% (c) The University of Glasgow 2006 % (c) The GRASP Project, Glasgow University, 1992-2002 % \begin{code} module TcRnTypes( TcRnIf, TcRn, TcM, RnM, IfM, IfL, IfG, -- The monad is opaque outside this module TcRef, -- The environment types Env(..), TcGblEnv(..), TcLclEnv(..), IfGblEnv(..), IfLclEnv(..), -- Ranamer types ErrCtxt, RecFieldEnv(..), ImportAvails(..), emptyImportAvails, plusImportAvails, WhereFrom(..), mkModDeps, -- Typechecker types TcTyThing(..), pprTcTyThingCategory, RefinementVisibility(..), -- Template Haskell ThStage(..), topStage, topAnnStage, topSpliceStage, ThLevel, impLevel, outerLevel, thLevel, -- Arrows ArrowCtxt(NoArrowCtxt), newArrowScope, escapeArrowScope, -- Insts Inst(..), EqInstCo, InstOrigin(..), InstLoc(..), pprInstLoc, pprInstArising, instLocSpan, instLocOrigin, setInstLoc, LIE, emptyLIE, unitLIE, plusLIE, consLIE, instLoc, instSpan, plusLIEs, mkLIE, isEmptyLIE, lieToList, listToLIE, -- Misc other types TcId, TcIdSet, TcDictBinds, TcTyVarBind(..), TcTyVarBinds ) where #include "HsVersions.h" import HsSyn hiding (LIE) import HscTypes import Type import Coercion import TcType import Annotations import InstEnv import FamInstEnv import IOEnv import RdrName import Name import NameEnv import NameSet import Var import VarEnv import Module import LazyUniqFM import SrcLoc import VarSet import ErrUtils import UniqSupply import BasicTypes import Util import Bag import Outputable import ListSetOps import FastString import Data.Set (Set) \end{code} %************************************************************************ %* * Standard monad definition for TcRn All the combinators for the monad can be found in TcRnMonad %* * %************************************************************************ The monad itself has to be defined here, because it is mentioned by ErrCtxt \begin{code} type TcRef a = IORef a type TcId = Id -- Type may be a TcType type TcIdSet = IdSet type TcDictBinds = DictBinds TcId -- Bag of dictionary bindings type TcRnIf a b c = IOEnv (Env a b) c type IfM lcl a = TcRnIf IfGblEnv lcl a -- Iface stuff type IfG a = IfM () a -- Top level type IfL a = IfM IfLclEnv a -- Nested type TcRn a = TcRnIf TcGblEnv TcLclEnv a type RnM a = TcRn a -- Historical type TcM a = TcRn a -- Historical \end{code} Representation of type bindings to uninstantiated meta variables used during constraint solving. \begin{code} data TcTyVarBind = TcTyVarBind TcTyVar TcType type TcTyVarBinds = Bag TcTyVarBind instance Outputable TcTyVarBind where ppr (TcTyVarBind tv ty) = ppr tv <+> text ":=" <+> ppr ty \end{code} %************************************************************************ %* * The main environment types %* * %************************************************************************ \begin{code} data Env gbl lcl -- Changes as we move into an expression = Env { env_top :: HscEnv, -- Top-level stuff that never changes -- Includes all info about imported things env_us :: {-# UNPACK #-} !(IORef UniqSupply), -- Unique supply for local varibles env_gbl :: gbl, -- Info about things defined at the top level -- of the module being compiled env_lcl :: lcl -- Nested stuff; changes as we go into } -- TcGblEnv describes the top-level of the module at the -- point at which the typechecker is finished work. -- It is this structure that is handed on to the desugarer data TcGblEnv = TcGblEnv { tcg_mod :: Module, -- ^ Module being compiled tcg_src :: HscSource, -- ^ What kind of module (regular Haskell, hs-boot, ext-core) tcg_rdr_env :: GlobalRdrEnv, -- ^ Top level envt; used during renaming tcg_default :: Maybe [Type], -- ^ Types used for defaulting. @Nothing@ => no @default@ decl tcg_fix_env :: FixityEnv, -- ^ Just for things in this module tcg_field_env :: RecFieldEnv, -- ^ Just for things in this module tcg_type_env :: TypeEnv, -- ^ Global type env for the module we are compiling now. All -- TyCons and Classes (for this module) end up in here right away, -- along with their derived constructors, selectors. -- -- (Ids defined in this module start in the local envt, though they -- move to the global envt during zonking) tcg_type_env_var :: TcRef TypeEnv, -- Used only to initialise the interface-file -- typechecker in initIfaceTcRn, so that it can see stuff -- bound in this module when dealing with hi-boot recursions -- Updated at intervals (e.g. after dealing with types and classes) tcg_inst_env :: InstEnv, -- ^ Instance envt for /home-package/ modules; Includes the dfuns in -- tcg_insts tcg_fam_inst_env :: FamInstEnv, -- ^ Ditto for family instances -- Now a bunch of things about this module that are simply -- accumulated, but never consulted until the end. -- Nevertheless, it's convenient to accumulate them along -- with the rest of the info from this module. tcg_exports :: [AvailInfo], -- ^ What is exported tcg_imports :: ImportAvails, -- ^ Information about what was imported from where, including -- things bound in this module. tcg_dus :: DefUses, -- ^ What is defined in this module and what is used. -- The latter is used to generate -- -- (a) version tracking; no need to recompile if these things have -- not changed version stamp -- -- (b) unused-import info tcg_keep :: TcRef NameSet, -- ^ Locally-defined top-level names to keep alive. -- -- "Keep alive" means give them an Exported flag, so that the -- simplifier does not discard them as dead code, and so that they -- are exposed in the interface file (but not to export to the -- user). -- -- Some things, like dict-fun Ids and default-method Ids are "born" -- with the Exported flag on, for exactly the above reason, but some -- we only discover as we go. Specifically: -- -- * The to/from functions for generic data types -- -- * Top-level variables appearing free in the RHS of an orphan -- rule -- -- * Top-level variables appearing free in a TH bracket tcg_inst_uses :: TcRef NameSet, -- ^ Home-package Dfuns actually used. -- -- Used to generate version dependencies This records usages, rather -- like tcg_dus, but it has to be a mutable variable so it can be -- augmented when we look up an instance. These uses of dfuns are -- rather like the free variables of the program, but are implicit -- instead of explicit. tcg_th_used :: TcRef Bool, -- ^ @True@ <=> Template Haskell syntax used. -- -- We need this so that we can generate a dependency on the Template -- Haskell package, becuase the desugarer is going to emit loads of -- references to TH symbols. It's rather like tcg_inst_uses; the -- reference is implicit rather than explicit, so we have to zap a -- mutable variable. tcg_dfun_n :: TcRef OccSet, -- ^ Allows us to choose unique DFun names. -- The next fields accumulate the payload of the module -- The binds, rules and foreign-decl fiels are collected -- initially in un-zonked form and are finally zonked in tcRnSrcDecls tcg_rn_exports :: Maybe [Located (IE Name)], tcg_rn_imports :: [LImportDecl Name], -- Keep the renamed imports regardless. They are not -- voluminous and are needed if you want to report unused imports tcg_used_rdrnames :: TcRef (Set RdrName), tcg_rn_decls :: Maybe (HsGroup Name), -- ^ Renamed decls, maybe. @Nothing@ <=> Don't retain renamed -- decls. tcg_binds :: LHsBinds Id, -- Value bindings in this module tcg_warns :: Warnings, -- ...Warnings and deprecations tcg_anns :: [Annotation], -- ...Annotations tcg_insts :: [Instance], -- ...Instances tcg_fam_insts :: [FamInst], -- ...Family instances tcg_rules :: [LRuleDecl Id], -- ...Rules tcg_fords :: [LForeignDecl Id], -- ...Foreign import & exports tcg_doc_hdr :: Maybe LHsDocString, -- ^ Maybe Haddock header docs tcg_hpc :: AnyHpcUsage, -- ^ @True@ if any part of the -- prog uses hpc instrumentation. tcg_main :: Maybe Name -- ^ The Name of the main -- function, if this module is -- the main module. } data RecFieldEnv = RecFields (NameEnv [Name]) -- Maps a constructor name *in this module* -- to the fields for that constructor NameSet -- Set of all fields declared *in this module*; -- used to suppress name-shadowing complaints -- when using record wild cards -- E.g. let fld = e in C {..} -- This is used when dealing with ".." notation in record -- construction and pattern matching. -- The FieldEnv deals *only* with constructors defined in *this* -- module. For imported modules, we get the same info from the -- TypeEnv \end{code} %************************************************************************ %* * The interface environments Used when dealing with IfaceDecls %* * %************************************************************************ \begin{code} data IfGblEnv = IfGblEnv { -- The type environment for the module being compiled, -- in case the interface refers back to it via a reference that -- was originally a hi-boot file. -- We need the module name so we can test when it's appropriate -- to look in this env. if_rec_types :: Maybe (Module, IfG TypeEnv) -- Allows a read effect, so it can be in a mutable -- variable; c.f. handling the external package type env -- Nothing => interactive stuff, no loops possible } data IfLclEnv = IfLclEnv { -- The module for the current IfaceDecl -- So if we see f = \x -> x -- it means M.f = \x -> x, where M is the if_mod if_mod :: Module, -- The field is used only for error reporting -- if (say) there's a Lint error in it if_loc :: SDoc, -- Where the interface came from: -- .hi file, or GHCi state, or ext core -- plus which bit is currently being examined if_tv_env :: UniqFM TyVar, -- Nested tyvar bindings if_id_env :: UniqFM Id -- Nested id binding } \end{code} %************************************************************************ %* * The local typechecker environment %* * %************************************************************************ The Global-Env/Local-Env story ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ During type checking, we keep in the tcg_type_env * All types and classes * All Ids derived from types and classes (constructors, selectors) At the end of type checking, we zonk the local bindings, and as we do so we add to the tcg_type_env * Locally defined top-level Ids Why? Because they are now Ids not TcIds. This final GlobalEnv is a) fed back (via the knot) to typechecking the unfoldings of interface signatures b) used in the ModDetails of this module \begin{code} data TcLclEnv -- Changes as we move inside an expression -- Discarded after typecheck/rename; not passed on to desugarer = TcLclEnv { tcl_loc :: SrcSpan, -- Source span tcl_ctxt :: [ErrCtxt], -- Error context, innermost on top tcl_errs :: TcRef Messages, -- Place to accumulate errors tcl_th_ctxt :: ThStage, -- Template Haskell context tcl_arrow_ctxt :: ArrowCtxt, -- Arrow-notation context tcl_rdr :: LocalRdrEnv, -- Local name envt -- Maintained during renaming, of course, but also during -- type checking, solely so that when renaming a Template-Haskell -- splice we have the right environment for the renamer. -- -- Does *not* include global name envt; may shadow it -- Includes both ordinary variables and type variables; -- they are kept distinct because tyvar have a different -- occurrence contructor (Name.TvOcc) -- We still need the unsullied global name env so that -- we can look up record field names tcl_env :: NameEnv TcTyThing, -- The local type environment: Ids and -- TyVars defined in this module tcl_tyvars :: TcRef TcTyVarSet, -- The "global tyvars" -- Namely, the in-scope TyVars bound in tcl_env, -- plus the tyvars mentioned in the types of Ids bound -- in tcl_lenv. -- Why mutable? see notes with tcGetGlobalTyVars tcl_lie :: TcRef LIE, -- Place to accumulate type constraints tcl_tybinds :: TcRef TcTyVarBinds -- Meta and coercion type variable -- bindings accumulated during -- constraint solving } {- Note [Given Insts] ~~~~~~~~~~~~~~~~~~ Because of GADTs, we have to pass inwards the Insts provided by type signatures and existential contexts. Consider data T a where { T1 :: b -> b -> T [b] } f :: Eq a => T a -> Bool f (T1 x y) = [x]==[y] The constructor T1 binds an existential variable 'b', and we need Eq [b]. Well, we have it, because Eq a refines to Eq [b], but we can only spot that if we pass it inwards. -} --------------------------- -- Template Haskell stages and levels --------------------------- data ThStage -- See Note [Template Haskell state diagram] in TcSplice = Splice -- Top-level splicing -- This code will be run *at compile time*; -- the result replaces the splice -- Binding level = 0 | Comp -- Ordinary Haskell code -- Binding level = 1 | Brack -- Inside brackets ThStage -- Binding level = level(stage) + 1 (TcRef [PendingSplice]) -- Accumulate pending splices here (TcRef LIE) -- and type constraints here topStage, topAnnStage, topSpliceStage :: ThStage topStage = Comp topAnnStage = Splice topSpliceStage = Splice instance Outputable ThStage where ppr Splice = text "Splice" ppr Comp = text "Comp" ppr (Brack s _ _) = text "Brack" <> parens (ppr s) type ThLevel = Int -- See Note [Template Haskell levels] in TcSplice -- Incremented when going inside a bracket, -- decremented when going inside a splice -- NB: ThLevel is one greater than the 'n' in Fig 2 of the -- original "Template meta-programming for Haskell" paper impLevel, outerLevel :: ThLevel impLevel = 0 -- Imported things; they can be used inside a top level splice outerLevel = 1 -- Things defined outside brackets -- NB: Things at level 0 are not *necessarily* imported. -- eg $( \b -> ... ) here b is bound at level 0 -- -- For example: -- f = ... -- g1 = $(map ...) is OK -- g2 = $(f ...) is not OK; because we havn't compiled f yet thLevel :: ThStage -> ThLevel thLevel Splice = 0 thLevel Comp = 1 thLevel (Brack s _ _) = thLevel s + 1 --------------------------- -- Arrow-notation context --------------------------- {- In arrow notation, a variable bound by a proc (or enclosed let/kappa) is not in scope to the left of an arrow tail (-<) or the head of (|..|). For example proc x -> (e1 -< e2) Here, x is not in scope in e1, but it is in scope in e2. This can get a bit complicated: let x = 3 in proc y -> (proc z -> e1) -< e2 Here, x and z are in scope in e1, but y is not. We implement this by recording the environment when passing a proc (using newArrowScope), and returning to that (using escapeArrowScope) on the left of -< and the head of (|..|). -} data ArrowCtxt = NoArrowCtxt | ArrowCtxt (Env TcGblEnv TcLclEnv) -- Record the current environment (outside a proc) newArrowScope :: TcM a -> TcM a newArrowScope = updEnv $ \env -> env { env_lcl = (env_lcl env) { tcl_arrow_ctxt = ArrowCtxt env } } -- Return to the stored environment (from the enclosing proc) escapeArrowScope :: TcM a -> TcM a escapeArrowScope = updEnv $ \ env -> case tcl_arrow_ctxt (env_lcl env) of NoArrowCtxt -> env ArrowCtxt env' -> env' --------------------------- -- TcTyThing --------------------------- data TcTyThing = AGlobal TyThing -- Used only in the return type of a lookup | ATcId { -- Ids defined in this module; may not be fully zonked tct_id :: TcId, tct_co :: RefinementVisibility, -- Previously: Maybe HsWrapper -- Nothing <=> Do not apply a GADT type refinement -- I am wobbly, or have no free -- type variables -- Just co <=> Apply any type refinement to me, -- and record it in the coercion tct_type :: TcType, -- Type of (coercion applied to id) tct_level :: ThLevel } | ATyVar Name TcType -- The type to which the lexically scoped type vaiable -- is currently refined. We only need the Name -- for error-message purposes | AThing TcKind -- Used temporarily, during kind checking, for the -- tycons and clases in this recursive group data RefinementVisibility = Unrefineable -- Do not apply a GADT refinement -- I have no free variables | Rigid HsWrapper -- Apply any refinement to me -- and record it in the coercion | Wobbly -- Do not apply a GADT refinement -- I am wobbly | WobblyInvisible -- Wobbly type, not available inside current -- GADT refinement instance Outputable TcTyThing where -- Debugging only ppr (AGlobal g) = pprTyThing g ppr elt@(ATcId {}) = text "Identifier" <> ifPprDebug (brackets (ppr (tct_id elt) <> dcolon <> ppr (tct_type elt) <> comma <+> ppr (tct_level elt) <+> ppr (tct_co elt))) ppr (ATyVar tv _) = text "Type variable" <+> quotes (ppr tv) ppr (AThing k) = text "AThing" <+> ppr k pprTcTyThingCategory :: TcTyThing -> SDoc pprTcTyThingCategory (AGlobal thing) = pprTyThingCategory thing pprTcTyThingCategory (ATyVar {}) = ptext (sLit "Type variable") pprTcTyThingCategory (ATcId {}) = ptext (sLit "Local identifier") pprTcTyThingCategory (AThing {}) = ptext (sLit "Kinded thing") instance Outputable RefinementVisibility where ppr Unrefineable = ptext (sLit "unrefineable") ppr (Rigid co) = ptext (sLit "rigid") <+> ppr co ppr Wobbly = ptext (sLit "wobbly") ppr WobblyInvisible = ptext (sLit "wobbly-invisible") \end{code} \begin{code} type ErrCtxt = (Bool, TidyEnv -> TcM (TidyEnv, Message)) -- Monadic so that we have a chance -- to deal with bound type variables just before error -- message construction -- Bool: True <=> this is a landmark context; do not -- discard it when trimming for display \end{code} %************************************************************************ %* * Operations over ImportAvails %* * %************************************************************************ \begin{code} -- | 'ImportAvails' summarises what was imported from where, irrespective of -- whether the imported things are actually used or not. It is used: -- -- * when processing the export list, -- -- * when constructing usage info for the interface file, -- -- * to identify the list of directly imported modules for initialisation -- purposes and for optimised overlap checking of family instances, -- -- * when figuring out what things are really unused -- data ImportAvails = ImportAvails { imp_mods :: ModuleEnv [(ModuleName, Bool, SrcSpan)], -- ^ Domain is all directly-imported modules -- The 'ModuleName' is what the module was imported as, e.g. in -- @ -- import Foo as Bar -- @ -- it is @Bar@. -- -- The 'Bool' means: -- -- - @True@ => import was @import Foo ()@ -- -- - @False@ => import was some other form -- -- Used -- -- (a) to help construct the usage information in the interface -- file; if we import somethign we need to recompile if the -- export version changes -- -- (b) to specify what child modules to initialise -- -- We need a full ModuleEnv rather than a ModuleNameEnv here, -- because we might be importing modules of the same name from -- different packages. (currently not the case, but might be in the -- future). imp_dep_mods :: ModuleNameEnv (ModuleName, IsBootInterface), -- ^ Home-package modules needed by the module being compiled -- -- It doesn't matter whether any of these dependencies -- are actually /used/ when compiling the module; they -- are listed if they are below it at all. For -- example, suppose M imports A which imports X. Then -- compiling M might not need to consult X.hi, but X -- is still listed in M's dependencies. imp_dep_pkgs :: [PackageId], -- ^ Packages needed by the module being compiled, whether directly, -- or via other modules in this package, or via modules imported -- from other packages. imp_orphs :: [Module], -- ^ Orphan modules below us in the import tree (and maybe including -- us for imported modules) imp_finsts :: [Module] -- ^ Family instance modules below us in the import tree (and maybe -- including us for imported modules) } mkModDeps :: [(ModuleName, IsBootInterface)] -> ModuleNameEnv (ModuleName, IsBootInterface) mkModDeps deps = foldl add emptyUFM deps where add env elt@(m,_) = addToUFM env m elt emptyImportAvails :: ImportAvails emptyImportAvails = ImportAvails { imp_mods = emptyModuleEnv, imp_dep_mods = emptyUFM, imp_dep_pkgs = [], imp_orphs = [], imp_finsts = [] } plusImportAvails :: ImportAvails -> ImportAvails -> ImportAvails plusImportAvails (ImportAvails { imp_mods = mods1, imp_dep_mods = dmods1, imp_dep_pkgs = dpkgs1, imp_orphs = orphs1, imp_finsts = finsts1 }) (ImportAvails { imp_mods = mods2, imp_dep_mods = dmods2, imp_dep_pkgs = dpkgs2, imp_orphs = orphs2, imp_finsts = finsts2 }) = ImportAvails { imp_mods = plusModuleEnv_C (++) mods1 mods2, imp_dep_mods = plusUFM_C plus_mod_dep dmods1 dmods2, imp_dep_pkgs = dpkgs1 `unionLists` dpkgs2, imp_orphs = orphs1 `unionLists` orphs2, imp_finsts = finsts1 `unionLists` finsts2 } where plus_mod_dep (m1, boot1) (m2, boot2) = WARN( not (m1 == m2), (ppr m1 <+> ppr m2) $$ (ppr boot1 <+> ppr boot2) ) -- Check mod-names match (m1, boot1 && boot2) -- If either side can "see" a non-hi-boot interface, use that \end{code} %************************************************************************ %* * \subsection{Where from} %* * %************************************************************************ The @WhereFrom@ type controls where the renamer looks for an interface file \begin{code} data WhereFrom = ImportByUser IsBootInterface -- Ordinary user import (perhaps {-# SOURCE #-}) | ImportBySystem -- Non user import. instance Outputable WhereFrom where ppr (ImportByUser is_boot) | is_boot = ptext (sLit "{- SOURCE -}") | otherwise = empty ppr ImportBySystem = ptext (sLit "{- SYSTEM -}") \end{code} %************************************************************************ %* * \subsection[Inst-types]{@Inst@ types} %* * v%************************************************************************ An @Inst@ is either a dictionary, an instance of an overloaded literal, or an instance of an overloaded value. We call the latter a ``method'' even though it may not correspond to a class operation. For example, we might have an instance of the @double@ function at type Int, represented by Method 34 doubleId [Int] origin In addition to the basic Haskell variants of 'Inst's, they can now also represent implication constraints 'forall tvs. given => wanted' and equality constraints 'co :: ty1 ~ ty2'. NB: Equalities occur in two flavours: (1) Dict {tci_pred = EqPred ty1 ty2} (2) EqInst {tci_left = ty1, tci_right = ty2, tci_co = coe} The former arises from equalities in contexts, whereas the latter is used whenever the type checker introduces an equality (e.g., during deferring unification). I am not convinced that this duplication is necessary or useful! -=chak \begin{code} data Inst = Dict { tci_name :: Name, tci_pred :: TcPredType, -- Class or implicit parameter only tci_loc :: InstLoc } | ImplicInst { -- An implication constraint -- forall tvs. given => wanted tci_name :: Name, tci_tyvars :: [TcTyVar], -- Quantified type variables tci_given :: [Inst], -- Only Dicts and EqInsts -- (no Methods, LitInsts, ImplicInsts) tci_wanted :: [Inst], -- Only Dicts, EqInst, and ImplicInsts -- (no Methods or LitInsts) tci_loc :: InstLoc } -- NB: the tci_given are not necessarily rigid | Method { tci_id :: TcId, -- The Id for the Inst tci_oid :: TcId, -- The overloaded function -- This function will be a global, local, or ClassOpId; -- inside instance decls (only) it can also be an InstId! -- The id needn't be completely polymorphic. -- You'll probably find its name (for documentation purposes) -- inside the InstOrigin tci_tys :: [TcType], -- The types to which its polymorphic tyvars -- should be instantiated. -- These types must saturate the Id's foralls. tci_theta :: TcThetaType, -- The (types of the) dictionaries to which the function -- must be applied to get the method tci_loc :: InstLoc } -- INVARIANT 1: in (Method m f tys theta tau loc) -- type of m = type of (f tys dicts(from theta)) -- INVARIANT 2: type of m must not be of form (Pred -> Tau) -- Reason: two methods are considered equal if the -- base Id matches, and the instantiating types -- match. The TcThetaType should then match too. -- This only bites in the call to tcInstClassOp in TcClassDcl.mkMethodBind | LitInst { tci_name :: Name, tci_lit :: HsOverLit Name, -- The literal from the occurrence site -- INVARIANT: never a rebindable-syntax literal -- Reason: tcSyntaxName does unification, and we -- don't want to deal with that during tcSimplify, -- when resolving LitInsts tci_ty :: TcType, -- The type at which the literal is used tci_loc :: InstLoc } | EqInst { -- delayed unification of the form -- co :: ty1 ~ ty2 tci_left :: TcType, -- ty1 -- both types are... tci_right :: TcType, -- ty2 -- ...free of boxes tci_co :: EqInstCo, -- co tci_loc :: InstLoc, tci_name :: Name -- Debugging help only: this makes it easier to -- follow where a constraint is used in a morass -- of trace messages! Unlike other Insts, it -- has no semantic significance whatsoever. } type EqInstCo = Either -- Distinguish between given and wanted coercions TcTyVar -- - a wanted equation, with a hole, to be filled -- with a witness for the equality; for equation -- arising from deferring unification, 'ty1' is -- the actual and 'ty2' the expected type Coercion -- - a given equation, with a coercion witnessing -- the equality; a coercion that originates -- from a signature or a GADT is a CoVar, but -- after normalisation of coercions, they can -- be arbitrary Coercions involving constructors -- and pseudo-constructors like sym and trans. \end{code} @Insts@ are ordered by their class/type info, rather than by their unique. This allows the context-reduction mechanism to use standard finite maps to do their stuff. It's horrible that this code is here, rather than with the Avails handling stuff in TcSimplify \begin{code} instance Ord Inst where compare = cmpInst -- Used *only* for AvailEnv in TcSimplify instance Eq Inst where (==) i1 i2 = case i1 `cmpInst` i2 of EQ -> True _ -> False cmpInst :: Inst -> Inst -> Ordering cmpInst d1@(Dict {}) d2@(Dict {}) = tci_pred d1 `tcCmpPred` tci_pred d2 cmpInst (Dict {}) _ = LT cmpInst (Method {}) (Dict {}) = GT cmpInst m1@(Method {}) m2@(Method {}) = (tci_oid m1 `compare` tci_oid m2) `thenCmp` (tci_tys m1 `tcCmpTypes` tci_tys m2) cmpInst (Method {}) _ = LT cmpInst (LitInst {}) (Dict {}) = GT cmpInst (LitInst {}) (Method {}) = GT cmpInst l1@(LitInst {}) l2@(LitInst {}) = (tci_lit l1 `compare` tci_lit l2) `thenCmp` (tci_ty l1 `tcCmpType` tci_ty l2) cmpInst (LitInst {}) _ = LT -- Implication constraints are compared by *name* -- not by type; that is, we make no attempt to do CSE on them cmpInst (ImplicInst {}) (Dict {}) = GT cmpInst (ImplicInst {}) (Method {}) = GT cmpInst (ImplicInst {}) (LitInst {}) = GT cmpInst i1@(ImplicInst {}) i2@(ImplicInst {}) = tci_name i1 `compare` tci_name i2 cmpInst (ImplicInst {}) _ = LT -- same for Equality constraints cmpInst (EqInst {}) (Dict {}) = GT cmpInst (EqInst {}) (Method {}) = GT cmpInst (EqInst {}) (LitInst {}) = GT cmpInst (EqInst {}) (ImplicInst {}) = GT cmpInst i1@(EqInst {}) i2@(EqInst {}) = (tci_left i1 `tcCmpType` tci_left i2) `thenCmp` (tci_right i1 `tcCmpType` tci_right i2) \end{code} %************************************************************************ %* * \subsection[Inst-collections]{LIE: a collection of Insts} %* * %************************************************************************ \begin{code} -- FIXME: Rename this. It clashes with (Located (IE ...)) type LIE = Bag Inst isEmptyLIE :: LIE -> Bool isEmptyLIE = isEmptyBag emptyLIE :: LIE emptyLIE = emptyBag unitLIE :: Inst -> LIE unitLIE inst = unitBag inst mkLIE :: [Inst] -> LIE mkLIE insts = listToBag insts plusLIE :: LIE -> LIE -> LIE plusLIE lie1 lie2 = lie1 `unionBags` lie2 plusLIEs :: [LIE] -> LIE plusLIEs lies = unionManyBags lies lieToList :: LIE -> [Inst] lieToList = bagToList listToLIE :: [Inst] -> LIE listToLIE = listToBag consLIE :: Inst -> LIE -> LIE consLIE inst lie = lie `snocBag` inst -- Putting the new Inst at the *end* of the bag is a half-hearted attempt -- to ensure that we tend to report the *leftmost* type-constraint error -- E.g. f :: [a] -- f = [1,2,3] -- we'd like to complain about the '1', not the '3'. -- -- "Half-hearted" because the rest of the type checker makes no great -- claims for retaining order in the constraint set. Still, this -- seems to improve matters slightly. Exampes: mdofail001, tcfail015 \end{code} %************************************************************************ %* * \subsection[Inst-origin]{The @InstOrigin@ type} %* * %************************************************************************ The @InstOrigin@ type gives information about where a dictionary came from. This is important for decent error message reporting because dictionaries don't appear in the original source code. Doubtless this type will evolve... It appears in TcMonad because there are a couple of error-message-generation functions that deal with it. \begin{code} ------------------------------------------- data InstLoc = InstLoc InstOrigin SrcSpan [ErrCtxt] instLoc :: Inst -> InstLoc instLoc inst = tci_loc inst setInstLoc :: Inst -> InstLoc -> Inst setInstLoc inst new_loc = inst { tci_loc = new_loc } instSpan :: Inst -> SrcSpan instSpan wanted = instLocSpan (instLoc wanted) instLocSpan :: InstLoc -> SrcSpan instLocSpan (InstLoc _ s _) = s instLocOrigin :: InstLoc -> InstOrigin instLocOrigin (InstLoc o _ _) = o pprInstArising :: Inst -> SDoc pprInstArising loc = ptext (sLit "arising from") <+> pprInstLoc (tci_loc loc) pprInstLoc :: InstLoc -> SDoc pprInstLoc (InstLoc orig span _) = sep [ppr orig, text "at" <+> ppr span] ------------------------------------------- data InstOrigin = SigOrigin SkolemInfo -- Pattern, class decl, inst decl etc; -- Places that bind type variables and introduce -- available constraints | IPBindOrigin (IPName Name) -- Binding site of an implicit parameter ------------------------------------------------------- -- The rest are all occurrences: Insts that are 'wanted' ------------------------------------------------------- | OccurrenceOf Name -- Occurrence of an overloaded identifier | SpecPragOrigin Name -- Specialisation pragma for identifier | IPOccOrigin (IPName Name) -- Occurrence of an implicit parameter | LiteralOrigin (HsOverLit Name) -- Occurrence of a literal | NegateOrigin -- Occurrence of syntactic negation | ArithSeqOrigin (ArithSeqInfo Name) -- [x..], [x..y] etc | PArrSeqOrigin (ArithSeqInfo Name) -- [:x..y:] and [:x,y..z:] | TupleOrigin -- (..,..) | InstSigOrigin -- A dict occurrence arising from instantiating -- a polymorphic type during a subsumption check | ExprSigOrigin -- e :: ty | RecordUpdOrigin | ViewPatOrigin | InstScOrigin -- Typechecking superclasses of an instance declaration | NoScOrigin -- A very special hack; see TcSimplify, -- Note [Recursive instances and superclases] | DerivOrigin -- Typechecking deriving | StandAloneDerivOrigin -- Typechecking stand-alone deriving | DefaultOrigin -- Typechecking a default decl | DoOrigin -- Arising from a do expression | ProcOrigin -- Arising from a proc expression | ImplicOrigin SDoc -- An implication constraint | EqOrigin -- A type equality | AnnOrigin -- An annotation instance Outputable InstOrigin where ppr (OccurrenceOf name) = hsep [ptext (sLit "a use of"), quotes (ppr name)] ppr (SpecPragOrigin name) = hsep [ptext (sLit "a specialisation pragma for"), quotes (ppr name)] ppr (IPOccOrigin name) = hsep [ptext (sLit "a use of implicit parameter"), quotes (ppr name)] ppr (IPBindOrigin name) = hsep [ptext (sLit "a binding for implicit parameter"), quotes (ppr name)] ppr RecordUpdOrigin = ptext (sLit "a record update") ppr ExprSigOrigin = ptext (sLit "an expression type signature") ppr ViewPatOrigin = ptext (sLit "a view pattern") ppr (LiteralOrigin lit) = hsep [ptext (sLit "the literal"), quotes (ppr lit)] ppr (ArithSeqOrigin seq) = hsep [ptext (sLit "the arithmetic sequence"), quotes (ppr seq)] ppr (PArrSeqOrigin seq) = hsep [ptext (sLit "the parallel array sequence"), quotes (ppr seq)] ppr TupleOrigin = ptext (sLit "a tuple") ppr NegateOrigin = ptext (sLit "a use of syntactic negation") ppr InstScOrigin = ptext (sLit "the superclasses of an instance declaration") ppr NoScOrigin = ptext (sLit "an instance declaration") ppr DerivOrigin = ptext (sLit "the 'deriving' clause of a data type declaration") ppr StandAloneDerivOrigin = ptext (sLit "a 'deriving' declaration") ppr DefaultOrigin = ptext (sLit "a 'default' declaration") ppr DoOrigin = ptext (sLit "a do statement") ppr ProcOrigin = ptext (sLit "a proc expression") ppr (ImplicOrigin doc) = doc ppr (SigOrigin info) = pprSkolInfo info ppr EqOrigin = ptext (sLit "a type equality") ppr InstSigOrigin = panic "ppr InstSigOrigin" ppr AnnOrigin = ptext (sLit "an annotation") \end{code}