% % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % \section[RnSource]{Main pass of renamer} \begin{code} {-# OPTIONS -fno-warn-tabs #-} -- The above warning supression flag is a temporary kludge. -- While working on this module you are encouraged to remove it and -- detab the module (please do the detabbing in a separate patch). See -- http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces -- for details module RnSource ( rnSrcDecls, addTcgDUs, rnTyClDecls, findSplice ) where #include "HsVersions.h" import {-# SOURCE #-} RnExpr( rnLExpr ) #ifdef GHCI import {-# SOURCE #-} TcSplice ( runQuasiQuoteDecl ) #endif /* GHCI */ import HsSyn import RdrName import RdrHsSyn ( extractHsRhoRdrTyVars ) import RnHsSyn import RnTypes import RnBinds import RnEnv import RnNames import RnHsDoc ( rnHsDoc, rnMbLHsDoc ) import TcRnMonad import ForeignCall ( CCallTarget(..) ) import Module import HscTypes ( Warnings(..), plusWarns ) import Class ( FunDep ) import Name import NameSet import NameEnv import Avail import Outputable import Bag import FastString import Util ( filterOut ) import SrcLoc import DynFlags import HscTypes ( HscEnv, hsc_dflags ) import ListSetOps ( findDupsEq ) import Digraph ( SCC, flattenSCC, stronglyConnCompFromEdgedVertices ) import Control.Monad import Maybes( orElse ) import Data.List( partition ) import Data.Maybe( isNothing ) \end{code} @rnSourceDecl@ `renames' declarations. It simultaneously performs dependency analysis and precedence parsing. It also does the following error checks: \begin{enumerate} \item Checks that tyvars are used properly. This includes checking for undefined tyvars, and tyvars in contexts that are ambiguous. (Some of this checking has now been moved to module @TcMonoType@, since we don't have functional dependency information at this point.) \item Checks that all variable occurences are defined. \item Checks the @(..)@ etc constraints in the export list. \end{enumerate} \begin{code} -- Brings the binders of the group into scope in the appropriate places; -- does NOT assume that anything is in scope already rnSrcDecls :: [Name] -> HsGroup RdrName -> RnM (TcGblEnv, HsGroup Name) -- Rename a HsGroup; used for normal source files *and* hs-boot files rnSrcDecls extra_deps group@(HsGroup { hs_valds = val_decls, hs_tyclds = tycl_decls, hs_instds = inst_decls, hs_derivds = deriv_decls, hs_fixds = fix_decls, hs_warnds = warn_decls, hs_annds = ann_decls, hs_fords = foreign_decls, hs_defds = default_decls, hs_ruleds = rule_decls, hs_vects = vect_decls, hs_docs = docs }) = do { -- (A) Process the fixity declarations, creating a mapping from -- FastStrings to FixItems. -- Also checks for duplcates. local_fix_env <- makeMiniFixityEnv fix_decls ; -- (B) Bring top level binders (and their fixities) into scope, -- *except* for the value bindings, which get brought in below. -- However *do* include class ops, data constructors -- And for hs-boot files *do* include the value signatures (tc_envs, tc_bndrs) <- getLocalNonValBinders local_fix_env group ; setEnvs tc_envs $ do { failIfErrsM ; -- No point in continuing if (say) we have duplicate declarations -- (C) Extract the mapping from data constructors to field names and -- extend the record field env. -- This depends on the data constructors and field names being in -- scope from (B) above inNewEnv (extendRecordFieldEnv tycl_decls inst_decls) $ \ _ -> do { -- (D) Rename the left-hand sides of the value bindings. -- This depends on everything from (B) being in scope, -- and on (C) for resolving record wild cards. -- It uses the fixity env from (A) to bind fixities for view patterns. new_lhs <- rnTopBindsLHS local_fix_env val_decls ; -- bind the LHSes (and their fixities) in the global rdr environment let { val_binders = collectHsValBinders new_lhs ; all_bndr_set = addListToNameSet tc_bndrs val_binders ; val_avails = map Avail val_binders } ; (tcg_env, tcl_env) <- extendGlobalRdrEnvRn val_avails local_fix_env ; traceRn (ptext (sLit "Val binders") <+> (ppr val_binders)) ; setEnvs (tcg_env, tcl_env) $ do { -- Now everything is in scope, as the remaining renaming assumes. -- (E) Rename type and class decls -- (note that value LHSes need to be in scope for default methods) -- -- You might think that we could build proper def/use information -- for type and class declarations, but they can be involved -- in mutual recursion across modules, and we only do the SCC -- analysis for them in the type checker. -- So we content ourselves with gathering uses only; that -- means we'll only report a declaration as unused if it isn't -- mentioned at all. Ah well. traceRn (text "Start rnTyClDecls") ; (rn_tycl_decls, src_fvs1) <- rnTyClDecls extra_deps tycl_decls ; -- (F) Rename Value declarations right-hand sides traceRn (text "Start rnmono") ; (rn_val_decls, bind_dus) <- rnTopBindsRHS new_lhs ; traceRn (text "finish rnmono" <+> ppr rn_val_decls) ; -- (G) Rename Fixity and deprecations -- Rename fixity declarations and error if we try to -- fix something from another module (duplicates were checked in (A)) rn_fix_decls <- rnSrcFixityDecls all_bndr_set fix_decls ; -- Rename deprec decls; -- check for duplicates and ensure that deprecated things are defined locally -- at the moment, we don't keep these around past renaming rn_warns <- rnSrcWarnDecls all_bndr_set warn_decls ; -- (H) Rename Everything else (rn_inst_decls, src_fvs2) <- rnList rnSrcInstDecl inst_decls ; (rn_rule_decls, src_fvs3) <- setXOptM Opt_ScopedTypeVariables $ rnList rnHsRuleDecl rule_decls ; -- Inside RULES, scoped type variables are on (rn_vect_decls, src_fvs4) <- rnList rnHsVectDecl vect_decls ; (rn_foreign_decls, src_fvs5) <- rnList rnHsForeignDecl foreign_decls ; (rn_ann_decls, src_fvs6) <- rnList rnAnnDecl ann_decls ; (rn_default_decls, src_fvs7) <- rnList rnDefaultDecl default_decls ; (rn_deriv_decls, src_fvs8) <- rnList rnSrcDerivDecl deriv_decls ; -- Haddock docs; no free vars rn_docs <- mapM (wrapLocM rnDocDecl) docs ; last_tcg_env <- getGblEnv ; -- (I) Compute the results and return let {rn_group = HsGroup { hs_valds = rn_val_decls, hs_tyclds = rn_tycl_decls, hs_instds = rn_inst_decls, hs_derivds = rn_deriv_decls, hs_fixds = rn_fix_decls, hs_warnds = [], -- warns are returned in the tcg_env -- (see below) not in the HsGroup hs_fords = rn_foreign_decls, hs_annds = rn_ann_decls, hs_defds = rn_default_decls, hs_ruleds = rn_rule_decls, hs_vects = rn_vect_decls, hs_docs = rn_docs } ; tycl_bndrs = hsTyClDeclsBinders rn_tycl_decls rn_inst_decls ; ford_bndrs = hsForeignDeclsBinders rn_foreign_decls ; other_def = (Just (mkNameSet tycl_bndrs `unionNameSets` mkNameSet ford_bndrs), emptyNameSet) ; other_fvs = plusFVs [src_fvs1, src_fvs2, src_fvs3, src_fvs4, src_fvs5, src_fvs6, src_fvs7, src_fvs8] ; -- It is tiresome to gather the binders from type and class decls src_dus = [other_def] `plusDU` bind_dus `plusDU` usesOnly other_fvs ; -- Instance decls may have occurrences of things bound in bind_dus -- so we must put other_fvs last final_tcg_env = let tcg_env' = (last_tcg_env `addTcgDUs` src_dus) in -- we return the deprecs in the env, not in the HsGroup above tcg_env' { tcg_warns = tcg_warns tcg_env' `plusWarns` rn_warns }; } ; traceRn (text "finish rnSrc" <+> ppr rn_group) ; traceRn (text "finish Dus" <+> ppr src_dus ) ; return (final_tcg_env, rn_group) }}}} -- some utils because we do this a bunch above -- compute and install the new env inNewEnv :: TcM TcGblEnv -> (TcGblEnv -> TcM a) -> TcM a inNewEnv env cont = do e <- env setGblEnv e $ cont e addTcgDUs :: TcGblEnv -> DefUses -> TcGblEnv -- This function could be defined lower down in the module hierarchy, -- but there doesn't seem anywhere very logical to put it. addTcgDUs tcg_env dus = tcg_env { tcg_dus = tcg_dus tcg_env `plusDU` dus } rnList :: (a -> RnM (b, FreeVars)) -> [Located a] -> RnM ([Located b], FreeVars) rnList f xs = mapFvRn (wrapLocFstM f) xs \end{code} %********************************************************* %* * HsDoc stuff %* * %********************************************************* \begin{code} rnDocDecl :: DocDecl -> RnM DocDecl rnDocDecl (DocCommentNext doc) = do rn_doc <- rnHsDoc doc return (DocCommentNext rn_doc) rnDocDecl (DocCommentPrev doc) = do rn_doc <- rnHsDoc doc return (DocCommentPrev rn_doc) rnDocDecl (DocCommentNamed str doc) = do rn_doc <- rnHsDoc doc return (DocCommentNamed str rn_doc) rnDocDecl (DocGroup lev doc) = do rn_doc <- rnHsDoc doc return (DocGroup lev rn_doc) \end{code} %********************************************************* %* * Source-code fixity declarations %* * %********************************************************* \begin{code} rnSrcFixityDecls :: NameSet -> [LFixitySig RdrName] -> RnM [LFixitySig Name] -- Rename the fixity decls, so we can put -- the renamed decls in the renamed syntax tree -- Errors if the thing being fixed is not defined locally. -- -- The returned FixitySigs are not actually used for anything, -- except perhaps the GHCi API rnSrcFixityDecls bndr_set fix_decls = do fix_decls <- mapM rn_decl fix_decls return (concat fix_decls) where rn_decl :: LFixitySig RdrName -> RnM [LFixitySig Name] -- GHC extension: look up both the tycon and data con -- for con-like things; hence returning a list -- If neither are in scope, report an error; otherwise -- return a fixity sig for each (slightly odd) rn_decl (L loc (FixitySig (L name_loc rdr_name) fixity)) = setSrcSpan name_loc $ -- this lookup will fail if the definition isn't local do names <- lookupLocalDataTcNames bndr_set what rdr_name return [ L loc (FixitySig (L name_loc name) fixity) | name <- names ] what = ptext (sLit "fixity signature") \end{code} %********************************************************* %* * Source-code deprecations declarations %* * %********************************************************* Check that the deprecated names are defined, are defined locally, and that there are no duplicate deprecations. It's only imported deprecations, dealt with in RnIfaces, that we gather them together. \begin{code} -- checks that the deprecations are defined locally, and that there are no duplicates rnSrcWarnDecls :: NameSet -> [LWarnDecl RdrName] -> RnM Warnings rnSrcWarnDecls _ [] = return NoWarnings rnSrcWarnDecls bndr_set decls = do { -- check for duplicates ; mapM_ (\ dups -> let (L loc rdr:lrdr':_) = dups in addErrAt loc (dupWarnDecl lrdr' rdr)) warn_rdr_dups ; pairs_s <- mapM (addLocM rn_deprec) decls ; return (WarnSome ((concat pairs_s))) } where rn_deprec (Warning rdr_name txt) -- ensures that the names are defined locally = do { names <- lookupLocalDataTcNames bndr_set what rdr_name ; return [(nameOccName name, txt) | name <- names] } what = ptext (sLit "deprecation") warn_rdr_dups = findDupRdrNames (map (\ (L loc (Warning rdr_name _)) -> L loc rdr_name) decls) findDupRdrNames :: [Located RdrName] -> [[Located RdrName]] findDupRdrNames = findDupsEq (\ x -> \ y -> rdrNameOcc (unLoc x) == rdrNameOcc (unLoc y)) -- look for duplicates among the OccNames; -- we check that the names are defined above -- invt: the lists returned by findDupsEq always have at least two elements dupWarnDecl :: Located RdrName -> RdrName -> SDoc -- Located RdrName -> DeprecDecl RdrName -> SDoc dupWarnDecl (L loc _) rdr_name = vcat [ptext (sLit "Multiple warning declarations for") <+> quotes (ppr rdr_name), ptext (sLit "also at ") <+> ppr loc] \end{code} %********************************************************* %* * \subsection{Annotation declarations} %* * %********************************************************* \begin{code} rnAnnDecl :: AnnDecl RdrName -> RnM (AnnDecl Name, FreeVars) rnAnnDecl (HsAnnotation provenance expr) = do (provenance', provenance_fvs) <- rnAnnProvenance provenance (expr', expr_fvs) <- rnLExpr expr return (HsAnnotation provenance' expr', provenance_fvs `plusFV` expr_fvs) rnAnnProvenance :: AnnProvenance RdrName -> RnM (AnnProvenance Name, FreeVars) rnAnnProvenance provenance = do provenance' <- modifyAnnProvenanceNameM lookupTopBndrRn provenance return (provenance', maybe emptyFVs unitFV (annProvenanceName_maybe provenance')) \end{code} %********************************************************* %* * \subsection{Default declarations} %* * %********************************************************* \begin{code} rnDefaultDecl :: DefaultDecl RdrName -> RnM (DefaultDecl Name, FreeVars) rnDefaultDecl (DefaultDecl tys) = do { (tys', fvs) <- mapFvRn (rnHsTypeFVs doc_str) tys ; return (DefaultDecl tys', fvs) } where doc_str = DefaultDeclCtx \end{code} %********************************************************* %* * \subsection{Foreign declarations} %* * %********************************************************* \begin{code} rnHsForeignDecl :: ForeignDecl RdrName -> RnM (ForeignDecl Name, FreeVars) rnHsForeignDecl (ForeignImport name ty _ spec) = do { topEnv :: HscEnv <- getTopEnv ; name' <- lookupLocatedTopBndrRn name ; (ty', fvs) <- rnHsTypeFVs (ForeignDeclCtx name) ty -- Mark any PackageTarget style imports as coming from the current package ; let packageId = thisPackage $ hsc_dflags topEnv spec' = patchForeignImport packageId spec ; return (ForeignImport name' ty' noForeignImportCoercionYet spec', fvs) } rnHsForeignDecl (ForeignExport name ty _ spec) = do { name' <- lookupLocatedOccRn name ; (ty', fvs) <- rnHsTypeFVs (ForeignDeclCtx name) ty ; return (ForeignExport name' ty' noForeignExportCoercionYet spec, fvs `addOneFV` unLoc name') } -- NB: a foreign export is an *occurrence site* for name, so -- we add it to the free-variable list. It might, for example, -- be imported from another module -- | For Windows DLLs we need to know what packages imported symbols are from -- to generate correct calls. Imported symbols are tagged with the current -- package, so if they get inlined across a package boundry we'll still -- know where they're from. -- patchForeignImport :: PackageId -> ForeignImport -> ForeignImport patchForeignImport packageId (CImport cconv safety fs spec) = CImport cconv safety fs (patchCImportSpec packageId spec) patchCImportSpec :: PackageId -> CImportSpec -> CImportSpec patchCImportSpec packageId spec = case spec of CFunction callTarget -> CFunction $ patchCCallTarget packageId callTarget _ -> spec patchCCallTarget :: PackageId -> CCallTarget -> CCallTarget patchCCallTarget packageId callTarget = case callTarget of StaticTarget label Nothing -> StaticTarget label (Just packageId) _ -> callTarget \end{code} %********************************************************* %* * \subsection{Instance declarations} %* * %********************************************************* \begin{code} rnSrcInstDecl :: InstDecl RdrName -> RnM (InstDecl Name, FreeVars) rnSrcInstDecl (InstDecl inst_ty mbinds uprags ats) -- Used for both source and interface file decls = do { inst_ty' <- rnLHsInstType (text "In an instance declaration") inst_ty ; let Just (inst_tyvars, _, L _ cls,_) = splitLHsInstDeclTy_maybe inst_ty' -- Rename the bindings -- The typechecker (not the renamer) checks that all -- the bindings are for the right class -- (Slightly strangely) when scoped type variables are on, the -- forall-d tyvars scope over the method bindings too ; (mbinds', meth_fvs) <- extendTyVarEnvForMethodBinds inst_tyvars $ rnMethodBinds cls (\_ -> []) -- No scoped tyvars mbinds -- Rename the associated types -- NB: We allow duplicate associated-type decls; -- See Note [Associated type instances] in TcInstDcls ; (ats', at_fvs) <- extendTyVarEnvFVRn (map hsLTyVarName inst_tyvars) $ rnATInsts cls ats -- Rename the prags and signatures. -- Note that the type variables are not in scope here, -- so that instance Eq a => Eq (T a) where -- {-# SPECIALISE instance Eq a => Eq (T [a]) #-} -- works OK. -- -- But the (unqualified) method names are in scope ; let binders = collectHsBindsBinders mbinds' ; uprags' <- bindLocalNames binders $ renameSigs (InstDeclCtxt cls) uprags ; return (InstDecl inst_ty' mbinds' uprags' ats', meth_fvs `plusFV` at_fvs `plusFV` hsSigsFVs uprags' `plusFV` extractHsTyNames inst_ty') } -- We return the renamed associated data type declarations so -- that they can be entered into the list of type declarations -- for the binding group, but we also keep a copy in the instance. -- The latter is needed for well-formedness checks in the type -- checker (eg, to ensure that all ATs of the instance actually -- receive a declaration). -- NB: Even the copies in the instance declaration carry copies of -- the instance context after renaming. This is a bit -- strange, but should not matter (and it would be more work -- to remove the context). \end{code} Renaming of the associated types in instances. \begin{code} rnATInsts :: Name -> [LTyClDecl RdrName] -> RnM ([LTyClDecl Name], FreeVars) rnATInsts cls atDecls = rnList rnATInst atDecls where rnATInst tydecl@TyData {} = rnTyClDecl (Just cls) tydecl rnATInst tydecl@TySynonym {} = rnTyClDecl (Just cls) tydecl rnATInst tydecl = pprPanic "RnSource.rnATInsts: invalid AT instance" (ppr (tcdName tydecl)) \end{code} For the method bindings in class and instance decls, we extend the type variable environment iff -fglasgow-exts \begin{code} extendTyVarEnvForMethodBinds :: [LHsTyVarBndr Name] -> RnM (Bag (LHsBind Name), FreeVars) -> RnM (Bag (LHsBind Name), FreeVars) extendTyVarEnvForMethodBinds tyvars thing_inside = do { scoped_tvs <- xoptM Opt_ScopedTypeVariables ; if scoped_tvs then extendTyVarEnvFVRn (map hsLTyVarName tyvars) thing_inside else thing_inside } \end{code} %********************************************************* %* * \subsection{Stand-alone deriving declarations} %* * %********************************************************* \begin{code} rnSrcDerivDecl :: DerivDecl RdrName -> RnM (DerivDecl Name, FreeVars) rnSrcDerivDecl (DerivDecl ty) = do { standalone_deriv_ok <- xoptM Opt_StandaloneDeriving ; unless standalone_deriv_ok (addErr standaloneDerivErr) ; ty' <- rnLHsInstType (text "In a deriving declaration") ty ; let fvs = extractHsTyNames ty' ; return (DerivDecl ty', fvs) } standaloneDerivErr :: SDoc standaloneDerivErr = hang (ptext (sLit "Illegal standalone deriving declaration")) 2 (ptext (sLit "Use -XStandaloneDeriving to enable this extension")) \end{code} %********************************************************* %* * \subsection{Rules} %* * %********************************************************* \begin{code} rnHsRuleDecl :: RuleDecl RdrName -> RnM (RuleDecl Name, FreeVars) rnHsRuleDecl (HsRule rule_name act vars lhs _fv_lhs rhs _fv_rhs) = bindPatSigTyVarsFV (collectRuleBndrSigTys vars) $ bindLocatedLocalsFV (map get_var vars) $ \ ids -> do { (vars', fv_vars) <- mapFvRn rn_var (vars `zip` ids) -- NB: The binders in a rule are always Ids -- We don't (yet) support type variables ; (lhs', fv_lhs') <- rnLExpr lhs ; (rhs', fv_rhs') <- rnLExpr rhs ; checkValidRule rule_name ids lhs' fv_lhs' ; return (HsRule rule_name act vars' lhs' fv_lhs' rhs' fv_rhs', fv_vars `plusFV` fv_lhs' `plusFV` fv_rhs') } where doc = RuleCtx rule_name get_var (RuleBndr v) = v get_var (RuleBndrSig v _) = v rn_var (RuleBndr (L loc _), id) = return (RuleBndr (L loc id), emptyFVs) rn_var (RuleBndrSig (L loc _) t, id) = do { (t', fvs) <- rnHsTypeFVs doc t ; return (RuleBndrSig (L loc id) t', fvs) } badRuleVar :: FastString -> Name -> SDoc badRuleVar name var = sep [ptext (sLit "Rule") <+> doubleQuotes (ftext name) <> colon, ptext (sLit "Forall'd variable") <+> quotes (ppr var) <+> ptext (sLit "does not appear on left hand side")] \end{code} Note [Rule LHS validity checking] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Check the shape of a transformation rule LHS. Currently we only allow LHSs of the form @(f e1 .. en)@, where @f@ is not one of the @forall@'d variables. We used restrict the form of the 'ei' to prevent you writing rules with LHSs with a complicated desugaring (and hence unlikely to match); (e.g. a case expression is not allowed: too elaborate.) But there are legitimate non-trivial args ei, like sections and lambdas. So it seems simmpler not to check at all, and that is why check_e is commented out. \begin{code} checkValidRule :: FastString -> [Name] -> LHsExpr Name -> NameSet -> RnM () checkValidRule rule_name ids lhs' fv_lhs' = do { -- Check for the form of the LHS case (validRuleLhs ids lhs') of Nothing -> return () Just bad -> failWithTc (badRuleLhsErr rule_name lhs' bad) -- Check that LHS vars are all bound ; let bad_vars = [var | var <- ids, not (var `elemNameSet` fv_lhs')] ; mapM_ (addErr . badRuleVar rule_name) bad_vars } validRuleLhs :: [Name] -> LHsExpr Name -> Maybe (HsExpr Name) -- Nothing => OK -- Just e => Not ok, and e is the offending expression validRuleLhs foralls lhs = checkl lhs where checkl (L _ e) = check e check (OpApp e1 op _ e2) = checkl op `mplus` checkl_e e1 `mplus` checkl_e e2 check (HsApp e1 e2) = checkl e1 `mplus` checkl_e e2 check (HsVar v) | v `notElem` foralls = Nothing check other = Just other -- Failure -- Check an argument checkl_e (L _ _e) = Nothing -- Was (check_e e); see Note [Rule LHS validity checking] {- Commented out; see Note [Rule LHS validity checking] above check_e (HsVar v) = Nothing check_e (HsPar e) = checkl_e e check_e (HsLit e) = Nothing check_e (HsOverLit e) = Nothing check_e (OpApp e1 op _ e2) = checkl_e e1 `mplus` checkl_e op `mplus` checkl_e e2 check_e (HsApp e1 e2) = checkl_e e1 `mplus` checkl_e e2 check_e (NegApp e _) = checkl_e e check_e (ExplicitList _ es) = checkl_es es check_e other = Just other -- Fails checkl_es es = foldr (mplus . checkl_e) Nothing es -} badRuleLhsErr :: FastString -> LHsExpr Name -> HsExpr Name -> SDoc badRuleLhsErr name lhs bad_e = sep [ptext (sLit "Rule") <+> ftext name <> colon, nest 4 (vcat [ptext (sLit "Illegal expression:") <+> ppr bad_e, ptext (sLit "in left-hand side:") <+> ppr lhs])] $$ ptext (sLit "LHS must be of form (f e1 .. en) where f is not forall'd") \end{code} %********************************************************* %* * \subsection{Vectorisation declarations} %* * %********************************************************* \begin{code} rnHsVectDecl :: VectDecl RdrName -> RnM (VectDecl Name, FreeVars) rnHsVectDecl (HsVect var Nothing) = do { var' <- lookupLocatedOccRn var ; return (HsVect var' Nothing, unitFV (unLoc var')) } -- FIXME: For the moment, the right-hand side is restricted to be a variable as we cannot properly -- typecheck a complex right-hand side without invoking 'vectType' from the vectoriser. rnHsVectDecl (HsVect var (Just rhs@(L _ (HsVar _)))) = do { var' <- lookupLocatedOccRn var ; (rhs', fv_rhs) <- rnLExpr rhs ; return (HsVect var' (Just rhs'), fv_rhs `addOneFV` unLoc var') } rnHsVectDecl (HsVect _var (Just _rhs)) = failWith $ vcat [ ptext (sLit "IMPLEMENTATION RESTRICTION: right-hand side of a VECTORISE pragma") , ptext (sLit "must be an identifier") ] rnHsVectDecl (HsNoVect var) = do { var' <- lookupLocatedTopBndrRn var -- only applies to local (not imported) names ; return (HsNoVect var', unitFV (unLoc var')) } rnHsVectDecl (HsVectTypeIn isScalar tycon Nothing) = do { tycon' <- lookupLocatedOccRn tycon ; return (HsVectTypeIn isScalar tycon' Nothing, unitFV (unLoc tycon')) } rnHsVectDecl (HsVectTypeIn isScalar tycon (Just rhs_tycon)) = do { tycon' <- lookupLocatedOccRn tycon ; rhs_tycon' <- lookupLocatedOccRn rhs_tycon ; return ( HsVectTypeIn isScalar tycon' (Just rhs_tycon') , mkFVs [unLoc tycon', unLoc rhs_tycon']) } rnHsVectDecl (HsVectTypeOut _ _ _) = panic "RnSource.rnHsVectDecl: Unexpected 'HsVectTypeOut'" rnHsVectDecl (HsVectClassIn cls) = do { cls' <- lookupLocatedOccRn cls ; return (HsVectClassIn cls', unitFV (unLoc cls')) } rnHsVectDecl (HsVectClassOut _) = panic "RnSource.rnHsVectDecl: Unexpected 'HsVectClassOut'" rnHsVectDecl (HsVectInstIn instTy) = do { instTy' <- rnLHsInstType (text "In a VECTORISE pragma") instTy ; return (HsVectInstIn instTy', extractHsTyNames instTy') } rnHsVectDecl (HsVectInstOut _) = panic "RnSource.rnHsVectDecl: Unexpected 'HsVectInstOut'" \end{code} %********************************************************* %* * \subsection{Type, class and iface sig declarations} %* * %********************************************************* @rnTyDecl@ uses the `global name function' to create a new type declaration in which local names have been replaced by their original names, reporting any unknown names. Renaming type variables is a pain. Because they now contain uniques, it is necessary to pass in an association list which maps a parsed tyvar to its @Name@ representation. In some cases (type signatures of values), it is even necessary to go over the type first in order to get the set of tyvars used by it, make an assoc list, and then go over it again to rename the tyvars! However, we can also do some scoping checks at the same time. Note [Extra dependencies from .hs-boot files] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider the following case: module A where import B data A1 = A1 B1 module B where import {-# SOURCE #-} A type DisguisedA1 = A1 data B1 = B1 DisguisedA1 We do not follow type synonyms when building the dependencies for each datatype, so we will not find out that B1 really depends on A1 (which means it depends on itself). To handle this problem, at the moment we add dependencies to everything that comes from an .hs-boot file. But we don't add those dependencies to everything. Imagine module B above had another datatype declaration: data B2 = B2 Int Even though B2 has a dependency (on Int), all its dependencies are from things that live on other packages. Since we don't have mutual dependencies across packages, it is safe not to add the dependencies on the .hs-boot stuff to B2. See also Note [Grouping of type and class declarations] in TcTyClsDecls. \begin{code} isInPackage :: PackageId -> Name -> Bool isInPackage pkgId nm = case nameModule_maybe nm of Nothing -> False Just m -> pkgId == modulePackageId m -- We use nameModule_maybe because we might be in a TH splice, in which case -- there is no module name. In that case we cannot have mutual dependencies, -- so it's fine to return False here. rnTyClDecls :: [Name] -> [[LTyClDecl RdrName]] -> RnM ([[LTyClDecl Name]], FreeVars) -- Rename the declarations and do depedency analysis on them rnTyClDecls extra_deps tycl_ds = do { ds_w_fvs <- mapM (wrapLocFstM (rnTyClDecl Nothing)) (concat tycl_ds) ; thisPkg <- fmap thisPackage getDOpts ; let (fam_insts, non_fam_insts) = partition (isFamInstDecl . unLoc . fst) ds_w_fvs -- Ignore family instances when doing this dependency analysis -- because they don't have a binder add_boot_deps :: FreeVars -> FreeVars -- See Note [Extra dependencies from .hs-boot files] add_boot_deps fvs | any (isInPackage thisPkg) (nameSetToList fvs) = fvs `plusFV` mkFVs extra_deps | otherwise = fvs ds_w_fvs' = map (\(ds, fvs) -> (ds, add_boot_deps fvs)) non_fam_insts sccs :: [SCC (LTyClDecl Name)] sccs = depAnalTyClDecls ds_w_fvs' all_fvs = foldr (plusFV . snd) emptyFVs ds_w_fvs ; return (map fst fam_insts : map flattenSCC sccs, all_fvs) } -- Just put the family-instance group first; -- it is treated separately anyway rnTyClDecl :: Maybe Name -- Just cls => this TyClDecl is nested -- inside an *instance decl* for cls -- used for associated types -> TyClDecl RdrName -> RnM (TyClDecl Name, FreeVars) rnTyClDecl _ (ForeignType {tcdLName = name, tcdExtName = ext_name}) = do { name' <- lookupLocatedTopBndrRn name ; return (ForeignType {tcdLName = name', tcdExtName = ext_name}, emptyFVs) } -- All flavours of type family declarations ("type family", "newtype family", -- and "data family"), both top level and (for an associated type) -- in a class decl rnTyClDecl mb_cls (TyFamily { tcdLName = tycon, tcdTyVars = tyvars , tcdFlavour = flav, tcdKind = kind }) = bindQTvs fmly_doc mb_cls tyvars $ \tyvars' -> do { tycon' <- lookupLocatedTopBndrRn tycon ; kind' <- rnLHsMaybeKind fmly_doc kind ; let fv_kind = maybe emptyFVs extractHsTyNames kind' fvs = extractHsTyVarBndrNames_s tyvars' fv_kind ; return ( TyFamily { tcdLName = tycon', tcdTyVars = tyvars' , tcdFlavour = flav, tcdKind = kind' } , fvs) } where fmly_doc = TyFamilyCtx tycon -- "data", "newtype", "data instance, and "newtype instance" declarations -- both top level and (for an associated type) in an instance decl rnTyClDecl mb_cls tydecl@TyData {tcdND = new_or_data, tcdCtxt = context, tcdLName = tycon, tcdTyVars = tyvars, tcdTyPats = typats, tcdCons = condecls, tcdKindSig = sig, tcdDerivs = derivs} = do { tycon' <- lookupTcdName mb_cls tydecl ; sig' <- rnLHsMaybeKind data_doc sig ; checkTc (h98_style || null (unLoc context)) (badGadtStupidTheta tycon) ; ((tyvars', context', typats', derivs'), stuff_fvs) <- bindQTvs data_doc mb_cls tyvars $ \ tyvars' -> do -- Checks for distinct tyvars { context' <- rnContext data_doc context ; (typats', fvs1) <- rnTyPats data_doc tycon' typats ; (derivs', fvs2) <- rn_derivs derivs ; let fvs = fvs1 `plusFV` fvs2 `plusFV` extractHsCtxtTyNames context' `plusFV` maybe emptyFVs extractHsTyNames sig' ; return ((tyvars', context', typats', derivs'), fvs) } -- For the constructor declarations, bring into scope the tyvars -- bound by the header, but *only* in the H98 case -- Reason: for GADTs, the type variables in the declaration -- do not scope over the constructor signatures -- data T a where { T1 :: forall b. b-> b } ; let tc_tvs_in_scope | h98_style = hsLTyVarNames tyvars' | otherwise = [] ; (condecls', con_fvs) <- bindLocalNamesFV tc_tvs_in_scope $ rnConDecls condecls -- No need to check for duplicate constructor decls -- since that is done by RnNames.extendGlobalRdrEnvRn ; return (TyData {tcdND = new_or_data, tcdCtxt = context', tcdLName = tycon', tcdTyVars = tyvars', tcdTyPats = typats', tcdKindSig = sig', tcdCons = condecls', tcdDerivs = derivs'}, con_fvs `plusFV` stuff_fvs) } where h98_style = case condecls of -- Note [Stupid theta] L _ (ConDecl { con_res = ResTyGADT {} }) : _ -> False _ -> True data_doc = TyDataCtx tycon rn_derivs Nothing = return (Nothing, emptyFVs) rn_derivs (Just ds) = do { ds' <- rnLHsTypes data_doc ds ; return (Just ds', extractHsTyNames_s ds') } -- "type" and "type instance" declarations rnTyClDecl mb_cls tydecl@(TySynonym { tcdTyVars = tyvars, tcdLName = name, tcdTyPats = typats, tcdSynRhs = ty}) = bindQTvs syn_doc mb_cls tyvars $ \ tyvars' -> do { -- Checks for distinct tyvars name' <- lookupTcdName mb_cls tydecl ; (typats',fvs1) <- rnTyPats syn_doc name' typats ; (ty', fvs2) <- rnHsTypeFVs syn_doc ty ; return (TySynonym { tcdLName = name', tcdTyVars = tyvars' , tcdTyPats = typats', tcdSynRhs = ty'} , extractHsTyVarBndrNames_s tyvars' (fvs1 `plusFV` fvs2)) } where syn_doc = TySynCtx name rnTyClDecl _ (ClassDecl {tcdCtxt = context, tcdLName = lcls, tcdTyVars = tyvars, tcdFDs = fds, tcdSigs = sigs, tcdMeths = mbinds, tcdATs = ats, tcdATDefs = at_defs, tcdDocs = docs}) = do { lcls' <- lookupLocatedTopBndrRn lcls ; let cls' = unLoc lcls' -- Tyvars scope over superclass context and method signatures ; ((tyvars', context', fds', ats', at_defs', sigs'), stuff_fvs) <- bindTyVarsFV cls_doc tyvars $ \ tyvars' -> do -- Checks for distinct tyvars { context' <- rnContext cls_doc context ; fds' <- rnFds (docOfHsDocContext cls_doc) fds ; let rn_at = rnTyClDecl (Just cls') ; (ats', fv_ats) <- mapAndUnzipM (wrapLocFstM rn_at) ats ; sigs' <- renameSigs (ClsDeclCtxt cls') sigs ; (at_defs', fv_at_defs) <- mapAndUnzipM (wrapLocFstM rn_at) at_defs ; let fvs = extractHsCtxtTyNames context' `plusFV` hsSigsFVs sigs' `plusFV` plusFVs fv_ats `plusFV` plusFVs fv_at_defs -- The fundeps have no free variables ; return ((tyvars', context', fds', ats', at_defs', sigs'), fvs) } -- No need to check for duplicate associated type decls -- since that is done by RnNames.extendGlobalRdrEnvRn -- Check the signatures -- First process the class op sigs (op_sigs), then the fixity sigs (non_op_sigs). ; let sig_rdr_names_w_locs = [op | L _ (TypeSig ops _) <- sigs, op <- ops] ; checkDupRdrNames sig_rdr_names_w_locs -- Typechecker is responsible for checking that we only -- give default-method bindings for things in this class. -- The renamer *could* check this for class decls, but can't -- for instance decls. -- The newLocals call is tiresome: given a generic class decl -- class C a where -- op :: a -> a -- op {| x+y |} (Inl a) = ... -- op {| x+y |} (Inr b) = ... -- op {| a*b |} (a*b) = ... -- we want to name both "x" tyvars with the same unique, so that they are -- easy to group together in the typechecker. ; (mbinds', meth_fvs) <- extendTyVarEnvForMethodBinds tyvars' $ -- No need to check for duplicate method signatures -- since that is done by RnNames.extendGlobalRdrEnvRn -- and the methods are already in scope rnMethodBinds cls' (mkSigTvFn sigs') mbinds -- Haddock docs ; docs' <- mapM (wrapLocM rnDocDecl) docs ; return (ClassDecl { tcdCtxt = context', tcdLName = lcls', tcdTyVars = tyvars', tcdFDs = fds', tcdSigs = sigs', tcdMeths = mbinds', tcdATs = ats', tcdATDefs = at_defs', tcdDocs = docs'}, extractHsTyVarBndrNames_s tyvars' (meth_fvs `plusFV` stuff_fvs)) } where cls_doc = ClassDeclCtx lcls bindQTvs :: HsDocContext -> Maybe Name -> [LHsTyVarBndr RdrName] -> ([LHsTyVarBndr Name] -> RnM (a, FreeVars)) -> RnM (a, FreeVars) bindQTvs doc mb_cls tyvars thing_inside | isNothing mb_cls -- Not associated = bindTyVarsFV doc tyvars thing_inside | otherwise -- Associated = do { let tv_rdr_names = map hsLTyVarLocName tyvars -- *All* the free vars of the family patterns -- Check for duplicated bindings -- This test is irrelevant for data/type *instances*, where the tyvars -- are the free tyvars of the patterns, and hence have no duplicates -- But it's needed for data/type *family* decls ; mapM_ dupBoundTyVar (findDupRdrNames tv_rdr_names) ; rdr_env <- getLocalRdrEnv ; tv_ns <- mapM (mk_tv_name rdr_env) tv_rdr_names ; tyvars' <- zipWithM (\old new -> replaceLTyVarName old new (rnLHsKind doc)) tyvars tv_ns ; (thing, fvs) <- bindLocalNamesFV tv_ns $ thing_inside tyvars' -- Check that the RHS of the decl mentions only type variables -- bound on the LHS. For example, this is not ok -- class C a b where -- type F a x :: * -- instance C (p,q) r where -- type F (p,q) x = (x, r) -- BAD: mentions 'r' -- c.f. Trac #5515 ; let bad_tvs = filterNameSet (isTvOcc . nameOccName) fvs ; unless (isEmptyNameSet bad_tvs) (badAssocRhs (nameSetToList bad_tvs)) ; return (thing, fvs) } where mk_tv_name :: LocalRdrEnv -> Located RdrName -> RnM Name mk_tv_name rdr_env (L l tv_rdr) = case lookupLocalRdrEnv rdr_env tv_rdr of Just n -> return n Nothing -> newLocalBndrRn (L l tv_rdr) badAssocRhs :: [Name] -> RnM () badAssocRhs ns = addErr (hang (ptext (sLit "The RHS of an associated type declaration mentions type variable") <> plural ns <+> pprWithCommas (quotes . ppr) ns) 2 (ptext (sLit "All such variables must be bound on the LHS"))) dupBoundTyVar :: [Located RdrName] -> RnM () dupBoundTyVar (L loc tv : _) = setSrcSpan loc $ addErr (ptext (sLit "Illegal repeated type variable") <+> quotes (ppr tv)) dupBoundTyVar [] = panic "dupBoundTyVar" badGadtStupidTheta :: Located RdrName -> SDoc badGadtStupidTheta _ = vcat [ptext (sLit "No context is allowed on a GADT-style data declaration"), ptext (sLit "(You can put a context on each contructor, though.)")] \end{code} Note [Stupid theta] ~~~~~~~~~~~~~~~~~~~ Trac #3850 complains about a regression wrt 6.10 for data Show a => T a There is no reason not to allow the stupid theta if there are no data constructors. It's still stupid, but does no harm, and I don't want to cause programs to break unnecessarily (notably HList). So if there are no data constructors we allow h98_style = True \begin{code} depAnalTyClDecls :: [(LTyClDecl Name, FreeVars)] -> [SCC (LTyClDecl Name)] -- See Note [Dependency analysis of type and class decls] depAnalTyClDecls ds_w_fvs = stronglyConnCompFromEdgedVertices edges where edges = [ (d, tcdName (unLoc d), map get_assoc (nameSetToList fvs)) | (d, fvs) <- ds_w_fvs ] get_assoc n = lookupNameEnv assoc_env n `orElse` n assoc_env = mkNameEnv assoc_env_list -- We also need to consider data constructor names since they may -- appear in types because of promotion. assoc_env_list = do (L _ d, _) <- ds_w_fvs case d of ClassDecl { tcdLName = L _ cls_name , tcdATs = ats } -> do L _ assoc_decl <- ats return (tcdName assoc_decl, cls_name) TyData { tcdLName = L _ data_name , tcdCons = cons } -> do L _ dc <- cons return (unLoc (con_name dc), data_name) _ -> [] \end{code} Note [Dependency analysis of type and class decls] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We need to do dependency analysis on type and class declarations else we get bad error messages. Consider data T f a = MkT f a data S f a = MkS f (T f a) This has a kind error, but the error message is better if you check T first, (fixing its kind) and *then* S. If you do kind inference together, you might get an error reported in S, which is jolly confusing. See Trac #4875 %********************************************************* %* * \subsection{Support code for type/data declarations} %* * %********************************************************* \begin{code} rnTyPats :: HsDocContext -> Located Name -> Maybe [LHsType RdrName] -> RnM (Maybe [LHsType Name], FreeVars) -- Although, we are processing type patterns here, all type variables will -- already be in scope (they are the same as in the 'tcdTyVars' field of the -- type declaration to which these patterns belong) rnTyPats _ _ Nothing = return (Nothing, emptyFVs) rnTyPats doc tc (Just typats) = do { typats' <- rnLHsTypes doc typats ; let fvs = addOneFV (extractHsTyNames_s typats') (unLoc tc) -- type instance => use, hence addOneFV ; return (Just typats', fvs) } rnConDecls :: [LConDecl RdrName] -> RnM ([LConDecl Name], FreeVars) rnConDecls condecls = do { condecls' <- mapM (wrapLocM rnConDecl) condecls ; return (condecls', plusFVs (map conDeclFVs condecls')) } rnConDecl :: ConDecl RdrName -> RnM (ConDecl Name) rnConDecl decl@(ConDecl { con_name = name, con_qvars = tvs , con_cxt = cxt, con_details = details , con_res = res_ty, con_doc = mb_doc , con_old_rec = old_rec, con_explicit = expl }) = do { addLocM checkConName name ; when old_rec (addWarn (deprecRecSyntax decl)) ; new_name <- lookupLocatedTopBndrRn name -- For H98 syntax, the tvs are the existential ones -- For GADT syntax, the tvs are all the quantified tyvars -- Hence the 'filter' in the ResTyH98 case only ; rdr_env <- getLocalRdrEnv ; let in_scope = (`elemLocalRdrEnv` rdr_env) . unLoc arg_tys = hsConDeclArgTys details mentioned_tvs = case res_ty of ResTyH98 -> filterOut in_scope (get_rdr_tvs arg_tys) ResTyGADT ty -> get_rdr_tvs (ty : arg_tys) -- With an Explicit forall, check for unused binders -- With Implicit, find the mentioned ones, and use them as binders ; new_tvs <- case expl of Implicit -> return (userHsTyVarBndrs mentioned_tvs) Explicit -> do { warnUnusedForAlls (docOfHsDocContext doc) tvs mentioned_tvs ; return tvs } ; mb_doc' <- rnMbLHsDoc mb_doc ; bindTyVarsRn doc new_tvs $ \new_tyvars -> do { new_context <- rnContext doc cxt ; new_details <- rnConDeclDetails doc details ; (new_details', new_res_ty) <- rnConResult doc new_details res_ty ; return (decl { con_name = new_name, con_qvars = new_tyvars, con_cxt = new_context , con_details = new_details', con_res = new_res_ty, con_doc = mb_doc' }) }} where doc = ConDeclCtx name get_rdr_tvs tys = extractHsRhoRdrTyVars cxt (noLoc (HsTupleTy HsBoxedTuple tys)) rnConResult :: HsDocContext -> HsConDetails (LHsType Name) [ConDeclField Name] -> ResType RdrName -> RnM (HsConDetails (LHsType Name) [ConDeclField Name], ResType Name) rnConResult _ details ResTyH98 = return (details, ResTyH98) rnConResult doc details (ResTyGADT ty) = do { ty' <- rnLHsType doc ty ; let (arg_tys, res_ty) = splitHsFunType ty' -- We can finally split it up, -- now the renamer has dealt with fixities -- See Note [Sorting out the result type] in RdrHsSyn details' = case details of RecCon {} -> details PrefixCon {} -> PrefixCon arg_tys InfixCon {} -> pprPanic "rnConResult" (ppr ty) -- See Note [Sorting out the result type] in RdrHsSyn ; when (not (null arg_tys) && case details of { RecCon {} -> True; _ -> False }) (addErr (badRecResTy (docOfHsDocContext doc))) ; return (details', ResTyGADT res_ty) } rnConDeclDetails :: HsDocContext -> HsConDetails (LHsType RdrName) [ConDeclField RdrName] -> RnM (HsConDetails (LHsType Name) [ConDeclField Name]) rnConDeclDetails doc (PrefixCon tys) = do { new_tys <- mapM (rnLHsType doc) tys ; return (PrefixCon new_tys) } rnConDeclDetails doc (InfixCon ty1 ty2) = do { new_ty1 <- rnLHsType doc ty1 ; new_ty2 <- rnLHsType doc ty2 ; return (InfixCon new_ty1 new_ty2) } rnConDeclDetails doc (RecCon fields) = do { new_fields <- rnConDeclFields doc fields -- No need to check for duplicate fields -- since that is done by RnNames.extendGlobalRdrEnvRn ; return (RecCon new_fields) } ------------------------------------------------- deprecRecSyntax :: ConDecl RdrName -> SDoc deprecRecSyntax decl = vcat [ ptext (sLit "Declaration of") <+> quotes (ppr (con_name decl)) <+> ptext (sLit "uses deprecated syntax") , ptext (sLit "Instead, use the form") , nest 2 (ppr decl) ] -- Pretty printer uses new form badRecResTy :: SDoc -> SDoc badRecResTy doc = ptext (sLit "Malformed constructor signature") $$ doc -- This data decl will parse OK -- data T = a Int -- treating "a" as the constructor. -- It is really hard to make the parser spot this malformation. -- So the renamer has to check that the constructor is legal -- -- We can get an operator as the constructor, even in the prefix form: -- data T = :% Int Int -- from interface files, which always print in prefix form checkConName :: RdrName -> TcRn () checkConName name = checkErr (isRdrDataCon name) (badDataCon name) badDataCon :: RdrName -> SDoc badDataCon name = hsep [ptext (sLit "Illegal data constructor name"), quotes (ppr name)] \end{code} %********************************************************* %* * \subsection{Support code for type/data declarations} %* * %********************************************************* Get the mapping from constructors to fields for this module. It's convenient to do this after the data type decls have been renamed \begin{code} extendRecordFieldEnv :: [[LTyClDecl RdrName]] -> [LInstDecl RdrName] -> TcM TcGblEnv extendRecordFieldEnv tycl_decls inst_decls = do { tcg_env <- getGblEnv ; field_env' <- foldrM get_con (tcg_field_env tcg_env) all_data_cons ; return (tcg_env { tcg_field_env = field_env' }) } where -- we want to lookup: -- (a) a datatype constructor -- (b) a record field -- knowing that they're from this module. -- lookupLocatedTopBndrRn does this, because it does a lookupGreLocalRn, -- which keeps only the local ones. lookup x = do { x' <- lookupLocatedTopBndrRn x ; return $ unLoc x'} all_data_cons :: [ConDecl RdrName] all_data_cons = [con | L _ (TyData { tcdCons = cons }) <- all_tycl_decls , L _ con <- cons ] all_tycl_decls = at_tycl_decls ++ concat tycl_decls at_tycl_decls = instDeclATs inst_decls -- Do not forget associated types! get_con (ConDecl { con_name = con, con_details = RecCon flds }) (RecFields env fld_set) = do { con' <- lookup con ; flds' <- mapM lookup (map cd_fld_name flds) ; let env' = extendNameEnv env con' flds' fld_set' = addListToNameSet fld_set flds' ; return $ (RecFields env' fld_set') } get_con _ env = return env \end{code} %********************************************************* %* * \subsection{Support code to rename types} %* * %********************************************************* \begin{code} rnFds :: SDoc -> [Located (FunDep RdrName)] -> RnM [Located (FunDep Name)] rnFds doc fds = mapM (wrapLocM rn_fds) fds where rn_fds (tys1, tys2) = do { tys1' <- rnHsTyVars doc tys1 ; tys2' <- rnHsTyVars doc tys2 ; return (tys1', tys2') } rnHsTyVars :: SDoc -> [RdrName] -> RnM [Name] rnHsTyVars doc tvs = mapM (rnHsTyVar doc) tvs rnHsTyVar :: SDoc -> RdrName -> RnM Name rnHsTyVar _doc tyvar = lookupOccRn tyvar \end{code} %********************************************************* %* * findSplice %* * %********************************************************* This code marches down the declarations, looking for the first Template Haskell splice. As it does so it a) groups the declarations into a HsGroup b) runs any top-level quasi-quotes \begin{code} findSplice :: [LHsDecl RdrName] -> RnM (HsGroup RdrName, Maybe (SpliceDecl RdrName, [LHsDecl RdrName])) findSplice ds = addl emptyRdrGroup ds addl :: HsGroup RdrName -> [LHsDecl RdrName] -> RnM (HsGroup RdrName, Maybe (SpliceDecl RdrName, [LHsDecl RdrName])) -- This stuff reverses the declarations (again) but it doesn't matter addl gp [] = return (gp, Nothing) addl gp (L l d : ds) = add gp l d ds add :: HsGroup RdrName -> SrcSpan -> HsDecl RdrName -> [LHsDecl RdrName] -> RnM (HsGroup RdrName, Maybe (SpliceDecl RdrName, [LHsDecl RdrName])) add gp loc (SpliceD splice@(SpliceDecl _ flag)) ds = do { -- We've found a top-level splice. If it is an *implicit* one -- (i.e. a naked top level expression) case flag of Explicit -> return () Implicit -> do { th_on <- xoptM Opt_TemplateHaskell ; unless th_on $ setSrcSpan loc $ failWith badImplicitSplice } ; return (gp, Just (splice, ds)) } where badImplicitSplice = ptext (sLit "Parse error: naked expression at top level") #ifndef GHCI add _ _ (QuasiQuoteD qq) _ = pprPanic "Can't do QuasiQuote declarations without GHCi" (ppr qq) #else add gp _ (QuasiQuoteD qq) ds -- Expand quasiquotes = do { ds' <- runQuasiQuoteDecl qq ; addl gp (ds' ++ ds) } #endif -- Class declarations: pull out the fixity signatures to the top add gp@(HsGroup {hs_tyclds = ts, hs_fixds = fs}) l (TyClD d) ds | isClassDecl d = let fsigs = [ L l f | L l (FixSig f) <- tcdSigs d ] in addl (gp { hs_tyclds = add_tycld (L l d) ts, hs_fixds = fsigs ++ fs}) ds | otherwise = addl (gp { hs_tyclds = add_tycld (L l d) ts }) ds -- Signatures: fixity sigs go a different place than all others add gp@(HsGroup {hs_fixds = ts}) l (SigD (FixSig f)) ds = addl (gp {hs_fixds = L l f : ts}) ds add gp@(HsGroup {hs_valds = ts}) l (SigD d) ds = addl (gp {hs_valds = add_sig (L l d) ts}) ds -- Value declarations: use add_bind add gp@(HsGroup {hs_valds = ts}) l (ValD d) ds = addl (gp { hs_valds = add_bind (L l d) ts }) ds -- The rest are routine add gp@(HsGroup {hs_instds = ts}) l (InstD d) ds = addl (gp { hs_instds = L l d : ts }) ds add gp@(HsGroup {hs_derivds = ts}) l (DerivD d) ds = addl (gp { hs_derivds = L l d : ts }) ds add gp@(HsGroup {hs_defds = ts}) l (DefD d) ds = addl (gp { hs_defds = L l d : ts }) ds add gp@(HsGroup {hs_fords = ts}) l (ForD d) ds = addl (gp { hs_fords = L l d : ts }) ds add gp@(HsGroup {hs_warnds = ts}) l (WarningD d) ds = addl (gp { hs_warnds = L l d : ts }) ds add gp@(HsGroup {hs_annds = ts}) l (AnnD d) ds = addl (gp { hs_annds = L l d : ts }) ds add gp@(HsGroup {hs_ruleds = ts}) l (RuleD d) ds = addl (gp { hs_ruleds = L l d : ts }) ds add gp@(HsGroup {hs_vects = ts}) l (VectD d) ds = addl (gp { hs_vects = L l d : ts }) ds add gp l (DocD d) ds = addl (gp { hs_docs = (L l d) : (hs_docs gp) }) ds add_tycld :: LTyClDecl a -> [[LTyClDecl a]] -> [[LTyClDecl a]] add_tycld d [] = [[d]] add_tycld d (ds:dss) = (d:ds) : dss add_bind :: LHsBind a -> HsValBinds a -> HsValBinds a add_bind b (ValBindsIn bs sigs) = ValBindsIn (bs `snocBag` b) sigs add_bind _ (ValBindsOut {}) = panic "RdrHsSyn:add_bind" add_sig :: LSig a -> HsValBinds a -> HsValBinds a add_sig s (ValBindsIn bs sigs) = ValBindsIn bs (s:sigs) add_sig _ (ValBindsOut {}) = panic "RdrHsSyn:add_sig" \end{code}