPI_COMM_WORLD); /* to master */

MPI_Send (&max_n , 1, MPI_INT , 0, 0, MPI_COMM_WORLD);

MPI_Send (& elapsed_time , 1, MPI_DOUBLE , 0, 0, MPI_COMM_WORLD);
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Parallel C+MPI version: Worker

The core compute function is a step-wise loop, similar to the sequential
version.
/* exponential function , result will be stored in res */

static inline

void power_e_step(mpq_t res , mpq_t eps , int *max_n , ui z, ui d, int from , int step , int

id) {

mpq_t sum , old_sum; \ldots

mpq_init(epsilon); \dots

pow_int(tmpe , 10l, d); // 10^d

mpq_inv(epsilon , tmpe); // 10^-d

mpq_set_ui(sum , 0l, 1l);

mpq_set_ui(eps , 1l, 1l);

for (n=from; mpq_cmp(eps , epsilon) >0; n+=step) { // step -wise loop

mpq_set(old_sum , sum);

pow_int(tmp_num , z, n);

fact(tmp_den , n);

mpq_div(tmp , tmp_num , tmp_den);

mpq_add(sum , sum , tmp);

mpq_sub(eps , sum , old_sum);

}

*max_n = n-step;

mpq_clear(tmp_num); \ldots

}
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Sequential Haskell version

Compare the previous version with this Haskell version.

-- compute e^z up to d digits

power_e :: Integer -> Integer -> Rational

power_e z d = sum (takeWhile (>(1 % (10^d))) taylor)

where -- infinite list of entire Taylor series

taylor = [ (pow_ints_n % 1) / (factorials_n % 1) | n<-[0 ,1..] ]

-- 2 circular lists , to memoise earlier computations

factorials = 1:1:[ (toInteger i)*( factorials(i-1)) | i< -[2..] ]

pow_ints = 1:[ z*( pow_ints(i-1)) | i< -[1..] ]

NB:

we use list comprehension notation to define the 3 main lists we need

Integer is a data-type of arbitrary precision integers

the definitions of factorials and pow ints are circular , i.e. the
definition of the i-th element refers to the i − 1-st element in the
same list (this only works in a lazy language)

Hans-Wolfgang Loidl (Heriot-Watt Univ) Milan’15 90 / 210

Parallel Haskell version

We observe that: sum = foldr (+) 0

-- compute e^z up to d digits

power_e :: Integer -> Integer -> Integer -> Rational

power_e z d v = parfoldr (+) 0 (takeWhile (>(1 % (10^d))) taylor)

where -- infinite list of entire Taylor series

taylor = [ (pow_intsn % 1) / (factorialsn % 1) | n<-[0,1..] ]

-- 2 circular lists , to memoise earlier computations

factorials = 1:1:[ (toInteger i)*( factorials(i-1)) | i< -[2..] ]

pow_ints = 1:[ z*( pow_ints(i-1)) | i< -[1..] ]

parfold fold f z [] = z

parfold fold f z xs = res

where

parts = chunk (chunksize xs) xs

partsRs = map (fold f z) parts ‘using ‘ parList rdeepseq

res = fold f z partsRs

NB: The original code is almost identical, only replacing a fold (in sum)
by a parfold.
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Part 3.
GpH — Parallelism in a side-effect

free language
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The Challenge of Parallel Programming

Engineering a parallel program entails specifying

computation: a correct, efficient algorithm
in GpH the semantics of the program is unchanged

coordination: arranging the computations to achieve “good” parallel
behaviour.

in GpH coordination and computation are cleanly separated
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Coordination Aspects

Coordinating parallel behaviour entails, inter alia:

partitioning
I what threads to create
I how much work should each thread perform

thread synchronisation

load management

communication

storage management

Specifying full coordination details is a significant burden on the
programmer
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High Level Parallel Programming

High level parallel programming aims to reduce the programmer’s
coordination management burden.

This can be achieved by using

specific execution models (array languages such as SAC ),

skeletons or parallel patterns (MapReduce, Eden),

data-oriented parallelism (PGAS languages),

dataflow languages such as Swan),

parallelising compilers (pH for Haskell).

GpH (Glasgow parallel Haskell) uses a model of semi-explicit parallelism:
only a few key aspects of coordination need to be specified by the
programmer.
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GpH Coordination Primitives

GpH provides parallel composition to hint that an expression may usefully
be evaluated by a parallel thread.
We say x is “sparked”: if there is an idle processor a thread may be
created to evaluate it.

Evaluation

x ‘par‘ y ⇒y

GpH provides sequential composition to sequence computations and
specify how much evaluation a thread should perform. x is evaluated to
Weak Head Normal Form (WHNF) before returning y.

Evaluation

x ‘pseq‘ y ⇒y
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Introducing Parallelism: a GpH Factorial

Factorial is a classic divide and conquer algorithm.

Example (Parallel factorial)

pfact n = pfact’ 1 n

pfact’ :: Integer -> Integer -> Integer

pfact’ m n

| m == n = m

| otherwise = left ‘par‘ right ‘pseq‘ (left * right)

where mid = (m + n) ‘div‘ 2

left = pfact’ m mid

right = pfact’ (mid+1) n
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Controlling Evaluation Order

Notice that we must control evaluation order: If we wrote the function as
follows, then the addition may evaluate left on this core/processor before
any other has a chance to evaluate it

| otherwise = left ‘par‘ (left * right)

The right ‘pseq‘ ensures that left and right are evaluated before we
multiply them.
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Controlling Evaluation Degree
In a non strict language we must specify how much of a value should be
computed.

For example the obvious quicksort produces almost no parallelism because
the threads reach WHNF very soon: once the first cons cell of the sublist
exists!
Example (Quicksort)

quicksortN :: (Ord a) => [a] -> [a]

quicksortN [] = []

quicksortN [x] = [x]

quicksortN (x:xs) =

losort ‘par‘

hisort ‘par‘

losort ++ (x:hisort)

where

losort = quicksortN [y|y <- xs, y < x]

hisort = quicksortN [y|y <- xs, y >= x]
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Controlling Evaluation Degree (cont’d)
Forcing the evaluation of the sublists gives the desired behaviour:

Example (Quicksort with forcing functions)

forceList :: [a] -> ()

forceList [] = ()

forceList (x:xs) = x ‘pseq‘ forceList xs

quicksortF [] = []

quicksortF [x] = [x]

quicksortF (x:xs) =

(forceList losort) ‘par‘

(forceList hisort) ‘par‘

losort ++ (x:hisort)

where

losort = quicksortF [y|y <- xs, y < x]

hisort = quicksortF [y|y <- xs, y >= x]

Problem: we need a different forcing function for each datatype.
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GpH Coordination Aspects

To specify parallel coordination in Haskell we must

1 Introduce parallelism

2 Specify Evaluation Order

3 Specify Evaluation Degree

This is much less than most parallel paradigms, e.g. no communication,
synchronisation etc.

It is important that we do so without cluttering the program. In many
parallel languages, e.g. C with MPI, coordination so dominates the
program text that it obscures the computation.
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Evaluation Strategies:
Separating Computation and Coordination

Evaluation Strategies abstract over par and pseq,

raising the level of abstraction, and

separating coordination and computation concerns

It should be possible to understand the semantics of a function
without considering its coordination behaviour.
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Evaluation Strategies
An evaluation strategy is a function that specifies the coordination
required when computing a value of a given type, and preserves the value
i.e. it is an identity function.

type Strategy a = a -> Eval a

data Eval a = Done a

We provide a simple function to extract a value from Eval:

runEval :: Eval a -> a

runEval (Done a) = a

The return operator from the Eval monad will introduce a value into the
monad:

return :: a -> Eval a

return x = Done x
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Applying Strategies

using applies a strategy to a value, e.g.

using :: a -> Strategy a -> a

using x s = runEval (s x)

Example

A typical GpH function looks like this:

somefun x y = someexpr ‘using‘ somestrat
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Simple Strategies

Simple strategies can now be defined.

r0 performs no reduction at all. Used, for example, to evaluate only the first
element but not the second of a pair.

rseq reduces its argument to Weak Head Normal Form (WHNF).

rpar sparks its argument.

r0 :: Strategy a

r0 x = Done x

rseq :: Strategy a

rseq x = x ‘pseq‘ Done x

rpar :: Strategy a

rpar x = x ‘par‘ Done x
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Controlling Evaluation Order

We control evaluation order by using a monad to sequence the application
of strategies.

So our parallel factorial can be written as:

Example (Parallel factorial)

pfact’ :: Integer -> Integer -> Integer

pfact’ m n

| m == n = m

| otherwise = (left * right) ‘using‘ strategy

where mid = (m + n) ‘div‘ 2

left = pfact’ m mid

right = pfact’ (mid+1) n

strategy result = do

rpar left

rseq right

return result
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Controlling Evaluation Degree - The DeepSeq Module

Both r0 and rseq control the evaluation degree of an expression.

It is also often useful to reduce an expression to normal form (NF), i.e. a form
that contains no redexes. We do this using the rnf strategy in a type class.

As NF and WHNF coincide for many simple types such as Integer and Bool,
the default method for rnf is rwhnf.

class NFData a where

rnf :: a -> ()

rnf x = x ‘pseq‘ ()

We define NFData instances for many types, e.g.

instance NFData Int

instance NFData Char

instance NFData Bool
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Evaluation Degree Strategies

We can define NFData for type constructors, e.g.

instance NFData a => NFData [a] where

rnf [] = ()

rnf (x:xs) = rnf x ‘seq‘ rnf xs

We can define a deepseq operator that fully evaluates its first argument:

deepseq :: NFData a => a -> b -> b

deepseq a b = rnf a ‘seq‘ b

Reducing all of an expression with rdeepseq is by far the most common
evaluation degree strategy:

rdeepseq :: NFData a => Strategy a

rdeepseq x = x ‘deepseq‘ Done x
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Combining Strategies

As strategies are simply functions they can be combined using the full
power of the language, e.g. passed as parameters or composed.

dot composes two strategies on the same type:

dot :: Strategy a -> Strategy a -> Strategy a

s2 ‘dot‘ s1 = s2 . runEval . s1

evalList sequentially applies strategy s to every element of a list:

Example (Parametric list strategy)

evalList :: Strategy a -> Strategy [a]

evalList s [] = return []

evalList s (x:xs) = do x’ <- s x

xs’ <- evalList s xs

return (x’:xs’)
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Data Parallel Strategies

Often coordination follows the data structure, e.g. a thread is created for
each element of a data structure.

For example parList applies a strategy to every element of a list in
parallel using evalList

parList :: Strategy a -> Strategy [a]

parList s = evalList (rpar ‘dot‘ s)

parMap is a higher order function using a strategy to specify data-oriented
parallelism over a list.

parMap strat f xs = map f xs ‘using‘ parList strat
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Control-oriented Parallelism

Example (Strategic quicksort)

quicksortS [] = []

quicksortS [x] = [x]

quicksortS (x:xs) =

losort ++ (x:hisort) ‘using‘ strategy

where

losort = quicksortS [y|y <- xs, y < x]

hisort = quicksortS [y|y <- xs, y >= x]

strategy res = do

(rpar ‘dot‘ rdeepseq) losort

(rpar ‘dot‘ rdeepseq) hisort

rdeepseq res

Note how the coordination code is cleanly separated from the computation.
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Thread Granularity

Using semi-explicit parallelism, programs often have massive, fine-grain
parallelism, and several techniques are used to increase thread granularity.

It is only worth creating a thread if the cost of the computation will
outweigh the overheads of the thread, including

communicating the computation

thread creation

memory allocation

scheduling

It may be necessary to transform the program to achieve good parallel
performance, e.g. to improve thread granularity.
Thresholding: in divide and conquer programs, generate parallelism only
up to a certain threshold, and when it is reached, solve the small problem
sequentially.
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Threshold Factorial

Example (Strategic factorial with threshold)

pfactThresh :: Integer -> Integer -> Integer

pfactThresh n t = pfactThresh’ 1 n t

-- thresholding version

pfactThresh’ :: Integer -> Integer -> Integer -> Integer

pfactThresh’ m n t

| (n-m) <= t = product [m..n] -- seq solve

| otherwise = (left * right) ‘using‘ strategy

where mid = (m + n) ‘div‘ 2

left = pfactThresh’ m mid t

right = pfactThresh’ (mid+1) n t

strategy result = do

rpar left

rseq right

return result
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Chunking Data Parallelism
Evaluating individual elements of a data structure may give too fine thread
granularity, whereas evaluating many elements in a single thread give
appropriate granularity. The number of elements (the size of the chunk)
can be tuned to give good performance.

It’s possible to do this by changing the computational part of the program,
e.g. replacing

parMap rdeepseq fact [12 .. 30]

with

concat (parMap rdeepseq

(map fact) (chunk 5 [12 .. 30]))

chunk :: Int -> [a] -> [[a]]

chunk _ [] = [[]]

chunk n xs = y1 : chunk n y2

where

(y1, y2) = splitAt n xs
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Strategic Chunking
Rather than change the computational part of the program, it’s better to
change only the strategy.

We can do so using the parListChunk strategy which applies a strategy s
sequentially to sublists of length n:

map fact [12 .. 30] ‘using‘ parListChunk 5 rdeepseq

Uses Strategy library functions:

parListChunk :: Int -> Strategy [a] -> Strategy [a]

parListChunk n s =

parListSplitAt n s (parListChunk n s)

parListSplitAt :: Int -> Strategy [a]

Strategy [a] -> Strategy [a]

parListSplitAt n stratPref stratSuff =

evalListSplitAt n (rpar ‘dot‘ stratPref)

(rpar ‘dot‘ stratSuff)
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evalListSplitAt :: Int -> Strategy [a] ->

Strategy [a] -> Strategy [a]

evalListSplitAt n stratPref stratSuff [] = return []

evalListSplitAt n stratPref stratSuff xs

= do

ys’ <- stratPref ys

zs’ <- stratSuff zs

return (ys’ ++ zs’)

where

(ys,zs) = splitAt n xs
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Systematic Clustering
Sometimes we require to aggregate collections in a way that cannot be
expressed using only strategies. We can do so systematically using the
Cluster class:

cluster n maps the collection into a collection of collections each of
size n

decluster retrieves the original collection
decluster . cluster == id

lift applies a function on the original collection to the clustered
collection

class (Traversable c, Monoid a) => Cluster a c where

cluster :: Int -> a -> c a

decluster :: c a -> a

lift :: (a -> b) -> c a -> c b

lift = fmap -- c is a Functor, via Traversable

decluster = fold -- c is Foldable, via Traversable
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An instance for lists requires us only to define cluster

instance Cluster [a] [] where

cluster = chunk
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A Strategic Div&Conq Skeleton

divConq :: (a -> b) -- compute the result

-> a -- the value

-> (a -> Bool) -- threshold reached?

-> (b -> b -> b) -- combine results

-> (a -> Maybe (a,a)) -- divide

-> b

divConq f arg threshold conquer divide = go arg

where

go arg =

case divide arg of

Nothing -> f arg

Just (l0,r0) -> conquer l1 r1 ‘using‘ strat

where

l1 = go l0

r1 = go r0

strat x = do { r l1; r r1; return x }

where r | threshold arg = rseq

| otherwise = rpar

data Maybe a = Nothing | Just a

Hans-Wolfgang Loidl (Heriot-Watt Univ) Milan’15 119 / 210

A Strategic Div&Conq Skeleton: Discussion

The skeleton is a higher-order function, with arguments for the
divide-, combine-, and base-phase.

The strategy strat specified that parallelism should be used up to
the threshold.

The strategy is applyed to the result of the conquer phase.

Again, the coordination code is cleanly separated from the compute
code.
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Summary
Evaluation strategies in GpH

use laziness to separate computation from coordination

use the Eval monad to specify evaluation order

use overloaded functions (NFData) to specify the evaluation-degree

provide high level abstractions, e.g. parList, parSqMatrix

are functions in algorithmic language ⇒
I comprehensible,
I can be combined, passed as parameters etc,
I extensible: write application-specific strategies, and
I can be defined over (almost) any type

general: pipeline, d&c, data parallel etc.

Capable of expressing complex coordination, e.g. embedded
parallelism, Clustering, skeletons

For a list of (parallel) Haskell exercises with usage instructions see:
http://www.macs.hw.ac.uk/~hwloidl/Courses/F21DP/tutorial0.

html#gph
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Further Reading & Deeper Hacking

P.W. Trinder, K. Hammond, H.-W. Loidl, S.L. Peyton Jones
Algorithm + Strategy = Parallelism. In Journal of Functional
Programming 8(1), Jan 1998. DOI: 10.1017/S0956796897002967
https://www.macs.hw.ac.uk/~dsg/gph/papers/abstracts/

strategies.html

S. Marlow and P. Maier and H-W. Loidl and M.K. Aswad and P.
Trinder, “Seq no more: Better Strategies for Parallel Haskell”. In
Haskell’10 — Haskell Symposium, Baltimore MD, U.S.A., September
2010. ACM Press. http://www.macs.hw.ac.uk/~dsg/projects/

gph/papers/abstracts/new-strategies.html

“Parallel and concurrent programming in Haskell”, by Simon Marlow.
O’Reilly, 2013. ISBN: 9781449335946.
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Further Reading & Deeper Hacking

An excellent site for learning (sequential) Haskell is:
https://www.fpcomplete.com/school

Glasgow parallel Haskell web page:
http://www.macs.hw.ac.uk/~dsg/gph

Our course on parallel technologies covers GpH in more detail and has
more exercises:
http://www.macs.hw.ac.uk/~hwloidl/Courses/F21DP

Specifically, for a list of (parallel) Haskell exercises with usage
instructions see:
http://www.macs.hw.ac.uk/~hwloidl/Courses/F21DP/

tutorial0.html#gph
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Part 4.
A Case Study of Using GpH
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Case study: Parallel Matrix Multiplication

As an example of a parallel program lets consider: matrix multiplication.

Problem If matrix A is an m × n matrix [aij ] and B is an n × p matrix
[bij ], then the product is an m × p matrix C where Cik = Σn

j=1aijbjk
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Matrix Multiplication

1Picture from http://en.wikipedia.org/wiki/Matrix_multiplication
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Sequential Implementation in Haskell

-- Type synonyms

type Vec a = [a]

type Mat a = Vec (Vec a)

-- vector multiplication (’dot-product’)

mulVec :: Num a => Vec a -> Vec a -> a

u ‘mulVec‘ v = sum (zipWith (*) u v)

-- matrix multiplication, in terms of vector multiplications

mulMat :: Num a => Mat a -> Mat a -> Mat a

a ‘mulMat‘ b =

[[u ‘mulVec‘ v | v <- bt ] | u <- a]

where bt = transpose b

NB: the top-level matrix multiplication function boils down to one list
comprehension
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Time Profile
See GHC profiling documentation http://www.haskell.org/ghc/docs/

latest/html/users_guide/profiling.html

Compile for sequential profiling -prof -auto-all. Note naming
convention for profiling binary.

Run for a 200 by 200 matrix with time -pT and space -hC profiling turned
on

> ghc -prof -auto-all --make -cpp -i/home/hwloidl/packages/random-1.0.1.1 -threaded \

-o MatMultSeq0_prof MatMultSeq0.hs

> ./MatMultSeq0_prof 100 1701 +RTS -pT -hC

Inspect profiles:

> less MatMultSeq0_prof.prof

Fri Jun 26 23:01 2015 Time and Allocation Profiling Report (Final)

MatMultSeq0_prof +RTS -pT -hC -RTS 100 1701

total time = 0.35 secs (348 ticks @ 1000 us, 1 processor)

total alloc = 329,719,848 bytes (excludes profiling overheads)
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Time profile

COST CENTRE MODULE %time %alloc

mulVec Main 29.6 53.7

stdNext.s2’ System.Random 10.3 6.1

...

main.rands Main 1.7 1.0

chunk.(...) Main 1.4 1.6
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Time profile
individual inherited

COST CENTRE MODULE no. entries %time %alloc %time %alloc

MAIN MAIN 55 0 0.3 0.0 100.0 100.0

CAF System.Random 109 0 0.0 0.0 0.0 0.0

next System.Random 141 1 0.0 0.0 0.0 0.0

CAF Main 108 0 0.0 0.0 99.7 100.0

main Main 110 1 0.3 0.0 99.7 100.0

main.seed Main 153 1 0.0 0.0 0.0 0.0

main.ub Main 138 1 0.0 0.0 0.0 0.0

main.b Main 136 1 0.0 0.0 0.0 0.0

main.(...) Main 132 1 0.0 0.0 0.0 0.0

main.k Main 131 1 0.0 0.0 0.0 0.0

main.rands Main 118 1 1.7 1.0 66.7 44.0

mkStdGen System.Random 144 1 0.0 0.0 0.0 0.0

...

randoms System.Random 119 20000 1.4 0.3 64.9 43.0

...

main.(...) Main 116 1 0.0 0.0 1.7 1.6

chunk Main 117 204 0.3 0.0 1.7 1.6

chunk.ys Main 133 202 0.0 0.0 0.0 0.0

chunk.(...) Main 130 202 1.4 1.6 1.4 1.6

chunk.zs Main 129 201 0.0 0.0 0.0 0.0

main.a Main 115 1 0.0 0.0 0.0 0.0

main.c Main 113 1 0.0 0.0 30.5 54.2

mulMat Main 114 1 0.6 0.3 30.5 54.2

mulVec Main 137 10000 29.6 53.7 29.6 53.7

mulMat.bt Main 135 1 0.3 0.3 0.3 0.3

chksum Main 111 1 0.0 0.0 0.6 0.2

chksum.chksum’ Main 112 101 0.3 0.1 0.6 0.1

chksum.chksum’.\ Main 134 10100 0.3 0.0 0.3 0.0

CAF GHC.IO.Encoding 99 0 0.0 0.0 0.0 0.0

...
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Space Profile

Improving space consumption is important for sequential tuning:
minimising space usage saves time and reduces garbage collection.

> hp2ps MatMultSeq0_prof.hp

> gv -orientation=seascape MatMultSeq0_prof.ps
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Space Profile
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Parallel Implementation

1st attempt: naive version: parallelise every element of the result matrix,
or both ‘maps’

mulMatPar :: (NFData a, Num a) =>

Mat a -> Mat a -> Mat a

mulMatPar a b = (a ‘mulMat‘ b) ‘using‘ strat

where

strat m = parList (parList rdeepseq) m

Easy to get a first parallel version.

Unlikely to give good performance straight away.

Some performance tuning is necessary (as with all parallel
programming activities).
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Shared-Memory Results

600 x 600 matrices on an 8-core shared memory machine (Dell
PowerEdge).

Compile with profiling; run on 4 cores; view results

> ghc --make -O2 -rtsopts -threaded -eventlog \

> -o MatMultPM MatMultPM.hs

> ./MatMultPM 3 600 60 60 60 1701 +RTS -N7 -ls

No. Cores Runtime Relative Absolute
(s) Speedup Speedup

Seq 56.1 1.0
1 62.6 1.0 0.89
2 56.9 1.10 0.99
4 59.7 1.04 0.95
7 60.2 1.04 0.96
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Improving Granularity

Currently parallelise both maps (outer over columns, inner over rows)

Parallelising only the outer , and performing the inner sequentially will
increase thread granularity
=⇒ row-based parallelism

mulMatParRow :: (NFData a, Num a) =>

Mat a -> Mat a -> Mat a

mulMatParRow a b =

(a ‘mulMat‘ b) ‘using‘ strat

where

strat m = parList rdeepseq m
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Row-clustering

Granularity can be further increased by ‘row clustering’, i.e. evaluating c

rows in a single thread, e.g.

mulMatParRows :: (NFData a, Num a) =>

Int -> Mat a -> Mat a -> Mat a

mulMatParRows m a b =

(a ‘mulMat‘ b) ‘using‘ strat

where

strat m = parListChunk c rdeepseq m

Clustering (or chunking) is a common technique for increase the
performance of data parallel programs.
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Results from the row-clustering version

600 x 600 matrices with clusters of 90 rows:

No. Cores Runtime Relative Absolute
(s) Speedup Speedup

Seq 56.1 1.0
1 60.4 1.0 0.93
2 31.4 1.9 1.8
4 18.0 3.4 3.4
7 9.2 6.6 6.6
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Algorithmic Improvements

Using blockwise clustering (a.k.a. Gentleman’s algorithm) reduces
communication as only part of matrix B needs to be communicated.

N.B. Prior to this point we have preserved the computational part of the
program and simply added strategies. Now additional computational
components are added to cluster the matrix into blocks size m times n.

mulMatParBlocks :: (NFData a, Num a) =>

Int -> Int -> Mat a -> Mat a -> Mat a

mulMatParBlocks m n a b =

(a ‘mulMat‘ b) ‘using‘ strat

where

strat x = return (unblock (block m n x

‘using‘ parList rdeepseq))

Algorithmic changes can drastically improve parallel performance, e.g. by
reducing communication or by improving data locality.
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Block clustering

block clusters a matrix into a matrix of matrices, and unblock does the
reverse.

block :: Int -> Int -> Mat a -> Mat (Mat a)

block m n = map f . chunk m where

f :: Mat a -> Vec (Mat a)

f = map transpose . chunk n . transpose

-- Left inverse of @block m n@.

unblock :: Mat (Mat a) -> Mat a

unblock = unchunk . map g where

g :: Vec (Mat a) -> Mat a

g = transpose . unchunk . map transpose
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Results from the Tuned Parallel Version

600 x 600 matrices with block clusters: 20 x 20

No. Cores Runtime Relative Absolute
(s) Speedup Speedup

Seq 56.1 1.0
1 60.4 1.0 0.93
2 26.9 2.2 2.1
4 14.1 4.2 3.9
7 8.4 7.2 6.7
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Speedup graphs

> # start a batch of measurements in the background

> sh runItBaldur.sh &

> # once finished, extract the data like this

> cat LOG | sed -ne ’/PEs/H;/rows time/H;${G;p}’ | sed -e ’s/^.*PEs \([0-9]*\).*$/\1/;s/^rows.*= \([.0-9]*\).*$/\1/’ | sed -ne ’/^[.0-9]*$/{h;N;H;p}’ | sed -e ’/[.]/a\X’ | sed ’:a;N;$!ba;s/\n/ /g’ | sed -e ’s/X/\n/g’ | sed ’$d’ | sort -n -k 1 >rt.dat

> # download a gnuplot script for plotting the data

> wget http://www.macs.hw.ac.uk/~hwloidl/Courses/F21DP/speedups.gp

> # edit speedups, setting seq runtime and x-/y-ranges

> gnuplot speedups.gp

> gv speedups.pdf
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Parallel Threadscope Profiles

For parallelism profiles compile with option -eventlog

> ghc -O2 -rtsopts -threaded -eventlog \

-o parsum_thr_l parsum.hs

then run with runtime-system option -ls

> ./parsum_thr_l 90M 100 +RTS -N6 -ls

and visualise the generated eventlog profile like this:

> threadscope parsum_thr_l.eventlog

You probably want to do this on small inputs, otherwise the eventlog file
becomes huge!
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Parallel Threadscope Profiles
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Part 5.
Advanced GpH Programming
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Data-oriented Parallelism

Traversals over large data structures are time consuming and
candidates for parallelisation.

Large, complex data structures are of increasing importance:
“BigData” hype

Examples:
I quad-trees representing particles in 3D space
I graphs representing social networks

These algorithms are increasingly used as parallelism benchmarks:
www.graph500.com

We call parallel algorithms, that are driven by such data-structures,
data-oriented parallelism
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Example data-structure: quad-tree
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Example data-structure: quad-tree

As a Haskell data-structure we define a more general k-ary tree:

data Tree k tl tn = E | L tl

| N tn (k (Tree k tl tn))

type QTree tl tn = Tree Quad tl tn

NB:

Each node N can have any number of children

The k constructor-argument fixes how many (Quad)

The type arguments tl,tn represent the type of the leaf - and
node-elements
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Performance tuning of tree traversals

A common performance problem in large-scale traversal is the throttling of
the parallelism: we want to limit the total amount of parallelism to avoid
excessive overhead, but we need to be flexible in the way we generate
parallelism to avoid idle time.

We have already seen some techniques to achieve this. The most
commonly used technique is: depth-based thresholding
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Depth-based Thresholding

Listing 1: Depth-based thresholding
parTreeDepth ::Int ->Strategy (QTree tl)

->Strategy (QTree tl)

parTreeDepth 0 _ t = return t

parTreeDepth d strat (N (Q nw ne sw se)) =

(N <$> (Q <$> parTreeDepth (d-1) strat nw

<*> parTreeDepth (d-1) strat ne

<*> parTreeDepth (d-1) strat sw

<*> parTreeDepth (d-1) strat se))

>>= rparWith strat

parTreeDepth _ _ t = return t

NB:

The argument d represents the depth (counting down)

When it drops to 0 no more parallelism is generated

We use applicative combinators <$> and <*> to compose the overall
strategy
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Discussion

Such depth-based thresholding works well for balanced trees

For imbalanced trees, however, we want to go deeper down in some
sub-trees

We don’t want to hard-code depth-constants into the strategy

We introduce the notion of fuel :

Fuel is a limited, explicit resource, needed to generate parallelism

On traversal, we split the fuel among the children

This allows for different depths in the traversals

We use the notion of fuel give-back to be even more flexible
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Fuel-based parallelism with give-back using circularity

The resource of “fuel” is used to limit the amount of parallelism when
traversing a data structure

It is passed down from the root of the tree

It is given back if the tree is empty or fuel is unused

The give-back mechanism is implemented via circularity
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Advanced Mechanisms
Fuel-based control

fuel
I limited resources distributed among nodes
I similar to “potential” in amortised cost
I and the concept of “engines” to control computation in Scheme

parallelism generation (sparks) created until fuel runs out

more flexible to throttle parallelism
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Advanced Mechanisms
Fuel-based control

fuel split function
I flexibility of defining custom function

specifying how fuel is distributed
among sub-nodes

I e.g. pure, lookahead , perfectsplit
I split function influences which path in

the tree will benefit most of parallel
evaluation

annotate tree with fuel info based on

split func
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Fuel-based Control Mechanism
pure, lookahead, perfectsplit

f

f/2 f/2

lost! lost!

f 0

f 1 f 2

no fuel no fuel

s0

s1

s3

s5

s9

s6

s2

s4

s7

s10

s11

s8

Characteristics of pure version
I splits fuel equally among sub-nodes
I fuel lost on outer nodes

Characteristics of lookahead version
I looks ahead N level down before distributing unneeded fuel
I more efficient distribution

Characteristics of perfectsplit version
I perfect fuel splitting
I distributes fuel based on sub-node sizes
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pure

Info flow down

Context local

Parameter f

lookahead

Info flow down/limited

Context local (N)

Parameter f

perfectsplit

Info flow down

Context global

Parameter f

Advanced Mechanisms
Fuel-based control

bi-directional fuel transfer – giveback
version

I fuel is passed down from root
I fuel is given back if tree is empty or

fuel is unused
I giveback mechanism is implemented

via circularity

fuel represented using list of values instead of an (atomic) integer

giveback mechanism is effective in enabling additional parallelism for
irregular tree

I distribution carries deeper inside the tree
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Fuel-based Control Mechanism
giveback fuel flow

f in: fuel down

f out: fuel up

f in’: fuel reallocated
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giveback

Info flow down/up

Context local

Parameter f



Advanced Mechanisms
Fuel-based control with giveback using circularity

-- | Fuel with giveback annotation

annFuel_giveback ::Fuel -> QTree tl -> AnnQTree Fuel tl

annFuel_giveback f t = fst \$ ann (fuelL f) t

where

ann::FuelL -> QTree tl -> (AnnQTree Fuel tl ,FuelL)

ann f_in E = (E,f_in)

ann f_in (L x) = (L x,f_in)

ann f_in (N (Q a b c d)) = (N (AQ (A (length f_in)) a’ b’ c’ d’),

emptyFuelL)

where

(f1_in:f2_in:f3_in:f4_in:_) = fuelsplit numnodes f_in

(a’, f1 out ) = ann (f1_in ++ f4 out ) a

(b’, f2 out ) = ann (f2_in ++ f1 out ) b

(c’, f3 out ) = ann (f3_in ++ f2 out ) c

(d’, f4 out ) = ann (f4_in ++ f3 out ) d

fuel flows back in a circular way
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Performance Evaluation
Barnes-Hut speedups on 1-48 cores. 2 million bodies. 1 iteration.
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pure fuel gives best perf. – simple but cheap fuel distr.; lookahead/giveback within 6/20%
fuel ann/unann overheads: 11/4% for 2m bodies
more instances of giveback due to highly irregular input (7682 for 100k bodies, f = 2000)
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– multiple clusters distr.
– parallel force comp.
– no restructuring of seq
code necessary

Further Reading & Deeper Hacking

Prabhat Totoo, Hans-Wolfgang Loidl. “Lazy Data-Oriented
Evaluation Strategies”. In FHPC 2014: The 3rd ACM SIGPLAN
Workshop on Functional High-Performance Computing, Gothenburg,
Sweden, September, 2014. http://www.macs.hw.ac.uk/~dsg/

gph/papers/abstracts/fhpc14.html

S. Marlow and P. Maier and H-W. Loidl and M.K. Aswad and P.
Trinder, “Seq no more: Better Strategies for Parallel Haskell”. In
Haskell’10 — Haskell Symposium, Baltimore MD, U.S.A., September
2010. ACM Press. http://www.macs.hw.ac.uk/~dsg/projects/

gph/papers/abstracts/new-strategies.html

“Parallel and concurrent programming in Haskell”, by Simon Marlow.
O’Reilly, 2013. ISBN: 9781449335946.
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Further Reading & Deeper Hacking

An excellent site for learning (sequential) Haskell is:
https://www.fpcomplete.com/school

Glasgow parallel Haskell web page:
http://www.macs.hw.ac.uk/~dsg/gph

Our course on parallel technologies covers GpH in more detail and has
more exercises:
http://www.macs.hw.ac.uk/~hwloidl/Courses/F21DP

Specifically, for a list of (parallel) Haskell exercises with usage
instructions see:
http://www.macs.hw.ac.uk/~hwloidl/Courses/F21DP/

tutorial0.html#gph
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Part 6.
Dataflow Parallelism: The Par Monad

1Based on Chapter 4 of “Parallel and concurrent programming in Haskell”, by Simon
Marlow. O’Reilly, 2013
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Dataflow Parallelism: The Par Monad

The Par Monad is a different way to express parallelism in Haskell, which

gives the programmer more control over the parallel execution;

requires to express parallelism in a monadic style;

retains the benefit of deterministic parallelism;

is entirely implemented as a library

This leads to a programming style that is more explicit about granularity
and data dependencies.
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Basic interface of the Par Monad

newtype Par a

instance Applicative Par

instance Monad Par

-- execute the monad

runPar :: Par a -> a

-- create a parallel task

fork :: Par () -> Par ()

NB:

runPar executes a computation (similar to runEval)

forkPar creates a parallel task inside the Par monad
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Communication Mechanisms
We also need explicit mechanisms for synchronisation and data exchange:

data IVar a -- instance Eq

new :: Par (IVar a)

put :: NFData a => IVar a -> a -> Par ()

get :: IVar a -> Par a

An IVar, or future, is a variable with automatic synchronisation.

It is initially empty.

If a task gets from an empty IVar, the task automatically blocks and
waits.

It a task puts into an empty IVar, that value becomes available to
other tasks, and all waiting tasks are awoken.

If a task puts into a non-empty IVar an error is raised, i.e. they are
single-write.

MVars behave like IVars but they are multi-write, i.e. without the
last restriction (mainly for Concurrent Haskell).
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Introductory Example
Here a simple example of running 2 computations (fib) in parallel and
adding the results:
runPar $ do

i <- new -- create an IVar

j <- new -- create an IVar

fork (put i (fib n)) -- start a parallel task

fork (put j (fib m)) -- start a parallel task

a <- get i -- get the result (when available)

b <- get j -- get the result (when available)

return (a+b) -- return the result

NB:

We need two IVars, i and j, to capture the results from the two
recursive calls.
We use two forks to (asynchronously) launch the recursive calls.
The forked code must take care to return the value in the expected
IVar

The main thread blocks on the IVars until their values become
available.
Finally, the main thread returns the sum of both values.

=⇒ More coordination code, but also more control over the execution.Hans-Wolfgang Loidl (Heriot-Watt Univ) Milan’15 165 / 210

A parMap pattern
First we generate a helper function that combines a fork with a custom
IVar for the result:
spawn :: NFData a => Par a -> Par (IVar a)

spawn p = do

i <- new

fork (do x <- p; put i x)

return i

Now we can define a ParMonad version of our favourite parMap pattern:
parMapM :: NFData b => (a -> Par b) -> [a] -> Par [b]

parMapM f as = do

ibs <- mapM (spawn . f) as

mapM get ibs

parMapM uses a monadic version of map, mapM, to perfrom a
computation over every element of a list.
It then extracts the results out of the resulting list of IVars
f itself is a computation in the Par monad, so it can generate more,
nested parallelism
Note that this version of parMapM waits for all its results before
returning
Note that put will fully evaluate its argument, by internally calling
deepseq

For a lazy version of put, use put
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Parallel Fibonacci

Here our favourite Fibonacci example using ParMonad:

pfib :: Int -> Par Int

pfib n | n<=1 = return 1 -- base case

pfib n | otherwise =

do

nv1 <- spawn (pfib (n-1)) -- start a parallel task & return IVar

nv2 <- spawn (pfib (n-2)) -- start a parallel task & return IVar

nf1 <- get nv1 -- get the result (when available)

nf2 <- get nv2 -- get the result (when available)

return (nf1+nf2+1)

NB:

we use spawn to automatically generate an IVar in each recursive call

in this naive version, we generate parallelism in all levels of the tree

=⇒ poor granularity

to improve performance, introduce thresholding to the program
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Example: Shortest Paths (Idea)
We want to implement a parallel version of the Floyd-Warshall all-pairs
shortest-path algorithm.
This is a naive version of the algorithm, capturing its basic idea:

shortestPath :: Graph -> Vertex -> Vertex -> Vertex -> Weight

shortestPath g i j 0 = weight g i j

shortestPath g i j k = min (shortestPath g i j (k-1))

(shortestPath g i k (k-1) + shortestPath

g k j (k-1))

shortestPath g i j k . . . length of the shortest path from i to j,
passing through vertices up to k only

k == 0 . . . the paths between each pair of vertices consists of the
direct edges only

For a non-zero k, there are two cases:
I if the shortest path from i to j passes through k: the length is sum of

the shortest path from i to k and from k to j
I otherwise: the length is the same as the one only using nodes up to k-1

the overall result is the minimum of both cases
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Example: Shortest Path (Floyd-Warshall)

Pseudo-code algorithm:

ShortestPaths(W):

n := rows(W)

D[0] := W

for k in 1 to n do

for i in 1 to n do

for j in 1 to n do

D[k][i,j] := min(D[k-1][i,j], D[k-1][i,k]+D[k-1][k,j]

return D[n]

For a visualisation of the Floyd-Warshall algorithm, see this web page:
https://www.cs.usfca.edu/ galles/visualization/Floyd.html.
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Example: Shortest Paths (code)

Below is a sequential implementation of the Floyd-Warshall all-pairs
shortest-path algorithm:

shortestPaths :: [Vertex] -> Graph -> Graph

shortestPaths vs g = foldl ’ update g vs -- <1>

where

update g k = Map.mapWithKey shortmap g -- <2>

where

shortmap :: Vertex -> IntMap Weight -> IntMap Weight

shortmap i jmap = foldr shortest Map.empty vs -- <3>

where shortest j m =

case (old ,new) of -- <6>

(Nothing , Nothing) -> m

(Nothing , Just w ) -> Map.insert j w m

(Just w, Nothing) -> Map.insert j w m

(Just w1, Just w2) -> Map.insert j (min w1 w2) m

where

old = Map.lookup j jmap -- <4>

new = do w1 <- weight g i k -- <5>

w2 <- weight g k j

return (w1+w2)
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Example: Shortest Paths (explanation)

<1> the left-fold over the vertices corresponds to iterating over k in
the naive version

<3> shortmap takes i, the current vertex, and jmap, the mapping of
shortest paths from i.

<4> shortest path from i to j

<5> shortest path from i to j via k (if one exists)

<6> the result is the minimum
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Example: Shortest Paths (Parallel Version)

The key idea in parallelising this algorithm is to parallelise the update

function, which is a (slightly unusual) map: Map.mapWithKey

To parallelise this function we use a library function
traverseWithKey, which provides a monadic version of a traversal
over a Map

traverseWithKey
I maps a monadic function over IntMap;
I the monadic function takes an element (of type a) and a key as

arguments;
I this matches the interface of shortmap, which needs a Vertex

(source) and an IntMap (the map from destination vertices to weights)
as arguments

update g k = runPar $ do

m <- Map.traverseWithKey (\i jmap -> spawn (return (shortmap i

jmap))) g

traverse get m
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Example: Shortest Paths (Parallel Version)

Map.traverseWithKey returns an IntMap (IVar (IntMap

Weight)); that is, there’s an IVar in place of each element.

To get the new Graph, we need to call get on each of these IVars

and produce a new Graph with all the elements, which is what the
final call to traverse does.

The traverse function is from the Traversable class; for our
purposes here, it is like traverseWithKey but doesn’t pass the Key
to the function.

NB: the rest of the algorithm is unchanged!
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Example: Running Shortest Path

Running the sequential algorithm gives us the following baseline:

$ ./ fwsparse 1000 800 +RTS -s

...

Total time 4.16s ( 4.17s elapsed)

Running this algorithm on 4 cores gives a speedup of approx. 3.02

$ ./ fwsparse1 1000 800 +RTS -s -N4

...

Total time 5.27s ( 1.38s elapsed)
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Par Monad Compared to Strategies
Trade-offs in the choice between Evaluation Strategies and the Par monad:

If your algorithm naturally produces a lazy data structure, then
writing a Strategy to evaluate it in parallel will probably work well.

runPar is relatively expensive, whereas runEval is free. Therefore,
use coarser grained parallelism with the Par monad , and be careful
about nested parallelism.

Strategies allow a separation between computation and coordination,
which can allow more reuse and a cleaner specification of parallelism.

Parallel skeletons can be defined on top of both approaches.

The Par monad is implemented entirely in a Haskell library (the
monad-par package), and is thus easily modified. There is a choice of
scheduling strategies

The Eval monad has more diagnostics in ThreadScope, showing
creation rate, conversion rate of sparks, etc.

The Par monad does not support speculative parallelism in the sense
that rpar does
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Further Reading & Deeper Hacking

“Parallel and concurrent programming in Haskell”, by Simon Marlow.
O’Reilly, 2013. ISBN: 9781449335946.
Full sources are available on Hackage.
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Exercises

run the naive version of parfib and observe the performance

implement thresholding in this version to improve performance

pick-up the parsum example from the GpH part, and rewrite it in
ParMonad notation

implement a parallel version of the Euler totient function, using the
parallel map in ParMonad notation
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Part 7.
Skeletons

Implementations of Parallel Patterns
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Overview

Higher-order functions cover common patterns of computation

Higher-order functions are a natural construct in functional languages
like Haskell (link to previous examples)

If implemented in parallel, these provide parallelism for free

Examples of parallel patterns: map-reduce, task-farm etc
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Algorithmic Skeletons — What?

A skeleton is

a useful pattern of parallel computation and interaction,

packaged as a framework/second order/template construct (i.e.
parametrised by other pieces of code).

Slogan: Skeletons have structure (coordination) but lack detail
(computation).

Each skeleton has

one interface (e.g. generic type), and
one or more (architecture-specific) implementations.

I Each implementations comes with its own cost model .

A skeleton instance is

the code for computation together with
an implementation of the skeleton.

I The implementation may be shared across several instances.

Note: Skeletons are more than design patterns.
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Algorithmic Skeletons — How and Why?

Programming methodology:

1 Write sequential code, identifying where to introduce parallelism
through skeletons.

2 Estimate/measure sequential processing cost of potentially parallel
components.

3 Estimate/measure communication costs.

4 Evaluate cost model (using estimates/measurements).

5 Replace sequential code at sites of useful parallelism with appropriate
skeleton instances.

Pros/Cons of skeletal parallelism:

+ simpler to program than unstructured parallelism

+ code re-use (of skeleton implementations)

+ structure may enable optimisations

- not universal
Hans-Wolfgang Loidl (Heriot-Watt Univ) Milan’15 181 / 210

Common Skeletons — Pipeline

stage 1 stage 2 ... stage N

proc 1 proc 2 proc N

Data flow skeleton
I Data items pass from stage to stage.
I All stages compute in parallel.
I Ideally, pipeline processes many data items (e.g. sits inside loop).
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Pipeline — Load Balancing

Typical problems:

1 Ratio communication/computation too high.

2 Computation cost not uniform over stages.

Ad (1) Pass chunks instead of single items

stage 1 stage 2 ... stage N

proc 1 proc 2 proc N

Ad (1,2) Merge adjacent stages

stage 1

proc 1

stage 2; stage 3

proc 2

... stage N

proc N−1
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Common Skeletons — Parallel Tasks

task 1 task 2 task N

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

...

proc Nproc 2

split

merge

proc 1

proc N+1

proc N+2

Data flow skeleton
I Input split on to fixed set of (different) tasks.
I Tasks compute in parallel.
I Output gathered and merged together.

F Split and merge often trivial; often executed on proc 1.

Dual (in a sense) to pipeline skeleton.

Beware: Skeleton name non-standard.
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Common Skeletons — Task Farm

...worker 1 worker 2 worker N

farmer

proc Nproc 1 proc 2

proc N+1

Data parallel skeleton (e.g. parallel sort scatter phase)
I Farmer distributes input to a pool of N identical workers.
I Workers compute in parallel.
I Farmer gathers and merges output.

Static vs. dynamic task farm:
I Static: Farmer splits input once into N chunks.

F Farmer may be executed on proc 1.

I Dynamic: Farmer continually assigns input to free workers.
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Task Farm — Load Balancing

Typical problems:
1 Irregular computation cost (worker).

I Use dynamic rather than static task farm.
I Decrease chunk size: Balance granularity vs. comm overhead.

2 Farmer is bottleneck.
I Use self-balancing chain gang dynamic task farm.

F Workers organised in linear chain.
F Farmer keeps track of # free workers, sends input to first in chain.
F If worker busy, sends data to next in chain.

...worker 1 worker 2 worker N

farmer

proc Nproc 1 proc 2

proc N+1
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Common Skeletons — Divide & Conquer

parent

child

parent/
child

child child

parent/
child

child child

parent/
child

parent/
child

child

proc 1

proc 2 proc 3

proc 5 proc 6

proc 4 proc 7

proc  8 proc 9 proc 10 proc 11

Recursive algorithm skeleton (e.g. parallel sort merge phase)
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Common Skeletons — Divide & Conquer II

Recursive algorithm skeleton
I Recursive call tree structure

F Parent nodes divide input and pass parts to children.
F All leaves compute the same sequential algorithm.
F Parents gather output from children and conquer , i.e. combine and

post-process output.

To achieve good load balance:
1 Balance call tree.
2 Process data in parent nodes as well as at leaves.
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Skeletons in the Real World
Skeletal Programming

can be done in many programming languages,
I skeleton libraries for C/C++
I skeletons for functional languages (GpH, OCaml, ...)
I skeletons for embedded systems

is still not mainstream,
I Murray Cole. Bringing Skeletons out of the Closet, Parallel Computing

30(3) pages 389–406, 2004.
I González-Vélez, Horacio and Leyton, Mario. A survey of algorithmic

skeleton frameworks: high-level structured parallel programming
enablers, Software: Practice and Experience 40(12) pages 1135–1160,
2010.

but an active area of research.
I > 30 groups/projects listed on skeleton homepage

and it is slowly becoming mainstream
I TPL library of Parallel Patterns in C# (blessed by Microsoft)
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Skeletons Are Parallel Higher-Order Functions

Observations:

A skeleton (or any other template) is essentially a higher-order
function (HOF), ie. a function taking functions as arguments.

I Sequential code parameters are functional arguments.

Skeleton implementation is parallelisation of HOF.

Many well-known HOFs have parallel implementations.
I Thinking in terms of higher-order functions (rather than explicit

recursion) helps in discovering parallelism.

Consequences:

Skeletons can be combined (by function composition).

Skeletons can be nested (by passing skeletons as arguments).
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Skeletons Are PHOFs — Pipeline

g fx f (g x)

Code (parallel implementation in red)

pipe2 :: (b -> c) -> (a -> b) -> a -> c

pipe2 f g x = let y = g x in

y ‘par‘ f y

Notes:

pipe2 is also known as function composition.

In Haskell, sequential function composition is written as . (read
“dot”).
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Skeletons Are PHOFs — Parallel Tasks

merge

split

f g

x

f y g z

merge (f y, g z)

zy

Code (parallel implementation in red)

task2 :: (a -> (b,c)) -> (d -> e -> f) -> (b -> d) -> (c -> e) -> a -> f

task2 split merge f g x = let (y,z) = split x

fy = f y

gz = g z in

fy ‘par‘ gz ‘pseq‘ merge fy gz
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Skeletons Are PHOFs — Task Farm

...x2 −> f x2 xN −> f xN

map f

x1 −> f x1

[x1, x2, ..., xN] [f x1, f x2, ..., f xN]

Code (parallel implementation in red)

farm :: (a -> b) -> [a] -> [b]

farm f [] = []

farm f (x:xs) = let fx = f x in

fx ‘par‘ fx : (farm f xs)

Notes:
farm is also known as parallel map.

I Map functions exist for many data types (not just lists).

Missing in implementation: strategy to force eval of lazy list.

Strategies also useful to increase granularity (by chunking).
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Skeletons Are PHOFs — Divide & Conquer

divide

conquer

Code (parallel implementation in red)
dnc :: (a -> (a,a)) -> (b -> b -> b) -> (a -> Bool) -> (a -> b) -> a -> b

dnc div conq atomic f x | atomic x = f x

| otherwise = let (l0,r0) = div x

l = dnc div conq atomic f l0

r = dnc div conq atomic f r0 in

l ‘par‘ r ‘pseq‘ conq l r
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Skeletons Are PHOFs — Divide & Conquer

Notes:
Divide & Conquer is a generalised parallel fold .

I Folds exist for many data types (not just lists).

Missing in impl: strategies to force eval and improve granularity.

Aside: folding/reducing lists
fold :: (a -> a -> a) -> a -> [a] -> a

-- fold f e [x1,x2,...,xn] == e ‘f‘ x1 ‘f‘ x2 ... ‘f‘ xn, provided that

-- (1) f is associative, and

-- (2) e is an identity for f.

-- Tail-recursive sequential implementation:

fold f e [] = e

fold f e (x:xs) = fold f (e ‘f‘ x) xs

-- Parallel implementation as instance of divide & conquer:

fold f e = dnc split f atomic evalAtom where

split xs = splitAt (length xs ‘div‘ 2) xs

atomic [] = True

atomic [_] = True

atomic _ = False

evalAtom [] = e

evalAtom [x] = x
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Program Transformations

Observation:

HOFs can be transformed into other HOFs with provably equivalent
(sequential) semantics.

Example: Pipeline of farms vs. farm of pipelines

map g . map f == map (g . f)

farmer

farmer

f

g

farmer

f

g

use map g . map f (pipe of farms) if ratio comp/comm high
use map (g . f) (farm of pipes) if ratio comp/comm low

More transformations in
I G. Michaelson, N. Scaife. Skeleton Realisations from Functional

Prototypes, Chap. 5 in S. Gorlatch and F. Rabhi (Eds), Patterns and
Skeletons for Parallel and Distributed Computing, Springer, 2002
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Program Development with Functional Skeletons

Programming Methodology:

1 Write seq code using HOFs with known equivalent skeleton.

2 Measure sequential processing cost of functions passed to HOFs.

3 Evaluate skeleton cost model.

4 If no useful parallelism, transform program and go back to 3.

5 Replace HOFs that display useful parallelism with their skeletons.

Tool support:

Compilers can automate some steps (see Michaelson/Scaife)
I Only for small, pre-selected set of skeletons

Example: PMLS (developed by Greg Michaelson et al.)
I Skeletons: map/fold (arbitrarily nested)
I Automates steps 2-5.

F Step 2: automatic profiling
F Step 4: rule-driven program transformation + synthesis of HOFs
F Step 5: map/fold skeletons implemented in C+MPI
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Further Reading

Ian Foster. “Designing & Building Parallel Programs: Concepts &
Tools for Parallel Software Engineering”, Addison-Wesley, 1995
Online: http://www.mcs.anl.gov/~itf/dbpp/

J. Dean, S. Ghemawat. “MapReduce: Simplified Data Processing on
Large Clusters”. Commun. ACM 51(1):107–113, 2008.
Online: http://dx.doi.org/10.1145/1327452.1327492

G. Michaelson, N. Scaife. “Skeleton Realisations from Functional
Prototypes”, Chap. 5 in S. Gorlatch and F. Rabhi (Eds), Patterns and
Skeletons for Parallel and Distributed Computing, Springer, 2002

Michael McCool, James Reinders, Arch Robison. “Structured Parallel
Programming”. Morgan Kaufmann Publishers, Jul 2012. ISBN10:
0124159931 (paperback)
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A simple example: parallel fold

parfold :: (a -> a -> a) -> a -> [a] -> a

parfold f z l = parfold’ (length l) f z l

where

parfold’ _ f z [] = z

parfold’ _ f z [x] = x

parfold’ n f z xs =

let n2 = n ‘div‘ 2 in!

let (l,r) = splitAt n2 xs in!

let lt = parfold’ n2 f z l;

rt = parfold’ (n2 + n ‘rem‘ 2) f z r in

rt ‘par‘ (lt ‘pseq‘ f lt rt)!
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MapReduce — For Functional Programmers

What func programmers think when they hear “map/reduce”

-- map followed by reduce (= fold of associative m with identity e)

fp_map_reduce :: (a -> b)

-> (b -> b -> b) -> b

-> [a] -> b

fp_map_reduce f m e = foldr m e . map f

-- map followed by group followed by groupwise reduce

fp_map_group_reduce :: (a -> b)

-> ([b] -> [[b]])

-> ([b] -> b)

-> [a] -> [b]

fp_map_group_reduce f g r = map r . g . map f

-- list-valued map then group then groupwise list-valued reduce

fp_map_group_reduce’ :: (a -> [b])

-> ([b] -> [[b]])

-> ([b] -> [b])

-> [a] -> [[b]]

fp_map_group_reduce’ f g r = map r . g . (concat . map f)
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MapReduce — For Functional Programmers

Google’s MapReduce (sequential semantics)

-- list-valued map then fixed group stage then list-valued reduce

map_reduce :: Ord c => ((a,b) -> [(c,d)])

-> (c -> [d] -> [d])

-> [(a,b)] -> [(c,[d])]

map_reduce f r = map (\ (k,vs) -> (k, r k vs)) .

(group . sort) .

(concat . map f)

where sort :: Ord c => [(c,d)] -> [(c,d)]

sort = sortBy (\ (k1,_) (k2,_) -> compare k1 k2)

group :: Eq c => [(c,d)] -> [(c,[d])]

group = map (\ ((k,v):kvs) -> (k, v : map snd kvs)) .

groupBy (\ (k1,_) (k2,_) -> k1 == k2)

Specialised for processing key/value pairs.
I Group by keys
I Reduction may depend on key and values

Not restricted to lists — applicable to any container data type
I Reduction should be associative+commutative in 2nd argument
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MapReduce — Applications

TotientRange

-- Euler phi function

euler :: Int -> Int

euler n = length (filter (relprime n) [1 .. n-1])

where relprime x y = hcf x y == 1

hcf x 0 = x

hcf x y = hcf y (rem x y)

-- Summing over the phi functions in the interval [lower .. upper]

sumTotient :: Int -> Int -> Int

sumTotient lower upper = head (snd (head (map_reduce f r input)))

where input :: [((),Int)]

input = zip (repeat ()) [lower, lower+1 .. upper]

f :: ((),Int) -> [((),Int)]

f (k,v) = [(k, euler v)]

r :: () -> [Int] -> [Int]

r _ vs = [sum vs] -- reduction assoc+comm in 2nd arg

Degenerate example: only single key
Still exhibits useful parallelism

I but would not perform well on Google’s implementation
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MapReduce — Applications

URL count

isURL :: String -> Bool

isURL word = "http://" ‘isPrefixOf‘ word

-- input: lines of log file

-- output: frequency of URLs in input

countURL :: [String] -> [(String,[Int])]

countURL lines = map_reduce f r input

where input :: [((),String)]

input = zip (repeat ()) lines

f :: ((),String) -> [(String,Int)]

f (_,line) = zip (filter isURL (words line)) (repeat 1)

r :: String -> [Int] -> [Int]

r url ones = [length ones]

Map phase
1 breaks line into words
2 filters words that are URLs
3 zips URLs (which become keys) with value 1

Group phase groups URLs with values (which = 1)

Reduction phase counts #values
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MapReduce — How To Parallelise

Sequential code

map_reduce f r = map (\ (k,vs) -> (k, r k vs)) .

(group . sort) .

(concat . map f)

suggests 3-stage pipeline
1 map phase

I data parallel task farm

2 parallel sorting and grouping
I parallel mergesort

3 groupwise reduce phase
I data parallel task farm

Note: This is not how Google do it.
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Google MapReduce — Execution Overview

user
program

worker

worker

worker

split 0

split 1

split 2

split 3

split 4

master

worker

worker output
file 1

output
file 0read (3) local write (4)

write (6)

assign reduce (2)

assign m
ap (2

)

fork (1)fork (1)

input
files

map
phase

intermediate files
(on local disks)

reduce
phase

output
files

remote read (5)

fork (1)

J. Dean, S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters, Commun. ACM 51(1):107–113, 2008
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Google MapReduce — Execution Overview

Execution steps:

1 User program forks master, M map workers, R reduce workers.
2 Master assigns map/reduce tasks to map/reduce workers.

I Map task = 16–64 MB chunk of input
I Reduce task = range of keys + names of M intermediate files

3 Map worker reads input from GFS and processes it.
4 Map worker writes output to local disk.

I Output partitioned into R files (grouped by key)

5 Reduce worker gathers files from map workers and reduces them.
1 Merge M intermediate files together, grouping by key.
2 Reduce values groupwise.

6 Reduce worker writes output to GFS.

7 Master returns control to user program after all task completed.
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Main Selling Points of MapReduce

Easy to use for non-experts in parallel programming (details are
hidden in the MapReduce implementation)

Fault tolerance is integrated in the implementation

Good modularity: many problems can be implemented as sequences
of MapReduce

Flexibility: many problems are instances of MapReduce

Good scalability: using 1000s of machines at the moment

Tuned for large data volumes: several TB of data

Highly tuned parallel implementation to achieve eg. good load balance
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Eden: a skeleton programming language

See separate slides and examples
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Further Reading & Deeper Hacking

S. Marlow and P. Maier and H-W. Loidl and M.K. Aswad and P.
Trinder, “Seq no more: Better Strategies for Parallel Haskell”. In
Haskell’10 — Haskell Symposium, Baltimore MD, U.S.A., September
2010. ACM Press. http://www.macs.hw.ac.uk/~dsg/projects/

gph/papers/abstracts/new-strategies.html

Prabhat Totoo, Hans-Wolfgang Loidl. “Lazy Data-Oriented
Evaluation Strategies”. In FHPC 2014: The 3rd ACM SIGPLAN
Workshop on Functional High-Performance Computing, Gothenburg,
Sweden, September, 2014. http://www.macs.hw.ac.uk/~dsg/

projects/gph/papers/abstracts/fhpc14.html

“Parallel and concurrent programming in Haskell”, by Simon Marlow.
O’Reilly, 2013. ISBN: 9781449335946.

Slides on the Eden parallel Haskell dialect: http://www.macs.hw.

ac.uk/~hwloidl/Courses/F21DP/Eden-slides.pdf
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Further Reading & Deeper Hacking

An excellent site for learning (sequential) Haskell is:
https://www.fpcomplete.com/school

Glasgow parallel Haskell web page:
http://www.macs.hw.ac.uk/~dsg/gph

Our course on parallel technologies covers GpH in more detail and has
more exercises:
http://www.macs.hw.ac.uk/~hwloidl/Courses/F21DP

Specifically, for a list of (parallel) Haskell exercises with usage
instructions see:
http://www.macs.hw.ac.uk/~hwloidl/Courses/F21DP/

tutorial0.html#gph
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