% % (c) The University of Glasgow 2006 % \begin{code} {-# OPTIONS -fno-warn-incomplete-patterns #-} -- The above warning supression flag is a temporary kludge. -- While working on this module you are encouraged to remove it and fix -- any warnings in the module. See -- http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings -- for details -- | Module for type coercions, as used in System FC. See 'CoreSyn.Expr' for -- more on System FC and how coercions fit into it. -- -- Coercions are represented as types, and their kinds tell what types the -- coercion works on. The coercion kind constructor is a special TyCon that must always be saturated, like so: -- -- > typeKind (symCoercion type) :: TyConApp CoercionTyCon{...} [type, type] module Coercion ( -- * Main data type Coercion, mkCoKind, mkReflCoKind, splitCoercionKind_maybe, splitCoercionKind, coercionKind, coercionKinds, coercionKindPredTy, isIdentityCoercion, -- ** Equality predicates isEqPred, mkEqPred, getEqPredTys, isEqPredTy, -- ** Coercion transformations mkCoercion, mkSymCoercion, mkTransCoercion, mkLeftCoercion, mkRightCoercion, mkRightCoercions, mkInstCoercion, mkAppCoercion, mkTyConCoercion, mkFunCoercion, mkForAllCoercion, mkInstsCoercion, mkUnsafeCoercion, mkNewTypeCoercion, mkFamInstCoercion, mkAppsCoercion, splitNewTypeRepCo_maybe, instNewTyCon_maybe, decomposeCo, unsafeCoercionTyCon, symCoercionTyCon, transCoercionTyCon, leftCoercionTyCon, rightCoercionTyCon, instCoercionTyCon, -- needed by TysWiredIn -- ** Comparison coreEqCoercion, -- * CoercionI CoercionI(..), isIdentityCoI, mkSymCoI, mkTransCoI, mkTyConAppCoI, mkAppTyCoI, mkFunTyCoI, mkForAllTyCoI, fromCoI, fromACo, mkClassPPredCoI, mkIParamPredCoI, mkEqPredCoI ) where #include "HsVersions.h" import TypeRep import Type import TyCon import Class import Var import Name import PrelNames import Util import BasicTypes import Outputable import FastString -- | A 'Coercion' represents a 'Type' something should be coerced to. type Coercion = Type -- | A 'CoercionKind' is always of form @ty1 ~ ty2@ and indicates the -- types that a 'Coercion' will work on. type CoercionKind = Kind ------------------------------ -- | This breaks a 'Coercion' with 'CoercionKind' @T A B C ~ T D E F@ into -- a list of 'Coercion's of kinds @A ~ D@, @B ~ E@ and @E ~ F@. Hence: -- -- > decomposeCo 3 c = [right (left (left c)), right (left c), right c] decomposeCo :: Arity -> Coercion -> [Coercion] decomposeCo n co = go n co [] where go 0 _ cos = cos go n co cos = go (n-1) (mkLeftCoercion co) (mkRightCoercion co : cos) ------------------------------ ------------------------------------------------------- -- and some coercion kind stuff -- | Tests whether a type is just a type equality predicate isEqPredTy :: Type -> Bool isEqPredTy (PredTy pred) = isEqPred pred isEqPredTy _ = False -- | Creates a type equality predicate mkEqPred :: (Type, Type) -> PredType mkEqPred (ty1, ty2) = EqPred ty1 ty2 -- | Splits apart a type equality predicate, if the supplied 'PredType' is one. -- Panics otherwise getEqPredTys :: PredType -> (Type,Type) getEqPredTys (EqPred ty1 ty2) = (ty1, ty2) getEqPredTys other = pprPanic "getEqPredTys" (ppr other) -- | Makes a 'CoercionKind' from two types: the types whose equality is proven by the relevant 'Coercion' mkCoKind :: Type -> Type -> CoercionKind mkCoKind ty1 ty2 = PredTy (EqPred ty1 ty2) -- | Create a reflexive 'CoercionKind' that asserts that a type can be coerced to itself mkReflCoKind :: Type -> CoercionKind mkReflCoKind ty = mkCoKind ty ty -- | Take a 'CoercionKind' apart into the two types it relates: see also 'mkCoKind'. -- Panics if the argument is not a valid 'CoercionKind' splitCoercionKind :: CoercionKind -> (Type, Type) splitCoercionKind co | Just co' <- kindView co = splitCoercionKind co' splitCoercionKind (PredTy (EqPred ty1 ty2)) = (ty1, ty2) -- | Take a 'CoercionKind' apart into the two types it relates, if possible. See also 'splitCoercionKind' splitCoercionKind_maybe :: Kind -> Maybe (Type, Type) splitCoercionKind_maybe co | Just co' <- kindView co = splitCoercionKind_maybe co' splitCoercionKind_maybe (PredTy (EqPred ty1 ty2)) = Just (ty1, ty2) splitCoercionKind_maybe _ = Nothing -- | If it is the case that -- -- > c :: (t1 ~ t2) -- -- i.e. the kind of @c@ is a 'CoercionKind' relating @t1@ and @t2@, then @coercionKind c = (t1, t2)@. -- See also 'coercionKindPredTy' coercionKind :: Coercion -> (Type, Type) coercionKind ty@(TyVarTy a) | isCoVar a = splitCoercionKind (tyVarKind a) | otherwise = (ty, ty) coercionKind (AppTy ty1 ty2) = let (t1, t2) = coercionKind ty1 (s1, s2) = coercionKind ty2 in (mkAppTy t1 s1, mkAppTy t2 s2) coercionKind (TyConApp tc args) | Just (ar, rule) <- isCoercionTyCon_maybe tc -- CoercionTyCons carry their kinding rule, so we use it here = ASSERT( length args >= ar ) -- Always saturated let (ty1,ty2) = rule (take ar args) -- Apply the rule to the right number of args (tys1, tys2) = coercionKinds (drop ar args) in (mkAppTys ty1 tys1, mkAppTys ty2 tys2) | otherwise = let (lArgs, rArgs) = coercionKinds args in (TyConApp tc lArgs, TyConApp tc rArgs) coercionKind (FunTy ty1 ty2) = let (t1, t2) = coercionKind ty1 (s1, s2) = coercionKind ty2 in (mkFunTy t1 s1, mkFunTy t2 s2) coercionKind (ForAllTy tv ty) = let (ty1, ty2) = coercionKind ty in (ForAllTy tv ty1, ForAllTy tv ty2) coercionKind (PredTy (EqPred c1 c2)) = let k1 = coercionKindPredTy c1 k2 = coercionKindPredTy c2 in (k1,k2) coercionKind (PredTy (ClassP cl args)) = let (lArgs, rArgs) = coercionKinds args in (PredTy (ClassP cl lArgs), PredTy (ClassP cl rArgs)) coercionKind (PredTy (IParam name ty)) = let (ty1, ty2) = coercionKind ty in (PredTy (IParam name ty1), PredTy (IParam name ty2)) -- | Recover the 'CoercionKind' corresponding to a particular 'Coerceion'. See also 'coercionKind' -- and 'mkCoKind' coercionKindPredTy :: Coercion -> CoercionKind coercionKindPredTy c = let (t1, t2) = coercionKind c in mkCoKind t1 t2 -- | Apply 'coercionKind' to multiple 'Coercion's coercionKinds :: [Coercion] -> ([Type], [Type]) coercionKinds tys = unzip $ map coercionKind tys ------------------------------------- isIdentityCoercion :: Coercion -> Bool isIdentityCoercion co = case coercionKind co of (t1,t2) -> t1 `coreEqType` t2 ------------------------------------- -- Coercion kind and type mk's -- (make saturated TyConApp CoercionTyCon{...} args) -- | Make a coercion from the specified coercion 'TyCon' and the 'Type' arguments to -- that coercion. Try to use the @mk*Coercion@ family of functions instead of using this function -- if possible mkCoercion :: TyCon -> [Type] -> Coercion mkCoercion coCon args = ASSERT( tyConArity coCon == length args ) TyConApp coCon args -- | Apply a 'Coercion' to another 'Coercion', which is presumably a -- 'Coercion' constructor of some kind mkAppCoercion :: Coercion -> Coercion -> Coercion mkAppCoercion co1 co2 = mkAppTy co1 co2 -- | Applies multiple 'Coercion's to another 'Coercion', from left to right. -- See also 'mkAppCoercion' mkAppsCoercion :: Coercion -> [Coercion] -> Coercion mkAppsCoercion co1 tys = foldl mkAppTy co1 tys -- | Apply a type constructor to a list of coercions. mkTyConCoercion :: TyCon -> [Coercion] -> Coercion mkTyConCoercion con cos = mkTyConApp con cos -- | Make a function 'Coercion' between two other 'Coercion's mkFunCoercion :: Coercion -> Coercion -> Coercion mkFunCoercion co1 co2 = mkFunTy co1 co2 -- | Make a 'Coercion' which binds a variable within an inner 'Coercion' mkForAllCoercion :: Var -> Coercion -> Coercion -- note that a TyVar should be used here, not a CoVar (nor a TcTyVar) mkForAllCoercion tv co = ASSERT ( isTyVar tv ) mkForAllTy tv co ------------------------------- mkSymCoercion :: Coercion -> Coercion -- ^ Create a symmetric version of the given 'Coercion' that asserts equality -- between the same types but in the other "direction", so a kind of @t1 ~ t2@ -- becomes the kind @t2 ~ t1@. -- -- This function attempts to simplify the generated 'Coercion' by removing -- redundant applications of @sym@. This is done by pushing this new @sym@ -- down into the 'Coercion' and exploiting the fact that @sym (sym co) = co@. mkSymCoercion co | Just co' <- coreView co = mkSymCoercion co' mkSymCoercion (ForAllTy tv ty) = ForAllTy tv (mkSymCoercion ty) mkSymCoercion (AppTy co1 co2) = AppTy (mkSymCoercion co1) (mkSymCoercion co2) mkSymCoercion (FunTy co1 co2) = FunTy (mkSymCoercion co1) (mkSymCoercion co2) mkSymCoercion (TyConApp tc cos) | not (isCoercionTyCon tc) = mkTyConApp tc (map mkSymCoercion cos) mkSymCoercion (TyConApp tc [co]) | tc `hasKey` symCoercionTyConKey = co -- sym (sym co) --> co | tc `hasKey` leftCoercionTyConKey = mkLeftCoercion (mkSymCoercion co) | tc `hasKey` rightCoercionTyConKey = mkRightCoercion (mkSymCoercion co) mkSymCoercion (TyConApp tc [co1,co2]) | tc `hasKey` transCoercionTyConKey -- sym (co1 `trans` co2) --> (sym co2) `trans (sym co2) -- Note reversal of arguments! = mkTransCoercion (mkSymCoercion co2) (mkSymCoercion co1) | tc `hasKey` instCoercionTyConKey -- sym (co @ ty) --> (sym co) @ ty -- Note: sym is not applied to 'ty' = mkInstCoercion (mkSymCoercion co1) co2 mkSymCoercion (TyConApp tc cos) -- Other coercion tycons, such as those = mkCoercion symCoercionTyCon [TyConApp tc cos] -- arising from newtypes mkSymCoercion (TyVarTy tv) | isCoVar tv = mkCoercion symCoercionTyCon [TyVarTy tv] | otherwise = TyVarTy tv -- Reflexive ------------------------------- -- ToDo: we should be cleverer about transitivity mkTransCoercion :: Coercion -> Coercion -> Coercion -- ^ Create a new 'Coercion' by exploiting transitivity on the two given 'Coercion's. -- -- This function attempts to simplify the generated 'Coercion' by exploiting the fact that -- @sym g `trans` g = id@. mkTransCoercion g1 g2 -- sym g `trans` g = id | (t1,_) <- coercionKind g1 , (_,t2) <- coercionKind g2 , t1 `coreEqType` t2 = t1 | otherwise = mkCoercion transCoercionTyCon [g1, g2] ------------------------------- -- Smart constructors for left and right mkLeftCoercion :: Coercion -> Coercion -- ^ From an application 'Coercion' build a 'Coercion' that asserts the equality of -- the "functions" on either side of the type equality. So if @c@ has kind @f x ~ g y@ then: -- -- > mkLeftCoercion c :: f ~ g mkLeftCoercion co | Just (co', _) <- splitAppCoercion_maybe co = co' | otherwise = mkCoercion leftCoercionTyCon [co] mkRightCoercion :: Coercion -> Coercion -- ^ From an application 'Coercion' build a 'Coercion' that asserts the equality of -- the "arguments" on either side of the type equality. So if @c@ has kind @f x ~ g y@ then: -- -- > mkLeftCoercion c :: x ~ y mkRightCoercion co | Just (_, co2) <- splitAppCoercion_maybe co = co2 | otherwise = mkCoercion rightCoercionTyCon [co] mkRightCoercions :: Int -> Coercion -> [Coercion] -- ^ As 'mkRightCoercion', but finds the 'Coercion's available on the right side of @n@ -- nested application 'Coercion's, manufacturing new left or right cooercions as necessary -- if suffficiently many are not directly available. mkRightCoercions n co = go n co [] where go n co acc | n > 0 = case splitAppCoercion_maybe co of Just (co1,co2) -> go (n-1) co1 (co2:acc) Nothing -> go (n-1) (mkCoercion leftCoercionTyCon [co]) (mkCoercion rightCoercionTyCon [co]:acc) | otherwise = acc mkInstCoercion :: Coercion -> Type -> Coercion -- ^ Instantiates a 'Coercion' with a 'Type' argument. If possible, it immediately performs -- the resulting beta-reduction, otherwise it creates a suspended instantiation. mkInstCoercion co ty | Just (tv,co') <- splitForAllTy_maybe co = substTyWith [tv] [ty] co' -- (forall a.co) @ ty --> co[ty/a] | otherwise = mkCoercion instCoercionTyCon [co, ty] mkInstsCoercion :: Coercion -> [Type] -> Coercion -- ^ As 'mkInstCoercion', but instantiates the coercion with a number of type arguments, left-to-right mkInstsCoercion co tys = foldl mkInstCoercion co tys {- splitSymCoercion_maybe :: Coercion -> Maybe Coercion splitSymCoercion_maybe (TyConApp tc [co]) = if tc `hasKey` symCoercionTyConKey then Just co else Nothing splitSymCoercion_maybe co = Nothing -} splitAppCoercion_maybe :: Coercion -> Maybe (Coercion, Coercion) -- ^ Splits a coercion application, being careful *not* to split @left c@ etc. -- This is because those are really syntactic constructs, not applications splitAppCoercion_maybe co | Just co' <- coreView co = splitAppCoercion_maybe co' splitAppCoercion_maybe (FunTy ty1 ty2) = Just (TyConApp funTyCon [ty1], ty2) splitAppCoercion_maybe (AppTy ty1 ty2) = Just (ty1, ty2) splitAppCoercion_maybe (TyConApp tc tys) | not (isCoercionTyCon tc) = case snocView tys of Just (tys', ty') -> Just (TyConApp tc tys', ty') Nothing -> Nothing splitAppCoercion_maybe _ = Nothing {- splitTransCoercion_maybe :: Coercion -> Maybe (Coercion, Coercion) splitTransCoercion_maybe (TyConApp tc [ty1, ty2]) = if tc `hasKey` transCoercionTyConKey then Just (ty1, ty2) else Nothing splitTransCoercion_maybe other = Nothing splitInstCoercion_maybe :: Coercion -> Maybe (Coercion, Type) splitInstCoercion_maybe (TyConApp tc [ty1, ty2]) = if tc `hasKey` instCoercionTyConKey then Just (ty1, ty2) else Nothing splitInstCoercion_maybe other = Nothing splitLeftCoercion_maybe :: Coercion -> Maybe Coercion splitLeftCoercion_maybe (TyConApp tc [co]) = if tc `hasKey` leftCoercionTyConKey then Just co else Nothing splitLeftCoercion_maybe other = Nothing splitRightCoercion_maybe :: Coercion -> Maybe Coercion splitRightCoercion_maybe (TyConApp tc [co]) = if tc `hasKey` rightCoercionTyConKey then Just co else Nothing splitRightCoercion_maybe other = Nothing -} -- | Manufacture a coercion from this air. Needless to say, this is not usually safe, -- but it is used when we know we are dealing with bottom, which is one case in which -- it is safe. This is also used implement the @unsafeCoerce#@ primitive. mkUnsafeCoercion :: Type -> Type -> Coercion mkUnsafeCoercion ty1 ty2 = mkCoercion unsafeCoercionTyCon [ty1, ty2] -- See note [Newtype coercions] in TyCon -- | Create a coercion suitable for the given 'TyCon'. The 'Name' should be that of a -- new coercion 'TyCon', the 'TyVar's the arguments expected by the @newtype@ and the -- type the appropriate right hand side of the @newtype@, with the free variables -- a subset of those 'TyVar's. mkNewTypeCoercion :: Name -> TyCon -> [TyVar] -> Type -> TyCon mkNewTypeCoercion name tycon tvs rhs_ty = mkCoercionTyCon name co_con_arity rule where co_con_arity = length tvs rule args = ASSERT( co_con_arity == length args ) (TyConApp tycon args, substTyWith tvs args rhs_ty) -- | Create a coercion identifying a @data@, @newtype@ or @type@ representation type -- and its family instance. It has the form @Co tvs :: F ts ~ R tvs@, where @Co@ is -- the coercion tycon built here, @F@ the family tycon and @R@ the (derived) -- representation tycon. mkFamInstCoercion :: Name -- ^ Unique name for the coercion tycon -> [TyVar] -- ^ Type parameters of the coercion (@tvs@) -> TyCon -- ^ Family tycon (@F@) -> [Type] -- ^ Type instance (@ts@) -> TyCon -- ^ Representation tycon (@R@) -> TyCon -- ^ Coercion tycon (@Co@) mkFamInstCoercion name tvs family instTys rep_tycon = mkCoercionTyCon name coArity rule where coArity = length tvs rule args = (substTyWith tvs args $ -- with sigma = [tys/tvs], TyConApp family instTys, -- sigma (F ts) TyConApp rep_tycon args) -- ~ R tys -------------------------------------- -- Coercion Type Constructors... -- Example. The coercion ((sym c) (sym d) (sym e)) -- will be represented by (TyConApp sym [c, sym d, sym e]) -- If sym c :: p1=q1 -- sym d :: p2=q2 -- sym e :: p3=q3 -- then ((sym c) (sym d) (sym e)) :: (p1 p2 p3)=(q1 q2 q3) -- | Coercion type constructors: avoid using these directly and instead use the @mk*Coercion@ and @split*Coercion@ family -- of functions if possible. symCoercionTyCon, transCoercionTyCon, leftCoercionTyCon, rightCoercionTyCon, instCoercionTyCon, unsafeCoercionTyCon :: TyCon -- Each coercion TyCon is built with the special CoercionTyCon record and -- carries its own kinding rule. Such CoercionTyCons must be fully applied -- by any TyConApp in which they are applied, however they may also be over -- applied (see example above) and the kinding function must deal with this. symCoercionTyCon = mkCoercionTyCon symCoercionTyConName 1 flipCoercionKindOf where flipCoercionKindOf (co:rest) = ASSERT( null rest ) (ty2, ty1) where (ty1, ty2) = coercionKind co transCoercionTyCon = mkCoercionTyCon transCoercionTyConName 2 composeCoercionKindsOf where composeCoercionKindsOf (co1:co2:rest) = ASSERT( null rest ) WARN( not (r1 `coreEqType` a2), text "Strange! Type mismatch in trans coercion, probably a bug" $$ ppr r1 <+> text "=/=" <+> ppr a2) (a1, r2) where (a1, r1) = coercionKind co1 (a2, r2) = coercionKind co2 leftCoercionTyCon = mkCoercionTyCon leftCoercionTyConName 1 leftProjectCoercionKindOf where leftProjectCoercionKindOf (co:rest) = ASSERT( null rest ) (ty1, ty2) where (ty1,ty2) = fst (splitCoercionKindOf co) rightCoercionTyCon = mkCoercionTyCon rightCoercionTyConName 1 rightProjectCoercionKindOf where rightProjectCoercionKindOf (co:rest) = ASSERT( null rest ) (ty1, ty2) where (ty1,ty2) = snd (splitCoercionKindOf co) splitCoercionKindOf :: Type -> ((Type,Type), (Type,Type)) -- Helper for left and right. Finds coercion kind of its input and -- returns the left and right projections of the coercion... -- -- if c :: t1 s1 ~ t2 s2 then splitCoercionKindOf c = ((t1, t2), (s1, s2)) splitCoercionKindOf co | Just (ty1, ty2) <- splitCoercionKind_maybe (coercionKindPredTy co) , Just (ty_fun1, ty_arg1) <- splitAppTy_maybe ty1 , Just (ty_fun2, ty_arg2) <- splitAppTy_maybe ty2 = ((ty_fun1, ty_fun2),(ty_arg1, ty_arg2)) splitCoercionKindOf co = pprPanic "Coercion.splitCoercionKindOf" (ppr co $$ ppr (coercionKindPredTy co)) instCoercionTyCon = mkCoercionTyCon instCoercionTyConName 2 instCoercionKind where instantiateCo t s = let Just (tv, ty) = splitForAllTy_maybe t in substTyWith [tv] [s] ty instCoercionKind (co1:ty:rest) = ASSERT( null rest ) (instantiateCo t1 ty, instantiateCo t2 ty) where (t1, t2) = coercionKind co1 unsafeCoercionTyCon = mkCoercionTyCon unsafeCoercionTyConName 2 unsafeCoercionKind where unsafeCoercionKind (ty1:ty2:rest) = ASSERT( null rest ) (ty1,ty2) -------------------------------------- -- ...and their names mkCoConName :: FastString -> Unique -> TyCon -> Name mkCoConName occ key coCon = mkWiredInName gHC_PRIM (mkTcOccFS occ) key (ATyCon coCon) BuiltInSyntax transCoercionTyConName, symCoercionTyConName, leftCoercionTyConName, rightCoercionTyConName, instCoercionTyConName, unsafeCoercionTyConName :: Name transCoercionTyConName = mkCoConName (fsLit "trans") transCoercionTyConKey transCoercionTyCon symCoercionTyConName = mkCoConName (fsLit "sym") symCoercionTyConKey symCoercionTyCon leftCoercionTyConName = mkCoConName (fsLit "left") leftCoercionTyConKey leftCoercionTyCon rightCoercionTyConName = mkCoConName (fsLit "right") rightCoercionTyConKey rightCoercionTyCon instCoercionTyConName = mkCoConName (fsLit "inst") instCoercionTyConKey instCoercionTyCon unsafeCoercionTyConName = mkCoConName (fsLit "CoUnsafe") unsafeCoercionTyConKey unsafeCoercionTyCon instNewTyCon_maybe :: TyCon -> [Type] -> Maybe (Type, CoercionI) -- ^ If @co :: T ts ~ rep_ty@ then: -- -- > instNewTyCon_maybe T ts = Just (rep_ty, co) instNewTyCon_maybe tc tys | Just (tvs, ty, mb_co_tc) <- unwrapNewTyCon_maybe tc = ASSERT( tys `lengthIs` tyConArity tc ) Just (substTyWith tvs tys ty, case mb_co_tc of Nothing -> IdCo Just co_tc -> ACo (mkTyConApp co_tc tys)) | otherwise = Nothing -- this is here to avoid module loops splitNewTypeRepCo_maybe :: Type -> Maybe (Type, Coercion) -- ^ Sometimes we want to look through a @newtype@ and get its associated coercion. -- This function only strips *one layer* of @newtype@ off, so the caller will usually call -- itself recursively. Furthermore, this function should only be applied to types of kind @*@, -- hence the newtype is always saturated. If @co : ty ~ ty'@ then: -- -- > splitNewTypeRepCo_maybe ty = Just (ty', co) -- -- The function returns @Nothing@ for non-@newtypes@ or fully-transparent @newtype@s. splitNewTypeRepCo_maybe ty | Just ty' <- coreView ty = splitNewTypeRepCo_maybe ty' splitNewTypeRepCo_maybe (TyConApp tc tys) | Just (ty', coi) <- instNewTyCon_maybe tc tys = case coi of ACo co -> Just (ty', co) IdCo -> panic "splitNewTypeRepCo_maybe" -- This case handled by coreView splitNewTypeRepCo_maybe _ = Nothing -- | Determines syntactic equality of coercions coreEqCoercion :: Coercion -> Coercion -> Bool coreEqCoercion = coreEqType \end{code} -------------------------------------- -- CoercionI smart constructors -- lifted smart constructors of ordinary coercions \begin{code} -- | 'CoercionI' represents a /lifted/ ordinary 'Coercion', in that it -- can represent either one of: -- -- 1. A proper 'Coercion' -- -- 2. The identity coercion data CoercionI = IdCo | ACo Coercion instance Outputable CoercionI where ppr IdCo = ptext (sLit "IdCo") ppr (ACo co) = ppr co isIdentityCoI :: CoercionI -> Bool isIdentityCoI IdCo = True isIdentityCoI _ = False -- | Tests whether all the given 'CoercionI's represent the identity coercion allIdCoIs :: [CoercionI] -> Bool allIdCoIs = all isIdentityCoI -- | For each 'CoercionI' in the input list, return either the 'Coercion' it -- contains or the corresponding 'Type' from the other list zipCoArgs :: [CoercionI] -> [Type] -> [Coercion] zipCoArgs cois tys = zipWith fromCoI cois tys -- | Return either the 'Coercion' contained within the 'CoercionI' or the given -- 'Type' if the 'CoercionI' is the identity 'Coercion' fromCoI :: CoercionI -> Type -> Type fromCoI IdCo ty = ty -- Identity coercion represented fromCoI (ACo co) _ = co -- by the type itself -- | Smart constructor for @sym@ on 'CoercionI', see also 'mkSymCoercion' mkSymCoI :: CoercionI -> CoercionI mkSymCoI IdCo = IdCo mkSymCoI (ACo co) = ACo $ mkCoercion symCoercionTyCon [co] -- the smart constructor -- is too smart with tyvars -- | Smart constructor for @trans@ on 'CoercionI', see also 'mkTransCoercion' mkTransCoI :: CoercionI -> CoercionI -> CoercionI mkTransCoI IdCo aco = aco mkTransCoI aco IdCo = aco mkTransCoI (ACo co1) (ACo co2) = ACo $ mkTransCoercion co1 co2 -- | Smart constructor for type constructor application on 'CoercionI', see also 'mkAppCoercion' mkTyConAppCoI :: TyCon -> [Type] -> [CoercionI] -> CoercionI mkTyConAppCoI tyCon tys cois | allIdCoIs cois = IdCo | otherwise = ACo (TyConApp tyCon (zipCoArgs cois tys)) -- | Smart constructor for honest-to-god 'Coercion' application on 'CoercionI', see also 'mkAppCoercion' mkAppTyCoI :: Type -> CoercionI -> Type -> CoercionI -> CoercionI mkAppTyCoI _ IdCo _ IdCo = IdCo mkAppTyCoI ty1 coi1 ty2 coi2 = ACo $ AppTy (fromCoI coi1 ty1) (fromCoI coi2 ty2) -- | Smart constructor for function-'Coercion's on 'CoercionI', see also 'mkFunCoercion' mkFunTyCoI :: Type -> CoercionI -> Type -> CoercionI -> CoercionI mkFunTyCoI _ IdCo _ IdCo = IdCo mkFunTyCoI ty1 coi1 ty2 coi2 = ACo $ FunTy (fromCoI coi1 ty1) (fromCoI coi2 ty2) -- | Smart constructor for quantified 'Coercion's on 'CoercionI', see also 'mkForAllCoercion' mkForAllTyCoI :: TyVar -> CoercionI -> CoercionI mkForAllTyCoI _ IdCo = IdCo mkForAllTyCoI tv (ACo co) = ACo $ ForAllTy tv co -- | Extract a 'Coercion' from a 'CoercionI' if it represents one. If it is the identity coercion, -- panic fromACo :: CoercionI -> Coercion fromACo (ACo co) = co -- | Smart constructor for class 'Coercion's on 'CoercionI'. Satisfies: -- -- > mkClassPPredCoI cls tys cois :: PredTy (cls tys) ~ PredTy (cls (tys `cast` cois)) mkClassPPredCoI :: Class -> [Type] -> [CoercionI] -> CoercionI mkClassPPredCoI cls tys cois | allIdCoIs cois = IdCo | otherwise = ACo $ PredTy $ ClassP cls (zipCoArgs cois tys) -- | Smart constructor for implicit parameter 'Coercion's on 'CoercionI'. Similar to 'mkClassPPredCoI' mkIParamPredCoI :: (IPName Name) -> CoercionI -> CoercionI mkIParamPredCoI _ IdCo = IdCo mkIParamPredCoI ipn (ACo co) = ACo $ PredTy $ IParam ipn co -- | Smart constructor for type equality 'Coercion's on 'CoercionI'. Similar to 'mkClassPPredCoI' mkEqPredCoI :: Type -> CoercionI -> Type -> CoercionI -> CoercionI mkEqPredCoI _ IdCo _ IdCo = IdCo mkEqPredCoI ty1 IdCo _ (ACo co2) = ACo $ PredTy $ EqPred ty1 co2 mkEqPredCoI _ (ACo co1) ty2 coi2 = ACo $ PredTy $ EqPred co1 (fromCoI coi2 ty2) \end{code}