{-# OPTIONS_GHC -O #-} -- We always optimise this, otherwise performance of a non-optimised -- compiler is severely affected -- ----------------------------------------------------------------------------- -- -- (c) The University of Glasgow, 1997-2006 -- -- Character encodings -- -- ----------------------------------------------------------------------------- module Encoding ( -- * UTF-8 utf8DecodeChar#, utf8PrevChar, utf8CharStart, utf8DecodeChar, utf8DecodeString, utf8EncodeChar, utf8EncodeString, utf8EncodedLength, countUTF8Chars, -- * Z-encoding zEncodeString, zDecodeString ) where #include "HsVersions.h" import Foreign import Data.Char import Numeric import GHC.Ptr ( Ptr(..) ) import GHC.Base -- ----------------------------------------------------------------------------- -- UTF-8 -- We can't write the decoder as efficiently as we'd like without -- resorting to unboxed extensions, unfortunately. I tried to write -- an IO version of this function, but GHC can't eliminate boxed -- results from an IO-returning function. -- -- We assume we can ignore overflow when parsing a multibyte character here. -- To make this safe, we add extra sentinel bytes to unparsed UTF-8 sequences -- before decoding them (see StringBuffer.hs). {-# INLINE utf8DecodeChar# #-} utf8DecodeChar# :: Addr# -> (# Char#, Addr# #) utf8DecodeChar# a# = let !ch0 = word2Int# (indexWord8OffAddr# a# 0#) in case () of _ | ch0 <=# 0x7F# -> (# chr# ch0, a# `plusAddr#` 1# #) | ch0 >=# 0xC0# && ch0 <=# 0xDF# -> let !ch1 = word2Int# (indexWord8OffAddr# a# 1#) in if ch1 <# 0x80# || ch1 >=# 0xC0# then fail 1# else (# chr# (((ch0 -# 0xC0#) `uncheckedIShiftL#` 6#) +# (ch1 -# 0x80#)), a# `plusAddr#` 2# #) | ch0 >=# 0xE0# && ch0 <=# 0xEF# -> let !ch1 = word2Int# (indexWord8OffAddr# a# 1#) in if ch1 <# 0x80# || ch1 >=# 0xC0# then fail 1# else let !ch2 = word2Int# (indexWord8OffAddr# a# 2#) in if ch2 <# 0x80# || ch2 >=# 0xC0# then fail 2# else (# chr# (((ch0 -# 0xE0#) `uncheckedIShiftL#` 12#) +# ((ch1 -# 0x80#) `uncheckedIShiftL#` 6#) +# (ch2 -# 0x80#)), a# `plusAddr#` 3# #) | ch0 >=# 0xF0# && ch0 <=# 0xF8# -> let !ch1 = word2Int# (indexWord8OffAddr# a# 1#) in if ch1 <# 0x80# || ch1 >=# 0xC0# then fail 1# else let !ch2 = word2Int# (indexWord8OffAddr# a# 2#) in if ch2 <# 0x80# || ch2 >=# 0xC0# then fail 2# else let !ch3 = word2Int# (indexWord8OffAddr# a# 3#) in if ch3 <# 0x80# || ch3 >=# 0xC0# then fail 3# else (# chr# (((ch0 -# 0xF0#) `uncheckedIShiftL#` 18#) +# ((ch1 -# 0x80#) `uncheckedIShiftL#` 12#) +# ((ch2 -# 0x80#) `uncheckedIShiftL#` 6#) +# (ch3 -# 0x80#)), a# `plusAddr#` 4# #) | otherwise -> fail 1# where -- all invalid sequences end up here: fail n = (# '\0'#, a# `plusAddr#` n #) -- '\xFFFD' would be the usual replacement character, but -- that's a valid symbol in Haskell, so will result in a -- confusing parse error later on. Instead we use '\0' which -- will signal a lexer error immediately. utf8DecodeChar :: Ptr Word8 -> (Char, Ptr Word8) utf8DecodeChar (Ptr a#) = case utf8DecodeChar# a# of (# c#, b# #) -> ( C# c#, Ptr b# ) -- UTF-8 is cleverly designed so that we can always figure out where -- the start of the current character is, given any position in a -- stream. This function finds the start of the previous character, -- assuming there *is* a previous character. utf8PrevChar :: Ptr Word8 -> IO (Ptr Word8) utf8PrevChar p = utf8CharStart (p `plusPtr` (-1)) utf8CharStart :: Ptr Word8 -> IO (Ptr Word8) utf8CharStart p = go p where go p = do w <- peek p if w >= 0x80 && w < 0xC0 then go (p `plusPtr` (-1)) else return p utf8DecodeString :: Ptr Word8 -> Int -> IO [Char] STRICT2(utf8DecodeString) utf8DecodeString (Ptr a#) (I# len#) = unpack a# where !end# = addr2Int# (a# `plusAddr#` len#) unpack p# | addr2Int# p# >=# end# = return [] | otherwise = case utf8DecodeChar# p# of (# c#, q# #) -> do chs <- unpack q# return (C# c# : chs) countUTF8Chars :: Ptr Word8 -> Int -> IO Int countUTF8Chars ptr bytes = go ptr 0 where end = ptr `plusPtr` bytes STRICT2(go) go ptr n | ptr >= end = return n | otherwise = do case utf8DecodeChar# (unPtr ptr) of (# _, a #) -> go (Ptr a) (n+1) unPtr :: Ptr a -> Addr# unPtr (Ptr a) = a utf8EncodeChar :: Char -> Ptr Word8 -> IO (Ptr Word8) utf8EncodeChar c ptr = let x = ord c in case () of _ | x > 0 && x <= 0x007f -> do poke ptr (fromIntegral x) return (ptr `plusPtr` 1) -- NB. '\0' is encoded as '\xC0\x80', not '\0'. This is so that we -- can have 0-terminated UTF-8 strings (see GHC.Base.unpackCStringUtf8). | x <= 0x07ff -> do poke ptr (fromIntegral (0xC0 .|. ((x `shiftR` 6) .&. 0x1F))) pokeElemOff ptr 1 (fromIntegral (0x80 .|. (x .&. 0x3F))) return (ptr `plusPtr` 2) | x <= 0xffff -> do poke ptr (fromIntegral (0xE0 .|. (x `shiftR` 12) .&. 0x0F)) pokeElemOff ptr 1 (fromIntegral (0x80 .|. (x `shiftR` 6) .&. 0x3F)) pokeElemOff ptr 2 (fromIntegral (0x80 .|. (x .&. 0x3F))) return (ptr `plusPtr` 3) | otherwise -> do poke ptr (fromIntegral (0xF0 .|. (x `shiftR` 18))) pokeElemOff ptr 1 (fromIntegral (0x80 .|. ((x `shiftR` 12) .&. 0x3F))) pokeElemOff ptr 2 (fromIntegral (0x80 .|. ((x `shiftR` 6) .&. 0x3F))) pokeElemOff ptr 3 (fromIntegral (0x80 .|. (x .&. 0x3F))) return (ptr `plusPtr` 4) utf8EncodeString :: Ptr Word8 -> String -> IO () utf8EncodeString ptr str = go ptr str where STRICT2(go) go _ [] = return () go ptr (c:cs) = do ptr' <- utf8EncodeChar c ptr go ptr' cs utf8EncodedLength :: String -> Int utf8EncodedLength str = go 0 str where STRICT2(go) go n [] = n go n (c:cs) | ord c > 0 && ord c <= 0x007f = go (n+1) cs | ord c <= 0x07ff = go (n+2) cs | ord c <= 0xffff = go (n+3) cs | otherwise = go (n+4) cs -- ----------------------------------------------------------------------------- -- The Z-encoding {- This is the main name-encoding and decoding function. It encodes any string into a string that is acceptable as a C name. This is done right before we emit a symbol name into the compiled C or asm code. Z-encoding of strings is cached in the FastString interface, so we never encode the same string more than once. The basic encoding scheme is this. * Tuples (,,,) are coded as Z3T * Alphabetic characters (upper and lower) and digits all translate to themselves; except 'Z', which translates to 'ZZ' and 'z', which translates to 'zz' We need both so that we can preserve the variable/tycon distinction * Most other printable characters translate to 'zx' or 'Zx' for some alphabetic character x * The others translate as 'znnnU' where 'nnn' is the decimal number of the character Before After -------------------------- Trak Trak foo_wib foozuwib > zg >1 zg1 foo# foozh foo## foozhzh foo##1 foozhzh1 fooZ fooZZ :+ ZCzp () Z0T 0-tuple (,,,,) Z5T 5-tuple (# #) Z1H unboxed 1-tuple (note the space) (#,,,,#) Z5H unboxed 5-tuple (NB: There is no Z1T nor Z0H.) -} type UserString = String -- As the user typed it type EncodedString = String -- Encoded form zEncodeString :: UserString -> EncodedString zEncodeString cs = case maybe_tuple cs of Just n -> n -- Tuples go to Z2T etc Nothing -> go cs where go [] = [] go (c:cs) = encode_digit_ch c ++ go' cs go' [] = [] go' (c:cs) = encode_ch c ++ go' cs unencodedChar :: Char -> Bool -- True for chars that don't need encoding unencodedChar 'Z' = False unencodedChar 'z' = False unencodedChar c = c >= 'a' && c <= 'z' || c >= 'A' && c <= 'Z' || c >= '0' && c <= '9' -- If a digit is at the start of a symbol then we need to encode it. -- Otherwise package names like 9pH-0.1 give linker errors. encode_digit_ch :: Char -> EncodedString encode_digit_ch c | c >= '0' && c <= '9' = encode_as_unicode_char c encode_digit_ch c | otherwise = encode_ch c encode_ch :: Char -> EncodedString encode_ch c | unencodedChar c = [c] -- Common case first -- Constructors encode_ch '(' = "ZL" -- Needed for things like (,), and (->) encode_ch ')' = "ZR" -- For symmetry with ( encode_ch '[' = "ZM" encode_ch ']' = "ZN" encode_ch ':' = "ZC" encode_ch 'Z' = "ZZ" -- Variables encode_ch 'z' = "zz" encode_ch '&' = "za" encode_ch '|' = "zb" encode_ch '^' = "zc" encode_ch '$' = "zd" encode_ch '=' = "ze" encode_ch '>' = "zg" encode_ch '#' = "zh" encode_ch '.' = "zi" encode_ch '<' = "zl" encode_ch '-' = "zm" encode_ch '!' = "zn" encode_ch '+' = "zp" encode_ch '\'' = "zq" encode_ch '\\' = "zr" encode_ch '/' = "zs" encode_ch '*' = "zt" encode_ch '_' = "zu" encode_ch '%' = "zv" encode_ch c = encode_as_unicode_char c encode_as_unicode_char :: Char -> EncodedString encode_as_unicode_char c = 'z' : if isDigit (head hex_str) then hex_str else '0':hex_str where hex_str = showHex (ord c) "U" -- ToDo: we could improve the encoding here in various ways. -- eg. strings of unicode characters come out as 'z1234Uz5678U', we -- could remove the 'U' in the middle (the 'z' works as a separator). zDecodeString :: EncodedString -> UserString zDecodeString [] = [] zDecodeString ('Z' : d : rest) | isDigit d = decode_tuple d rest | otherwise = decode_upper d : zDecodeString rest zDecodeString ('z' : d : rest) | isDigit d = decode_num_esc d rest | otherwise = decode_lower d : zDecodeString rest zDecodeString (c : rest) = c : zDecodeString rest decode_upper, decode_lower :: Char -> Char decode_upper 'L' = '(' decode_upper 'R' = ')' decode_upper 'M' = '[' decode_upper 'N' = ']' decode_upper 'C' = ':' decode_upper 'Z' = 'Z' decode_upper ch = {-pprTrace "decode_upper" (char ch)-} ch decode_lower 'z' = 'z' decode_lower 'a' = '&' decode_lower 'b' = '|' decode_lower 'c' = '^' decode_lower 'd' = '$' decode_lower 'e' = '=' decode_lower 'g' = '>' decode_lower 'h' = '#' decode_lower 'i' = '.' decode_lower 'l' = '<' decode_lower 'm' = '-' decode_lower 'n' = '!' decode_lower 'p' = '+' decode_lower 'q' = '\'' decode_lower 'r' = '\\' decode_lower 's' = '/' decode_lower 't' = '*' decode_lower 'u' = '_' decode_lower 'v' = '%' decode_lower ch = {-pprTrace "decode_lower" (char ch)-} ch -- Characters not having a specific code are coded as z224U (in hex) decode_num_esc :: Char -> EncodedString -> UserString decode_num_esc d rest = go (digitToInt d) rest where go n (c : rest) | isHexDigit c = go (16*n + digitToInt c) rest go n ('U' : rest) = chr n : zDecodeString rest go n other = error ("decode_num_esc: " ++ show n ++ ' ':other) decode_tuple :: Char -> EncodedString -> UserString decode_tuple d rest = go (digitToInt d) rest where -- NB. recurse back to zDecodeString after decoding the tuple, because -- the tuple might be embedded in a longer name. go n (c : rest) | isDigit c = go (10*n + digitToInt c) rest go 0 ('T':rest) = "()" ++ zDecodeString rest go n ('T':rest) = '(' : replicate (n-1) ',' ++ ")" ++ zDecodeString rest go 1 ('H':rest) = "(# #)" ++ zDecodeString rest go n ('H':rest) = '(' : '#' : replicate (n-1) ',' ++ "#)" ++ zDecodeString rest go n other = error ("decode_tuple: " ++ show n ++ ' ':other) {- Tuples are encoded as Z3T or Z3H for 3-tuples or unboxed 3-tuples respectively. No other encoding starts Z * "(# #)" is the tycon for an unboxed 1-tuple (not 0-tuple) There are no unboxed 0-tuples. * "()" is the tycon for a boxed 0-tuple. There are no boxed 1-tuples. -} maybe_tuple :: UserString -> Maybe EncodedString maybe_tuple "(# #)" = Just("Z1H") maybe_tuple ('(' : '#' : cs) = case count_commas (0::Int) cs of (n, '#' : ')' : _) -> Just ('Z' : shows (n+1) "H") _ -> Nothing maybe_tuple "()" = Just("Z0T") maybe_tuple ('(' : cs) = case count_commas (0::Int) cs of (n, ')' : _) -> Just ('Z' : shows (n+1) "T") _ -> Nothing maybe_tuple _ = Nothing count_commas :: Int -> String -> (Int, String) count_commas n (',' : cs) = count_commas (n+1) cs count_commas n cs = (n,cs)