----------------------------------------------------------------------------- -- -- (c) The University of Glasgow 2006 -- -- The purpose of this module is to transform an HsExpr into a CoreExpr which -- when evaluated, returns a (Meta.Q Meta.Exp) computation analogous to the -- input HsExpr. We do this in the DsM monad, which supplies access to -- CoreExpr's of the "smart constructors" of the Meta.Exp datatype. -- -- It also defines a bunch of knownKeyNames, in the same way as is done -- in prelude/PrelNames. It's much more convenient to do it here, becuase -- otherwise we have to recompile PrelNames whenever we add a Name, which is -- a Royal Pain (triggers other recompilation). ----------------------------------------------------------------------------- module DsMeta( dsBracket, templateHaskellNames, qTyConName, nameTyConName, liftName, liftStringName, expQTyConName, patQTyConName, decQTyConName, typeQTyConName, decTyConName, typeTyConName, mkNameG_dName, mkNameG_vName, mkNameG_tcName, quoteExpName, quotePatName ) where #include "HsVersions.h" import {-# SOURCE #-} DsExpr ( dsExpr ) import MatchLit import DsMonad import qualified Language.Haskell.TH as TH import HsSyn import Class import PrelNames -- To avoid clashes with DsMeta.varName we must make a local alias for -- OccName.varName we do this by removing varName from the import of -- OccName above, making a qualified instance of OccName and using -- OccNameAlias.varName where varName ws previously used in this file. import qualified OccName import Module import Id import Name import NameEnv import TcType import TyCon import TysWiredIn import CoreSyn import MkCore import CoreUtils import SrcLoc import Unique import BasicTypes import Outputable import Bag import FastString import ForeignCall import MonadUtils import Data.Maybe import Control.Monad import Data.List ----------------------------------------------------------------------------- dsBracket :: HsBracket Name -> [PendingSplice] -> DsM CoreExpr -- Returns a CoreExpr of type TH.ExpQ -- The quoted thing is parameterised over Name, even though it has -- been type checked. We don't want all those type decorations! dsBracket brack splices = dsExtendMetaEnv new_bit (do_brack brack) where new_bit = mkNameEnv [(n, Splice (unLoc e)) | (n,e) <- splices] do_brack (VarBr n) = do { MkC e1 <- lookupOcc n ; return e1 } do_brack (ExpBr e) = do { MkC e1 <- repLE e ; return e1 } do_brack (PatBr p) = do { MkC p1 <- repLP p ; return p1 } do_brack (TypBr t) = do { MkC t1 <- repLTy t ; return t1 } do_brack (DecBr ds) = do { MkC ds1 <- repTopDs ds ; return ds1 } {- -------------- Examples -------------------- [| \x -> x |] ====> gensym (unpackString "x"#) `bindQ` \ x1::String -> lam (pvar x1) (var x1) [| \x -> $(f [| x |]) |] ====> gensym (unpackString "x"#) `bindQ` \ x1::String -> lam (pvar x1) (f (var x1)) -} ------------------------------------------------------- -- Declarations ------------------------------------------------------- repTopDs :: HsGroup Name -> DsM (Core (TH.Q [TH.Dec])) repTopDs group = do { let { bndrs = map unLoc (groupBinders group) } ; ss <- mkGenSyms bndrs ; -- Bind all the names mainly to avoid repeated use of explicit strings. -- Thus we get -- do { t :: String <- genSym "T" ; -- return (Data t [] ...more t's... } -- The other important reason is that the output must mention -- only "T", not "Foo:T" where Foo is the current module decls <- addBinds ss (do { val_ds <- rep_val_binds (hs_valds group) ; tycl_ds <- mapM repTyClD (hs_tyclds group) ; inst_ds <- mapM repInstD' (hs_instds group) ; for_ds <- mapM repForD (hs_fords group) ; -- more needed return (de_loc $ sort_by_loc $ val_ds ++ catMaybes tycl_ds ++ inst_ds ++ for_ds) }) ; decl_ty <- lookupType decQTyConName ; let { core_list = coreList' decl_ty decls } ; dec_ty <- lookupType decTyConName ; q_decs <- repSequenceQ dec_ty core_list ; wrapNongenSyms ss q_decs -- Do *not* gensym top-level binders } groupBinders :: HsGroup Name -> [Located Name] groupBinders (HsGroup { hs_valds = val_decls, hs_tyclds = tycl_decls, hs_instds = inst_decls, hs_fords = foreign_decls }) -- Collect the binders of a Group = collectHsValBinders val_decls ++ [n | d <- tycl_decls ++ assoc_tycl_decls, n <- tyClDeclNames (unLoc d)] ++ [n | L _ (ForeignImport n _ _) <- foreign_decls] where assoc_tycl_decls = concat [ats | L _ (InstDecl _ _ _ ats) <- inst_decls] {- Note [Binders and occurrences] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When we desugar [d| data T = MkT |] we want to get Data "T" [] [Con "MkT" []] [] and *not* Data "Foo:T" [] [Con "Foo:MkT" []] [] That is, the new data decl should fit into whatever new module it is asked to fit in. We do *not* clone, though; no need for this: Data "T79" .... But if we see this: data T = MkT foo = reifyDecl T then we must desugar to foo = Data "Foo:T" [] [Con "Foo:MkT" []] [] So in repTopDs we bring the binders into scope with mkGenSyms and addBinds. And we use lookupOcc, rather than lookupBinder in repTyClD and repC. -} repTyClD :: LTyClDecl Name -> DsM (Maybe (SrcSpan, Core TH.DecQ)) repTyClD tydecl@(L _ (TyFamily {})) = repTyFamily tydecl addTyVarBinds repTyClD (L loc (TyData { tcdND = DataType, tcdCtxt = cxt, tcdLName = tc, tcdTyVars = tvs, tcdTyPats = opt_tys, tcdCons = cons, tcdDerivs = mb_derivs })) = do { tc1 <- lookupLOcc tc -- See note [Binders and occurrences] ; dec <- addTyVarBinds tvs $ \bndrs -> do { cxt1 <- repLContext cxt ; opt_tys1 <- maybeMapM repLTys opt_tys -- only for family insts ; opt_tys2 <- maybeMapM (coreList typeQTyConName) opt_tys1 ; cons1 <- mapM repC cons ; cons2 <- coreList conQTyConName cons1 ; derivs1 <- repDerivs mb_derivs ; bndrs1 <- coreList tyVarBndrTyConName bndrs ; repData cxt1 tc1 bndrs1 opt_tys2 cons2 derivs1 } ; return $ Just (loc, dec) } repTyClD (L loc (TyData { tcdND = NewType, tcdCtxt = cxt, tcdLName = tc, tcdTyVars = tvs, tcdTyPats = opt_tys, tcdCons = [con], tcdDerivs = mb_derivs })) = do { tc1 <- lookupLOcc tc -- See note [Binders and occurrences] ; dec <- addTyVarBinds tvs $ \bndrs -> do { cxt1 <- repLContext cxt ; opt_tys1 <- maybeMapM repLTys opt_tys -- only for family insts ; opt_tys2 <- maybeMapM (coreList typeQTyConName) opt_tys1 ; con1 <- repC con ; derivs1 <- repDerivs mb_derivs ; bndrs1 <- coreList tyVarBndrTyConName bndrs ; repNewtype cxt1 tc1 bndrs1 opt_tys2 con1 derivs1 } ; return $ Just (loc, dec) } repTyClD (L loc (TySynonym { tcdLName = tc, tcdTyVars = tvs, tcdTyPats = opt_tys, tcdSynRhs = ty })) = do { tc1 <- lookupLOcc tc -- See note [Binders and occurrences] ; dec <- addTyVarBinds tvs $ \bndrs -> do { opt_tys1 <- maybeMapM repLTys opt_tys -- only for family insts ; opt_tys2 <- maybeMapM (coreList typeQTyConName) opt_tys1 ; ty1 <- repLTy ty ; bndrs1 <- coreList tyVarBndrTyConName bndrs ; repTySyn tc1 bndrs1 opt_tys2 ty1 } ; return (Just (loc, dec)) } repTyClD (L loc (ClassDecl { tcdCtxt = cxt, tcdLName = cls, tcdTyVars = tvs, tcdFDs = fds, tcdSigs = sigs, tcdMeths = meth_binds, tcdATs = ats })) = do { cls1 <- lookupLOcc cls -- See note [Binders and occurrences] ; dec <- addTyVarBinds tvs $ \bndrs -> do { cxt1 <- repLContext cxt ; sigs1 <- rep_sigs sigs ; binds1 <- rep_binds meth_binds ; fds1 <- repLFunDeps fds ; ats1 <- repLAssocFamilys ats ; decls1 <- coreList decQTyConName (ats1 ++ sigs1 ++ binds1) ; bndrs1 <- coreList tyVarBndrTyConName bndrs ; repClass cxt1 cls1 bndrs1 fds1 decls1 } ; return $ Just (loc, dec) } -- Un-handled cases repTyClD (L loc d) = putSrcSpanDs loc $ do { warnDs (hang ds_msg 4 (ppr d)) ; return Nothing } -- The type variables in the head of families are treated differently when the -- family declaration is associated. In that case, they are usage, not binding -- occurences. -- repTyFamily :: LTyClDecl Name -> ProcessTyVarBinds TH.Dec -> DsM (Maybe (SrcSpan, Core TH.DecQ)) repTyFamily (L loc (TyFamily { tcdFlavour = flavour, tcdLName = tc, tcdTyVars = tvs, tcdKind = opt_kind })) tyVarBinds = do { tc1 <- lookupLOcc tc -- See note [Binders and occurrences] ; dec <- tyVarBinds tvs $ \bndrs -> do { flav <- repFamilyFlavour flavour ; bndrs1 <- coreList tyVarBndrTyConName bndrs ; case opt_kind of Nothing -> repFamilyNoKind flav tc1 bndrs1 Just ki -> do { ki1 <- repKind ki ; repFamilyKind flav tc1 bndrs1 ki1 } } ; return $ Just (loc, dec) } repTyFamily _ _ = panic "DsMeta.repTyFamily: internal error" -- represent fundeps -- repLFunDeps :: [Located (FunDep Name)] -> DsM (Core [TH.FunDep]) repLFunDeps fds = do fds' <- mapM repLFunDep fds fdList <- coreList funDepTyConName fds' return fdList repLFunDep :: Located (FunDep Name) -> DsM (Core TH.FunDep) repLFunDep (L _ (xs, ys)) = do xs' <- mapM lookupBinder xs ys' <- mapM lookupBinder ys xs_list <- coreList nameTyConName xs' ys_list <- coreList nameTyConName ys' repFunDep xs_list ys_list -- represent family declaration flavours -- repFamilyFlavour :: FamilyFlavour -> DsM (Core TH.FamFlavour) repFamilyFlavour TypeFamily = rep2 typeFamName [] repFamilyFlavour DataFamily = rep2 dataFamName [] -- represent associated family declarations -- repLAssocFamilys :: [LTyClDecl Name] -> DsM [Core TH.DecQ] repLAssocFamilys = mapM repLAssocFamily where repLAssocFamily tydecl@(L _ (TyFamily {})) = liftM (snd . fromJust) $ repTyFamily tydecl lookupTyVarBinds repLAssocFamily tydecl = failWithDs msg where msg = ptext (sLit "Illegal associated declaration in class:") <+> ppr tydecl -- represent associated family instances -- repLAssocFamInst :: [LTyClDecl Name] -> DsM [Core TH.DecQ] repLAssocFamInst = liftM de_loc . mapMaybeM repTyClD -- represent instance declarations -- repInstD' :: LInstDecl Name -> DsM (SrcSpan, Core TH.DecQ) repInstD' (L loc (InstDecl ty binds _ ats)) -- Ignore user pragmas for now = do { i <- addTyVarBinds tvs $ \_ -> -- We must bring the type variables into scope, so their -- occurrences don't fail, even though the binders don't -- appear in the resulting data structure do { cxt1 <- repContext cxt ; inst_ty1 <- repPredTy (HsClassP cls tys) ; ss <- mkGenSyms (collectHsBindBinders binds) ; binds1 <- addBinds ss (rep_binds binds) ; ats1 <- repLAssocFamInst ats ; decls1 <- coreList decQTyConName (ats1 ++ binds1) ; decls2 <- wrapNongenSyms ss decls1 -- wrapNongenSyms: do not clone the class op names! -- They must be called 'op' etc, not 'op34' ; repInst cxt1 inst_ty1 (decls2) } ; return (loc, i)} where (tvs, cxt, cls, tys) = splitHsInstDeclTy (unLoc ty) repForD :: Located (ForeignDecl Name) -> DsM (SrcSpan, Core TH.DecQ) repForD (L loc (ForeignImport name typ (CImport cc s ch cis))) = do MkC name' <- lookupLOcc name MkC typ' <- repLTy typ MkC cc' <- repCCallConv cc MkC s' <- repSafety s cis' <- conv_cimportspec cis MkC str <- coreStringLit $ static ++ unpackFS ch ++ " " ++ cis' dec <- rep2 forImpDName [cc', s', str, name', typ'] return (loc, dec) where conv_cimportspec (CLabel cls) = notHandled "Foreign label" (doubleQuotes (ppr cls)) conv_cimportspec (CFunction DynamicTarget) = return "dynamic" conv_cimportspec (CFunction (StaticTarget fs)) = return (unpackFS fs) conv_cimportspec CWrapper = return "wrapper" static = case cis of CFunction (StaticTarget _) -> "static " _ -> "" repForD decl = notHandled "Foreign declaration" (ppr decl) repCCallConv :: CCallConv -> DsM (Core TH.Callconv) repCCallConv CCallConv = rep2 cCallName [] repCCallConv StdCallConv = rep2 stdCallName [] repCCallConv callConv = notHandled "repCCallConv" (ppr callConv) repSafety :: Safety -> DsM (Core TH.Safety) repSafety PlayRisky = rep2 unsafeName [] repSafety (PlaySafe False) = rep2 safeName [] repSafety (PlaySafe True) = rep2 threadsafeName [] ds_msg :: SDoc ds_msg = ptext (sLit "Cannot desugar this Template Haskell declaration:") ------------------------------------------------------- -- Constructors ------------------------------------------------------- repC :: LConDecl Name -> DsM (Core TH.ConQ) repC (L _ (ConDecl { con_name = con, con_qvars = [], con_cxt = L _ [] , con_details = details, con_res = ResTyH98 })) = do { con1 <- lookupLOcc con -- See note [Binders and occurrences] ; repConstr con1 details } repC (L loc con_decl@(ConDecl { con_qvars = tvs, con_cxt = L cloc ctxt, con_res = ResTyH98 })) = addTyVarBinds tvs $ \bndrs -> do { c' <- repC (L loc (con_decl { con_qvars = [], con_cxt = L cloc [] })) ; ctxt' <- repContext ctxt ; bndrs' <- coreList tyVarBndrTyConName bndrs ; rep2 forallCName [unC bndrs', unC ctxt', unC c'] } repC (L loc con_decl) -- GADTs = putSrcSpanDs loc $ notHandled "GADT declaration" (ppr con_decl) repBangTy :: LBangType Name -> DsM (Core (TH.StrictTypeQ)) repBangTy ty= do MkC s <- rep2 str [] MkC t <- repLTy ty' rep2 strictTypeName [s, t] where (str, ty') = case ty of L _ (HsBangTy _ ty) -> (isStrictName, ty) _ -> (notStrictName, ty) ------------------------------------------------------- -- Deriving clause ------------------------------------------------------- repDerivs :: Maybe [LHsType Name] -> DsM (Core [TH.Name]) repDerivs Nothing = coreList nameTyConName [] repDerivs (Just ctxt) = do { strs <- mapM rep_deriv ctxt ; coreList nameTyConName strs } where rep_deriv :: LHsType Name -> DsM (Core TH.Name) -- Deriving clauses must have the simple H98 form rep_deriv (L _ (HsPredTy (HsClassP cls []))) = lookupOcc cls rep_deriv other = notHandled "Non-H98 deriving clause" (ppr other) ------------------------------------------------------- -- Signatures in a class decl, or a group of bindings ------------------------------------------------------- rep_sigs :: [LSig Name] -> DsM [Core TH.DecQ] rep_sigs sigs = do locs_cores <- rep_sigs' sigs return $ de_loc $ sort_by_loc locs_cores rep_sigs' :: [LSig Name] -> DsM [(SrcSpan, Core TH.DecQ)] -- We silently ignore ones we don't recognise rep_sigs' sigs = do { sigs1 <- mapM rep_sig sigs ; return (concat sigs1) } rep_sig :: LSig Name -> DsM [(SrcSpan, Core TH.DecQ)] -- Singleton => Ok -- Empty => Too hard, signature ignored rep_sig (L loc (TypeSig nm ty)) = rep_proto nm ty loc rep_sig (L loc (InlineSig nm ispec)) = rep_inline nm ispec loc rep_sig (L loc (SpecSig nm ty ispec)) = rep_specialise nm ty ispec loc rep_sig _ = return [] rep_proto :: Located Name -> LHsType Name -> SrcSpan -> DsM [(SrcSpan, Core TH.DecQ)] rep_proto nm ty loc = do { nm1 <- lookupLOcc nm ; ty1 <- repLTy ty ; sig <- repProto nm1 ty1 ; return [(loc, sig)] } rep_inline :: Located Name -> InlineSpec -> SrcSpan -> DsM [(SrcSpan, Core TH.DecQ)] rep_inline nm ispec loc = do { nm1 <- lookupLOcc nm ; (_, ispec1) <- rep_InlineSpec ispec ; pragma <- repPragInl nm1 ispec1 ; return [(loc, pragma)] } rep_specialise :: Located Name -> LHsType Name -> InlineSpec -> SrcSpan -> DsM [(SrcSpan, Core TH.DecQ)] rep_specialise nm ty ispec loc = do { nm1 <- lookupLOcc nm ; ty1 <- repLTy ty ; (hasSpec, ispec1) <- rep_InlineSpec ispec ; pragma <- if hasSpec then repPragSpecInl nm1 ty1 ispec1 else repPragSpec nm1 ty1 ; return [(loc, pragma)] } -- extract all the information needed to build a TH.InlineSpec -- rep_InlineSpec :: InlineSpec -> DsM (Bool, Core TH.InlineSpecQ) rep_InlineSpec (Inline (InlinePragma activation match) inline) | Nothing <- activation1 = liftM ((,) False) $ repInlineSpecNoPhase inline1 match1 | Just (flag, phase) <- activation1 = liftM ((,) True) $ repInlineSpecPhase inline1 match1 flag phase | otherwise = {- unreachable, but shuts up -W -} panic "rep_InlineSpec" where match1 = coreBool (rep_RuleMatchInfo match) activation1 = rep_Activation activation inline1 = coreBool inline rep_RuleMatchInfo FunLike = False rep_RuleMatchInfo ConLike = True rep_Activation NeverActive = Nothing rep_Activation AlwaysActive = Nothing rep_Activation (ActiveBefore phase) = Just (coreBool False, MkC $ mkIntExprInt phase) rep_Activation (ActiveAfter phase) = Just (coreBool True, MkC $ mkIntExprInt phase) ------------------------------------------------------- -- Types ------------------------------------------------------- -- We process type variable bindings in two ways, either by generating fresh -- names or looking up existing names. The difference is crucial for type -- families, depending on whether they are associated or not. -- type ProcessTyVarBinds a = [LHsTyVarBndr Name] -- the binders to be added -> ([Core TH.TyVarBndr] -> DsM (Core (TH.Q a))) -- action in the ext env -> DsM (Core (TH.Q a)) -- gensym a list of type variables and enter them into the meta environment; -- the computations passed as the second argument is executed in that extended -- meta environment and gets the *new* names on Core-level as an argument -- addTyVarBinds :: ProcessTyVarBinds a addTyVarBinds tvs m = do let names = hsLTyVarNames tvs mkWithKinds = map repTyVarBndrWithKind tvs freshNames <- mkGenSyms names term <- addBinds freshNames $ do bndrs <- mapM lookupBinder names kindedBndrs <- zipWithM ($) mkWithKinds bndrs m kindedBndrs wrapGenSyns freshNames term -- Look up a list of type variables; the computations passed as the second -- argument gets the *new* names on Core-level as an argument -- lookupTyVarBinds :: ProcessTyVarBinds a lookupTyVarBinds tvs m = do let names = hsLTyVarNames tvs mkWithKinds = map repTyVarBndrWithKind tvs bndrs <- mapM lookupBinder names kindedBndrs <- zipWithM ($) mkWithKinds bndrs m kindedBndrs -- Produce kinded binder constructors from the Haskell tyvar binders -- repTyVarBndrWithKind :: LHsTyVarBndr Name -> Core TH.Name -> DsM (Core TH.TyVarBndr) repTyVarBndrWithKind (L _ (UserTyVar _)) = repPlainTV repTyVarBndrWithKind (L _ (KindedTyVar _ ki)) = \nm -> repKind ki >>= repKindedTV nm -- represent a type context -- repLContext :: LHsContext Name -> DsM (Core TH.CxtQ) repLContext (L _ ctxt) = repContext ctxt repContext :: HsContext Name -> DsM (Core TH.CxtQ) repContext ctxt = do preds <- mapM repLPred ctxt predList <- coreList predQTyConName preds repCtxt predList -- represent a type predicate -- repLPred :: LHsPred Name -> DsM (Core TH.PredQ) repLPred (L _ p) = repPred p repPred :: HsPred Name -> DsM (Core TH.PredQ) repPred (HsClassP cls tys) = do cls1 <- lookupOcc cls tys1 <- repLTys tys tys2 <- coreList typeQTyConName tys1 repClassP cls1 tys2 repPred (HsEqualP tyleft tyright) = do tyleft1 <- repLTy tyleft tyright1 <- repLTy tyright repEqualP tyleft1 tyright1 repPred p@(HsIParam _ _) = notHandled "Implicit parameter constraint" (ppr p) repPredTy :: HsPred Name -> DsM (Core TH.TypeQ) repPredTy (HsClassP cls tys) = do tcon <- repTy (HsTyVar cls) tys1 <- repLTys tys repTapps tcon tys1 repPredTy _ = panic "DsMeta.repPredTy: unexpected equality: internal error" -- yield the representation of a list of types -- repLTys :: [LHsType Name] -> DsM [Core TH.TypeQ] repLTys tys = mapM repLTy tys -- represent a type -- repLTy :: LHsType Name -> DsM (Core TH.TypeQ) repLTy (L _ ty) = repTy ty repTy :: HsType Name -> DsM (Core TH.TypeQ) repTy (HsForAllTy _ tvs ctxt ty) = addTyVarBinds tvs $ \bndrs -> do ctxt1 <- repLContext ctxt ty1 <- repLTy ty bndrs1 <- coreList tyVarBndrTyConName bndrs repTForall bndrs1 ctxt1 ty1 repTy (HsTyVar n) | isTvOcc (nameOccName n) = do tv1 <- lookupTvOcc n repTvar tv1 | otherwise = do tc1 <- lookupOcc n repNamedTyCon tc1 repTy (HsAppTy f a) = do f1 <- repLTy f a1 <- repLTy a repTapp f1 a1 repTy (HsFunTy f a) = do f1 <- repLTy f a1 <- repLTy a tcon <- repArrowTyCon repTapps tcon [f1, a1] repTy (HsListTy t) = do t1 <- repLTy t tcon <- repListTyCon repTapp tcon t1 repTy (HsPArrTy t) = do t1 <- repLTy t tcon <- repTy (HsTyVar (tyConName parrTyCon)) repTapp tcon t1 repTy (HsTupleTy _ tys) = do tys1 <- repLTys tys tcon <- repTupleTyCon (length tys) repTapps tcon tys1 repTy (HsOpTy ty1 n ty2) = repLTy ((nlHsTyVar (unLoc n) `nlHsAppTy` ty1) `nlHsAppTy` ty2) repTy (HsParTy t) = repLTy t repTy (HsPredTy pred) = repPredTy pred repTy (HsKindSig t k) = do t1 <- repLTy t k1 <- repKind k repTSig t1 k1 repTy (HsSpliceTy splice) = repSplice splice repTy ty@(HsNumTy _) = notHandled "Number types (for generics)" (ppr ty) repTy ty = notHandled "Exotic form of type" (ppr ty) -- represent a kind -- repKind :: Kind -> DsM (Core TH.Kind) repKind ki = do { let (kis, ki') = splitKindFunTys ki ; kis_rep <- mapM repKind kis ; ki'_rep <- repNonArrowKind ki' ; foldrM repArrowK ki'_rep kis_rep } where repNonArrowKind k | isLiftedTypeKind k = repStarK | otherwise = notHandled "Exotic form of kind" (ppr k) ----------------------------------------------------------------------------- -- Splices ----------------------------------------------------------------------------- repSplice :: HsSplice Name -> DsM (Core a) -- See Note [How brackets and nested splices are handled] in TcSplice -- We return a CoreExpr of any old type; the context should know repSplice (HsSplice n _) = do { mb_val <- dsLookupMetaEnv n ; case mb_val of Just (Splice e) -> do { e' <- dsExpr e ; return (MkC e') } _ -> pprPanic "HsSplice" (ppr n) } -- Should not happen; statically checked ----------------------------------------------------------------------------- -- Expressions ----------------------------------------------------------------------------- repLEs :: [LHsExpr Name] -> DsM (Core [TH.ExpQ]) repLEs es = do { es' <- mapM repLE es ; coreList expQTyConName es' } -- FIXME: some of these panics should be converted into proper error messages -- unless we can make sure that constructs, which are plainly not -- supported in TH already lead to error messages at an earlier stage repLE :: LHsExpr Name -> DsM (Core TH.ExpQ) repLE (L loc e) = putSrcSpanDs loc (repE e) repE :: HsExpr Name -> DsM (Core TH.ExpQ) repE (HsVar x) = do { mb_val <- dsLookupMetaEnv x ; case mb_val of Nothing -> do { str <- globalVar x ; repVarOrCon x str } Just (Bound y) -> repVarOrCon x (coreVar y) Just (Splice e) -> do { e' <- dsExpr e ; return (MkC e') } } repE e@(HsIPVar _) = notHandled "Implicit parameters" (ppr e) -- Remember, we're desugaring renamer output here, so -- HsOverlit can definitely occur repE (HsOverLit l) = do { a <- repOverloadedLiteral l; repLit a } repE (HsLit l) = do { a <- repLiteral l; repLit a } repE (HsLam (MatchGroup [m] _)) = repLambda m repE (HsApp x y) = do {a <- repLE x; b <- repLE y; repApp a b} repE (OpApp e1 op _ e2) = do { arg1 <- repLE e1; arg2 <- repLE e2; the_op <- repLE op ; repInfixApp arg1 the_op arg2 } repE (NegApp x _) = do a <- repLE x negateVar <- lookupOcc negateName >>= repVar negateVar `repApp` a repE (HsPar x) = repLE x repE (SectionL x y) = do { a <- repLE x; b <- repLE y; repSectionL a b } repE (SectionR x y) = do { a <- repLE x; b <- repLE y; repSectionR a b } repE (HsCase e (MatchGroup ms _)) = do { arg <- repLE e ; ms2 <- mapM repMatchTup ms ; repCaseE arg (nonEmptyCoreList ms2) } repE (HsIf x y z) = do a <- repLE x b <- repLE y c <- repLE z repCond a b c repE (HsLet bs e) = do { (ss,ds) <- repBinds bs ; e2 <- addBinds ss (repLE e) ; z <- repLetE ds e2 ; wrapGenSyns ss z } -- FIXME: I haven't got the types here right yet repE e@(HsDo ctxt sts body _) | case ctxt of { DoExpr -> True; GhciStmt -> True; _ -> False } = do { (ss,zs) <- repLSts sts; body' <- addBinds ss $ repLE body; ret <- repNoBindSt body'; e' <- repDoE (nonEmptyCoreList (zs ++ [ret])); wrapGenSyns ss e' } | ListComp <- ctxt = do { (ss,zs) <- repLSts sts; body' <- addBinds ss $ repLE body; ret <- repNoBindSt body'; e' <- repComp (nonEmptyCoreList (zs ++ [ret])); wrapGenSyns ss e' } | otherwise = notHandled "mdo and [: :]" (ppr e) repE (ExplicitList _ es) = do { xs <- repLEs es; repListExp xs } repE e@(ExplicitPArr _ _) = notHandled "Parallel arrays" (ppr e) repE e@(ExplicitTuple es boxed) | not (isBoxed boxed) = notHandled "Unboxed tuples" (ppr e) | not (all tupArgPresent es) = notHandled "Tuple sections" (ppr e) | otherwise = do { xs <- repLEs [e | Present e <- es]; repTup xs } repE (RecordCon c _ flds) = do { x <- lookupLOcc c; fs <- repFields flds; repRecCon x fs } repE (RecordUpd e flds _ _ _) = do { x <- repLE e; fs <- repFields flds; repRecUpd x fs } repE (ExprWithTySig e ty) = do { e1 <- repLE e; t1 <- repLTy ty; repSigExp e1 t1 } repE (ArithSeq _ aseq) = case aseq of From e -> do { ds1 <- repLE e; repFrom ds1 } FromThen e1 e2 -> do ds1 <- repLE e1 ds2 <- repLE e2 repFromThen ds1 ds2 FromTo e1 e2 -> do ds1 <- repLE e1 ds2 <- repLE e2 repFromTo ds1 ds2 FromThenTo e1 e2 e3 -> do ds1 <- repLE e1 ds2 <- repLE e2 ds3 <- repLE e3 repFromThenTo ds1 ds2 ds3 repE (HsSpliceE splice) = repSplice splice repE e@(PArrSeq {}) = notHandled "Parallel arrays" (ppr e) repE e@(HsCoreAnn {}) = notHandled "Core annotations" (ppr e) repE e@(HsSCC {}) = notHandled "Cost centres" (ppr e) repE e@(HsTickPragma {}) = notHandled "Tick Pragma" (ppr e) repE e@(HsBracketOut {}) = notHandled "TH brackets" (ppr e) repE e = notHandled "Expression form" (ppr e) ----------------------------------------------------------------------------- -- Building representations of auxillary structures like Match, Clause, Stmt, repMatchTup :: LMatch Name -> DsM (Core TH.MatchQ) repMatchTup (L _ (Match [p] _ (GRHSs guards wheres))) = do { ss1 <- mkGenSyms (collectPatBinders p) ; addBinds ss1 $ do { ; p1 <- repLP p ; (ss2,ds) <- repBinds wheres ; addBinds ss2 $ do { ; gs <- repGuards guards ; match <- repMatch p1 gs ds ; wrapGenSyns (ss1++ss2) match }}} repMatchTup _ = panic "repMatchTup: case alt with more than one arg" repClauseTup :: LMatch Name -> DsM (Core TH.ClauseQ) repClauseTup (L _ (Match ps _ (GRHSs guards wheres))) = do { ss1 <- mkGenSyms (collectPatsBinders ps) ; addBinds ss1 $ do { ps1 <- repLPs ps ; (ss2,ds) <- repBinds wheres ; addBinds ss2 $ do { gs <- repGuards guards ; clause <- repClause ps1 gs ds ; wrapGenSyns (ss1++ss2) clause }}} repGuards :: [LGRHS Name] -> DsM (Core TH.BodyQ) repGuards [L _ (GRHS [] e)] = do {a <- repLE e; repNormal a } repGuards other = do { zs <- mapM process other; let {(xs, ys) = unzip zs}; gd <- repGuarded (nonEmptyCoreList ys); wrapGenSyns (concat xs) gd } where process :: LGRHS Name -> DsM ([GenSymBind], (Core (TH.Q (TH.Guard, TH.Exp)))) process (L _ (GRHS [L _ (ExprStmt e1 _ _)] e2)) = do { x <- repLNormalGE e1 e2; return ([], x) } process (L _ (GRHS ss rhs)) = do (gs, ss') <- repLSts ss rhs' <- addBinds gs $ repLE rhs g <- repPatGE (nonEmptyCoreList ss') rhs' return (gs, g) repFields :: HsRecordBinds Name -> DsM (Core [TH.Q TH.FieldExp]) repFields (HsRecFields { rec_flds = flds }) = do { fnames <- mapM lookupLOcc (map hsRecFieldId flds) ; es <- mapM repLE (map hsRecFieldArg flds) ; fs <- zipWithM repFieldExp fnames es ; coreList fieldExpQTyConName fs } ----------------------------------------------------------------------------- -- Representing Stmt's is tricky, especially if bound variables -- shadow each other. Consider: [| do { x <- f 1; x <- f x; g x } |] -- First gensym new names for every variable in any of the patterns. -- both static (x'1 and x'2), and dynamic ((gensym "x") and (gensym "y")) -- if variables didn't shaddow, the static gensym wouldn't be necessary -- and we could reuse the original names (x and x). -- -- do { x'1 <- gensym "x" -- ; x'2 <- gensym "x" -- ; doE [ BindSt (pvar x'1) [| f 1 |] -- , BindSt (pvar x'2) [| f x |] -- , NoBindSt [| g x |] -- ] -- } -- The strategy is to translate a whole list of do-bindings by building a -- bigger environment, and a bigger set of meta bindings -- (like: x'1 <- gensym "x" ) and then combining these with the translations -- of the expressions within the Do ----------------------------------------------------------------------------- -- The helper function repSts computes the translation of each sub expression -- and a bunch of prefix bindings denoting the dynamic renaming. repLSts :: [LStmt Name] -> DsM ([GenSymBind], [Core TH.StmtQ]) repLSts stmts = repSts (map unLoc stmts) repSts :: [Stmt Name] -> DsM ([GenSymBind], [Core TH.StmtQ]) repSts (BindStmt p e _ _ : ss) = do { e2 <- repLE e ; ss1 <- mkGenSyms (collectPatBinders p) ; addBinds ss1 $ do { ; p1 <- repLP p; ; (ss2,zs) <- repSts ss ; z <- repBindSt p1 e2 ; return (ss1++ss2, z : zs) }} repSts (LetStmt bs : ss) = do { (ss1,ds) <- repBinds bs ; z <- repLetSt ds ; (ss2,zs) <- addBinds ss1 (repSts ss) ; return (ss1++ss2, z : zs) } repSts (ExprStmt e _ _ : ss) = do { e2 <- repLE e ; z <- repNoBindSt e2 ; (ss2,zs) <- repSts ss ; return (ss2, z : zs) } repSts [] = return ([],[]) repSts other = notHandled "Exotic statement" (ppr other) ----------------------------------------------------------- -- Bindings ----------------------------------------------------------- repBinds :: HsLocalBinds Name -> DsM ([GenSymBind], Core [TH.DecQ]) repBinds EmptyLocalBinds = do { core_list <- coreList decQTyConName [] ; return ([], core_list) } repBinds b@(HsIPBinds _) = notHandled "Implicit parameters" (ppr b) repBinds (HsValBinds decs) = do { let { bndrs = map unLoc (collectHsValBinders decs) } -- No need to worrry about detailed scopes within -- the binding group, because we are talking Names -- here, so we can safely treat it as a mutually -- recursive group ; ss <- mkGenSyms bndrs ; prs <- addBinds ss (rep_val_binds decs) ; core_list <- coreList decQTyConName (de_loc (sort_by_loc prs)) ; return (ss, core_list) } rep_val_binds :: HsValBinds Name -> DsM [(SrcSpan, Core TH.DecQ)] -- Assumes: all the binders of the binding are alrady in the meta-env rep_val_binds (ValBindsOut binds sigs) = do { core1 <- rep_binds' (unionManyBags (map snd binds)) ; core2 <- rep_sigs' sigs ; return (core1 ++ core2) } rep_val_binds (ValBindsIn _ _) = panic "rep_val_binds: ValBindsIn" rep_binds :: LHsBinds Name -> DsM [Core TH.DecQ] rep_binds binds = do { binds_w_locs <- rep_binds' binds ; return (de_loc (sort_by_loc binds_w_locs)) } rep_binds' :: LHsBinds Name -> DsM [(SrcSpan, Core TH.DecQ)] rep_binds' binds = mapM rep_bind (bagToList binds) rep_bind :: LHsBind Name -> DsM (SrcSpan, Core TH.DecQ) -- Assumes: all the binders of the binding are alrady in the meta-env -- Note GHC treats declarations of a variable (not a pattern) -- e.g. x = g 5 as a Fun MonoBinds. This is indicated by a single match -- with an empty list of patterns rep_bind (L loc (FunBind { fun_id = fn, fun_matches = MatchGroup [L _ (Match [] _ (GRHSs guards wheres))] _ })) = do { (ss,wherecore) <- repBinds wheres ; guardcore <- addBinds ss (repGuards guards) ; fn' <- lookupLBinder fn ; p <- repPvar fn' ; ans <- repVal p guardcore wherecore ; ans' <- wrapGenSyns ss ans ; return (loc, ans') } rep_bind (L loc (FunBind { fun_id = fn, fun_matches = MatchGroup ms _ })) = do { ms1 <- mapM repClauseTup ms ; fn' <- lookupLBinder fn ; ans <- repFun fn' (nonEmptyCoreList ms1) ; return (loc, ans) } rep_bind (L loc (PatBind { pat_lhs = pat, pat_rhs = GRHSs guards wheres })) = do { patcore <- repLP pat ; (ss,wherecore) <- repBinds wheres ; guardcore <- addBinds ss (repGuards guards) ; ans <- repVal patcore guardcore wherecore ; ans' <- wrapGenSyns ss ans ; return (loc, ans') } rep_bind (L _ (VarBind { var_id = v, var_rhs = e})) = do { v' <- lookupBinder v ; e2 <- repLE e ; x <- repNormal e2 ; patcore <- repPvar v' ; empty_decls <- coreList decQTyConName [] ; ans <- repVal patcore x empty_decls ; return (srcLocSpan (getSrcLoc v), ans) } rep_bind (L _ (AbsBinds {})) = panic "rep_bind: AbsBinds" ----------------------------------------------------------------------------- -- Since everything in a Bind is mutually recursive we need rename all -- all the variables simultaneously. For example: -- [| AndMonoBinds (f x = x + g 2) (g x = f 1 + 2) |] would translate to -- do { f'1 <- gensym "f" -- ; g'2 <- gensym "g" -- ; [ do { x'3 <- gensym "x"; fun f'1 [pvar x'3] [| x + g2 |]}, -- do { x'4 <- gensym "x"; fun g'2 [pvar x'4] [| f 1 + 2 |]} -- ]} -- This requires collecting the bindings (f'1 <- gensym "f"), and the -- environment ( f |-> f'1 ) from each binding, and then unioning them -- together. As we do this we collect GenSymBinds's which represent the renamed -- variables bound by the Bindings. In order not to lose track of these -- representations we build a shadow datatype MB with the same structure as -- MonoBinds, but which has slots for the representations ----------------------------------------------------------------------------- -- GHC allows a more general form of lambda abstraction than specified -- by Haskell 98. In particular it allows guarded lambda's like : -- (\ x | even x -> 0 | odd x -> 1) at the moment we can't represent this in -- Haskell Template's Meta.Exp type so we punt if it isn't a simple thing like -- (\ p1 .. pn -> exp) by causing an error. repLambda :: LMatch Name -> DsM (Core TH.ExpQ) repLambda (L _ (Match ps _ (GRHSs [L _ (GRHS [] e)] EmptyLocalBinds))) = do { let bndrs = collectPatsBinders ps ; ; ss <- mkGenSyms bndrs ; lam <- addBinds ss ( do { xs <- repLPs ps; body <- repLE e; repLam xs body }) ; wrapGenSyns ss lam } repLambda (L _ m) = notHandled "Guarded labmdas" (pprMatch (LambdaExpr :: HsMatchContext Name) m) ----------------------------------------------------------------------------- -- Patterns -- repP deals with patterns. It assumes that we have already -- walked over the pattern(s) once to collect the binders, and -- have extended the environment. So every pattern-bound -- variable should already appear in the environment. -- Process a list of patterns repLPs :: [LPat Name] -> DsM (Core [TH.PatQ]) repLPs ps = do { ps' <- mapM repLP ps ; coreList patQTyConName ps' } repLP :: LPat Name -> DsM (Core TH.PatQ) repLP (L _ p) = repP p repP :: Pat Name -> DsM (Core TH.PatQ) repP (WildPat _) = repPwild repP (LitPat l) = do { l2 <- repLiteral l; repPlit l2 } repP (VarPat x) = do { x' <- lookupBinder x; repPvar x' } repP (LazyPat p) = do { p1 <- repLP p; repPtilde p1 } repP (BangPat p) = do { p1 <- repLP p; repPbang p1 } repP (AsPat x p) = do { x' <- lookupLBinder x; p1 <- repLP p; repPaspat x' p1 } repP (ParPat p) = repLP p repP (ListPat ps _) = do { qs <- repLPs ps; repPlist qs } repP p@(TuplePat ps boxed _) | not (isBoxed boxed) = notHandled "Unboxed tuples" (ppr p) | otherwise = do { qs <- repLPs ps; repPtup qs } repP (ConPatIn dc details) = do { con_str <- lookupLOcc dc ; case details of PrefixCon ps -> do { qs <- repLPs ps; repPcon con_str qs } RecCon rec -> do { let flds = rec_flds rec ; vs <- sequence $ map lookupLOcc (map hsRecFieldId flds) ; ps <- sequence $ map repLP (map hsRecFieldArg flds) ; fps <- zipWithM (\x y -> rep2 fieldPatName [unC x,unC y]) vs ps ; fps' <- coreList fieldPatQTyConName fps ; repPrec con_str fps' } InfixCon p1 p2 -> do { p1' <- repLP p1; p2' <- repLP p2; repPinfix p1' con_str p2' } } repP (NPat l Nothing _) = do { a <- repOverloadedLiteral l; repPlit a } repP p@(NPat _ (Just _) _) = notHandled "Negative overloaded patterns" (ppr p) repP p@(SigPatIn {}) = notHandled "Type signatures in patterns" (ppr p) -- The problem is to do with scoped type variables. -- To implement them, we have to implement the scoping rules -- here in DsMeta, and I don't want to do that today! -- do { p' <- repLP p; t' <- repLTy t; repPsig p' t' } -- repPsig :: Core TH.PatQ -> Core TH.TypeQ -> DsM (Core TH.PatQ) -- repPsig (MkC p) (MkC t) = rep2 sigPName [p, t] repP other = notHandled "Exotic pattern" (ppr other) ---------------------------------------------------------- -- Declaration ordering helpers sort_by_loc :: [(SrcSpan, a)] -> [(SrcSpan, a)] sort_by_loc xs = sortBy comp xs where comp x y = compare (fst x) (fst y) de_loc :: [(a, b)] -> [b] de_loc = map snd ---------------------------------------------------------- -- The meta-environment -- A name/identifier association for fresh names of locally bound entities type GenSymBind = (Name, Id) -- Gensym the string and bind it to the Id -- I.e. (x, x_id) means -- let x_id = gensym "x" in ... -- Generate a fresh name for a locally bound entity mkGenSyms :: [Name] -> DsM [GenSymBind] -- We can use the existing name. For example: -- [| \x_77 -> x_77 + x_77 |] -- desugars to -- do { x_77 <- genSym "x"; .... } -- We use the same x_77 in the desugared program, but with the type Bndr -- instead of Int -- -- We do make it an Internal name, though (hence localiseName) -- -- Nevertheless, it's monadic because we have to generate nameTy mkGenSyms ns = do { var_ty <- lookupType nameTyConName ; return [(nm, mkLocalId (localiseName nm) var_ty) | nm <- ns] } addBinds :: [GenSymBind] -> DsM a -> DsM a -- Add a list of fresh names for locally bound entities to the -- meta environment (which is part of the state carried around -- by the desugarer monad) addBinds bs m = dsExtendMetaEnv (mkNameEnv [(n,Bound id) | (n,id) <- bs]) m -- Look up a locally bound name -- lookupLBinder :: Located Name -> DsM (Core TH.Name) lookupLBinder (L _ n) = lookupBinder n lookupBinder :: Name -> DsM (Core TH.Name) lookupBinder n = do { mb_val <- dsLookupMetaEnv n; case mb_val of Just (Bound x) -> return (coreVar x) _ -> failWithDs msg } where msg = ptext (sLit "DsMeta: failed binder lookup when desugaring a TH bracket:") <+> ppr n -- Look up a name that is either locally bound or a global name -- -- * If it is a global name, generate the "original name" representation (ie, -- the : form) for the associated entity -- lookupLOcc :: Located Name -> DsM (Core TH.Name) -- Lookup an occurrence; it can't be a splice. -- Use the in-scope bindings if they exist lookupLOcc (L _ n) = lookupOcc n lookupOcc :: Name -> DsM (Core TH.Name) lookupOcc n = do { mb_val <- dsLookupMetaEnv n ; case mb_val of Nothing -> globalVar n Just (Bound x) -> return (coreVar x) Just (Splice _) -> pprPanic "repE:lookupOcc" (ppr n) } lookupTvOcc :: Name -> DsM (Core TH.Name) -- Type variables can't be staged and are not lexically scoped in TH lookupTvOcc n = do { mb_val <- dsLookupMetaEnv n ; case mb_val of Just (Bound x) -> return (coreVar x) _ -> failWithDs msg } where msg = vcat [ ptext (sLit "Illegal lexically-scoped type variable") <+> quotes (ppr n) , ptext (sLit "Lexically scoped type variables are not supported by Template Haskell") ] globalVar :: Name -> DsM (Core TH.Name) -- Not bound by the meta-env -- Could be top-level; or could be local -- f x = $(g [| x |]) -- Here the x will be local globalVar name | isExternalName name = do { MkC mod <- coreStringLit name_mod ; MkC pkg <- coreStringLit name_pkg ; MkC occ <- occNameLit name ; rep2 mk_varg [pkg,mod,occ] } | otherwise = do { MkC occ <- occNameLit name ; MkC uni <- coreIntLit (getKey (getUnique name)) ; rep2 mkNameLName [occ,uni] } where mod = ASSERT( isExternalName name) nameModule name name_mod = moduleNameString (moduleName mod) name_pkg = packageIdString (modulePackageId mod) name_occ = nameOccName name mk_varg | OccName.isDataOcc name_occ = mkNameG_dName | OccName.isVarOcc name_occ = mkNameG_vName | OccName.isTcOcc name_occ = mkNameG_tcName | otherwise = pprPanic "DsMeta.globalVar" (ppr name) lookupType :: Name -- Name of type constructor (e.g. TH.ExpQ) -> DsM Type -- The type lookupType tc_name = do { tc <- dsLookupTyCon tc_name ; return (mkTyConApp tc []) } wrapGenSyns :: [GenSymBind] -> Core (TH.Q a) -> DsM (Core (TH.Q a)) -- wrapGenSyns [(nm1,id1), (nm2,id2)] y -- --> bindQ (gensym nm1) (\ id1 -> -- bindQ (gensym nm2 (\ id2 -> -- y)) wrapGenSyns binds body@(MkC b) = do { var_ty <- lookupType nameTyConName ; go var_ty binds } where [elt_ty] = tcTyConAppArgs (exprType b) -- b :: Q a, so we can get the type 'a' by looking at the -- argument type. NB: this relies on Q being a data/newtype, -- not a type synonym go _ [] = return body go var_ty ((name,id) : binds) = do { MkC body' <- go var_ty binds ; lit_str <- occNameLit name ; gensym_app <- repGensym lit_str ; repBindQ var_ty elt_ty gensym_app (MkC (Lam id body')) } -- Just like wrapGenSym, but don't actually do the gensym -- Instead use the existing name: -- let x = "x" in ... -- Only used for [Decl], and for the class ops in class -- and instance decls wrapNongenSyms :: [GenSymBind] -> Core a -> DsM (Core a) wrapNongenSyms binds (MkC body) = do { binds' <- mapM do_one binds ; return (MkC (mkLets binds' body)) } where do_one (name,id) = do { MkC lit_str <- occNameLit name ; MkC var <- rep2 mkNameName [lit_str] ; return (NonRec id var) } occNameLit :: Name -> DsM (Core String) occNameLit n = coreStringLit (occNameString (nameOccName n)) -- %********************************************************************* -- %* * -- Constructing code -- %* * -- %********************************************************************* ----------------------------------------------------------------------------- -- PHANTOM TYPES for consistency. In order to make sure we do this correct -- we invent a new datatype which uses phantom types. newtype Core a = MkC CoreExpr unC :: Core a -> CoreExpr unC (MkC x) = x rep2 :: Name -> [ CoreExpr ] -> DsM (Core a) rep2 n xs = do { id <- dsLookupGlobalId n ; return (MkC (foldl App (Var id) xs)) } -- Then we make "repConstructors" which use the phantom types for each of the -- smart constructors of the Meta.Meta datatypes. -- %********************************************************************* -- %* * -- The 'smart constructors' -- %* * -- %********************************************************************* --------------- Patterns ----------------- repPlit :: Core TH.Lit -> DsM (Core TH.PatQ) repPlit (MkC l) = rep2 litPName [l] repPvar :: Core TH.Name -> DsM (Core TH.PatQ) repPvar (MkC s) = rep2 varPName [s] repPtup :: Core [TH.PatQ] -> DsM (Core TH.PatQ) repPtup (MkC ps) = rep2 tupPName [ps] repPcon :: Core TH.Name -> Core [TH.PatQ] -> DsM (Core TH.PatQ) repPcon (MkC s) (MkC ps) = rep2 conPName [s, ps] repPrec :: Core TH.Name -> Core [(TH.Name,TH.PatQ)] -> DsM (Core TH.PatQ) repPrec (MkC c) (MkC rps) = rep2 recPName [c,rps] repPinfix :: Core TH.PatQ -> Core TH.Name -> Core TH.PatQ -> DsM (Core TH.PatQ) repPinfix (MkC p1) (MkC n) (MkC p2) = rep2 infixPName [p1, n, p2] repPtilde :: Core TH.PatQ -> DsM (Core TH.PatQ) repPtilde (MkC p) = rep2 tildePName [p] repPbang :: Core TH.PatQ -> DsM (Core TH.PatQ) repPbang (MkC p) = rep2 bangPName [p] repPaspat :: Core TH.Name -> Core TH.PatQ -> DsM (Core TH.PatQ) repPaspat (MkC s) (MkC p) = rep2 asPName [s, p] repPwild :: DsM (Core TH.PatQ) repPwild = rep2 wildPName [] repPlist :: Core [TH.PatQ] -> DsM (Core TH.PatQ) repPlist (MkC ps) = rep2 listPName [ps] --------------- Expressions ----------------- repVarOrCon :: Name -> Core TH.Name -> DsM (Core TH.ExpQ) repVarOrCon vc str | isDataOcc (nameOccName vc) = repCon str | otherwise = repVar str repVar :: Core TH.Name -> DsM (Core TH.ExpQ) repVar (MkC s) = rep2 varEName [s] repCon :: Core TH.Name -> DsM (Core TH.ExpQ) repCon (MkC s) = rep2 conEName [s] repLit :: Core TH.Lit -> DsM (Core TH.ExpQ) repLit (MkC c) = rep2 litEName [c] repApp :: Core TH.ExpQ -> Core TH.ExpQ -> DsM (Core TH.ExpQ) repApp (MkC x) (MkC y) = rep2 appEName [x,y] repLam :: Core [TH.PatQ] -> Core TH.ExpQ -> DsM (Core TH.ExpQ) repLam (MkC ps) (MkC e) = rep2 lamEName [ps, e] repTup :: Core [TH.ExpQ] -> DsM (Core TH.ExpQ) repTup (MkC es) = rep2 tupEName [es] repCond :: Core TH.ExpQ -> Core TH.ExpQ -> Core TH.ExpQ -> DsM (Core TH.ExpQ) repCond (MkC x) (MkC y) (MkC z) = rep2 condEName [x,y,z] repLetE :: Core [TH.DecQ] -> Core TH.ExpQ -> DsM (Core TH.ExpQ) repLetE (MkC ds) (MkC e) = rep2 letEName [ds, e] repCaseE :: Core TH.ExpQ -> Core [TH.MatchQ] -> DsM( Core TH.ExpQ) repCaseE (MkC e) (MkC ms) = rep2 caseEName [e, ms] repDoE :: Core [TH.StmtQ] -> DsM (Core TH.ExpQ) repDoE (MkC ss) = rep2 doEName [ss] repComp :: Core [TH.StmtQ] -> DsM (Core TH.ExpQ) repComp (MkC ss) = rep2 compEName [ss] repListExp :: Core [TH.ExpQ] -> DsM (Core TH.ExpQ) repListExp (MkC es) = rep2 listEName [es] repSigExp :: Core TH.ExpQ -> Core TH.TypeQ -> DsM (Core TH.ExpQ) repSigExp (MkC e) (MkC t) = rep2 sigEName [e,t] repRecCon :: Core TH.Name -> Core [TH.Q TH.FieldExp]-> DsM (Core TH.ExpQ) repRecCon (MkC c) (MkC fs) = rep2 recConEName [c,fs] repRecUpd :: Core TH.ExpQ -> Core [TH.Q TH.FieldExp] -> DsM (Core TH.ExpQ) repRecUpd (MkC e) (MkC fs) = rep2 recUpdEName [e,fs] repFieldExp :: Core TH.Name -> Core TH.ExpQ -> DsM (Core (TH.Q TH.FieldExp)) repFieldExp (MkC n) (MkC x) = rep2 fieldExpName [n,x] repInfixApp :: Core TH.ExpQ -> Core TH.ExpQ -> Core TH.ExpQ -> DsM (Core TH.ExpQ) repInfixApp (MkC x) (MkC y) (MkC z) = rep2 infixAppName [x,y,z] repSectionL :: Core TH.ExpQ -> Core TH.ExpQ -> DsM (Core TH.ExpQ) repSectionL (MkC x) (MkC y) = rep2 sectionLName [x,y] repSectionR :: Core TH.ExpQ -> Core TH.ExpQ -> DsM (Core TH.ExpQ) repSectionR (MkC x) (MkC y) = rep2 sectionRName [x,y] ------------ Right hand sides (guarded expressions) ---- repGuarded :: Core [TH.Q (TH.Guard, TH.Exp)] -> DsM (Core TH.BodyQ) repGuarded (MkC pairs) = rep2 guardedBName [pairs] repNormal :: Core TH.ExpQ -> DsM (Core TH.BodyQ) repNormal (MkC e) = rep2 normalBName [e] ------------ Guards ---- repLNormalGE :: LHsExpr Name -> LHsExpr Name -> DsM (Core (TH.Q (TH.Guard, TH.Exp))) repLNormalGE g e = do g' <- repLE g e' <- repLE e repNormalGE g' e' repNormalGE :: Core TH.ExpQ -> Core TH.ExpQ -> DsM (Core (TH.Q (TH.Guard, TH.Exp))) repNormalGE (MkC g) (MkC e) = rep2 normalGEName [g, e] repPatGE :: Core [TH.StmtQ] -> Core TH.ExpQ -> DsM (Core (TH.Q (TH.Guard, TH.Exp))) repPatGE (MkC ss) (MkC e) = rep2 patGEName [ss, e] ------------- Stmts ------------------- repBindSt :: Core TH.PatQ -> Core TH.ExpQ -> DsM (Core TH.StmtQ) repBindSt (MkC p) (MkC e) = rep2 bindSName [p,e] repLetSt :: Core [TH.DecQ] -> DsM (Core TH.StmtQ) repLetSt (MkC ds) = rep2 letSName [ds] repNoBindSt :: Core TH.ExpQ -> DsM (Core TH.StmtQ) repNoBindSt (MkC e) = rep2 noBindSName [e] -------------- Range (Arithmetic sequences) ----------- repFrom :: Core TH.ExpQ -> DsM (Core TH.ExpQ) repFrom (MkC x) = rep2 fromEName [x] repFromThen :: Core TH.ExpQ -> Core TH.ExpQ -> DsM (Core TH.ExpQ) repFromThen (MkC x) (MkC y) = rep2 fromThenEName [x,y] repFromTo :: Core TH.ExpQ -> Core TH.ExpQ -> DsM (Core TH.ExpQ) repFromTo (MkC x) (MkC y) = rep2 fromToEName [x,y] repFromThenTo :: Core TH.ExpQ -> Core TH.ExpQ -> Core TH.ExpQ -> DsM (Core TH.ExpQ) repFromThenTo (MkC x) (MkC y) (MkC z) = rep2 fromThenToEName [x,y,z] ------------ Match and Clause Tuples ----------- repMatch :: Core TH.PatQ -> Core TH.BodyQ -> Core [TH.DecQ] -> DsM (Core TH.MatchQ) repMatch (MkC p) (MkC bod) (MkC ds) = rep2 matchName [p, bod, ds] repClause :: Core [TH.PatQ] -> Core TH.BodyQ -> Core [TH.DecQ] -> DsM (Core TH.ClauseQ) repClause (MkC ps) (MkC bod) (MkC ds) = rep2 clauseName [ps, bod, ds] -------------- Dec ----------------------------- repVal :: Core TH.PatQ -> Core TH.BodyQ -> Core [TH.DecQ] -> DsM (Core TH.DecQ) repVal (MkC p) (MkC b) (MkC ds) = rep2 valDName [p, b, ds] repFun :: Core TH.Name -> Core [TH.ClauseQ] -> DsM (Core TH.DecQ) repFun (MkC nm) (MkC b) = rep2 funDName [nm, b] repData :: Core TH.CxtQ -> Core TH.Name -> Core [TH.TyVarBndr] -> Maybe (Core [TH.TypeQ]) -> Core [TH.ConQ] -> Core [TH.Name] -> DsM (Core TH.DecQ) repData (MkC cxt) (MkC nm) (MkC tvs) Nothing (MkC cons) (MkC derivs) = rep2 dataDName [cxt, nm, tvs, cons, derivs] repData (MkC cxt) (MkC nm) (MkC _) (Just (MkC tys)) (MkC cons) (MkC derivs) = rep2 dataInstDName [cxt, nm, tys, cons, derivs] repNewtype :: Core TH.CxtQ -> Core TH.Name -> Core [TH.TyVarBndr] -> Maybe (Core [TH.TypeQ]) -> Core TH.ConQ -> Core [TH.Name] -> DsM (Core TH.DecQ) repNewtype (MkC cxt) (MkC nm) (MkC tvs) Nothing (MkC con) (MkC derivs) = rep2 newtypeDName [cxt, nm, tvs, con, derivs] repNewtype (MkC cxt) (MkC nm) (MkC _) (Just (MkC tys)) (MkC con) (MkC derivs) = rep2 newtypeInstDName [cxt, nm, tys, con, derivs] repTySyn :: Core TH.Name -> Core [TH.TyVarBndr] -> Maybe (Core [TH.TypeQ]) -> Core TH.TypeQ -> DsM (Core TH.DecQ) repTySyn (MkC nm) (MkC tvs) Nothing (MkC rhs) = rep2 tySynDName [nm, tvs, rhs] repTySyn (MkC nm) (MkC _) (Just (MkC tys)) (MkC rhs) = rep2 tySynInstDName [nm, tys, rhs] repInst :: Core TH.CxtQ -> Core TH.TypeQ -> Core [TH.DecQ] -> DsM (Core TH.DecQ) repInst (MkC cxt) (MkC ty) (MkC ds) = rep2 instanceDName [cxt, ty, ds] repClass :: Core TH.CxtQ -> Core TH.Name -> Core [TH.TyVarBndr] -> Core [TH.FunDep] -> Core [TH.DecQ] -> DsM (Core TH.DecQ) repClass (MkC cxt) (MkC cls) (MkC tvs) (MkC fds) (MkC ds) = rep2 classDName [cxt, cls, tvs, fds, ds] repPragInl :: Core TH.Name -> Core TH.InlineSpecQ -> DsM (Core TH.DecQ) repPragInl (MkC nm) (MkC ispec) = rep2 pragInlDName [nm, ispec] repPragSpec :: Core TH.Name -> Core TH.TypeQ -> DsM (Core TH.DecQ) repPragSpec (MkC nm) (MkC ty) = rep2 pragSpecDName [nm, ty] repPragSpecInl :: Core TH.Name -> Core TH.TypeQ -> Core TH.InlineSpecQ -> DsM (Core TH.DecQ) repPragSpecInl (MkC nm) (MkC ty) (MkC ispec) = rep2 pragSpecInlDName [nm, ty, ispec] repFamilyNoKind :: Core TH.FamFlavour -> Core TH.Name -> Core [TH.TyVarBndr] -> DsM (Core TH.DecQ) repFamilyNoKind (MkC flav) (MkC nm) (MkC tvs) = rep2 familyNoKindDName [flav, nm, tvs] repFamilyKind :: Core TH.FamFlavour -> Core TH.Name -> Core [TH.TyVarBndr] -> Core TH.Kind -> DsM (Core TH.DecQ) repFamilyKind (MkC flav) (MkC nm) (MkC tvs) (MkC ki) = rep2 familyKindDName [flav, nm, tvs, ki] repInlineSpecNoPhase :: Core Bool -> Core Bool -> DsM (Core TH.InlineSpecQ) repInlineSpecNoPhase (MkC inline) (MkC conlike) = rep2 inlineSpecNoPhaseName [inline, conlike] repInlineSpecPhase :: Core Bool -> Core Bool -> Core Bool -> Core Int -> DsM (Core TH.InlineSpecQ) repInlineSpecPhase (MkC inline) (MkC conlike) (MkC beforeFrom) (MkC phase) = rep2 inlineSpecPhaseName [inline, conlike, beforeFrom, phase] repFunDep :: Core [TH.Name] -> Core [TH.Name] -> DsM (Core TH.FunDep) repFunDep (MkC xs) (MkC ys) = rep2 funDepName [xs, ys] repProto :: Core TH.Name -> Core TH.TypeQ -> DsM (Core TH.DecQ) repProto (MkC s) (MkC ty) = rep2 sigDName [s, ty] repCtxt :: Core [TH.PredQ] -> DsM (Core TH.CxtQ) repCtxt (MkC tys) = rep2 cxtName [tys] repClassP :: Core TH.Name -> Core [TH.TypeQ] -> DsM (Core TH.PredQ) repClassP (MkC cla) (MkC tys) = rep2 classPName [cla, tys] repEqualP :: Core TH.TypeQ -> Core TH.TypeQ -> DsM (Core TH.PredQ) repEqualP (MkC ty1) (MkC ty2) = rep2 equalPName [ty1, ty2] repConstr :: Core TH.Name -> HsConDeclDetails Name -> DsM (Core TH.ConQ) repConstr con (PrefixCon ps) = do arg_tys <- mapM repBangTy ps arg_tys1 <- coreList strictTypeQTyConName arg_tys rep2 normalCName [unC con, unC arg_tys1] repConstr con (RecCon ips) = do arg_vs <- mapM lookupLOcc (map cd_fld_name ips) arg_tys <- mapM repBangTy (map cd_fld_type ips) arg_vtys <- zipWithM (\x y -> rep2 varStrictTypeName [unC x, unC y]) arg_vs arg_tys arg_vtys' <- coreList varStrictTypeQTyConName arg_vtys rep2 recCName [unC con, unC arg_vtys'] repConstr con (InfixCon st1 st2) = do arg1 <- repBangTy st1 arg2 <- repBangTy st2 rep2 infixCName [unC arg1, unC con, unC arg2] ------------ Types ------------------- repTForall :: Core [TH.TyVarBndr] -> Core TH.CxtQ -> Core TH.TypeQ -> DsM (Core TH.TypeQ) repTForall (MkC tvars) (MkC ctxt) (MkC ty) = rep2 forallTName [tvars, ctxt, ty] repTvar :: Core TH.Name -> DsM (Core TH.TypeQ) repTvar (MkC s) = rep2 varTName [s] repTapp :: Core TH.TypeQ -> Core TH.TypeQ -> DsM (Core TH.TypeQ) repTapp (MkC t1) (MkC t2) = rep2 appTName [t1, t2] repTapps :: Core TH.TypeQ -> [Core TH.TypeQ] -> DsM (Core TH.TypeQ) repTapps f [] = return f repTapps f (t:ts) = do { f1 <- repTapp f t; repTapps f1 ts } repTSig :: Core TH.TypeQ -> Core TH.Kind -> DsM (Core TH.TypeQ) repTSig (MkC ty) (MkC ki) = rep2 sigTName [ty, ki] --------- Type constructors -------------- repNamedTyCon :: Core TH.Name -> DsM (Core TH.TypeQ) repNamedTyCon (MkC s) = rep2 conTName [s] repTupleTyCon :: Int -> DsM (Core TH.TypeQ) -- Note: not Core Int; it's easier to be direct here repTupleTyCon i = rep2 tupleTName [mkIntExprInt i] repArrowTyCon :: DsM (Core TH.TypeQ) repArrowTyCon = rep2 arrowTName [] repListTyCon :: DsM (Core TH.TypeQ) repListTyCon = rep2 listTName [] ------------ Kinds ------------------- repPlainTV :: Core TH.Name -> DsM (Core TH.TyVarBndr) repPlainTV (MkC nm) = rep2 plainTVName [nm] repKindedTV :: Core TH.Name -> Core TH.Kind -> DsM (Core TH.TyVarBndr) repKindedTV (MkC nm) (MkC ki) = rep2 kindedTVName [nm, ki] repStarK :: DsM (Core TH.Kind) repStarK = rep2 starKName [] repArrowK :: Core TH.Kind -> Core TH.Kind -> DsM (Core TH.Kind) repArrowK (MkC ki1) (MkC ki2) = rep2 arrowKName [ki1, ki2] ---------------------------------------------------------- -- Literals repLiteral :: HsLit -> DsM (Core TH.Lit) repLiteral lit = do lit' <- case lit of HsIntPrim i -> mk_integer i HsWordPrim w -> mk_integer w HsInt i -> mk_integer i HsFloatPrim r -> mk_rational r HsDoublePrim r -> mk_rational r _ -> return lit lit_expr <- dsLit lit' case mb_lit_name of Just lit_name -> rep2 lit_name [lit_expr] Nothing -> notHandled "Exotic literal" (ppr lit) where mb_lit_name = case lit of HsInteger _ _ -> Just integerLName HsInt _ -> Just integerLName HsIntPrim _ -> Just intPrimLName HsWordPrim _ -> Just wordPrimLName HsFloatPrim _ -> Just floatPrimLName HsDoublePrim _ -> Just doublePrimLName HsChar _ -> Just charLName HsString _ -> Just stringLName HsRat _ _ -> Just rationalLName _ -> Nothing mk_integer :: Integer -> DsM HsLit mk_integer i = do integer_ty <- lookupType integerTyConName return $ HsInteger i integer_ty mk_rational :: Rational -> DsM HsLit mk_rational r = do rat_ty <- lookupType rationalTyConName return $ HsRat r rat_ty mk_string :: FastString -> DsM HsLit mk_string s = return $ HsString s repOverloadedLiteral :: HsOverLit Name -> DsM (Core TH.Lit) repOverloadedLiteral (OverLit { ol_val = val}) = do { lit <- mk_lit val; repLiteral lit } -- The type Rational will be in the environment, becuase -- the smart constructor 'TH.Syntax.rationalL' uses it in its type, -- and rationalL is sucked in when any TH stuff is used mk_lit :: OverLitVal -> DsM HsLit mk_lit (HsIntegral i) = mk_integer i mk_lit (HsFractional f) = mk_rational f mk_lit (HsIsString s) = mk_string s --------------- Miscellaneous ------------------- repGensym :: Core String -> DsM (Core (TH.Q TH.Name)) repGensym (MkC lit_str) = rep2 newNameName [lit_str] repBindQ :: Type -> Type -- a and b -> Core (TH.Q a) -> Core (a -> TH.Q b) -> DsM (Core (TH.Q b)) repBindQ ty_a ty_b (MkC x) (MkC y) = rep2 bindQName [Type ty_a, Type ty_b, x, y] repSequenceQ :: Type -> Core [TH.Q a] -> DsM (Core (TH.Q [a])) repSequenceQ ty_a (MkC list) = rep2 sequenceQName [Type ty_a, list] ------------ Lists and Tuples ------------------- -- turn a list of patterns into a single pattern matching a list coreList :: Name -- Of the TyCon of the element type -> [Core a] -> DsM (Core [a]) coreList tc_name es = do { elt_ty <- lookupType tc_name; return (coreList' elt_ty es) } coreList' :: Type -- The element type -> [Core a] -> Core [a] coreList' elt_ty es = MkC (mkListExpr elt_ty (map unC es )) nonEmptyCoreList :: [Core a] -> Core [a] -- The list must be non-empty so we can get the element type -- Otherwise use coreList nonEmptyCoreList [] = panic "coreList: empty argument" nonEmptyCoreList xs@(MkC x:_) = MkC (mkListExpr (exprType x) (map unC xs)) coreStringLit :: String -> DsM (Core String) coreStringLit s = do { z <- mkStringExpr s; return(MkC z) } ------------ Bool, Literals & Variables ------------------- coreBool :: Bool -> Core Bool coreBool False = MkC $ mkConApp falseDataCon [] coreBool True = MkC $ mkConApp trueDataCon [] coreIntLit :: Int -> DsM (Core Int) coreIntLit i = return (MkC (mkIntExprInt i)) coreVar :: Id -> Core TH.Name -- The Id has type Name coreVar id = MkC (Var id) ----------------- Failure ----------------------- notHandled :: String -> SDoc -> DsM a notHandled what doc = failWithDs msg where msg = hang (text what <+> ptext (sLit "not (yet) handled by Template Haskell")) 2 doc -- %************************************************************************ -- %* * -- The known-key names for Template Haskell -- %* * -- %************************************************************************ -- To add a name, do three things -- -- 1) Allocate a key -- 2) Make a "Name" -- 3) Add the name to knownKeyNames templateHaskellNames :: [Name] -- The names that are implicitly mentioned by ``bracket'' -- Should stay in sync with the import list of DsMeta templateHaskellNames = [ returnQName, bindQName, sequenceQName, newNameName, liftName, mkNameName, mkNameG_vName, mkNameG_dName, mkNameG_tcName, mkNameLName, -- Lit charLName, stringLName, integerLName, intPrimLName, wordPrimLName, floatPrimLName, doublePrimLName, rationalLName, -- Pat litPName, varPName, tupPName, conPName, tildePName, bangPName, infixPName, asPName, wildPName, recPName, listPName, sigPName, -- FieldPat fieldPatName, -- Match matchName, -- Clause clauseName, -- Exp varEName, conEName, litEName, appEName, infixEName, infixAppName, sectionLName, sectionRName, lamEName, tupEName, condEName, letEName, caseEName, doEName, compEName, fromEName, fromThenEName, fromToEName, fromThenToEName, listEName, sigEName, recConEName, recUpdEName, -- FieldExp fieldExpName, -- Body guardedBName, normalBName, -- Guard normalGEName, patGEName, -- Stmt bindSName, letSName, noBindSName, parSName, -- Dec funDName, valDName, dataDName, newtypeDName, tySynDName, classDName, instanceDName, sigDName, forImpDName, pragInlDName, pragSpecDName, pragSpecInlDName, familyNoKindDName, familyKindDName, dataInstDName, newtypeInstDName, tySynInstDName, -- Cxt cxtName, -- Pred classPName, equalPName, -- Strict isStrictName, notStrictName, -- Con normalCName, recCName, infixCName, forallCName, -- StrictType strictTypeName, -- VarStrictType varStrictTypeName, -- Type forallTName, varTName, conTName, appTName, tupleTName, arrowTName, listTName, sigTName, -- TyVarBndr plainTVName, kindedTVName, -- Kind starKName, arrowKName, -- Callconv cCallName, stdCallName, -- Safety unsafeName, safeName, threadsafeName, -- InlineSpec inlineSpecNoPhaseName, inlineSpecPhaseName, -- FunDep funDepName, -- FamFlavour typeFamName, dataFamName, -- And the tycons qTyConName, nameTyConName, patTyConName, fieldPatTyConName, matchQTyConName, clauseQTyConName, expQTyConName, fieldExpTyConName, predTyConName, stmtQTyConName, decQTyConName, conQTyConName, strictTypeQTyConName, varStrictTypeQTyConName, typeQTyConName, expTyConName, decTyConName, typeTyConName, tyVarBndrTyConName, matchTyConName, clauseTyConName, patQTyConName, fieldPatQTyConName, fieldExpQTyConName, funDepTyConName, predQTyConName, -- Quasiquoting quoteExpName, quotePatName] thSyn, thLib, qqLib :: Module thSyn = mkTHModule (fsLit "Language.Haskell.TH.Syntax") thLib = mkTHModule (fsLit "Language.Haskell.TH.Lib") qqLib = mkTHModule (fsLit "Language.Haskell.TH.Quote") mkTHModule :: FastString -> Module mkTHModule m = mkModule thPackageId (mkModuleNameFS m) libFun, libTc, thFun, thTc, qqFun :: FastString -> Unique -> Name libFun = mk_known_key_name OccName.varName thLib libTc = mk_known_key_name OccName.tcName thLib thFun = mk_known_key_name OccName.varName thSyn thTc = mk_known_key_name OccName.tcName thSyn qqFun = mk_known_key_name OccName.varName qqLib -------------------- TH.Syntax ----------------------- qTyConName, nameTyConName, fieldExpTyConName, patTyConName, fieldPatTyConName, expTyConName, decTyConName, typeTyConName, tyVarBndrTyConName, matchTyConName, clauseTyConName, funDepTyConName, predTyConName :: Name qTyConName = thTc (fsLit "Q") qTyConKey nameTyConName = thTc (fsLit "Name") nameTyConKey fieldExpTyConName = thTc (fsLit "FieldExp") fieldExpTyConKey patTyConName = thTc (fsLit "Pat") patTyConKey fieldPatTyConName = thTc (fsLit "FieldPat") fieldPatTyConKey expTyConName = thTc (fsLit "Exp") expTyConKey decTyConName = thTc (fsLit "Dec") decTyConKey typeTyConName = thTc (fsLit "Type") typeTyConKey tyVarBndrTyConName= thTc (fsLit "TyVarBndr") tyVarBndrTyConKey matchTyConName = thTc (fsLit "Match") matchTyConKey clauseTyConName = thTc (fsLit "Clause") clauseTyConKey funDepTyConName = thTc (fsLit "FunDep") funDepTyConKey predTyConName = thTc (fsLit "Pred") predTyConKey returnQName, bindQName, sequenceQName, newNameName, liftName, mkNameName, mkNameG_vName, mkNameG_dName, mkNameG_tcName, mkNameLName, liftStringName :: Name returnQName = thFun (fsLit "returnQ") returnQIdKey bindQName = thFun (fsLit "bindQ") bindQIdKey sequenceQName = thFun (fsLit "sequenceQ") sequenceQIdKey newNameName = thFun (fsLit "newName") newNameIdKey liftName = thFun (fsLit "lift") liftIdKey liftStringName = thFun (fsLit "liftString") liftStringIdKey mkNameName = thFun (fsLit "mkName") mkNameIdKey mkNameG_vName = thFun (fsLit "mkNameG_v") mkNameG_vIdKey mkNameG_dName = thFun (fsLit "mkNameG_d") mkNameG_dIdKey mkNameG_tcName = thFun (fsLit "mkNameG_tc") mkNameG_tcIdKey mkNameLName = thFun (fsLit "mkNameL") mkNameLIdKey -------------------- TH.Lib ----------------------- -- data Lit = ... charLName, stringLName, integerLName, intPrimLName, wordPrimLName, floatPrimLName, doublePrimLName, rationalLName :: Name charLName = libFun (fsLit "charL") charLIdKey stringLName = libFun (fsLit "stringL") stringLIdKey integerLName = libFun (fsLit "integerL") integerLIdKey intPrimLName = libFun (fsLit "intPrimL") intPrimLIdKey wordPrimLName = libFun (fsLit "wordPrimL") wordPrimLIdKey floatPrimLName = libFun (fsLit "floatPrimL") floatPrimLIdKey doublePrimLName = libFun (fsLit "doublePrimL") doublePrimLIdKey rationalLName = libFun (fsLit "rationalL") rationalLIdKey -- data Pat = ... litPName, varPName, tupPName, conPName, infixPName, tildePName, bangPName, asPName, wildPName, recPName, listPName, sigPName :: Name litPName = libFun (fsLit "litP") litPIdKey varPName = libFun (fsLit "varP") varPIdKey tupPName = libFun (fsLit "tupP") tupPIdKey conPName = libFun (fsLit "conP") conPIdKey infixPName = libFun (fsLit "infixP") infixPIdKey tildePName = libFun (fsLit "tildeP") tildePIdKey bangPName = libFun (fsLit "bangP") bangPIdKey asPName = libFun (fsLit "asP") asPIdKey wildPName = libFun (fsLit "wildP") wildPIdKey recPName = libFun (fsLit "recP") recPIdKey listPName = libFun (fsLit "listP") listPIdKey sigPName = libFun (fsLit "sigP") sigPIdKey -- type FieldPat = ... fieldPatName :: Name fieldPatName = libFun (fsLit "fieldPat") fieldPatIdKey -- data Match = ... matchName :: Name matchName = libFun (fsLit "match") matchIdKey -- data Clause = ... clauseName :: Name clauseName = libFun (fsLit "clause") clauseIdKey -- data Exp = ... varEName, conEName, litEName, appEName, infixEName, infixAppName, sectionLName, sectionRName, lamEName, tupEName, condEName, letEName, caseEName, doEName, compEName :: Name varEName = libFun (fsLit "varE") varEIdKey conEName = libFun (fsLit "conE") conEIdKey litEName = libFun (fsLit "litE") litEIdKey appEName = libFun (fsLit "appE") appEIdKey infixEName = libFun (fsLit "infixE") infixEIdKey infixAppName = libFun (fsLit "infixApp") infixAppIdKey sectionLName = libFun (fsLit "sectionL") sectionLIdKey sectionRName = libFun (fsLit "sectionR") sectionRIdKey lamEName = libFun (fsLit "lamE") lamEIdKey tupEName = libFun (fsLit "tupE") tupEIdKey condEName = libFun (fsLit "condE") condEIdKey letEName = libFun (fsLit "letE") letEIdKey caseEName = libFun (fsLit "caseE") caseEIdKey doEName = libFun (fsLit "doE") doEIdKey compEName = libFun (fsLit "compE") compEIdKey -- ArithSeq skips a level fromEName, fromThenEName, fromToEName, fromThenToEName :: Name fromEName = libFun (fsLit "fromE") fromEIdKey fromThenEName = libFun (fsLit "fromThenE") fromThenEIdKey fromToEName = libFun (fsLit "fromToE") fromToEIdKey fromThenToEName = libFun (fsLit "fromThenToE") fromThenToEIdKey -- end ArithSeq listEName, sigEName, recConEName, recUpdEName :: Name listEName = libFun (fsLit "listE") listEIdKey sigEName = libFun (fsLit "sigE") sigEIdKey recConEName = libFun (fsLit "recConE") recConEIdKey recUpdEName = libFun (fsLit "recUpdE") recUpdEIdKey -- type FieldExp = ... fieldExpName :: Name fieldExpName = libFun (fsLit "fieldExp") fieldExpIdKey -- data Body = ... guardedBName, normalBName :: Name guardedBName = libFun (fsLit "guardedB") guardedBIdKey normalBName = libFun (fsLit "normalB") normalBIdKey -- data Guard = ... normalGEName, patGEName :: Name normalGEName = libFun (fsLit "normalGE") normalGEIdKey patGEName = libFun (fsLit "patGE") patGEIdKey -- data Stmt = ... bindSName, letSName, noBindSName, parSName :: Name bindSName = libFun (fsLit "bindS") bindSIdKey letSName = libFun (fsLit "letS") letSIdKey noBindSName = libFun (fsLit "noBindS") noBindSIdKey parSName = libFun (fsLit "parS") parSIdKey -- data Dec = ... funDName, valDName, dataDName, newtypeDName, tySynDName, classDName, instanceDName, sigDName, forImpDName, pragInlDName, pragSpecDName, pragSpecInlDName, familyNoKindDName, familyKindDName, dataInstDName, newtypeInstDName, tySynInstDName :: Name funDName = libFun (fsLit "funD") funDIdKey valDName = libFun (fsLit "valD") valDIdKey dataDName = libFun (fsLit "dataD") dataDIdKey newtypeDName = libFun (fsLit "newtypeD") newtypeDIdKey tySynDName = libFun (fsLit "tySynD") tySynDIdKey classDName = libFun (fsLit "classD") classDIdKey instanceDName = libFun (fsLit "instanceD") instanceDIdKey sigDName = libFun (fsLit "sigD") sigDIdKey forImpDName = libFun (fsLit "forImpD") forImpDIdKey pragInlDName = libFun (fsLit "pragInlD") pragInlDIdKey pragSpecDName = libFun (fsLit "pragSpecD") pragSpecDIdKey pragSpecInlDName = libFun (fsLit "pragSpecInlD") pragSpecInlDIdKey familyNoKindDName= libFun (fsLit "familyNoKindD")familyNoKindDIdKey familyKindDName = libFun (fsLit "familyKindD") familyKindDIdKey dataInstDName = libFun (fsLit "dataInstD") dataInstDIdKey newtypeInstDName = libFun (fsLit "newtypeInstD") newtypeInstDIdKey tySynInstDName = libFun (fsLit "tySynInstD") tySynInstDIdKey -- type Ctxt = ... cxtName :: Name cxtName = libFun (fsLit "cxt") cxtIdKey -- data Pred = ... classPName, equalPName :: Name classPName = libFun (fsLit "classP") classPIdKey equalPName = libFun (fsLit "equalP") equalPIdKey -- data Strict = ... isStrictName, notStrictName :: Name isStrictName = libFun (fsLit "isStrict") isStrictKey notStrictName = libFun (fsLit "notStrict") notStrictKey -- data Con = ... normalCName, recCName, infixCName, forallCName :: Name normalCName = libFun (fsLit "normalC") normalCIdKey recCName = libFun (fsLit "recC") recCIdKey infixCName = libFun (fsLit "infixC") infixCIdKey forallCName = libFun (fsLit "forallC") forallCIdKey -- type StrictType = ... strictTypeName :: Name strictTypeName = libFun (fsLit "strictType") strictTKey -- type VarStrictType = ... varStrictTypeName :: Name varStrictTypeName = libFun (fsLit "varStrictType") varStrictTKey -- data Type = ... forallTName, varTName, conTName, tupleTName, arrowTName, listTName, appTName, sigTName :: Name forallTName = libFun (fsLit "forallT") forallTIdKey varTName = libFun (fsLit "varT") varTIdKey conTName = libFun (fsLit "conT") conTIdKey tupleTName = libFun (fsLit "tupleT") tupleTIdKey arrowTName = libFun (fsLit "arrowT") arrowTIdKey listTName = libFun (fsLit "listT") listTIdKey appTName = libFun (fsLit "appT") appTIdKey sigTName = libFun (fsLit "sigT") sigTIdKey -- data TyVarBndr = ... plainTVName, kindedTVName :: Name plainTVName = libFun (fsLit "plainTV") plainTVIdKey kindedTVName = libFun (fsLit "kindedTV") kindedTVIdKey -- data Kind = ... starKName, arrowKName :: Name starKName = libFun (fsLit "starK") starKIdKey arrowKName = libFun (fsLit "arrowK") arrowKIdKey -- data Callconv = ... cCallName, stdCallName :: Name cCallName = libFun (fsLit "cCall") cCallIdKey stdCallName = libFun (fsLit "stdCall") stdCallIdKey -- data Safety = ... unsafeName, safeName, threadsafeName :: Name unsafeName = libFun (fsLit "unsafe") unsafeIdKey safeName = libFun (fsLit "safe") safeIdKey threadsafeName = libFun (fsLit "threadsafe") threadsafeIdKey -- data InlineSpec = ... inlineSpecNoPhaseName, inlineSpecPhaseName :: Name inlineSpecNoPhaseName = libFun (fsLit "inlineSpecNoPhase") inlineSpecNoPhaseIdKey inlineSpecPhaseName = libFun (fsLit "inlineSpecPhase") inlineSpecPhaseIdKey -- data FunDep = ... funDepName :: Name funDepName = libFun (fsLit "funDep") funDepIdKey -- data FamFlavour = ... typeFamName, dataFamName :: Name typeFamName = libFun (fsLit "typeFam") typeFamIdKey dataFamName = libFun (fsLit "dataFam") dataFamIdKey matchQTyConName, clauseQTyConName, expQTyConName, stmtQTyConName, decQTyConName, conQTyConName, strictTypeQTyConName, varStrictTypeQTyConName, typeQTyConName, fieldExpQTyConName, patQTyConName, fieldPatQTyConName, predQTyConName :: Name matchQTyConName = libTc (fsLit "MatchQ") matchQTyConKey clauseQTyConName = libTc (fsLit "ClauseQ") clauseQTyConKey expQTyConName = libTc (fsLit "ExpQ") expQTyConKey stmtQTyConName = libTc (fsLit "StmtQ") stmtQTyConKey decQTyConName = libTc (fsLit "DecQ") decQTyConKey conQTyConName = libTc (fsLit "ConQ") conQTyConKey strictTypeQTyConName = libTc (fsLit "StrictTypeQ") strictTypeQTyConKey varStrictTypeQTyConName = libTc (fsLit "VarStrictTypeQ") varStrictTypeQTyConKey typeQTyConName = libTc (fsLit "TypeQ") typeQTyConKey fieldExpQTyConName = libTc (fsLit "FieldExpQ") fieldExpQTyConKey patQTyConName = libTc (fsLit "PatQ") patQTyConKey fieldPatQTyConName = libTc (fsLit "FieldPatQ") fieldPatQTyConKey predQTyConName = libTc (fsLit "PredQ") predQTyConKey -- quasiquoting quoteExpName, quotePatName :: Name quoteExpName = qqFun (fsLit "quoteExp") quoteExpKey quotePatName = qqFun (fsLit "quotePat") quotePatKey -- TyConUniques available: 100-129 -- Check in PrelNames if you want to change this expTyConKey, matchTyConKey, clauseTyConKey, qTyConKey, expQTyConKey, decQTyConKey, patTyConKey, matchQTyConKey, clauseQTyConKey, stmtQTyConKey, conQTyConKey, typeQTyConKey, typeTyConKey, tyVarBndrTyConKey, decTyConKey, varStrictTypeQTyConKey, strictTypeQTyConKey, fieldExpTyConKey, fieldPatTyConKey, nameTyConKey, patQTyConKey, fieldPatQTyConKey, fieldExpQTyConKey, funDepTyConKey, predTyConKey, predQTyConKey :: Unique expTyConKey = mkPreludeTyConUnique 100 matchTyConKey = mkPreludeTyConUnique 101 clauseTyConKey = mkPreludeTyConUnique 102 qTyConKey = mkPreludeTyConUnique 103 expQTyConKey = mkPreludeTyConUnique 104 decQTyConKey = mkPreludeTyConUnique 105 patTyConKey = mkPreludeTyConUnique 106 matchQTyConKey = mkPreludeTyConUnique 107 clauseQTyConKey = mkPreludeTyConUnique 108 stmtQTyConKey = mkPreludeTyConUnique 109 conQTyConKey = mkPreludeTyConUnique 110 typeQTyConKey = mkPreludeTyConUnique 111 typeTyConKey = mkPreludeTyConUnique 112 tyVarBndrTyConKey = mkPreludeTyConUnique 125 decTyConKey = mkPreludeTyConUnique 113 varStrictTypeQTyConKey = mkPreludeTyConUnique 114 strictTypeQTyConKey = mkPreludeTyConUnique 115 fieldExpTyConKey = mkPreludeTyConUnique 116 fieldPatTyConKey = mkPreludeTyConUnique 117 nameTyConKey = mkPreludeTyConUnique 118 patQTyConKey = mkPreludeTyConUnique 119 fieldPatQTyConKey = mkPreludeTyConUnique 120 fieldExpQTyConKey = mkPreludeTyConUnique 121 funDepTyConKey = mkPreludeTyConUnique 122 predTyConKey = mkPreludeTyConUnique 123 predQTyConKey = mkPreludeTyConUnique 124 -- IdUniques available: 200-399 -- If you want to change this, make sure you check in PrelNames returnQIdKey, bindQIdKey, sequenceQIdKey, liftIdKey, newNameIdKey, mkNameIdKey, mkNameG_vIdKey, mkNameG_dIdKey, mkNameG_tcIdKey, mkNameLIdKey :: Unique returnQIdKey = mkPreludeMiscIdUnique 200 bindQIdKey = mkPreludeMiscIdUnique 201 sequenceQIdKey = mkPreludeMiscIdUnique 202 liftIdKey = mkPreludeMiscIdUnique 203 newNameIdKey = mkPreludeMiscIdUnique 204 mkNameIdKey = mkPreludeMiscIdUnique 205 mkNameG_vIdKey = mkPreludeMiscIdUnique 206 mkNameG_dIdKey = mkPreludeMiscIdUnique 207 mkNameG_tcIdKey = mkPreludeMiscIdUnique 208 mkNameLIdKey = mkPreludeMiscIdUnique 209 -- data Lit = ... charLIdKey, stringLIdKey, integerLIdKey, intPrimLIdKey, wordPrimLIdKey, floatPrimLIdKey, doublePrimLIdKey, rationalLIdKey :: Unique charLIdKey = mkPreludeMiscIdUnique 210 stringLIdKey = mkPreludeMiscIdUnique 211 integerLIdKey = mkPreludeMiscIdUnique 212 intPrimLIdKey = mkPreludeMiscIdUnique 213 wordPrimLIdKey = mkPreludeMiscIdUnique 214 floatPrimLIdKey = mkPreludeMiscIdUnique 215 doublePrimLIdKey = mkPreludeMiscIdUnique 216 rationalLIdKey = mkPreludeMiscIdUnique 217 liftStringIdKey :: Unique liftStringIdKey = mkPreludeMiscIdUnique 218 -- data Pat = ... litPIdKey, varPIdKey, tupPIdKey, conPIdKey, infixPIdKey, tildePIdKey, bangPIdKey, asPIdKey, wildPIdKey, recPIdKey, listPIdKey, sigPIdKey :: Unique litPIdKey = mkPreludeMiscIdUnique 220 varPIdKey = mkPreludeMiscIdUnique 221 tupPIdKey = mkPreludeMiscIdUnique 222 conPIdKey = mkPreludeMiscIdUnique 223 infixPIdKey = mkPreludeMiscIdUnique 312 tildePIdKey = mkPreludeMiscIdUnique 224 bangPIdKey = mkPreludeMiscIdUnique 359 asPIdKey = mkPreludeMiscIdUnique 225 wildPIdKey = mkPreludeMiscIdUnique 226 recPIdKey = mkPreludeMiscIdUnique 227 listPIdKey = mkPreludeMiscIdUnique 228 sigPIdKey = mkPreludeMiscIdUnique 229 -- type FieldPat = ... fieldPatIdKey :: Unique fieldPatIdKey = mkPreludeMiscIdUnique 230 -- data Match = ... matchIdKey :: Unique matchIdKey = mkPreludeMiscIdUnique 231 -- data Clause = ... clauseIdKey :: Unique clauseIdKey = mkPreludeMiscIdUnique 232 -- data Exp = ... varEIdKey, conEIdKey, litEIdKey, appEIdKey, infixEIdKey, infixAppIdKey, sectionLIdKey, sectionRIdKey, lamEIdKey, tupEIdKey, condEIdKey, letEIdKey, caseEIdKey, doEIdKey, compEIdKey, fromEIdKey, fromThenEIdKey, fromToEIdKey, fromThenToEIdKey, listEIdKey, sigEIdKey, recConEIdKey, recUpdEIdKey :: Unique varEIdKey = mkPreludeMiscIdUnique 240 conEIdKey = mkPreludeMiscIdUnique 241 litEIdKey = mkPreludeMiscIdUnique 242 appEIdKey = mkPreludeMiscIdUnique 243 infixEIdKey = mkPreludeMiscIdUnique 244 infixAppIdKey = mkPreludeMiscIdUnique 245 sectionLIdKey = mkPreludeMiscIdUnique 246 sectionRIdKey = mkPreludeMiscIdUnique 247 lamEIdKey = mkPreludeMiscIdUnique 248 tupEIdKey = mkPreludeMiscIdUnique 249 condEIdKey = mkPreludeMiscIdUnique 250 letEIdKey = mkPreludeMiscIdUnique 251 caseEIdKey = mkPreludeMiscIdUnique 252 doEIdKey = mkPreludeMiscIdUnique 253 compEIdKey = mkPreludeMiscIdUnique 254 fromEIdKey = mkPreludeMiscIdUnique 255 fromThenEIdKey = mkPreludeMiscIdUnique 256 fromToEIdKey = mkPreludeMiscIdUnique 257 fromThenToEIdKey = mkPreludeMiscIdUnique 258 listEIdKey = mkPreludeMiscIdUnique 259 sigEIdKey = mkPreludeMiscIdUnique 260 recConEIdKey = mkPreludeMiscIdUnique 261 recUpdEIdKey = mkPreludeMiscIdUnique 262 -- type FieldExp = ... fieldExpIdKey :: Unique fieldExpIdKey = mkPreludeMiscIdUnique 265 -- data Body = ... guardedBIdKey, normalBIdKey :: Unique guardedBIdKey = mkPreludeMiscIdUnique 266 normalBIdKey = mkPreludeMiscIdUnique 267 -- data Guard = ... normalGEIdKey, patGEIdKey :: Unique normalGEIdKey = mkPreludeMiscIdUnique 310 patGEIdKey = mkPreludeMiscIdUnique 311 -- data Stmt = ... bindSIdKey, letSIdKey, noBindSIdKey, parSIdKey :: Unique bindSIdKey = mkPreludeMiscIdUnique 268 letSIdKey = mkPreludeMiscIdUnique 269 noBindSIdKey = mkPreludeMiscIdUnique 270 parSIdKey = mkPreludeMiscIdUnique 271 -- data Dec = ... funDIdKey, valDIdKey, dataDIdKey, newtypeDIdKey, tySynDIdKey, classDIdKey, instanceDIdKey, sigDIdKey, forImpDIdKey, pragInlDIdKey, pragSpecDIdKey, pragSpecInlDIdKey, familyNoKindDIdKey, familyKindDIdKey, dataInstDIdKey, newtypeInstDIdKey, tySynInstDIdKey :: Unique funDIdKey = mkPreludeMiscIdUnique 272 valDIdKey = mkPreludeMiscIdUnique 273 dataDIdKey = mkPreludeMiscIdUnique 274 newtypeDIdKey = mkPreludeMiscIdUnique 275 tySynDIdKey = mkPreludeMiscIdUnique 276 classDIdKey = mkPreludeMiscIdUnique 277 instanceDIdKey = mkPreludeMiscIdUnique 278 sigDIdKey = mkPreludeMiscIdUnique 279 forImpDIdKey = mkPreludeMiscIdUnique 297 pragInlDIdKey = mkPreludeMiscIdUnique 348 pragSpecDIdKey = mkPreludeMiscIdUnique 349 pragSpecInlDIdKey = mkPreludeMiscIdUnique 352 familyNoKindDIdKey= mkPreludeMiscIdUnique 340 familyKindDIdKey = mkPreludeMiscIdUnique 353 dataInstDIdKey = mkPreludeMiscIdUnique 341 newtypeInstDIdKey = mkPreludeMiscIdUnique 342 tySynInstDIdKey = mkPreludeMiscIdUnique 343 -- type Cxt = ... cxtIdKey :: Unique cxtIdKey = mkPreludeMiscIdUnique 280 -- data Pred = ... classPIdKey, equalPIdKey :: Unique classPIdKey = mkPreludeMiscIdUnique 346 equalPIdKey = mkPreludeMiscIdUnique 347 -- data Strict = ... isStrictKey, notStrictKey :: Unique isStrictKey = mkPreludeMiscIdUnique 281 notStrictKey = mkPreludeMiscIdUnique 282 -- data Con = ... normalCIdKey, recCIdKey, infixCIdKey, forallCIdKey :: Unique normalCIdKey = mkPreludeMiscIdUnique 283 recCIdKey = mkPreludeMiscIdUnique 284 infixCIdKey = mkPreludeMiscIdUnique 285 forallCIdKey = mkPreludeMiscIdUnique 288 -- type StrictType = ... strictTKey :: Unique strictTKey = mkPreludeMiscIdUnique 286 -- type VarStrictType = ... varStrictTKey :: Unique varStrictTKey = mkPreludeMiscIdUnique 287 -- data Type = ... forallTIdKey, varTIdKey, conTIdKey, tupleTIdKey, arrowTIdKey, listTIdKey, appTIdKey, sigTIdKey :: Unique forallTIdKey = mkPreludeMiscIdUnique 290 varTIdKey = mkPreludeMiscIdUnique 291 conTIdKey = mkPreludeMiscIdUnique 292 tupleTIdKey = mkPreludeMiscIdUnique 294 arrowTIdKey = mkPreludeMiscIdUnique 295 listTIdKey = mkPreludeMiscIdUnique 296 appTIdKey = mkPreludeMiscIdUnique 293 sigTIdKey = mkPreludeMiscIdUnique 358 -- data TyVarBndr = ... plainTVIdKey, kindedTVIdKey :: Unique plainTVIdKey = mkPreludeMiscIdUnique 354 kindedTVIdKey = mkPreludeMiscIdUnique 355 -- data Kind = ... starKIdKey, arrowKIdKey :: Unique starKIdKey = mkPreludeMiscIdUnique 356 arrowKIdKey = mkPreludeMiscIdUnique 357 -- data Callconv = ... cCallIdKey, stdCallIdKey :: Unique cCallIdKey = mkPreludeMiscIdUnique 300 stdCallIdKey = mkPreludeMiscIdUnique 301 -- data Safety = ... unsafeIdKey, safeIdKey, threadsafeIdKey :: Unique unsafeIdKey = mkPreludeMiscIdUnique 305 safeIdKey = mkPreludeMiscIdUnique 306 threadsafeIdKey = mkPreludeMiscIdUnique 307 -- data InlineSpec = inlineSpecNoPhaseIdKey, inlineSpecPhaseIdKey :: Unique inlineSpecNoPhaseIdKey = mkPreludeMiscIdUnique 350 inlineSpecPhaseIdKey = mkPreludeMiscIdUnique 351 -- data FunDep = ... funDepIdKey :: Unique funDepIdKey = mkPreludeMiscIdUnique 320 -- data FamFlavour = ... typeFamIdKey, dataFamIdKey :: Unique typeFamIdKey = mkPreludeMiscIdUnique 344 dataFamIdKey = mkPreludeMiscIdUnique 345 -- quasiquoting quoteExpKey, quotePatKey :: Unique quoteExpKey = mkPreludeMiscIdUnique 321 quotePatKey = mkPreludeMiscIdUnique 322