/* --------------------------------------------------------------------------- * * (c) The GHC Team, 2003-2006 * * Capabilities * * A Capability represent the token required to execute STG code, * and all the state an OS thread/task needs to run Haskell code: * its STG registers, a pointer to its TSO, a nursery etc. During * STG execution, a pointer to the capabilitity is kept in a * register (BaseReg; actually it is a pointer to cap->r). * * Only in an THREADED_RTS build will there be multiple capabilities, * for non-threaded builds there is only one global capability, namely * MainCapability. * * --------------------------------------------------------------------------*/ #include "PosixSource.h" #include "Rts.h" #include "RtsUtils.h" #include "RtsFlags.h" #include "STM.h" #include "OSThreads.h" #include "Capability.h" #include "Schedule.h" #include "Sparks.h" #include "Trace.h" // one global capability, this is the Capability for non-threaded // builds, and for +RTS -N1 Capability MainCapability; nat n_capabilities; Capability *capabilities = NULL; // Holds the Capability which last became free. This is used so that // an in-call has a chance of quickly finding a free Capability. // Maintaining a global free list of Capabilities would require global // locking, so we don't do that. Capability *last_free_capability; /* GC indicator, in scope for the scheduler, init'ed to false */ volatile StgWord waiting_for_gc = 0; #if defined(THREADED_RTS) STATIC_INLINE rtsBool globalWorkToDo (void) { return blackholes_need_checking || sched_state >= SCHED_INTERRUPTING ; } #endif #if defined(THREADED_RTS) STATIC_INLINE rtsBool anyWorkForMe( Capability *cap, Task *task ) { if (task->tso != NULL) { // A bound task only runs if its thread is on the run queue of // the capability on which it was woken up. Otherwise, we // can't be sure that we have the right capability: the thread // might be woken up on some other capability, and task->cap // could change under our feet. return !emptyRunQueue(cap) && cap->run_queue_hd->bound == task; } else { // A vanilla worker task runs if either there is a lightweight // thread at the head of the run queue, or the run queue is // empty and (there are sparks to execute, or there is some // other global condition to check, such as threads blocked on // blackholes). if (emptyRunQueue(cap)) { return !emptySparkPoolCap(cap) || !emptyWakeupQueue(cap) || globalWorkToDo(); } else return cap->run_queue_hd->bound == NULL; } } #endif /* ----------------------------------------------------------------------------- * Manage the returning_tasks lists. * * These functions require cap->lock * -------------------------------------------------------------------------- */ #if defined(THREADED_RTS) STATIC_INLINE void newReturningTask (Capability *cap, Task *task) { ASSERT_LOCK_HELD(&cap->lock); ASSERT(task->return_link == NULL); if (cap->returning_tasks_hd) { ASSERT(cap->returning_tasks_tl->return_link == NULL); cap->returning_tasks_tl->return_link = task; } else { cap->returning_tasks_hd = task; } cap->returning_tasks_tl = task; } STATIC_INLINE Task * popReturningTask (Capability *cap) { ASSERT_LOCK_HELD(&cap->lock); Task *task; task = cap->returning_tasks_hd; ASSERT(task); cap->returning_tasks_hd = task->return_link; if (!cap->returning_tasks_hd) { cap->returning_tasks_tl = NULL; } task->return_link = NULL; return task; } #endif /* ---------------------------------------------------------------------------- * Initialisation * * The Capability is initially marked not free. * ------------------------------------------------------------------------- */ static void initCapability( Capability *cap, nat i ) { nat g; cap->no = i; cap->in_haskell = rtsFalse; cap->run_queue_hd = END_TSO_QUEUE; cap->run_queue_tl = END_TSO_QUEUE; #if defined(THREADED_RTS) initMutex(&cap->lock); cap->running_task = NULL; // indicates cap is free cap->spare_workers = NULL; cap->suspended_ccalling_tasks = NULL; cap->returning_tasks_hd = NULL; cap->returning_tasks_tl = NULL; cap->wakeup_queue_hd = END_TSO_QUEUE; cap->wakeup_queue_tl = END_TSO_QUEUE; #endif cap->f.stgGCEnter1 = (F_)__stg_gc_enter_1; cap->f.stgGCFun = (F_)__stg_gc_fun; cap->mut_lists = stgMallocBytes(sizeof(bdescr *) * RtsFlags.GcFlags.generations, "initCapability"); for (g = 0; g < RtsFlags.GcFlags.generations; g++) { cap->mut_lists[g] = NULL; } cap->free_tvar_watch_queues = END_STM_WATCH_QUEUE; cap->free_invariant_check_queues = END_INVARIANT_CHECK_QUEUE; cap->free_trec_chunks = END_STM_CHUNK_LIST; cap->free_trec_headers = NO_TREC; cap->transaction_tokens = 0; cap->context_switch = 0; } /* --------------------------------------------------------------------------- * Function: initCapabilities() * * Purpose: set up the Capability handling. For the THREADED_RTS build, * we keep a table of them, the size of which is * controlled by the user via the RTS flag -N. * * ------------------------------------------------------------------------- */ void initCapabilities( void ) { #if defined(THREADED_RTS) nat i; #ifndef REG_Base // We can't support multiple CPUs if BaseReg is not a register if (RtsFlags.ParFlags.nNodes > 1) { errorBelch("warning: multiple CPUs not supported in this build, reverting to 1"); RtsFlags.ParFlags.nNodes = 1; } #endif n_capabilities = RtsFlags.ParFlags.nNodes; if (n_capabilities == 1) { capabilities = &MainCapability; // THREADED_RTS must work on builds that don't have a mutable // BaseReg (eg. unregisterised), so in this case // capabilities[0] must coincide with &MainCapability. } else { capabilities = stgMallocBytes(n_capabilities * sizeof(Capability), "initCapabilities"); } for (i = 0; i < n_capabilities; i++) { initCapability(&capabilities[i], i); } debugTrace(DEBUG_sched, "allocated %d capabilities", n_capabilities); #else /* !THREADED_RTS */ n_capabilities = 1; capabilities = &MainCapability; initCapability(&MainCapability, 0); #endif // There are no free capabilities to begin with. We will start // a worker Task to each Capability, which will quickly put the // Capability on the free list when it finds nothing to do. last_free_capability = &capabilities[0]; } /* ---------------------------------------------------------------------------- * setContextSwitches: cause all capabilities to context switch as * soon as possible. * ------------------------------------------------------------------------- */ void setContextSwitches(void) { nat i; for (i=0; i < n_capabilities; i++) { capabilities[i].context_switch = 1; } } /* ---------------------------------------------------------------------------- * Give a Capability to a Task. The task must currently be sleeping * on its condition variable. * * Requires cap->lock (modifies cap->running_task). * * When migrating a Task, the migrater must take task->lock before * modifying task->cap, to synchronise with the waking up Task. * Additionally, the migrater should own the Capability (when * migrating the run queue), or cap->lock (when migrating * returning_workers). * * ------------------------------------------------------------------------- */ #if defined(THREADED_RTS) STATIC_INLINE void giveCapabilityToTask (Capability *cap USED_IF_DEBUG, Task *task) { ASSERT_LOCK_HELD(&cap->lock); ASSERT(task->cap == cap); trace(TRACE_sched | DEBUG_sched, "passing capability %d to %s %p", cap->no, task->tso ? "bound task" : "worker", (void *)task->id); ACQUIRE_LOCK(&task->lock); task->wakeup = rtsTrue; // the wakeup flag is needed because signalCondition() doesn't // flag the condition if the thread is already runniing, but we want // it to be sticky. signalCondition(&task->cond); RELEASE_LOCK(&task->lock); } #endif /* ---------------------------------------------------------------------------- * Function: releaseCapability(Capability*) * * Purpose: Letting go of a capability. Causes a * 'returning worker' thread or a 'waiting worker' * to wake up, in that order. * ------------------------------------------------------------------------- */ #if defined(THREADED_RTS) void releaseCapability_ (Capability* cap) { Task *task; task = cap->running_task; ASSERT_PARTIAL_CAPABILITY_INVARIANTS(cap,task); cap->running_task = NULL; // Check to see whether a worker thread can be given // the go-ahead to return the result of an external call.. if (cap->returning_tasks_hd != NULL) { giveCapabilityToTask(cap,cap->returning_tasks_hd); // The Task pops itself from the queue (see waitForReturnCapability()) return; } /* if waiting_for_gc was the reason to release the cap: thread comes from yieldCap->releaseAndQueueWorker. Unconditionally set cap. free and return (see default after the if-protected other special cases). Thread will wait on cond.var and re-acquire the same cap after GC (GC-triggering cap. calls releaseCap and enters the spare_workers case) */ if (waiting_for_gc) { last_free_capability = cap; // needed? trace(TRACE_sched | DEBUG_sched, "GC pending, set capability %d free", cap->no); return; } // If the next thread on the run queue is a bound thread, // give this Capability to the appropriate Task. if (!emptyRunQueue(cap) && cap->run_queue_hd->bound) { // Make sure we're not about to try to wake ourselves up ASSERT(task != cap->run_queue_hd->bound); task = cap->run_queue_hd->bound; giveCapabilityToTask(cap,task); return; } if (!cap->spare_workers) { // Create a worker thread if we don't have one. If the system // is interrupted, we only create a worker task if there // are threads that need to be completed. If the system is // shutting down, we never create a new worker. if (sched_state < SCHED_SHUTTING_DOWN || !emptyRunQueue(cap)) { debugTrace(DEBUG_sched, "starting new worker on capability %d", cap->no); startWorkerTask(cap, workerStart); return; } } // If we have an unbound thread on the run queue, or if there's // anything else to do, give the Capability to a worker thread. if (!emptyRunQueue(cap) || !emptyWakeupQueue(cap) || !emptySparkPoolCap(cap) || globalWorkToDo()) { if (cap->spare_workers) { giveCapabilityToTask(cap,cap->spare_workers); // The worker Task pops itself from the queue; return; } } last_free_capability = cap; trace(TRACE_sched | DEBUG_sched, "freeing capability %d", cap->no); } void releaseCapability (Capability* cap USED_IF_THREADS) { ACQUIRE_LOCK(&cap->lock); releaseCapability_(cap); RELEASE_LOCK(&cap->lock); } static void releaseCapabilityAndQueueWorker (Capability* cap USED_IF_THREADS) { Task *task; ACQUIRE_LOCK(&cap->lock); task = cap->running_task; // If the current task is a worker, save it on the spare_workers // list of this Capability. A worker can mark itself as stopped, // in which case it is not replaced on the spare_worker queue. // This happens when the system is shutting down (see // Schedule.c:workerStart()). // Also, be careful to check that this task hasn't just exited // Haskell to do a foreign call (task->suspended_tso). if (!isBoundTask(task) && !task->stopped && !task->suspended_tso) { task->next = cap->spare_workers; cap->spare_workers = task; } // Bound tasks just float around attached to their TSOs. releaseCapability_(cap); RELEASE_LOCK(&cap->lock); } #endif /* ---------------------------------------------------------------------------- * waitForReturnCapability( Task *task ) * * Purpose: when an OS thread returns from an external call, * it calls waitForReturnCapability() (via Schedule.resumeThread()) * to wait for permission to enter the RTS & communicate the * result of the external call back to the Haskell thread that * made it. * * ------------------------------------------------------------------------- */ void waitForReturnCapability (Capability **pCap, Task *task) { #if !defined(THREADED_RTS) MainCapability.running_task = task; task->cap = &MainCapability; *pCap = &MainCapability; #else Capability *cap = *pCap; if (cap == NULL) { // Try last_free_capability first cap = last_free_capability; if (!cap->running_task) { nat i; // otherwise, search for a free capability for (i = 0; i < n_capabilities; i++) { cap = &capabilities[i]; if (!cap->running_task) { break; } } // Can't find a free one, use last_free_capability. cap = last_free_capability; } // record the Capability as the one this Task is now assocated with. task->cap = cap; } else { ASSERT(task->cap == cap); } ACQUIRE_LOCK(&cap->lock); debugTrace(DEBUG_sched, "returning; I want capability %d", cap->no); if (!cap->running_task) { // It's free; just grab it cap->running_task = task; RELEASE_LOCK(&cap->lock); } else { newReturningTask(cap,task); RELEASE_LOCK(&cap->lock); for (;;) { ACQUIRE_LOCK(&task->lock); // task->lock held, cap->lock not held if (!task->wakeup) waitCondition(&task->cond, &task->lock); cap = task->cap; task->wakeup = rtsFalse; RELEASE_LOCK(&task->lock); // now check whether we should wake up... ACQUIRE_LOCK(&cap->lock); if (cap->running_task == NULL) { if (cap->returning_tasks_hd != task) { giveCapabilityToTask(cap,cap->returning_tasks_hd); RELEASE_LOCK(&cap->lock); continue; } cap->running_task = task; popReturningTask(cap); RELEASE_LOCK(&cap->lock); break; } RELEASE_LOCK(&cap->lock); } } ASSERT_FULL_CAPABILITY_INVARIANTS(cap,task); trace(TRACE_sched | DEBUG_sched, "resuming capability %d", cap->no); *pCap = cap; #endif } #if defined(THREADED_RTS) /* ---------------------------------------------------------------------------- * yieldCapability * ------------------------------------------------------------------------- */ void yieldCapability (Capability** pCap, Task *task) { Capability *cap = *pCap; // The fast path has no locking, if we don't enter this while loop while ( waiting_for_gc /* i.e. another capability triggered HeapOverflow, is busy getting capabilities (stopping their owning tasks) */ || cap->returning_tasks_hd != NULL /* cap reserved for another task */ || !anyWorkForMe(cap,task) /* cap/task have no work */ ) { debugTrace(DEBUG_sched, "giving up capability %d", cap->no); // We must now release the capability and wait to be woken up // again. task->wakeup = rtsFalse; releaseCapabilityAndQueueWorker(cap); for (;;) { ACQUIRE_LOCK(&task->lock); // task->lock held, cap->lock not held if (!task->wakeup) waitCondition(&task->cond, &task->lock); cap = task->cap; task->wakeup = rtsFalse; RELEASE_LOCK(&task->lock); debugTrace(DEBUG_sched, "woken up on capability %d", cap->no); ACQUIRE_LOCK(&cap->lock); if (cap->running_task != NULL) { debugTrace(DEBUG_sched, "capability %d is owned by another task", cap->no); RELEASE_LOCK(&cap->lock); continue; } if (task->tso == NULL) { ASSERT(cap->spare_workers != NULL); // if we're not at the front of the queue, release it // again. This is unlikely to happen. if (cap->spare_workers != task) { giveCapabilityToTask(cap,cap->spare_workers); RELEASE_LOCK(&cap->lock); continue; } cap->spare_workers = task->next; task->next = NULL; } cap->running_task = task; RELEASE_LOCK(&cap->lock); break; } trace(TRACE_sched | DEBUG_sched, "resuming capability %d", cap->no); ASSERT(cap->running_task == task); } *pCap = cap; ASSERT_FULL_CAPABILITY_INVARIANTS(cap,task); return; } /* ---------------------------------------------------------------------------- * Wake up a thread on a Capability. * * This is used when the current Task is running on a Capability and * wishes to wake up a thread on a different Capability. * ------------------------------------------------------------------------- */ void wakeupThreadOnCapability (Capability *my_cap, Capability *other_cap, StgTSO *tso) { ACQUIRE_LOCK(&other_cap->lock); // ASSUMES: cap->lock is held (asserted in wakeupThreadOnCapability) if (tso->bound) { ASSERT(tso->bound->cap == tso->cap); tso->bound->cap = other_cap; } tso->cap = other_cap; ASSERT(tso->bound ? tso->bound->cap == other_cap : 1); if (other_cap->running_task == NULL) { // nobody is running this Capability, we can add our thread // directly onto the run queue and start up a Task to run it. other_cap->running_task = myTask(); // precond for releaseCapability_() and appendToRunQueue() appendToRunQueue(other_cap,tso); trace(TRACE_sched, "resuming capability %d", other_cap->no); releaseCapability_(other_cap); } else { appendToWakeupQueue(my_cap,other_cap,tso); other_cap->context_switch = 1; // someone is running on this Capability, so it cannot be // freed without first checking the wakeup queue (see // releaseCapability_). } RELEASE_LOCK(&other_cap->lock); } /* ---------------------------------------------------------------------------- * prodCapabilities * * Used to indicate that the interrupted flag is now set, or some * other global condition that might require waking up a Task on each * Capability. * ------------------------------------------------------------------------- */ static void prodCapabilities(rtsBool all) { nat i; Capability *cap; Task *task; for (i=0; i < n_capabilities; i++) { cap = &capabilities[i]; ACQUIRE_LOCK(&cap->lock); if (!cap->running_task) { if (cap->spare_workers) { trace(TRACE_sched, "resuming capability %d", cap->no); task = cap->spare_workers; ASSERT(!task->stopped); giveCapabilityToTask(cap,task); if (!all) { RELEASE_LOCK(&cap->lock); return; } } } RELEASE_LOCK(&cap->lock); } return; } void prodAllCapabilities (void) { prodCapabilities(rtsTrue); } /* ---------------------------------------------------------------------------- * prodOneCapability * * Like prodAllCapabilities, but we only require a single Task to wake * up in order to service some global event, such as checking for * deadlock after some idle time has passed. * ------------------------------------------------------------------------- */ void prodOneCapability (void) { prodCapabilities(rtsFalse); } /* ---------------------------------------------------------------------------- * shutdownCapability * * At shutdown time, we want to let everything exit as cleanly as * possible. For each capability, we let its run queue drain, and * allow the workers to stop. * * This function should be called when interrupted and * shutting_down_scheduler = rtsTrue, thus any worker that wakes up * will exit the scheduler and call taskStop(), and any bound thread * that wakes up will return to its caller. Runnable threads are * killed. * * ------------------------------------------------------------------------- */ void shutdownCapability (Capability *cap, Task *task, rtsBool safe) { nat i; ASSERT(sched_state == SCHED_SHUTTING_DOWN); task->cap = cap; // Loop indefinitely until all the workers have exited and there // are no Haskell threads left. We used to bail out after 50 // iterations of this loop, but that occasionally left a worker // running which caused problems later (the closeMutex() below // isn't safe, for one thing). for (i = 0; /* i < 50 */; i++) { debugTrace(DEBUG_sched, "shutting down capability %d, attempt %d", cap->no, i); ACQUIRE_LOCK(&cap->lock); if (cap->running_task) { RELEASE_LOCK(&cap->lock); debugTrace(DEBUG_sched, "not owner, yielding"); yieldThread(); continue; } cap->running_task = task; if (cap->spare_workers) { // Look for workers that have died without removing // themselves from the list; this could happen if the OS // summarily killed the thread, for example. This // actually happens on Windows when the system is // terminating the program, and the RTS is running in a // DLL. Task *t, *prev; prev = NULL; for (t = cap->spare_workers; t != NULL; t = t->next) { if (!osThreadIsAlive(t->id)) { debugTrace(DEBUG_sched, "worker thread %p has died unexpectedly", (void *)t->id); if (!prev) { cap->spare_workers = t->next; } else { prev->next = t->next; } prev = t; } } } if (!emptyRunQueue(cap) || cap->spare_workers) { debugTrace(DEBUG_sched, "runnable threads or workers still alive, yielding"); releaseCapability_(cap); // this will wake up a worker RELEASE_LOCK(&cap->lock); yieldThread(); continue; } // If "safe", then busy-wait for any threads currently doing // foreign calls. If we're about to unload this DLL, for // example, we need to be sure that there are no OS threads // that will try to return to code that has been unloaded. // We can be a bit more relaxed when this is a standalone // program that is about to terminate, and let safe=false. if (cap->suspended_ccalling_tasks && safe) { debugTrace(DEBUG_sched, "thread(s) are involved in foreign calls, yielding"); cap->running_task = NULL; RELEASE_LOCK(&cap->lock); yieldThread(); continue; } debugTrace(DEBUG_sched, "capability %d is stopped.", cap->no); freeCapability(cap); RELEASE_LOCK(&cap->lock); break; } // we now have the Capability, its run queue and spare workers // list are both empty. // ToDo: we can't drop this mutex, because there might still be // threads performing foreign calls that will eventually try to // return via resumeThread() and attempt to grab cap->lock. // closeMutex(&cap->lock); } /* ---------------------------------------------------------------------------- * tryGrabCapability * * Attempt to gain control of a Capability if it is free. * * ------------------------------------------------------------------------- */ rtsBool tryGrabCapability (Capability *cap, Task *task) { if (cap->running_task != NULL) return rtsFalse; ACQUIRE_LOCK(&cap->lock); if (cap->running_task != NULL) { RELEASE_LOCK(&cap->lock); return rtsFalse; } task->cap = cap; cap->running_task = task; RELEASE_LOCK(&cap->lock); return rtsTrue; } #endif /* THREADED_RTS */ void freeCapability (Capability *cap) { stgFree(cap->mut_lists); #if defined(THREADED_RTS) || defined(PARALLEL_HASKELL) freeSparkPool(&cap->r.rSparks); #endif } /* --------------------------------------------------------------------------- Mark everything directly reachable from the Capabilities. When using multiple GC threads, each GC thread marks all Capabilities for which (c `mod` n == 0), for Capability c and thread n. ------------------------------------------------------------------------ */ void markSomeCapabilities (evac_fn evac, void *user, nat i0, nat delta) { nat i; Capability *cap; Task *task; // Each GC thread is responsible for following roots from the // Capability of the same number. There will usually be the same // or fewer Capabilities as GC threads, but just in case there // are more, we mark every Capability whose number is the GC // thread's index plus a multiple of the number of GC threads. for (i = i0; i < n_capabilities; i += delta) { cap = &capabilities[i]; evac(user, (StgClosure **)(void *)&cap->run_queue_hd); evac(user, (StgClosure **)(void *)&cap->run_queue_tl); #if defined(THREADED_RTS) evac(user, (StgClosure **)(void *)&cap->wakeup_queue_hd); evac(user, (StgClosure **)(void *)&cap->wakeup_queue_tl); #endif for (task = cap->suspended_ccalling_tasks; task != NULL; task=task->next) { debugTrace(DEBUG_sched, "evac'ing suspended TSO %lu", (unsigned long)task->suspended_tso->id); evac(user, (StgClosure **)(void *)&task->suspended_tso); } #if defined(THREADED_RTS) traverseSparkQueue (evac, user, cap); #endif } #if !defined(THREADED_RTS) evac(user, (StgClosure **)(void *)&blocked_queue_hd); evac(user, (StgClosure **)(void *)&blocked_queue_tl); evac(user, (StgClosure **)(void *)&sleeping_queue); #endif } // This function is used by the compacting GC to thread all the // pointers from spark queues. void traverseSparkQueues (evac_fn evac USED_IF_THREADS, void *user USED_IF_THREADS) { #if defined(THREADED_RTS) nat i; for (i = 0; i < n_capabilities; i++) { traverseSparkQueue (evac, user, &capabilities[i]); } #endif // THREADED_RTS } void markCapabilities (evac_fn evac, void *user) { markSomeCapabilities(evac, user, 0, 1); }