% % (c) The University of Glasgow 2006 % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % \begin{code} {-# LANGUAGE DeriveDataTypeable, DeriveFunctor #-} {-# OPTIONS -fno-warn-tabs #-} -- The above warning supression flag is a temporary kludge. -- While working on this module you are encouraged to remove it and -- detab the module (please do the detabbing in a separate patch). See -- http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces -- for details -- | CoreSyn holds all the main data types for use by for the Glasgow Haskell Compiler midsection module CoreSyn ( -- * Main data types Expr(..), Alt, Bind(..), AltCon(..), Arg, Tickish(..), CoreProgram, CoreExpr, CoreAlt, CoreBind, CoreArg, CoreBndr, TaggedExpr, TaggedAlt, TaggedBind, TaggedArg, TaggedBndr(..), -- ** 'Expr' construction mkLets, mkLams, mkApps, mkTyApps, mkCoApps, mkVarApps, mkIntLit, mkIntLitInt, mkWordLit, mkWordLitWord, mkWord64LitWord64, mkInt64LitInt64, mkCharLit, mkStringLit, mkFloatLit, mkFloatLitFloat, mkDoubleLit, mkDoubleLitDouble, mkConApp, mkTyBind, mkCoBind, varToCoreExpr, varsToCoreExprs, isId, cmpAltCon, cmpAlt, ltAlt, -- ** Simple 'Expr' access functions and predicates bindersOf, bindersOfBinds, rhssOfBind, rhssOfAlts, collectBinders, collectTyBinders, collectValBinders, collectTyAndValBinders, collectArgs, flattenBinds, isValArg, isTypeArg, isTyCoArg, valArgCount, valBndrCount, isRuntimeArg, isRuntimeVar, tickishCounts, tickishScoped, tickishIsCode, mkNoTick, mkNoScope, tickishCanSplit, -- * Unfolding data types Unfolding(..), UnfoldingGuidance(..), UnfoldingSource(..), -- ** Constructing 'Unfolding's noUnfolding, evaldUnfolding, mkOtherCon, unSaturatedOk, needSaturated, boringCxtOk, boringCxtNotOk, -- ** Predicates and deconstruction on 'Unfolding' unfoldingTemplate, setUnfoldingTemplate, expandUnfolding_maybe, maybeUnfoldingTemplate, otherCons, unfoldingArity, isValueUnfolding, isEvaldUnfolding, isCheapUnfolding, isExpandableUnfolding, isConLikeUnfolding, isCompulsoryUnfolding, isStableUnfolding, isStableCoreUnfolding_maybe, isClosedUnfolding, hasSomeUnfolding, canUnfold, neverUnfoldGuidance, isStableSource, -- * Strictness seqExpr, seqExprs, seqUnfolding, -- * Annotated expression data types AnnExpr, AnnExpr'(..), AnnBind(..), AnnAlt, -- ** Operations on annotated expressions collectAnnArgs, -- ** Operations on annotations deAnnotate, deAnnotate', deAnnAlt, collectAnnBndrs, -- * Core rule data types CoreRule(..), -- CoreSubst, CoreTidy, CoreFVs, PprCore only RuleName, IdUnfoldingFun, -- ** Operations on 'CoreRule's seqRules, ruleArity, ruleName, ruleIdName, ruleActivation, setRuleIdName, isBuiltinRule, isLocalRule, -- * Core vectorisation declarations data type CoreVect(..) ) where #include "HsVersions.h" import CostCentre import Var import Type import Coercion import Name import Literal import DataCon import Module import TyCon import BasicTypes import FastString import Outputable import Util import Data.Data hiding (TyCon) import Data.Int import Data.Word infixl 4 `mkApps`, `mkTyApps`, `mkVarApps`, `App`, `mkCoApps` -- Left associative, so that we can say (f `mkTyApps` xs `mkVarApps` ys) \end{code} %************************************************************************ %* * \subsection{The main data types} %* * %************************************************************************ These data types are the heart of the compiler \begin{code} -- | This is the data type that represents GHCs core intermediate language. Currently -- GHC uses System FC for this purpose, -- which is closely related to the simpler and better known System F . -- -- We get from Haskell source to this Core language in a number of stages: -- -- 1. The source code is parsed into an abstract syntax tree, which is represented -- by the data type 'HsExpr.HsExpr' with the names being 'RdrName.RdrNames' -- -- 2. This syntax tree is /renamed/, which attaches a 'Unique.Unique' to every 'RdrName.RdrName' -- (yielding a 'Name.Name') to disambiguate identifiers which are lexically identical. -- For example, this program: -- -- @ -- f x = let f x = x + 1 -- in f (x - 2) -- @ -- -- Would be renamed by having 'Unique's attached so it looked something like this: -- -- @ -- f_1 x_2 = let f_3 x_4 = x_4 + 1 -- in f_3 (x_2 - 2) -- @ -- -- 3. The resulting syntax tree undergoes type checking (which also deals with instantiating -- type class arguments) to yield a 'HsExpr.HsExpr' type that has 'Id.Id' as it's names. -- -- 4. Finally the syntax tree is /desugared/ from the expressive 'HsExpr.HsExpr' type into -- this 'Expr' type, which has far fewer constructors and hence is easier to perform -- optimization, analysis and code generation on. -- -- The type parameter @b@ is for the type of binders in the expression tree. -- -- The language consists of the following elements: -- -- * Variables -- -- * Primitive literals -- -- * Applications: note that the argument may be a 'Type'. -- -- See "CoreSyn#let_app_invariant" for another invariant -- -- * Lambda abstraction -- -- * Recursive and non recursive @let@s. Operationally -- this corresponds to allocating a thunk for the things -- bound and then executing the sub-expression. -- -- #top_level_invariant# -- #letrec_invariant# -- -- The right hand sides of all top-level and recursive @let@s -- /must/ be of lifted type (see "Type#type_classification" for -- the meaning of /lifted/ vs. /unlifted/). -- -- #let_app_invariant# -- The right hand side of of a non-recursive 'Let' -- _and_ the argument of an 'App', -- /may/ be of unlifted type, but only if the expression -- is ok-for-speculation. This means that the let can be floated -- around without difficulty. For example, this is OK: -- -- > y::Int# = x +# 1# -- -- But this is not, as it may affect termination if the -- expression is floated out: -- -- > y::Int# = fac 4# -- -- In this situation you should use @case@ rather than a @let@. The function -- 'CoreUtils.needsCaseBinding' can help you determine which to generate, or -- alternatively use 'MkCore.mkCoreLet' rather than this constructor directly, -- which will generate a @case@ if necessary -- -- #type_let# -- We allow a /non-recursive/ let to bind a type variable, thus: -- -- > Let (NonRec tv (Type ty)) body -- -- This can be very convenient for postponing type substitutions until -- the next run of the simplifier. -- -- At the moment, the rest of the compiler only deals with type-let -- in a Let expression, rather than at top level. We may want to revist -- this choice. -- -- * Case split. Operationally this corresponds to evaluating -- the scrutinee (expression examined) to weak head normal form -- and then examining at most one level of resulting constructor (i.e. you -- cannot do nested pattern matching directly with this). -- -- The binder gets bound to the value of the scrutinee, -- and the 'Type' must be that of all the case alternatives -- -- #case_invariants# -- This is one of the more complicated elements of the Core language, -- and comes with a number of restrictions: -- -- 1. The list of alternatives is non-empty -- -- 2. The 'DEFAULT' case alternative must be first in the list, -- if it occurs at all. -- -- 3. The remaining cases are in order of increasing -- tag (for 'DataAlts') or -- lit (for 'LitAlts'). -- This makes finding the relevant constructor easy, -- and makes comparison easier too. -- -- 4. The list of alternatives must be exhaustive. An /exhaustive/ case -- does not necessarily mention all constructors: -- -- @ -- data Foo = Red | Green | Blue -- ... case x of -- Red -> True -- other -> f (case x of -- Green -> ... -- Blue -> ... ) ... -- @ -- -- The inner case does not need a @Red@ alternative, because @x@ -- can't be @Red@ at that program point. -- -- * Cast an expression to a particular type. -- This is used to implement @newtype@s (a @newtype@ constructor or -- destructor just becomes a 'Cast' in Core) and GADTs. -- -- * Notes. These allow general information to be added to expressions -- in the syntax tree -- -- * A type: this should only show up at the top level of an Arg -- -- * A coercion data Expr b = Var Id | Lit Literal | App (Expr b) (Arg b) | Lam b (Expr b) | Let (Bind b) (Expr b) | Case (Expr b) b Type [Alt b] -- See #case_invariant# | Cast (Expr b) Coercion | Tick (Tickish Id) (Expr b) | Type Type | Coercion Coercion deriving (Data, Typeable) -- | Type synonym for expressions that occur in function argument positions. -- Only 'Arg' should contain a 'Type' at top level, general 'Expr' should not type Arg b = Expr b -- | A case split alternative. Consists of the constructor leading to the alternative, -- the variables bound from the constructor, and the expression to be executed given that binding. -- The default alternative is @(DEFAULT, [], rhs)@ type Alt b = (AltCon, [b], Expr b) -- | A case alternative constructor (i.e. pattern match) data AltCon = DataAlt DataCon -- ^ A plain data constructor: @case e of { Foo x -> ... }@. -- Invariant: the 'DataCon' is always from a @data@ type, and never from a @newtype@ | LitAlt Literal -- ^ A literal: @case e of { 1 -> ... }@ -- Invariant: always an *unlifted* literal -- See Note [Literal alternatives] | DEFAULT -- ^ Trivial alternative: @case e of { _ -> ... }@ deriving (Eq, Ord, Data, Typeable) -- | Binding, used for top level bindings in a module and local bindings in a @let@. data Bind b = NonRec b (Expr b) | Rec [(b, (Expr b))] deriving (Data, Typeable) \end{code} Note [Literal alternatives] ~~~~~~~~~~~~~~~~~~~~~~~~~~~ Literal alternatives (LitAlt lit) are always for *un-lifted* literals. We have one literal, a literal Integer, that is lifted, and we don't allow in a LitAlt, because LitAlt cases don't do any evaluation. Also (see Trac #5603) if you say case 3 of S# x -> ... J# _ _ -> ... (where S#, J# are the constructors for Integer) we don't want the simplifier calling findAlt with argument (LitAlt 3). No no. Integer literals are an opaque encoding of an algebraic data type, not of an unlifted literal, like all the others. -------------------------- CoreSyn INVARIANTS --------------------------- Note [CoreSyn top-level invariant] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ See #toplevel_invariant# Note [CoreSyn letrec invariant] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ See #letrec_invariant# Note [CoreSyn let/app invariant] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ See #let_app_invariant# This is intially enforced by DsUtils.mkCoreLet and mkCoreApp Note [CoreSyn case invariants] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ See #case_invariants# Note [CoreSyn let goal] ~~~~~~~~~~~~~~~~~~~~~~~ * The simplifier tries to ensure that if the RHS of a let is a constructor application, its arguments are trivial, so that the constructor can be inlined vigorously. Note [Type let] ~~~~~~~~~~~~~~~ See #type_let# \begin{code} -- | Allows attaching extra information to points in expressions data Tickish id = -- | An @{-# SCC #-}@ profiling annotation, either automatically -- added by the desugarer as a result of -auto-all, or added by -- the user. ProfNote { profNoteCC :: CostCentre, -- ^ the cost centre profNoteCount :: !Bool, -- ^ bump the entry count? profNoteScope :: !Bool -- ^ scopes over the enclosed expression -- (i.e. not just a tick) } -- | A "tick" used by HPC to track the execution of each -- subexpression in the original source code. | HpcTick { tickModule :: Module, tickId :: !Int } -- | A breakpoint for the GHCi debugger. This behaves like an HPC -- tick, but has a list of free variables which will be available -- for inspection in GHCi when the program stops at the breakpoint. -- -- NB. we must take account of these Ids when (a) counting free variables, -- and (b) substituting (don't substitute for them) | Breakpoint { breakpointId :: !Int , breakpointFVs :: [id] -- ^ the order of this list is important: -- it matches the order of the lists in the -- appropriate entry in HscTypes.ModBreaks. -- -- Careful about substitution! See -- Note [substTickish] in CoreSubst. } deriving (Eq, Ord, Data, Typeable) -- | A "tick" note is one that counts evaluations in some way. We -- cannot discard a tick, and the compiler should preserve the number -- of ticks as far as possible. -- -- Hwever, we stil allow the simplifier to increase or decrease -- sharing, so in practice the actual number of ticks may vary, except -- that we never change the value from zero to non-zero or vice versa. -- tickishCounts :: Tickish id -> Bool tickishCounts n@ProfNote{} = profNoteCount n tickishCounts HpcTick{} = True tickishCounts Breakpoint{} = True tickishScoped :: Tickish id -> Bool tickishScoped n@ProfNote{} = profNoteScope n tickishScoped HpcTick{} = False tickishScoped Breakpoint{} = True -- Breakpoints are scoped: eventually we're going to do call -- stacks, but also this helps prevent the simplifier from moving -- breakpoints around and changing their result type (see #1531). mkNoTick :: Tickish id -> Tickish id mkNoTick n@ProfNote{} = n {profNoteCount = False} mkNoTick Breakpoint{} = panic "mkNoTick: Breakpoint" -- cannot split a BP mkNoTick t = t mkNoScope :: Tickish id -> Tickish id mkNoScope n@ProfNote{} = n {profNoteScope = False} mkNoScope Breakpoint{} = panic "mkNoScope: Breakpoint" -- cannot split a BP mkNoScope t = t -- | Return True if this source annotation compiles to some code, or will -- disappear before the backend. tickishIsCode :: Tickish id -> Bool tickishIsCode _tickish = True -- all of them for now -- | Return True if this Tick can be split into (tick,scope) parts with -- 'mkNoScope' and 'mkNoTick' respectively. tickishCanSplit :: Tickish Id -> Bool tickishCanSplit Breakpoint{} = False tickishCanSplit _ = True \end{code} %************************************************************************ %* * \subsection{Transformation rules} %* * %************************************************************************ The CoreRule type and its friends are dealt with mainly in CoreRules, but CoreFVs, Subst, PprCore, CoreTidy also inspect the representation. \begin{code} -- | A 'CoreRule' is: -- -- * \"Local\" if the function it is a rule for is defined in the -- same module as the rule itself. -- -- * \"Orphan\" if nothing on the LHS is defined in the same module -- as the rule itself data CoreRule = Rule { ru_name :: RuleName, -- ^ Name of the rule, for communication with the user ru_act :: Activation, -- ^ When the rule is active -- Rough-matching stuff -- see comments with InstEnv.Instance( is_cls, is_rough ) ru_fn :: Name, -- ^ Name of the 'Id.Id' at the head of this rule ru_rough :: [Maybe Name], -- ^ Name at the head of each argument to the left hand side -- Proper-matching stuff -- see comments with InstEnv.Instance( is_tvs, is_tys ) ru_bndrs :: [CoreBndr], -- ^ Variables quantified over ru_args :: [CoreExpr], -- ^ Left hand side arguments -- And the right-hand side ru_rhs :: CoreExpr, -- ^ Right hand side of the rule -- Occurrence info is guaranteed correct -- See Note [OccInfo in unfoldings and rules] -- Locality ru_auto :: Bool, -- ^ @True@ <=> this rule is auto-generated -- @False@ <=> generated at the users behest -- Main effect: reporting of orphan-hood ru_local :: Bool -- ^ @True@ iff the fn at the head of the rule is -- defined in the same module as the rule -- and is not an implicit 'Id' (like a record selector, -- class operation, or data constructor) -- NB: ru_local is *not* used to decide orphan-hood -- c.g. MkIface.coreRuleToIfaceRule } -- | Built-in rules are used for constant folding -- and suchlike. They have no free variables. | BuiltinRule { ru_name :: RuleName, -- ^ As above ru_fn :: Name, -- ^ As above ru_nargs :: Int, -- ^ Number of arguments that 'ru_try' consumes, -- if it fires, including type arguments ru_try :: IdUnfoldingFun -> [CoreExpr] -> Maybe CoreExpr -- ^ This function does the rewrite. It given too many -- arguments, it simply discards them; the returned 'CoreExpr' -- is just the rewrite of 'ru_fn' applied to the first 'ru_nargs' args } -- See Note [Extra args in rule matching] in Rules.lhs type IdUnfoldingFun = Id -> Unfolding -- A function that embodies how to unfold an Id if you need -- to do that in the Rule. The reason we need to pass this info in -- is that whether an Id is unfoldable depends on the simplifier phase isBuiltinRule :: CoreRule -> Bool isBuiltinRule (BuiltinRule {}) = True isBuiltinRule _ = False -- | The number of arguments the 'ru_fn' must be applied -- to before the rule can match on it ruleArity :: CoreRule -> Int ruleArity (BuiltinRule {ru_nargs = n}) = n ruleArity (Rule {ru_args = args}) = length args ruleName :: CoreRule -> RuleName ruleName = ru_name ruleActivation :: CoreRule -> Activation ruleActivation (BuiltinRule { }) = AlwaysActive ruleActivation (Rule { ru_act = act }) = act -- | The 'Name' of the 'Id.Id' at the head of the rule left hand side ruleIdName :: CoreRule -> Name ruleIdName = ru_fn isLocalRule :: CoreRule -> Bool isLocalRule = ru_local -- | Set the 'Name' of the 'Id.Id' at the head of the rule left hand side setRuleIdName :: Name -> CoreRule -> CoreRule setRuleIdName nm ru = ru { ru_fn = nm } \end{code} %************************************************************************ %* * \subsection{Vectorisation declarations} %* * %************************************************************************ Representation of desugared vectorisation declarations that are fed to the vectoriser (via 'ModGuts'). \begin{code} data CoreVect = Vect Id (Maybe CoreExpr) | NoVect Id | VectType Bool TyCon (Maybe TyCon) | VectClass TyCon -- class tycon | VectInst Id -- instance dfun (always SCALAR) \end{code} %************************************************************************ %* * Unfoldings %* * %************************************************************************ The @Unfolding@ type is declared here to avoid numerous loops \begin{code} -- | Records the /unfolding/ of an identifier, which is approximately the form the -- identifier would have if we substituted its definition in for the identifier. -- This type should be treated as abstract everywhere except in "CoreUnfold" data Unfolding = NoUnfolding -- ^ We have no information about the unfolding | OtherCon [AltCon] -- ^ It ain't one of these constructors. -- @OtherCon xs@ also indicates that something has been evaluated -- and hence there's no point in re-evaluating it. -- @OtherCon []@ is used even for non-data-type values -- to indicated evaluated-ness. Notably: -- -- > data C = C !(Int -> Int) -- > case x of { C f -> ... } -- -- Here, @f@ gets an @OtherCon []@ unfolding. | DFunUnfolding -- The Unfolding of a DFunId -- See Note [DFun unfoldings] -- df = /\a1..am. \d1..dn. MkD (op1 a1..am d1..dn) -- (op2 a1..am d1..dn) Arity -- Arity = m+n, the *total* number of args -- (unusually, both type and value) to the dfun DataCon -- The dictionary data constructor (possibly a newtype datacon) [CoreExpr] -- Specification of superclasses and methods, in positional order | CoreUnfolding { -- An unfolding for an Id with no pragma, -- or perhaps a NOINLINE pragma -- (For NOINLINE, the phase, if any, is in the -- InlinePragInfo for this Id.) uf_tmpl :: CoreExpr, -- Template; occurrence info is correct uf_src :: UnfoldingSource, -- Where the unfolding came from uf_is_top :: Bool, -- True <=> top level binding uf_arity :: Arity, -- Number of value arguments expected uf_is_value :: Bool, -- exprIsHNF template (cached); it is ok to discard -- a `seq` on this variable uf_is_conlike :: Bool, -- True <=> applicn of constructor or CONLIKE function -- Cached version of exprIsConLike uf_is_cheap :: Bool, -- True <=> doesn't waste (much) work to expand -- inside an inlining -- Cached version of exprIsCheap uf_expandable :: Bool, -- True <=> can expand in RULE matching -- Cached version of exprIsExpandable uf_guidance :: UnfoldingGuidance -- Tells about the *size* of the template. } -- ^ An unfolding with redundant cached information. Parameters: -- -- uf_tmpl: Template used to perform unfolding; -- NB: Occurrence info is guaranteed correct: -- see Note [OccInfo in unfoldings and rules] -- -- uf_is_top: Is this a top level binding? -- -- uf_is_value: 'exprIsHNF' template (cached); it is ok to discard a 'seq' on -- this variable -- -- uf_is_cheap: Does this waste only a little work if we expand it inside an inlining? -- Basically this is a cached version of 'exprIsCheap' -- -- uf_guidance: Tells us about the /size/ of the unfolding template ------------------------------------------------ data UnfoldingSource = InlineRhs -- The current rhs of the function -- Replace uf_tmpl each time around | InlineStable -- From an INLINE or INLINABLE pragma -- INLINE if guidance is UnfWhen -- INLINABLE if guidance is UnfIfGoodArgs/UnfoldNever -- (well, technically an INLINABLE might be made -- UnfWhen if it was small enough, and then -- it will behave like INLINE outside the current -- module, but that is the way automatic unfoldings -- work so it is consistent with the intended -- meaning of INLINABLE). -- -- uf_tmpl may change, but only as a result of -- gentle simplification, it doesn't get updated -- to the current RHS during compilation as with -- InlineRhs. -- -- See Note [InlineRules] | InlineCompulsory -- Something that *has* no binding, so you *must* inline it -- Only a few primop-like things have this property -- (see MkId.lhs, calls to mkCompulsoryUnfolding). -- Inline absolutely always, however boring the context. | InlineWrapper Id -- This unfolding is a the wrapper in a -- worker/wrapper split from the strictness analyser -- The Id is the worker-id -- Used to abbreviate the uf_tmpl in interface files -- which don't need to contain the RHS; -- it can be derived from the strictness info -- | 'UnfoldingGuidance' says when unfolding should take place data UnfoldingGuidance = UnfWhen { -- Inline without thinking about the *size* of the uf_tmpl -- Used (a) for small *and* cheap unfoldings -- (b) for INLINE functions -- See Note [INLINE for small functions] in CoreUnfold ug_unsat_ok :: Bool, -- True <=> ok to inline even if unsaturated ug_boring_ok :: Bool -- True <=> ok to inline even if the context is boring -- So True,True means "always" } | UnfIfGoodArgs { -- Arose from a normal Id; the info here is the -- result of a simple analysis of the RHS ug_args :: [Int], -- Discount if the argument is evaluated. -- (i.e., a simplification will definitely -- be possible). One elt of the list per *value* arg. ug_size :: Int, -- The "size" of the unfolding. ug_res :: Int -- Scrutinee discount: the discount to substract if the thing is in } -- a context (case (thing args) of ...), -- (where there are the right number of arguments.) | UnfNever -- The RHS is big, so don't inline it \end{code} Note [DFun unfoldings] ~~~~~~~~~~~~~~~~~~~~~~ The Arity in a DFunUnfolding is total number of args (type and value) that the DFun needs to produce a dictionary. That's not necessarily related to the ordinary arity of the dfun Id, esp if the class has one method, so the dictionary is represented by a newtype. Example class C a where { op :: a -> Int } instance C a -> C [a] where op xs = op (head xs) The instance translates to $dfCList :: forall a. C a => C [a] -- Arity 2! $dfCList = /\a.\d. $copList {a} d |> co $copList :: forall a. C a => [a] -> Int -- Arity 2! $copList = /\a.\d.\xs. op {a} d (head xs) Now we might encounter (op (dfCList {ty} d) a1 a2) and we want the (op (dfList {ty} d)) rule to fire, because $dfCList has all its arguments, even though its (value) arity is 2. That's why we record the number of expected arguments in the DFunUnfolding. Note that although it's an Arity, it's most convenient for it to give the *total* number of arguments, both type and value. See the use site in exprIsConApp_maybe. \begin{code} -- Constants for the UnfWhen constructor needSaturated, unSaturatedOk :: Bool needSaturated = False unSaturatedOk = True boringCxtNotOk, boringCxtOk :: Bool boringCxtOk = True boringCxtNotOk = False ------------------------------------------------ noUnfolding :: Unfolding -- ^ There is no known 'Unfolding' evaldUnfolding :: Unfolding -- ^ This unfolding marks the associated thing as being evaluated noUnfolding = NoUnfolding evaldUnfolding = OtherCon [] mkOtherCon :: [AltCon] -> Unfolding mkOtherCon = OtherCon seqUnfolding :: Unfolding -> () seqUnfolding (CoreUnfolding { uf_tmpl = e, uf_is_top = top, uf_is_value = b1, uf_is_cheap = b2, uf_expandable = b3, uf_is_conlike = b4, uf_arity = a, uf_guidance = g}) = seqExpr e `seq` top `seq` b1 `seq` a `seq` b2 `seq` b3 `seq` b4 `seq` seqGuidance g seqUnfolding _ = () seqGuidance :: UnfoldingGuidance -> () seqGuidance (UnfIfGoodArgs ns n b) = n `seq` sum ns `seq` b `seq` () seqGuidance _ = () \end{code} \begin{code} isStableSource :: UnfoldingSource -> Bool -- Keep the unfolding template isStableSource InlineCompulsory = True isStableSource InlineStable = True isStableSource (InlineWrapper {}) = True isStableSource InlineRhs = False -- | Retrieves the template of an unfolding: panics if none is known unfoldingTemplate :: Unfolding -> CoreExpr unfoldingTemplate = uf_tmpl setUnfoldingTemplate :: Unfolding -> CoreExpr -> Unfolding setUnfoldingTemplate unf rhs = unf { uf_tmpl = rhs } -- | Retrieves the template of an unfolding if possible maybeUnfoldingTemplate :: Unfolding -> Maybe CoreExpr maybeUnfoldingTemplate (CoreUnfolding { uf_tmpl = expr }) = Just expr maybeUnfoldingTemplate _ = Nothing -- | The constructors that the unfolding could never be: -- returns @[]@ if no information is available otherCons :: Unfolding -> [AltCon] otherCons (OtherCon cons) = cons otherCons _ = [] -- | Determines if it is certainly the case that the unfolding will -- yield a value (something in HNF): returns @False@ if unsure isValueUnfolding :: Unfolding -> Bool -- Returns False for OtherCon isValueUnfolding (CoreUnfolding { uf_is_value = is_evald }) = is_evald isValueUnfolding _ = False -- | Determines if it possibly the case that the unfolding will -- yield a value. Unlike 'isValueUnfolding' it returns @True@ -- for 'OtherCon' isEvaldUnfolding :: Unfolding -> Bool -- Returns True for OtherCon isEvaldUnfolding (OtherCon _) = True isEvaldUnfolding (CoreUnfolding { uf_is_value = is_evald }) = is_evald isEvaldUnfolding _ = False -- | @True@ if the unfolding is a constructor application, the application -- of a CONLIKE function or 'OtherCon' isConLikeUnfolding :: Unfolding -> Bool isConLikeUnfolding (OtherCon _) = True isConLikeUnfolding (CoreUnfolding { uf_is_conlike = con }) = con isConLikeUnfolding _ = False -- | Is the thing we will unfold into certainly cheap? isCheapUnfolding :: Unfolding -> Bool isCheapUnfolding (CoreUnfolding { uf_is_cheap = is_cheap }) = is_cheap isCheapUnfolding _ = False isExpandableUnfolding :: Unfolding -> Bool isExpandableUnfolding (CoreUnfolding { uf_expandable = is_expable }) = is_expable isExpandableUnfolding _ = False expandUnfolding_maybe :: Unfolding -> Maybe CoreExpr -- Expand an expandable unfolding; this is used in rule matching -- See Note [Expanding variables] in Rules.lhs -- The key point here is that CONLIKE things can be expanded expandUnfolding_maybe (CoreUnfolding { uf_expandable = True, uf_tmpl = rhs }) = Just rhs expandUnfolding_maybe _ = Nothing isStableCoreUnfolding_maybe :: Unfolding -> Maybe UnfoldingSource isStableCoreUnfolding_maybe (CoreUnfolding { uf_src = src }) | isStableSource src = Just src isStableCoreUnfolding_maybe _ = Nothing isCompulsoryUnfolding :: Unfolding -> Bool isCompulsoryUnfolding (CoreUnfolding { uf_src = InlineCompulsory }) = True isCompulsoryUnfolding _ = False isStableUnfolding :: Unfolding -> Bool -- True of unfoldings that should not be overwritten -- by a CoreUnfolding for the RHS of a let-binding isStableUnfolding (CoreUnfolding { uf_src = src }) = isStableSource src isStableUnfolding (DFunUnfolding {}) = True isStableUnfolding _ = False unfoldingArity :: Unfolding -> Arity unfoldingArity (CoreUnfolding { uf_arity = arity }) = arity unfoldingArity _ = panic "unfoldingArity" isClosedUnfolding :: Unfolding -> Bool -- No free variables isClosedUnfolding (CoreUnfolding {}) = False isClosedUnfolding (DFunUnfolding {}) = False isClosedUnfolding _ = True -- | Only returns False if there is no unfolding information available at all hasSomeUnfolding :: Unfolding -> Bool hasSomeUnfolding NoUnfolding = False hasSomeUnfolding _ = True neverUnfoldGuidance :: UnfoldingGuidance -> Bool neverUnfoldGuidance UnfNever = True neverUnfoldGuidance _ = False canUnfold :: Unfolding -> Bool canUnfold (CoreUnfolding { uf_guidance = g }) = not (neverUnfoldGuidance g) canUnfold _ = False \end{code} Note [InlineRules] ~~~~~~~~~~~~~~~~~ When you say {-# INLINE f #-} f x = you intend that calls (f e) are replaced by [e/x] So we should capture (\x.) in the Unfolding of 'f', and never meddle with it. Meanwhile, we can optimise to our heart's content, leaving the original unfolding intact in Unfolding of 'f'. For example all xs = foldr (&&) True xs any p = all . map p {-# INLINE any #-} We optimise any's RHS fully, but leave the InlineRule saying "all . map p", which deforests well at the call site. So INLINE pragma gives rise to an InlineRule, which captures the original RHS. Moreover, it's only used when 'f' is applied to the specified number of arguments; that is, the number of argument on the LHS of the '=' sign in the original source definition. For example, (.) is now defined in the libraries like this {-# INLINE (.) #-} (.) f g = \x -> f (g x) so that it'll inline when applied to two arguments. If 'x' appeared on the left, thus (.) f g x = f (g x) it'd only inline when applied to three arguments. This slightly-experimental change was requested by Roman, but it seems to make sense. See also Note [Inlining an InlineRule] in CoreUnfold. Note [OccInfo in unfoldings and rules] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In unfoldings and rules, we guarantee that the template is occ-analysed, so that the occurence info on the binders is correct. This is important, because the Simplifier does not re-analyse the template when using it. If the occurrence info is wrong - We may get more simpifier iterations than necessary, because once-occ info isn't there - More seriously, we may get an infinite loop if there's a Rec without a loop breaker marked %************************************************************************ %* * \subsection{The main data type} %* * %************************************************************************ \begin{code} -- The Ord is needed for the FiniteMap used in the lookForConstructor -- in SimplEnv. If you declared that lookForConstructor *ignores* -- constructor-applications with LitArg args, then you could get -- rid of this Ord. instance Outputable AltCon where ppr (DataAlt dc) = ppr dc ppr (LitAlt lit) = ppr lit ppr DEFAULT = ptext (sLit "__DEFAULT") instance Show AltCon where showsPrec p con = showsPrecSDoc p (ppr con) cmpAlt :: Alt b -> Alt b -> Ordering cmpAlt (con1, _, _) (con2, _, _) = con1 `cmpAltCon` con2 ltAlt :: Alt b -> Alt b -> Bool ltAlt a1 a2 = (a1 `cmpAlt` a2) == LT cmpAltCon :: AltCon -> AltCon -> Ordering -- ^ Compares 'AltCon's within a single list of alternatives cmpAltCon DEFAULT DEFAULT = EQ cmpAltCon DEFAULT _ = LT cmpAltCon (DataAlt d1) (DataAlt d2) = dataConTag d1 `compare` dataConTag d2 cmpAltCon (DataAlt _) DEFAULT = GT cmpAltCon (LitAlt l1) (LitAlt l2) = l1 `compare` l2 cmpAltCon (LitAlt _) DEFAULT = GT cmpAltCon con1 con2 = WARN( True, text "Comparing incomparable AltCons" <+> ppr con1 <+> ppr con2 ) LT \end{code} %************************************************************************ %* * \subsection{Useful synonyms} %* * %************************************************************************ Note [CoreProgram] ~~~~~~~~~~~~~~~~~~ The top level bindings of a program, a CoreProgram, are represented as a list of CoreBind * Later bindings in the list can refer to earlier ones, but not vice versa. So this is OK NonRec { x = 4 } Rec { p = ...q...x... ; q = ...p...x } Rec { f = ...p..x..f.. } NonRec { g = ..f..q...x.. } But it would NOT be ok for 'f' to refer to 'g'. * The occurrence analyser does strongly-connected component analysis on each Rec binding, and splits it into a sequence of smaller bindings where possible. So the program typically starts life as a single giant Rec, which is then dependency-analysed into smaller chunks. \begin{code} type CoreProgram = [CoreBind] -- See Note [CoreProgram] -- | The common case for the type of binders and variables when -- we are manipulating the Core language within GHC type CoreBndr = Var -- | Expressions where binders are 'CoreBndr's type CoreExpr = Expr CoreBndr -- | Argument expressions where binders are 'CoreBndr's type CoreArg = Arg CoreBndr -- | Binding groups where binders are 'CoreBndr's type CoreBind = Bind CoreBndr -- | Case alternatives where binders are 'CoreBndr's type CoreAlt = Alt CoreBndr \end{code} %************************************************************************ %* * \subsection{Tagging} %* * %************************************************************************ \begin{code} -- | Binders are /tagged/ with a t data TaggedBndr t = TB CoreBndr t -- TB for "tagged binder" type TaggedBind t = Bind (TaggedBndr t) type TaggedExpr t = Expr (TaggedBndr t) type TaggedArg t = Arg (TaggedBndr t) type TaggedAlt t = Alt (TaggedBndr t) instance Outputable b => Outputable (TaggedBndr b) where ppr (TB b l) = char '<' <> ppr b <> comma <> ppr l <> char '>' instance Outputable b => OutputableBndr (TaggedBndr b) where pprBndr _ b = ppr b -- Simple pprInfixOcc b = ppr b pprPrefixOcc b = ppr b \end{code} %************************************************************************ %* * \subsection{Core-constructing functions with checking} %* * %************************************************************************ \begin{code} -- | Apply a list of argument expressions to a function expression in a nested fashion. Prefer to -- use 'MkCore.mkCoreApps' if possible mkApps :: Expr b -> [Arg b] -> Expr b -- | Apply a list of type argument expressions to a function expression in a nested fashion mkTyApps :: Expr b -> [Type] -> Expr b -- | Apply a list of coercion argument expressions to a function expression in a nested fashion mkCoApps :: Expr b -> [Coercion] -> Expr b -- | Apply a list of type or value variables to a function expression in a nested fashion mkVarApps :: Expr b -> [Var] -> Expr b -- | Apply a list of argument expressions to a data constructor in a nested fashion. Prefer to -- use 'MkCore.mkCoreConApps' if possible mkConApp :: DataCon -> [Arg b] -> Expr b mkApps f args = foldl App f args mkTyApps f args = foldl (\ e a -> App e (Type a)) f args mkCoApps f args = foldl (\ e a -> App e (Coercion a)) f args mkVarApps f vars = foldl (\ e a -> App e (varToCoreExpr a)) f vars mkConApp con args = mkApps (Var (dataConWorkId con)) args -- | Create a machine integer literal expression of type @Int#@ from an @Integer@. -- If you want an expression of type @Int@ use 'MkCore.mkIntExpr' mkIntLit :: Integer -> Expr b -- | Create a machine integer literal expression of type @Int#@ from an @Int@. -- If you want an expression of type @Int@ use 'MkCore.mkIntExpr' mkIntLitInt :: Int -> Expr b mkIntLit n = Lit (mkMachInt n) mkIntLitInt n = Lit (mkMachInt (toInteger n)) -- | Create a machine word literal expression of type @Word#@ from an @Integer@. -- If you want an expression of type @Word@ use 'MkCore.mkWordExpr' mkWordLit :: Integer -> Expr b -- | Create a machine word literal expression of type @Word#@ from a @Word@. -- If you want an expression of type @Word@ use 'MkCore.mkWordExpr' mkWordLitWord :: Word -> Expr b mkWordLit w = Lit (mkMachWord w) mkWordLitWord w = Lit (mkMachWord (toInteger w)) mkWord64LitWord64 :: Word64 -> Expr b mkWord64LitWord64 w = Lit (mkMachWord64 (toInteger w)) mkInt64LitInt64 :: Int64 -> Expr b mkInt64LitInt64 w = Lit (mkMachInt64 (toInteger w)) -- | Create a machine character literal expression of type @Char#@. -- If you want an expression of type @Char@ use 'MkCore.mkCharExpr' mkCharLit :: Char -> Expr b -- | Create a machine string literal expression of type @Addr#@. -- If you want an expression of type @String@ use 'MkCore.mkStringExpr' mkStringLit :: String -> Expr b mkCharLit c = Lit (mkMachChar c) mkStringLit s = Lit (mkMachString s) -- | Create a machine single precision literal expression of type @Float#@ from a @Rational@. -- If you want an expression of type @Float@ use 'MkCore.mkFloatExpr' mkFloatLit :: Rational -> Expr b -- | Create a machine single precision literal expression of type @Float#@ from a @Float@. -- If you want an expression of type @Float@ use 'MkCore.mkFloatExpr' mkFloatLitFloat :: Float -> Expr b mkFloatLit f = Lit (mkMachFloat f) mkFloatLitFloat f = Lit (mkMachFloat (toRational f)) -- | Create a machine double precision literal expression of type @Double#@ from a @Rational@. -- If you want an expression of type @Double@ use 'MkCore.mkDoubleExpr' mkDoubleLit :: Rational -> Expr b -- | Create a machine double precision literal expression of type @Double#@ from a @Double@. -- If you want an expression of type @Double@ use 'MkCore.mkDoubleExpr' mkDoubleLitDouble :: Double -> Expr b mkDoubleLit d = Lit (mkMachDouble d) mkDoubleLitDouble d = Lit (mkMachDouble (toRational d)) -- | Bind all supplied binding groups over an expression in a nested let expression. Prefer to -- use 'MkCore.mkCoreLets' if possible mkLets :: [Bind b] -> Expr b -> Expr b -- | Bind all supplied binders over an expression in a nested lambda expression. Prefer to -- use 'MkCore.mkCoreLams' if possible mkLams :: [b] -> Expr b -> Expr b mkLams binders body = foldr Lam body binders mkLets binds body = foldr Let body binds -- | Create a binding group where a type variable is bound to a type. Per "CoreSyn#type_let", -- this can only be used to bind something in a non-recursive @let@ expression mkTyBind :: TyVar -> Type -> CoreBind mkTyBind tv ty = NonRec tv (Type ty) -- | Create a binding group where a type variable is bound to a type. Per "CoreSyn#type_let", -- this can only be used to bind something in a non-recursive @let@ expression mkCoBind :: CoVar -> Coercion -> CoreBind mkCoBind cv co = NonRec cv (Coercion co) -- | Convert a binder into either a 'Var' or 'Type' 'Expr' appropriately varToCoreExpr :: CoreBndr -> Expr b varToCoreExpr v | isTyVar v = Type (mkTyVarTy v) | isCoVar v = Coercion (mkCoVarCo v) | otherwise = ASSERT( isId v ) Var v varsToCoreExprs :: [CoreBndr] -> [Expr b] varsToCoreExprs vs = map varToCoreExpr vs \end{code} %************************************************************************ %* * \subsection{Simple access functions} %* * %************************************************************************ \begin{code} -- | Extract every variable by this group bindersOf :: Bind b -> [b] bindersOf (NonRec binder _) = [binder] bindersOf (Rec pairs) = [binder | (binder, _) <- pairs] -- | 'bindersOf' applied to a list of binding groups bindersOfBinds :: [Bind b] -> [b] bindersOfBinds binds = foldr ((++) . bindersOf) [] binds rhssOfBind :: Bind b -> [Expr b] rhssOfBind (NonRec _ rhs) = [rhs] rhssOfBind (Rec pairs) = [rhs | (_,rhs) <- pairs] rhssOfAlts :: [Alt b] -> [Expr b] rhssOfAlts alts = [e | (_,_,e) <- alts] -- | Collapse all the bindings in the supplied groups into a single -- list of lhs\/rhs pairs suitable for binding in a 'Rec' binding group flattenBinds :: [Bind b] -> [(b, Expr b)] flattenBinds (NonRec b r : binds) = (b,r) : flattenBinds binds flattenBinds (Rec prs1 : binds) = prs1 ++ flattenBinds binds flattenBinds [] = [] \end{code} \begin{code} -- | We often want to strip off leading lambdas before getting down to -- business. This function is your friend. collectBinders :: Expr b -> ([b], Expr b) -- | Collect as many type bindings as possible from the front of a nested lambda collectTyBinders :: CoreExpr -> ([TyVar], CoreExpr) -- | Collect as many value bindings as possible from the front of a nested lambda collectValBinders :: CoreExpr -> ([Id], CoreExpr) -- | Collect type binders from the front of the lambda first, -- then follow up by collecting as many value bindings as possible -- from the resulting stripped expression collectTyAndValBinders :: CoreExpr -> ([TyVar], [Id], CoreExpr) collectBinders expr = go [] expr where go bs (Lam b e) = go (b:bs) e go bs e = (reverse bs, e) collectTyAndValBinders expr = (tvs, ids, body) where (tvs, body1) = collectTyBinders expr (ids, body) = collectValBinders body1 collectTyBinders expr = go [] expr where go tvs (Lam b e) | isTyVar b = go (b:tvs) e go tvs e = (reverse tvs, e) collectValBinders expr = go [] expr where go ids (Lam b e) | isId b = go (b:ids) e go ids body = (reverse ids, body) \end{code} \begin{code} -- | Takes a nested application expression and returns the the function -- being applied and the arguments to which it is applied collectArgs :: Expr b -> (Expr b, [Arg b]) collectArgs expr = go expr [] where go (App f a) as = go f (a:as) go e as = (e, as) \end{code} %************************************************************************ %* * \subsection{Predicates} %* * %************************************************************************ At one time we optionally carried type arguments through to runtime. @isRuntimeVar v@ returns if (Lam v _) really becomes a lambda at runtime, i.e. if type applications are actual lambdas because types are kept around at runtime. Similarly isRuntimeArg. \begin{code} -- | Will this variable exist at runtime? isRuntimeVar :: Var -> Bool isRuntimeVar = isId -- | Will this argument expression exist at runtime? isRuntimeArg :: CoreExpr -> Bool isRuntimeArg = isValArg -- | Returns @False@ iff the expression is a 'Type' or 'Coercion' -- expression at its top level isValArg :: Expr b -> Bool isValArg e = not (isTypeArg e) -- | Returns @True@ iff the expression is a 'Type' or 'Coercion' -- expression at its top level isTyCoArg :: Expr b -> Bool isTyCoArg (Type {}) = True isTyCoArg (Coercion {}) = True isTyCoArg _ = False -- | Returns @True@ iff the expression is a 'Type' expression at its -- top level. Note this does NOT include 'Coercion's. isTypeArg :: Expr b -> Bool isTypeArg (Type {}) = True isTypeArg _ = False -- | The number of binders that bind values rather than types valBndrCount :: [CoreBndr] -> Int valBndrCount = count isId -- | The number of argument expressions that are values rather than types at their top level valArgCount :: [Arg b] -> Int valArgCount = count isValArg \end{code} %************************************************************************ %* * \subsection{Seq stuff} %* * %************************************************************************ \begin{code} seqExpr :: CoreExpr -> () seqExpr (Var v) = v `seq` () seqExpr (Lit lit) = lit `seq` () seqExpr (App f a) = seqExpr f `seq` seqExpr a seqExpr (Lam b e) = seqBndr b `seq` seqExpr e seqExpr (Let b e) = seqBind b `seq` seqExpr e seqExpr (Case e b t as) = seqExpr e `seq` seqBndr b `seq` seqType t `seq` seqAlts as seqExpr (Cast e co) = seqExpr e `seq` seqCo co seqExpr (Tick n e) = seqTickish n `seq` seqExpr e seqExpr (Type t) = seqType t seqExpr (Coercion co) = seqCo co seqExprs :: [CoreExpr] -> () seqExprs [] = () seqExprs (e:es) = seqExpr e `seq` seqExprs es seqTickish :: Tickish Id -> () seqTickish ProfNote{ profNoteCC = cc } = cc `seq` () seqTickish HpcTick{} = () seqTickish Breakpoint{ breakpointFVs = ids } = seqBndrs ids seqBndr :: CoreBndr -> () seqBndr b = b `seq` () seqBndrs :: [CoreBndr] -> () seqBndrs [] = () seqBndrs (b:bs) = seqBndr b `seq` seqBndrs bs seqBind :: Bind CoreBndr -> () seqBind (NonRec b e) = seqBndr b `seq` seqExpr e seqBind (Rec prs) = seqPairs prs seqPairs :: [(CoreBndr, CoreExpr)] -> () seqPairs [] = () seqPairs ((b,e):prs) = seqBndr b `seq` seqExpr e `seq` seqPairs prs seqAlts :: [CoreAlt] -> () seqAlts [] = () seqAlts ((c,bs,e):alts) = c `seq` seqBndrs bs `seq` seqExpr e `seq` seqAlts alts seqRules :: [CoreRule] -> () seqRules [] = () seqRules (Rule { ru_bndrs = bndrs, ru_args = args, ru_rhs = rhs } : rules) = seqBndrs bndrs `seq` seqExprs (rhs:args) `seq` seqRules rules seqRules (BuiltinRule {} : rules) = seqRules rules \end{code} %************************************************************************ %* * \subsection{Annotated core} %* * %************************************************************************ \begin{code} -- | Annotated core: allows annotation at every node in the tree type AnnExpr bndr annot = (annot, AnnExpr' bndr annot) -- | A clone of the 'Expr' type but allowing annotation at every tree node data AnnExpr' bndr annot = AnnVar Id | AnnLit Literal | AnnLam bndr (AnnExpr bndr annot) | AnnApp (AnnExpr bndr annot) (AnnExpr bndr annot) | AnnCase (AnnExpr bndr annot) bndr Type [AnnAlt bndr annot] | AnnLet (AnnBind bndr annot) (AnnExpr bndr annot) | AnnCast (AnnExpr bndr annot) (annot, Coercion) -- Put an annotation on the (root of) the coercion | AnnTick (Tickish Id) (AnnExpr bndr annot) | AnnType Type | AnnCoercion Coercion -- | A clone of the 'Alt' type but allowing annotation at every tree node type AnnAlt bndr annot = (AltCon, [bndr], AnnExpr bndr annot) -- | A clone of the 'Bind' type but allowing annotation at every tree node data AnnBind bndr annot = AnnNonRec bndr (AnnExpr bndr annot) | AnnRec [(bndr, AnnExpr bndr annot)] \end{code} \begin{code} -- | Takes a nested application expression and returns the the function -- being applied and the arguments to which it is applied collectAnnArgs :: AnnExpr b a -> (AnnExpr b a, [AnnExpr b a]) collectAnnArgs expr = go expr [] where go (_, AnnApp f a) as = go f (a:as) go e as = (e, as) \end{code} \begin{code} deAnnotate :: AnnExpr bndr annot -> Expr bndr deAnnotate (_, e) = deAnnotate' e deAnnotate' :: AnnExpr' bndr annot -> Expr bndr deAnnotate' (AnnType t) = Type t deAnnotate' (AnnCoercion co) = Coercion co deAnnotate' (AnnVar v) = Var v deAnnotate' (AnnLit lit) = Lit lit deAnnotate' (AnnLam binder body) = Lam binder (deAnnotate body) deAnnotate' (AnnApp fun arg) = App (deAnnotate fun) (deAnnotate arg) deAnnotate' (AnnCast e (_,co)) = Cast (deAnnotate e) co deAnnotate' (AnnTick tick body) = Tick tick (deAnnotate body) deAnnotate' (AnnLet bind body) = Let (deAnnBind bind) (deAnnotate body) where deAnnBind (AnnNonRec var rhs) = NonRec var (deAnnotate rhs) deAnnBind (AnnRec pairs) = Rec [(v,deAnnotate rhs) | (v,rhs) <- pairs] deAnnotate' (AnnCase scrut v t alts) = Case (deAnnotate scrut) v t (map deAnnAlt alts) deAnnAlt :: AnnAlt bndr annot -> Alt bndr deAnnAlt (con,args,rhs) = (con,args,deAnnotate rhs) \end{code} \begin{code} -- | As 'collectBinders' but for 'AnnExpr' rather than 'Expr' collectAnnBndrs :: AnnExpr bndr annot -> ([bndr], AnnExpr bndr annot) collectAnnBndrs e = collect [] e where collect bs (_, AnnLam b body) = collect (b:bs) body collect bs body = (reverse bs, body) \end{code}