% % (c) The GRASP/AQUA Project, Glasgow University, 1993-1998 % \section[WwLib]{A library for the ``worker\/wrapper'' back-end to the strictness analyser} \begin{code} module WwLib ( mkWwBodies, mkWWstr, mkWorkerArgs ) where #include "HsVersions.h" import CoreSyn import CoreUtils ( exprType ) import Id ( Id, idType, mkSysLocal, idNewDemandInfo, setIdNewDemandInfo, isOneShotLambda, setOneShotLambda, setIdUnfolding, setIdInfo ) import IdInfo ( vanillaIdInfo ) import DataCon import NewDemand ( Demand(..), DmdResult(..), Demands(..) ) import MkId ( realWorldPrimId, voidArgId, mkRuntimeErrorApp, rUNTIME_ERROR_ID, mkUnpackCase, mkProductBox ) import TysWiredIn ( tupleCon ) import Type import Coercion ( mkSymCoercion, splitNewTypeRepCo_maybe ) import BasicTypes ( Boxity(..) ) import Var ( Var ) import UniqSupply import Unique import Util ( zipWithEqual ) import Outputable import FastString \end{code} %************************************************************************ %* * \subsection[mkWrapperAndWorker]{@mkWrapperAndWorker@} %* * %************************************************************************ Here's an example. The original function is: \begin{verbatim} g :: forall a . Int -> [a] -> a g = \/\ a -> \ x ys -> case x of 0 -> head ys _ -> head (tail ys) \end{verbatim} From this, we want to produce: \begin{verbatim} -- wrapper (an unfolding) g :: forall a . Int -> [a] -> a g = \/\ a -> \ x ys -> case x of I# x# -> $wg a x# ys -- call the worker; don't forget the type args! -- worker $wg :: forall a . Int# -> [a] -> a $wg = \/\ a -> \ x# ys -> let x = I# x# in case x of -- note: body of g moved intact 0 -> head ys _ -> head (tail ys) \end{verbatim} Something we have to be careful about: Here's an example: \begin{verbatim} -- "f" strictness: U(P)U(P) f (I# a) (I# b) = a +# b g = f -- "g" strictness same as "f" \end{verbatim} \tr{f} will get a worker all nice and friendly-like; that's good. {\em But we don't want a worker for \tr{g}}, even though it has the same strictness as \tr{f}. Doing so could break laziness, at best. Consequently, we insist that the number of strictness-info items is exactly the same as the number of lambda-bound arguments. (This is probably slightly paranoid, but OK in practice.) If it isn't the same, we ``revise'' the strictness info, so that we won't propagate the unusable strictness-info into the interfaces. %************************************************************************ %* * \subsection{The worker wrapper core} %* * %************************************************************************ @mkWwBodies@ is called when doing the worker\/wrapper split inside a module. \begin{code} mkWwBodies :: Type -- Type of original function -> [Demand] -- Strictness of original function -> DmdResult -- Info about function result -> [Bool] -- One-shot-ness of the function -> UniqSM ([Demand], -- Demands for worker (value) args Id -> CoreExpr, -- Wrapper body, lacking only the worker Id CoreExpr -> CoreExpr) -- Worker body, lacking the original function rhs -- wrap_fn_args E = \x y -> E -- work_fn_args E = E x y -- wrap_fn_str E = case x of { (a,b) -> -- case a of { (a1,a2) -> -- E a1 a2 b y }} -- work_fn_str E = \a2 a2 b y -> -- let a = (a1,a2) in -- let x = (a,b) in -- E mkWwBodies fun_ty demands res_info one_shots = do { let arg_info = demands `zip` (one_shots ++ repeat False) ; (wrap_args, wrap_fn_args, work_fn_args, res_ty) <- mkWWargs emptyTvSubst fun_ty arg_info ; (work_args, wrap_fn_str, work_fn_str) <- mkWWstr wrap_args -- Don't do CPR if the worker doesn't have any value arguments -- Then the worker is just a constant, so we don't want to unbox it. ; (wrap_fn_cpr, work_fn_cpr, _cpr_res_ty) <- if any isId work_args then mkWWcpr res_ty res_info else return (id, id, res_ty) ; let (work_lam_args, work_call_args) = mkWorkerArgs work_args res_ty ; return ([idNewDemandInfo v | v <- work_call_args, isId v], Note InlineMe . wrap_fn_args . wrap_fn_cpr . wrap_fn_str . applyToVars work_call_args . Var, mkLams work_lam_args. work_fn_str . work_fn_cpr . work_fn_args) } -- We use an INLINE unconditionally, even if the wrapper turns out to be -- something trivial like -- fw = ... -- f = __inline__ (coerce T fw) -- The point is to propagate the coerce to f's call sites, so even though -- f's RHS is now trivial (size 1) we still want the __inline__ to prevent -- fw from being inlined into f's RHS \end{code} %************************************************************************ %* * \subsection{Making wrapper args} %* * %************************************************************************ During worker-wrapper stuff we may end up with an unlifted thing which we want to let-bind without losing laziness. So we add a void argument. E.g. f = /\a -> \x y z -> E::Int# -- E does not mention x,y,z ==> fw = /\ a -> \void -> E f = /\ a -> \x y z -> fw realworld We use the state-token type which generates no code. \begin{code} mkWorkerArgs :: [Var] -> Type -- Type of body -> ([Var], -- Lambda bound args [Var]) -- Args at call site mkWorkerArgs args res_ty | any isId args || not (isUnLiftedType res_ty) = (args, args) | otherwise = (args ++ [voidArgId], args ++ [realWorldPrimId]) \end{code} %************************************************************************ %* * \subsection{Coercion stuff} %* * %************************************************************************ We really want to "look through" coerces. Reason: I've seen this situation: let f = coerce T (\s -> E) in \x -> case x of p -> coerce T' f q -> \s -> E2 r -> coerce T' f If only we w/w'd f, we'd get let f = coerce T (\s -> fw s) fw = \s -> E in ... Now we'll inline f to get let fw = \s -> E in \x -> case x of p -> fw q -> \s -> E2 r -> fw Now we'll see that fw has arity 1, and will arity expand the \x to get what we want. \begin{code} -- mkWWargs just does eta expansion -- is driven off the function type and arity. -- It chomps bites off foralls, arrows, newtypes -- and keeps repeating that until it's satisfied the supplied arity mkWWargs :: TvSubst -- Freshening substitution to apply to the type -- See Note [Freshen type variables] -> Type -- The type of the function -> [(Demand,Bool)] -- Demands and one-shot info for value arguments -> UniqSM ([Var], -- Wrapper args CoreExpr -> CoreExpr, -- Wrapper fn CoreExpr -> CoreExpr, -- Worker fn Type) -- Type of wrapper body mkWWargs subst fun_ty arg_info | Just (rep_ty, co) <- splitNewTypeRepCo_maybe fun_ty -- The newtype case is for when the function has -- a recursive newtype after the arrow (rare) -- We check for arity >= 0 to avoid looping in the case -- of a function whose type is, in effect, infinite -- [Arity is driven by looking at the term, not just the type.] -- -- It's also important when we have a function returning (say) a pair -- wrapped in a recursive newtype, at least if CPR analysis can look -- through such newtypes, which it probably can since they are -- simply coerces. -- -- Note (Sept 08): This case applies even if demands is empty. -- I'm not quite sure why; perhaps it makes it -- easier for CPR = do { (wrap_args, wrap_fn_args, work_fn_args, res_ty) <- mkWWargs subst rep_ty arg_info ; return (wrap_args, \e -> Cast (wrap_fn_args e) (mkSymCoercion co), \e -> work_fn_args (Cast e co), res_ty) } | null arg_info = return ([], id, id, substTy subst fun_ty) | Just (tv, fun_ty') <- splitForAllTy_maybe fun_ty = do { let (subst', tv') = substTyVarBndr subst tv -- This substTyVarBndr clones the type variable when necy -- See Note [Freshen type variables] ; (wrap_args, wrap_fn_args, work_fn_args, res_ty) <- mkWWargs subst' fun_ty' arg_info ; return (tv' : wrap_args, Lam tv' . wrap_fn_args, work_fn_args . (`App` Type (mkTyVarTy tv')), res_ty) } | ((dmd,one_shot):arg_info') <- arg_info , Just (arg_ty, fun_ty') <- splitFunTy_maybe fun_ty = do { uniq <- getUniqueM ; let arg_ty' = substTy subst arg_ty id = mk_wrap_arg uniq arg_ty' dmd one_shot ; (wrap_args, wrap_fn_args, work_fn_args, res_ty) <- mkWWargs subst fun_ty' arg_info' ; return (id : wrap_args, Lam id . wrap_fn_args, work_fn_args . (`App` Var id), res_ty) } | otherwise = WARN( True, ppr fun_ty ) -- Should not happen: if there is a demand return ([], id, id, substTy subst fun_ty) -- then there should be a function arrow applyToVars :: [Var] -> CoreExpr -> CoreExpr applyToVars vars fn = mkVarApps fn vars mk_wrap_arg :: Unique -> Type -> NewDemand.Demand -> Bool -> Id mk_wrap_arg uniq ty dmd one_shot = set_one_shot one_shot (setIdNewDemandInfo (mkSysLocal (fsLit "w") uniq ty) dmd) where set_one_shot True id = setOneShotLambda id set_one_shot False id = id \end{code} Note [Freshen type variables] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ mkWWargs may be given a type like (a~b) => Which really means forall (co:a~b). Because the name of the coercion variable, 'co', isn't mentioned in , nested coercion foralls may all use the same variable; and sometimes do see Var.mkWildCoVar. However, when we do a worker/wrapper split, we must not use shadowed names, else we'll get f = /\ co /\co. fw co co which is obviously wrong. Actually, the same is true of type variables, which can in principle shadow, within a type (e.g. forall a. a -> forall a. a->a). But type variables *are* mentioned in , so we must substitute. That's why we carry the TvSubst through mkWWargs %************************************************************************ %* * \subsection{Strictness stuff} %* * %************************************************************************ \begin{code} mkWWstr :: [Var] -- Wrapper args; have their demand info on them -- *Includes type variables* -> UniqSM ([Var], -- Worker args CoreExpr -> CoreExpr, -- Wrapper body, lacking the worker call -- and without its lambdas -- This fn adds the unboxing CoreExpr -> CoreExpr) -- Worker body, lacking the original body of the function, -- and lacking its lambdas. -- This fn does the reboxing mkWWstr [] = return ([], nop_fn, nop_fn) mkWWstr (arg : args) = do (args1, wrap_fn1, work_fn1) <- mkWWstr_one arg (args2, wrap_fn2, work_fn2) <- mkWWstr args return (args1 ++ args2, wrap_fn1 . wrap_fn2, work_fn1 . work_fn2) ---------------------- -- mkWWstr_one wrap_arg = (work_args, wrap_fn, work_fn) -- * wrap_fn assumes wrap_arg is in scope, -- brings into scope work_args (via cases) -- * work_fn assumes work_args are in scope, a -- brings into scope wrap_arg (via lets) mkWWstr_one :: Var -> UniqSM ([Var], CoreExpr -> CoreExpr, CoreExpr -> CoreExpr) mkWWstr_one arg | isTyVar arg = return ([arg], nop_fn, nop_fn) | otherwise = case idNewDemandInfo arg of -- Absent case. We don't deal with absence for unlifted types, -- though, because it's not so easy to manufacture a placeholder -- We'll see if this turns out to be a problem Abs | not (isUnLiftedType (idType arg)) -> return ([], nop_fn, mk_absent_let arg) -- Unpack case Eval (Prod cs) | Just (_arg_tycon, _tycon_arg_tys, data_con, inst_con_arg_tys) <- deepSplitProductType_maybe (idType arg) -> do uniqs <- getUniquesM let unpk_args = zipWith mk_ww_local uniqs inst_con_arg_tys unpk_args_w_ds = zipWithEqual "mkWWstr" set_worker_arg_info unpk_args cs unbox_fn = mkUnpackCase (sanitiseCaseBndr arg) (Var arg) unpk_args data_con rebox_fn = Let (NonRec arg con_app) con_app = mkProductBox unpk_args (idType arg) (worker_args, wrap_fn, work_fn) <- mkWWstr unpk_args_w_ds return (worker_args, unbox_fn . wrap_fn, work_fn . rebox_fn) -- Don't pass the arg, rebox instead -- `seq` demand; evaluate in wrapper in the hope -- of dropping seqs in the worker Eval (Poly Abs) -> let arg_w_unf = arg `setIdUnfolding` evaldUnfolding -- Tell the worker arg that it's sure to be evaluated -- so that internal seqs can be dropped in return ([arg_w_unf], mk_seq_case arg, nop_fn) -- Pass the arg, anyway, even if it is in theory discarded -- Consider -- f x y = x `seq` y -- x gets a (Eval (Poly Abs)) demand, but if we fail to pass it to the worker -- we ABSOLUTELY MUST record that x is evaluated in the wrapper. -- Something like: -- f x y = x `seq` fw y -- fw y = let x{Evald} = error "oops" in (x `seq` y) -- If we don't pin on the "Evald" flag, the seq doesn't disappear, and -- we end up evaluating the absent thunk. -- But the Evald flag is pretty weird, and I worry that it might disappear -- during simplification, so for now I've just nuked this whole case -- Other cases _other_demand -> return ([arg], nop_fn, nop_fn) where -- If the wrapper argument is a one-shot lambda, then -- so should (all) the corresponding worker arguments be -- This bites when we do w/w on a case join point set_worker_arg_info worker_arg demand = set_one_shot (setIdNewDemandInfo worker_arg demand) set_one_shot | isOneShotLambda arg = setOneShotLambda | otherwise = \x -> x ---------------------- nop_fn :: CoreExpr -> CoreExpr nop_fn body = body \end{code} %************************************************************************ %* * \subsection{CPR stuff} %* * %************************************************************************ @mkWWcpr@ takes the worker/wrapper pair produced from the strictness info and adds in the CPR transformation. The worker returns an unboxed tuple containing non-CPR components. The wrapper takes this tuple and re-produces the correct structured output. The non-CPR results appear ordered in the unboxed tuple as if by a left-to-right traversal of the result structure. \begin{code} mkWWcpr :: Type -- function body type -> DmdResult -- CPR analysis results -> UniqSM (CoreExpr -> CoreExpr, -- New wrapper CoreExpr -> CoreExpr, -- New worker Type) -- Type of worker's body mkWWcpr body_ty RetCPR | not (isClosedAlgType body_ty) = WARN( True, text "mkWWcpr: non-algebraic or open body type" <+> ppr body_ty ) return (id, id, body_ty) | n_con_args == 1 && isUnLiftedType con_arg_ty1 = do -- Special case when there is a single result of unlifted type -- -- Wrapper: case (..call worker..) of x -> C x -- Worker: case ( ..body.. ) of C x -> x (work_uniq : arg_uniq : _) <- getUniquesM let work_wild = mk_ww_local work_uniq body_ty arg = mk_ww_local arg_uniq con_arg_ty1 con_app = mkProductBox [arg] body_ty return (\ wkr_call -> Case wkr_call (arg) (exprType con_app) [(DEFAULT, [], con_app)], \ body -> workerCase (work_wild) body [arg] data_con (Var arg), con_arg_ty1) | otherwise = do -- The general case -- Wrapper: case (..call worker..) of (# a, b #) -> C a b -- Worker: case ( ...body... ) of C a b -> (# a, b #) uniqs <- getUniquesM let (wrap_wild : work_wild : args) = zipWith mk_ww_local uniqs (ubx_tup_ty : body_ty : con_arg_tys) arg_vars = map Var args ubx_tup_con = tupleCon Unboxed n_con_args ubx_tup_ty = exprType ubx_tup_app ubx_tup_app = mkConApp ubx_tup_con (map Type con_arg_tys ++ arg_vars) con_app = mkProductBox args body_ty return (\ wkr_call -> Case wkr_call (wrap_wild) (exprType con_app) [(DataAlt ubx_tup_con, args, con_app)], \ body -> workerCase (work_wild) body args data_con ubx_tup_app, ubx_tup_ty) where (_arg_tycon, _tycon_arg_tys, data_con, con_arg_tys) = deepSplitProductType "mkWWcpr" body_ty n_con_args = length con_arg_tys con_arg_ty1 = head con_arg_tys mkWWcpr body_ty _other -- No CPR info = return (id, id, body_ty) -- If the original function looked like -- f = \ x -> _scc_ "foo" E -- -- then we want the CPR'd worker to look like -- \ x -> _scc_ "foo" (case E of I# x -> x) -- and definitely not -- \ x -> case (_scc_ "foo" E) of I# x -> x) -- -- This transform doesn't move work or allocation -- from one cost centre to another workerCase :: Id -> CoreExpr -> [Id] -> DataCon -> CoreExpr -> CoreExpr workerCase bndr (Note (SCC cc) e) args con body = Note (SCC cc) (mkUnpackCase bndr e args con body) workerCase bndr e args con body = mkUnpackCase bndr e args con body \end{code} %************************************************************************ %* * \subsection{Utilities} %* * %************************************************************************ \begin{code} mk_absent_let :: Id -> CoreExpr -> CoreExpr mk_absent_let arg body | not (isUnLiftedType arg_ty) = Let (NonRec arg abs_rhs) body | otherwise = panic "WwLib: haven't done mk_absent_let for primitives yet" where arg_ty = idType arg abs_rhs = mkRuntimeErrorApp rUNTIME_ERROR_ID arg_ty msg msg = "Oops! Entered absent arg " ++ showSDocDebug (ppr arg <+> ppr (idType arg)) mk_seq_case :: Id -> CoreExpr -> CoreExpr mk_seq_case arg body = Case (Var arg) (sanitiseCaseBndr arg) (exprType body) [(DEFAULT, [], body)] sanitiseCaseBndr :: Id -> Id -- The argument we are scrutinising has the right type to be -- a case binder, so it's convenient to re-use it for that purpose. -- But we *must* throw away all its IdInfo. In particular, the argument -- will have demand info on it, and that demand info may be incorrect for -- the case binder. e.g. case ww_arg of ww_arg { I# x -> ... } -- Quite likely ww_arg isn't used in '...'. The case may get discarded -- if the case binder says "I'm demanded". This happened in a situation -- like (x+y) `seq` .... sanitiseCaseBndr id = id `setIdInfo` vanillaIdInfo mk_ww_local :: Unique -> Type -> Id mk_ww_local uniq ty = mkSysLocal (fsLit "ww") uniq ty \end{code}