% % (c) The University of Glasgow 2006 % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % HsTypes: Abstract syntax: user-defined types \begin{code} {-# OPTIONS -fno-warn-tabs #-} -- The above warning supression flag is a temporary kludge. -- While working on this module you are encouraged to remove it and -- detab the module (please do the detabbing in a separate patch). See -- http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces -- for details {-# LANGUAGE DeriveDataTypeable #-} module HsTypes ( HsType(..), LHsType, HsKind, LHsKind, HsTyVarBndr(..), LHsTyVarBndr, HsTupleSort(..), HsExplicitFlag(..), HsContext, LHsContext, HsQuasiQuote(..), HsTyWrapper(..), LBangType, BangType, HsBang(..), getBangType, getBangStrictness, ConDeclField(..), pprConDeclFields, mkExplicitHsForAllTy, mkImplicitHsForAllTy, hsExplicitTvs, hsTyVarName, hsTyVarNames, replaceTyVarName, replaceLTyVarName, hsTyVarKind, hsLTyVarKind, hsTyVarNameKind, hsLTyVarName, hsLTyVarNames, hsLTyVarLocName, hsLTyVarLocNames, splitHsInstDeclTy_maybe, splitLHsInstDeclTy_maybe, splitHsForAllTy, splitLHsForAllTy, splitHsClassTy_maybe, splitLHsClassTy_maybe, splitHsFunType, splitHsAppTys, mkHsAppTys, mkHsOpTy, -- Printing pprParendHsType, pprHsForAll, pprHsContext, ppr_hs_context, ) where import {-# SOURCE #-} HsExpr ( HsSplice, pprSplice ) import HsLit import NameSet( FreeVars ) import Type import HsDoc import BasicTypes import SrcLoc import StaticFlags import Outputable import FastString import Data.Data \end{code} %************************************************************************ %* * Quasi quotes; used in types and elsewhere %* * %************************************************************************ \begin{code} data HsQuasiQuote id = HsQuasiQuote id -- The quasi-quoter SrcSpan -- The span of the enclosed string FastString -- The enclosed string deriving (Data, Typeable) instance OutputableBndr id => Outputable (HsQuasiQuote id) where ppr = ppr_qq ppr_qq :: OutputableBndr id => HsQuasiQuote id -> SDoc ppr_qq (HsQuasiQuote quoter _ quote) = char '[' <> ppr quoter <> ptext (sLit "|") <> ppr quote <> ptext (sLit "|]") \end{code} %************************************************************************ %* * \subsection{Bang annotations} %* * %************************************************************************ \begin{code} type LBangType name = Located (BangType name) type BangType name = HsType name -- Bangs are in the HsType data type getBangType :: LHsType a -> LHsType a getBangType (L _ (HsBangTy _ ty)) = ty getBangType ty = ty getBangStrictness :: LHsType a -> HsBang getBangStrictness (L _ (HsBangTy s _)) = s getBangStrictness _ = HsNoBang \end{code} %************************************************************************ %* * \subsection{Data types} %* * %************************************************************************ This is the syntax for types as seen in type signatures. \begin{code} type LHsContext name = Located (HsContext name) type HsContext name = [LHsType name] type LHsType name = Located (HsType name) type HsKind name = HsType name type LHsKind name = Located (HsKind name) data HsType name = HsForAllTy HsExplicitFlag -- Renamer leaves this flag unchanged, to record the way -- the user wrote it originally, so that the printer can -- print it as the user wrote it [LHsTyVarBndr name] -- With ImplicitForAll, this is the empty list -- until the renamer fills in the variables (LHsContext name) (LHsType name) | HsTyVar name -- Type variable, type constructor, or data constructor -- see Note [Promotions (HsTyVar)] | HsAppTy (LHsType name) (LHsType name) | HsFunTy (LHsType name) -- function type (LHsType name) | HsListTy (LHsType name) -- Element type | HsPArrTy (LHsType name) -- Elem. type of parallel array: [:t:] | HsTupleTy HsTupleSort [LHsType name] -- Element types (length gives arity) | HsOpTy (LHsType name) (LHsTyOp name) (LHsType name) | HsParTy (LHsType name) -- See Note [Parens in HsSyn] in HsExpr -- Parenthesis preserved for the precedence re-arrangement in RnTypes -- It's important that a * (b + c) doesn't get rearranged to (a*b) + c! | HsIParamTy (IPName name) -- (?x :: ty) (LHsType name) -- Implicit parameters as they occur in contexts | HsEqTy (LHsType name) -- ty1 ~ ty2 (LHsType name) -- Always allowed even without TypeOperators, and has special kinding rule | HsKindSig (LHsType name) -- (ty :: kind) (LHsKind name) -- A type with a kind signature | HsQuasiQuoteTy (HsQuasiQuote name) | HsSpliceTy (HsSplice name) FreeVars -- Variables free in the splice (filled in by renamer) PostTcKind | HsDocTy (LHsType name) LHsDocString -- A documented type | HsBangTy HsBang (LHsType name) -- Bang-style type annotations | HsRecTy [ConDeclField name] -- Only in data type declarations | HsCoreTy Type -- An escape hatch for tunnelling a *closed* -- Core Type through HsSyn. | HsExplicitListTy -- A promoted explicit list PostTcKind -- See Note [Promoted lists and tuples] [LHsType name] | HsExplicitTupleTy -- A promoted explicit tuple [PostTcKind] -- See Note [Promoted lists and tuples] [LHsType name] | HsWrapTy HsTyWrapper (HsType name) -- only in typechecker output deriving (Data, Typeable) data HsTyWrapper = WpKiApps [Kind] -- kind instantiation: [] k1 k2 .. kn deriving (Data, Typeable) type LHsTyOp name = HsTyOp (Located name) type HsTyOp name = (HsTyWrapper, name) mkHsOpTy :: LHsType name -> Located name -> LHsType name -> HsType name mkHsOpTy ty1 op ty2 = HsOpTy ty1 (WpKiApps [], op) ty2 \end{code} Note [Promotions (HsTyVar)] ~~~~~~~~~~~~~~~~~~~~~~~~~~~ HsTyVar: A name in a type or kind. Here are the allowed namespaces for the name. In a type: Var: not allowed Data: promoted data constructor Tv: type variable TcCls before renamer: type constructor, class constructor, or promoted data constructor TcCls after renamer: type constructor or class constructor In a kind: Var, Data: not allowed Tv: kind variable TcCls: kind constructor or promoted type constructor Note [Promoted lists and tuples] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Notice the difference between HsListTy HsExplicitListTy HsTupleTy HsExplicitListTupleTy E.g. f :: [Int] HsListTy g3 :: T '[] All these use g2 :: T '[True] HsExplicitListTy g1 :: T '[True,False] g1a :: T [True,False] (can omit ' where unambiguous) kind of T :: [Bool] -> * This kind uses HsListTy! E.g. h :: (Int,Bool) HsTupleTy; f is a pair k :: S '(True,False) HsExplicitTypleTy; S is indexed by a type-level pair of booleans kind of S :: (Bool,Bool) -> * This kind uses HsExplicitTupleTy Note [Distinguishing tuple kinds] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Apart from promotion, tuples can have one of three different kinds: x :: (Int, Bool) -- Regular boxed tuples f :: Int# -> (# Int#, Int# #) -- Unboxed tuples g :: (Eq a, Ord a) => a -- Constraint tuples For convenience, internally we use a single constructor for all of these, namely HsTupleTy, but keep track of the tuple kind (in the first argument to HsTupleTy, a HsTupleSort). We can tell if a tuple is unboxed while parsing, because of the #. However, with -XConstraintKinds we can only distinguish between constraint and boxed tuples during type checking, in general. Hence the four constructors of HsTupleSort: HsUnboxedTuple -> Produced by the parser HsBoxedTuple -> Certainly a boxed tuple HsConstraintTuple -> Certainly a constraint tuple HsBoxedOrConstraintTuple -> Could be a boxed or a constraint tuple. Produced by the parser only, disappears after type checking \begin{code} data HsTupleSort = HsUnboxedTuple | HsBoxedTuple | HsConstraintTuple | HsBoxedOrConstraintTuple deriving (Data, Typeable) data HsExplicitFlag = Explicit | Implicit deriving (Data, Typeable) data ConDeclField name -- Record fields have Haddoc docs on them = ConDeclField { cd_fld_name :: Located name, cd_fld_type :: LBangType name, cd_fld_doc :: Maybe LHsDocString } deriving (Data, Typeable) ----------------------- -- Combine adjacent for-alls. -- The following awkward situation can happen otherwise: -- f :: forall a. ((Num a) => Int) -- might generate HsForAll (Just [a]) [] (HsForAll Nothing [Num a] t) -- Then a isn't discovered as ambiguous, and we abstract the AbsBinds wrt [] -- but the export list abstracts f wrt [a]. Disaster. -- -- A valid type must have one for-all at the top of the type, or of the fn arg types mkImplicitHsForAllTy :: LHsContext name -> LHsType name -> HsType name mkExplicitHsForAllTy :: [LHsTyVarBndr name] -> LHsContext name -> LHsType name -> HsType name mkImplicitHsForAllTy ctxt ty = mkHsForAllTy Implicit [] ctxt ty mkExplicitHsForAllTy tvs ctxt ty = mkHsForAllTy Explicit tvs ctxt ty mkHsForAllTy :: HsExplicitFlag -> [LHsTyVarBndr name] -> LHsContext name -> LHsType name -> HsType name -- Smart constructor for HsForAllTy mkHsForAllTy exp tvs (L _ []) ty = mk_forall_ty exp tvs ty mkHsForAllTy exp tvs ctxt ty = HsForAllTy exp tvs ctxt ty -- mk_forall_ty makes a pure for-all type (no context) mk_forall_ty :: HsExplicitFlag -> [LHsTyVarBndr name] -> LHsType name -> HsType name mk_forall_ty exp tvs (L _ (HsParTy ty)) = mk_forall_ty exp tvs ty mk_forall_ty exp1 tvs1 (L _ (HsForAllTy exp2 tvs2 ctxt ty)) = mkHsForAllTy (exp1 `plus` exp2) (tvs1 ++ tvs2) ctxt ty mk_forall_ty exp tvs ty = HsForAllTy exp tvs (noLoc []) ty -- Even if tvs is empty, we still make a HsForAll! -- In the Implicit case, this signals the place to do implicit quantification -- In the Explicit case, it prevents implicit quantification -- (see the sigtype production in Parser.y.pp) -- so that (forall. ty) isn't implicitly quantified plus :: HsExplicitFlag -> HsExplicitFlag -> HsExplicitFlag Implicit `plus` Implicit = Implicit _ `plus` _ = Explicit hsExplicitTvs :: LHsType name -> [name] -- The explicitly-given forall'd type variables of a HsType hsExplicitTvs (L _ (HsForAllTy Explicit tvs _ _)) = hsLTyVarNames tvs hsExplicitTvs _ = [] --------------------- type LHsTyVarBndr name = Located (HsTyVarBndr name) data HsTyVarBndr name = UserTyVar -- No explicit kinding name -- See Note [Printing KindedTyVars] PostTcKind | KindedTyVar name (LHsKind name) -- The user-supplied kind signature PostTcKind -- *** NOTA BENE *** A "monotype" in a pragma can have -- for-alls in it, (mostly to do with dictionaries). These -- must be explicitly Kinded. deriving (Data, Typeable) hsTyVarName :: HsTyVarBndr name -> name hsTyVarName (UserTyVar n _) = n hsTyVarName (KindedTyVar n _ _) = n hsTyVarKind :: HsTyVarBndr name -> Kind hsTyVarKind (UserTyVar _ k) = k hsTyVarKind (KindedTyVar _ _ k) = k hsLTyVarKind :: LHsTyVarBndr name -> Kind hsLTyVarKind = hsTyVarKind . unLoc hsTyVarNameKind :: HsTyVarBndr name -> (name, Kind) hsTyVarNameKind (UserTyVar n k) = (n,k) hsTyVarNameKind (KindedTyVar n _ k) = (n,k) hsLTyVarName :: LHsTyVarBndr name -> name hsLTyVarName = hsTyVarName . unLoc hsTyVarNames :: [HsTyVarBndr name] -> [name] hsTyVarNames tvs = map hsTyVarName tvs hsLTyVarNames :: [LHsTyVarBndr name] -> [name] hsLTyVarNames = map hsLTyVarName hsLTyVarLocName :: LHsTyVarBndr name -> Located name hsLTyVarLocName = fmap hsTyVarName hsLTyVarLocNames :: [LHsTyVarBndr name] -> [Located name] hsLTyVarLocNames = map hsLTyVarLocName replaceTyVarName :: (Monad m) => HsTyVarBndr name1 -> name2 -- new type name -> (LHsKind name1 -> m (LHsKind name2)) -- kind renaming -> m (HsTyVarBndr name2) replaceTyVarName (UserTyVar _ k) n' _ = return $ UserTyVar n' k replaceTyVarName (KindedTyVar _ k tck) n' rn = do k' <- rn k return $ KindedTyVar n' k' tck replaceLTyVarName :: (Monad m) => LHsTyVarBndr name1 -> name2 -> (LHsKind name1 -> m (LHsKind name2)) -> m (LHsTyVarBndr name2) replaceLTyVarName (L loc n1) n2 rn = replaceTyVarName n1 n2 rn >>= return . L loc \end{code} \begin{code} splitHsAppTys :: LHsType n -> [LHsType n] -> (LHsType n, [LHsType n]) splitHsAppTys (L _ (HsAppTy f a)) as = splitHsAppTys f (a:as) splitHsAppTys f as = (f,as) mkHsAppTys :: OutputableBndr n => LHsType n -> [LHsType n] -> HsType n mkHsAppTys fun_ty [] = pprPanic "mkHsAppTys" (ppr fun_ty) mkHsAppTys fun_ty (arg_ty:arg_tys) = foldl mk_app (HsAppTy fun_ty arg_ty) arg_tys where mk_app fun arg = HsAppTy (noLoc fun) arg -- Add noLocs for inner nodes of the application; -- they are never used splitHsInstDeclTy_maybe :: HsType name -> Maybe ([LHsTyVarBndr name], HsContext name, name, [LHsType name]) splitHsInstDeclTy_maybe ty = fmap (\(tvs, cxt, L _ n, tys) -> (tvs, cxt, n, tys)) $ splitLHsInstDeclTy_maybe (noLoc ty) splitLHsInstDeclTy_maybe :: LHsType name -> Maybe ([LHsTyVarBndr name], HsContext name, Located name, [LHsType name]) -- Split up an instance decl type, returning the pieces splitLHsInstDeclTy_maybe inst_ty = do let (tvs, cxt, ty) = splitLHsForAllTy inst_ty (cls, tys) <- splitLHsClassTy_maybe ty return (tvs, cxt, cls, tys) splitHsForAllTy :: HsType name -> ([LHsTyVarBndr name], HsContext name, HsType name) splitHsForAllTy ty = case splitLHsForAllTy (noLoc ty) of (tvs, cxt, L _ ty) -> (tvs, cxt, ty) splitLHsForAllTy :: LHsType name -> ([LHsTyVarBndr name], HsContext name, LHsType name) splitLHsForAllTy poly_ty = case unLoc poly_ty of HsParTy ty -> splitLHsForAllTy ty HsForAllTy _ tvs cxt ty -> (tvs, unLoc cxt, ty) _ -> ([], [], poly_ty) -- The type vars should have been computed by now, even if they were implicit splitHsClassTy_maybe :: HsType name -> Maybe (name, [LHsType name]) splitHsClassTy_maybe ty = fmap (\(L _ n, tys) -> (n, tys)) $ splitLHsClassTy_maybe (noLoc ty) splitLHsClassTy_maybe :: LHsType name -> Maybe (Located name, [LHsType name]) --- Watch out.. in ...deriving( Show )... we use this on --- the list of partially applied predicates in the deriving, --- so there can be zero args. -- In TcDeriv we also use this to figure out what data type is being -- mentioned in a deriving (Generic (Foo bar baz)) declaration (i.e. "Foo"). splitLHsClassTy_maybe ty = checkl ty [] where checkl (L l ty) args = case ty of HsTyVar t -> Just (L l t, args) HsAppTy l r -> checkl l (r:args) HsOpTy l (_, tc) r -> checkl (fmap HsTyVar tc) (l:r:args) HsParTy t -> checkl t args HsKindSig ty _ -> checkl ty args _ -> Nothing -- Splits HsType into the (init, last) parts -- Breaks up any parens in the result type: -- splitHsFunType (a -> (b -> c)) = ([a,b], c) splitHsFunType :: LHsType name -> ([LHsType name], LHsType name) splitHsFunType (L _ (HsFunTy x y)) = (x:args, res) where (args, res) = splitHsFunType y splitHsFunType (L _ (HsParTy ty)) = splitHsFunType ty splitHsFunType other = ([], other) \end{code} %************************************************************************ %* * \subsection{Pretty printing} %* * %************************************************************************ \begin{code} instance (OutputableBndr name) => Outputable (HsType name) where ppr ty = pprHsType ty instance (OutputableBndr name) => Outputable (HsTyVarBndr name) where ppr (UserTyVar name _) = ppr name ppr (KindedTyVar name kind _) = parens $ hsep [ppr name, dcolon, ppr kind] pprHsForAll :: OutputableBndr name => HsExplicitFlag -> [LHsTyVarBndr name] -> LHsContext name -> SDoc pprHsForAll exp tvs cxt | show_forall = forall_part <+> pprHsContext (unLoc cxt) | otherwise = pprHsContext (unLoc cxt) where show_forall = opt_PprStyle_Debug || (not (null tvs) && is_explicit) is_explicit = case exp of {Explicit -> True; Implicit -> False} forall_part = ptext (sLit "forall") <+> interppSP tvs <> dot pprHsContext :: (OutputableBndr name) => HsContext name -> SDoc pprHsContext [] = empty pprHsContext [L _ pred] = ppr pred <+> darrow pprHsContext cxt = ppr_hs_context cxt <+> darrow ppr_hs_context :: (OutputableBndr name) => HsContext name -> SDoc ppr_hs_context [] = empty ppr_hs_context cxt = parens (interpp'SP cxt) pprConDeclFields :: OutputableBndr name => [ConDeclField name] -> SDoc pprConDeclFields fields = braces (sep (punctuate comma (map ppr_fld fields))) where ppr_fld (ConDeclField { cd_fld_name = n, cd_fld_type = ty, cd_fld_doc = doc }) = ppr n <+> dcolon <+> ppr ty <+> ppr_mbDoc doc \end{code} Note [Printing KindedTyVars] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Trac #3830 reminded me that we should really only print the kind signature on a KindedTyVar if the kind signature was put there by the programmer. During kind inference GHC now adds a PostTcKind to UserTyVars, rather than converting to KindedTyVars as before. (As it happens, the message in #3830 comes out a different way now, and the problem doesn't show up; but having the flag on a KindedTyVar seems like the Right Thing anyway.) \begin{code} pREC_TOP, pREC_FUN, pREC_OP, pREC_CON :: Int pREC_TOP = 0 -- type in ParseIface.y pREC_FUN = 1 -- btype in ParseIface.y -- Used for LH arg of (->) pREC_OP = 2 -- Used for arg of any infix operator -- (we don't keep their fixities around) pREC_CON = 3 -- Used for arg of type applicn: -- always parenthesise unless atomic maybeParen :: Int -- Precedence of context -> Int -- Precedence of top-level operator -> SDoc -> SDoc -- Wrap in parens if (ctxt >= op) maybeParen ctxt_prec op_prec p | ctxt_prec >= op_prec = parens p | otherwise = p -- printing works more-or-less as for Types pprHsType, pprParendHsType :: (OutputableBndr name) => HsType name -> SDoc pprHsType ty = getPprStyle $ \sty -> ppr_mono_ty pREC_TOP (prepare sty ty) pprParendHsType ty = ppr_mono_ty pREC_CON ty -- Before printing a type -- (a) Remove outermost HsParTy parens -- (b) Drop top-level for-all type variables in user style -- since they are implicit in Haskell prepare :: PprStyle -> HsType name -> HsType name prepare sty (HsParTy ty) = prepare sty (unLoc ty) prepare _ ty = ty ppr_mono_lty :: (OutputableBndr name) => Int -> LHsType name -> SDoc ppr_mono_lty ctxt_prec ty = ppr_mono_ty ctxt_prec (unLoc ty) ppr_mono_ty :: (OutputableBndr name) => Int -> HsType name -> SDoc ppr_mono_ty ctxt_prec (HsForAllTy exp tvs ctxt ty) = maybeParen ctxt_prec pREC_FUN $ sep [pprHsForAll exp tvs ctxt, ppr_mono_lty pREC_TOP ty] ppr_mono_ty _ (HsBangTy b ty) = ppr b <> ppr ty ppr_mono_ty _ (HsQuasiQuoteTy qq) = ppr qq ppr_mono_ty _ (HsRecTy flds) = pprConDeclFields flds ppr_mono_ty _ (HsTyVar name) = ppr name ppr_mono_ty prec (HsFunTy ty1 ty2) = ppr_fun_ty prec ty1 ty2 ppr_mono_ty _ (HsTupleTy con tys) = tupleParens std_con (interpp'SP tys) where std_con = case con of HsUnboxedTuple -> UnboxedTuple _ -> BoxedTuple ppr_mono_ty _ (HsKindSig ty kind) = parens (ppr_mono_lty pREC_TOP ty <+> dcolon <+> ppr kind) ppr_mono_ty _ (HsListTy ty) = brackets (ppr_mono_lty pREC_TOP ty) ppr_mono_ty _ (HsPArrTy ty) = pabrackets (ppr_mono_lty pREC_TOP ty) ppr_mono_ty prec (HsIParamTy n ty) = maybeParen prec pREC_FUN (ppr n <+> dcolon <+> ppr_mono_lty pREC_TOP ty) ppr_mono_ty _ (HsSpliceTy s _ _) = pprSplice s ppr_mono_ty _ (HsCoreTy ty) = ppr ty ppr_mono_ty _ (HsExplicitListTy _ tys) = quote $ brackets (interpp'SP tys) ppr_mono_ty _ (HsExplicitTupleTy _ tys) = quote $ parens (interpp'SP tys) ppr_mono_ty ctxt_prec (HsWrapTy (WpKiApps _kis) ty) = ppr_mono_ty ctxt_prec ty -- We are not printing kind applications. If we wanted to do so, we should do -- something like this: {- = go ctxt_prec kis ty where go ctxt_prec [] ty = ppr_mono_ty ctxt_prec ty go ctxt_prec (ki:kis) ty = maybeParen ctxt_prec pREC_CON $ hsep [ go pREC_FUN kis ty , ptext (sLit "@") <> pprParendKind ki ] -} ppr_mono_ty ctxt_prec (HsEqTy ty1 ty2) = maybeParen ctxt_prec pREC_OP $ ppr_mono_lty pREC_OP ty1 <+> char '~' <+> ppr_mono_lty pREC_OP ty2 ppr_mono_ty ctxt_prec (HsAppTy fun_ty arg_ty) = maybeParen ctxt_prec pREC_CON $ hsep [ppr_mono_lty pREC_FUN fun_ty, ppr_mono_lty pREC_CON arg_ty] ppr_mono_ty ctxt_prec (HsOpTy ty1 (wrapper, op) ty2) = maybeParen ctxt_prec pREC_OP $ ppr_mono_lty pREC_OP ty1 <+> ppr_mono_ty pREC_CON (HsWrapTy wrapper (HsTyVar (unLoc op))) <+> ppr_mono_lty pREC_OP ty2 ppr_mono_ty _ (HsParTy ty) = parens (ppr_mono_lty pREC_TOP ty) -- Put the parens in where the user did -- But we still use the precedence stuff to add parens because -- toHsType doesn't put in any HsParTys, so we may still need them ppr_mono_ty ctxt_prec (HsDocTy ty doc) = maybeParen ctxt_prec pREC_OP $ ppr_mono_lty pREC_OP ty <+> ppr (unLoc doc) -- we pretty print Haddock comments on types as if they were -- postfix operators -------------------------- ppr_fun_ty :: (OutputableBndr name) => Int -> LHsType name -> LHsType name -> SDoc ppr_fun_ty ctxt_prec ty1 ty2 = let p1 = ppr_mono_lty pREC_FUN ty1 p2 = ppr_mono_lty pREC_TOP ty2 in maybeParen ctxt_prec pREC_FUN $ sep [p1, ptext (sLit "->") <+> p2] -------------------------- pabrackets :: SDoc -> SDoc pabrackets p = ptext (sLit "[:") <> p <> ptext (sLit ":]") \end{code}