% % (c) The University of Glasgow 2006 % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % The @Inst@ type: dictionaries or method instances \begin{code} {-# OPTIONS -fno-warn-tabs #-} -- The above warning supression flag is a temporary kludge. -- While working on this module you are encouraged to remove it and -- detab the module (please do the detabbing in a separate patch). See -- http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces -- for details module Inst ( deeplySkolemise, deeplyInstantiate, instCall, instStupidTheta, emitWanted, emitWanteds, newOverloadedLit, mkOverLit, tcGetInstEnvs, getOverlapFlag, tcExtendLocalInstEnv, instCallConstraints, newMethodFromName, tcSyntaxName, -- Simple functions over evidence variables hasEqualities, unitImplication, tyVarsOfWC, tyVarsOfBag, tyVarsOfEvVarXs, tyVarsOfEvVarX, tyVarsOfEvVar, tyVarsOfEvVars, tyVarsOfImplication, tyVarsOfCt, tyVarsOfCts, tyVarsOfCDict, tyVarsOfCDicts, tidyWantedEvVar, tidyWantedEvVars, tidyWC, tidyEvVar, tidyImplication, tidyCt, substWantedEvVar, substWantedEvVars, substEvVar, substImplication, substCt ) where #include "HsVersions.h" import {-# SOURCE #-} TcExpr( tcPolyExpr, tcSyntaxOp ) import {-# SOURCE #-} TcUnify( unifyType ) import FastString import HsSyn import TcHsSyn import TcRnMonad import TcEnv import TcEvidence import InstEnv import FunDeps import TcMType import Type import TcType import Class import Unify import HscTypes import Id import Name import Var ( Var, EvVar, varType, setVarType ) import VarEnv import VarSet import PrelNames import SrcLoc import DynFlags import Bag import Maybes import Util import Outputable import Data.List( mapAccumL ) \end{code} %************************************************************************ %* * Emitting constraints %* * %************************************************************************ \begin{code} emitWanteds :: CtOrigin -> TcThetaType -> TcM [EvVar] emitWanteds origin theta = mapM (emitWanted origin) theta emitWanted :: CtOrigin -> TcPredType -> TcM EvVar emitWanted origin pred = do { loc <- getCtLoc origin ; ev <- newWantedEvVar pred ; emitFlat (mkEvVarX ev loc) ; return ev } newMethodFromName :: CtOrigin -> Name -> TcRhoType -> TcM (HsExpr TcId) -- Used when Name is the wired-in name for a wired-in class method, -- so the caller knows its type for sure, which should be of form -- forall a. C a => -- newMethodFromName is supposed to instantiate just the outer -- type variable and constraint newMethodFromName origin name inst_ty = do { id <- tcLookupId name -- Use tcLookupId not tcLookupGlobalId; the method is almost -- always a class op, but with -XRebindableSyntax GHC is -- meant to find whatever thing is in scope, and that may -- be an ordinary function. ; let (tvs, theta, _caller_knows_this) = tcSplitSigmaTy (idType id) (the_tv:rest) = tvs subst = zipOpenTvSubst [the_tv] [inst_ty] ; wrap <- ASSERT( null rest && isSingleton theta ) instCall origin [inst_ty] (substTheta subst theta) ; return (mkHsWrap wrap (HsVar id)) } \end{code} %************************************************************************ %* * Deep instantiation and skolemisation %* * %************************************************************************ Note [Deep skolemisation] ~~~~~~~~~~~~~~~~~~~~~~~~~ deeplySkolemise decomposes and skolemises a type, returning a type with all its arrows visible (ie not buried under foralls) Examples: deeplySkolemise (Int -> forall a. Ord a => blah) = ( wp, [a], [d:Ord a], Int -> blah ) where wp = \x:Int. /\a. \(d:Ord a). x deeplySkolemise (forall a. Ord a => Maybe a -> forall b. Eq b => blah) = ( wp, [a,b], [d1:Ord a,d2:Eq b], Maybe a -> blah ) where wp = /\a.\(d1:Ord a).\(x:Maybe a)./\b.\(d2:Ord b). x In general, if deeplySkolemise ty = (wrap, tvs, evs, rho) and e :: rho then wrap e :: ty and 'wrap' binds tvs, evs ToDo: this eta-abstraction plays fast and loose with termination, because it can introduce extra lambdas. Maybe add a `seq` to fix this \begin{code} deeplySkolemise :: TcSigmaType -> TcM (HsWrapper, [TyVar], [EvVar], TcRhoType) deeplySkolemise ty | Just (arg_tys, tvs, theta, ty') <- tcDeepSplitSigmaTy_maybe ty = do { ids1 <- newSysLocalIds (fsLit "dk") arg_tys ; tvs1 <- tcInstSkolTyVars tvs ; let subst = zipTopTvSubst tvs (mkTyVarTys tvs1) ; ev_vars1 <- newEvVars (substTheta subst theta) ; (wrap, tvs2, ev_vars2, rho) <- deeplySkolemise (substTy subst ty') ; return ( mkWpLams ids1 <.> mkWpTyLams tvs1 <.> mkWpLams ev_vars1 <.> wrap <.> mkWpEvVarApps ids1 , tvs1 ++ tvs2 , ev_vars1 ++ ev_vars2 , mkFunTys arg_tys rho ) } | otherwise = return (idHsWrapper, [], [], ty) deeplyInstantiate :: CtOrigin -> TcSigmaType -> TcM (HsWrapper, TcRhoType) -- Int -> forall a. a -> a ==> (\x:Int. [] x alpha) :: Int -> alpha -- In general if -- if deeplyInstantiate ty = (wrap, rho) -- and e :: ty -- then wrap e :: rho deeplyInstantiate orig ty | Just (arg_tys, tvs, theta, rho) <- tcDeepSplitSigmaTy_maybe ty = do { (_, tys, subst) <- tcInstTyVars tvs ; ids1 <- newSysLocalIds (fsLit "di") (substTys subst arg_tys) ; wrap1 <- instCall orig tys (substTheta subst theta) ; (wrap2, rho2) <- deeplyInstantiate orig (substTy subst rho) ; return (mkWpLams ids1 <.> wrap2 <.> wrap1 <.> mkWpEvVarApps ids1, mkFunTys arg_tys rho2) } | otherwise = return (idHsWrapper, ty) \end{code} %************************************************************************ %* * Instantiating a call %* * %************************************************************************ \begin{code} ---------------- instCall :: CtOrigin -> [TcType] -> TcThetaType -> TcM HsWrapper -- Instantiate the constraints of a call -- (instCall o tys theta) -- (a) Makes fresh dictionaries as necessary for the constraints (theta) -- (b) Throws these dictionaries into the LIE -- (c) Returns an HsWrapper ([.] tys dicts) instCall orig tys theta = do { dict_app <- instCallConstraints orig theta ; return (dict_app <.> mkWpTyApps tys) } ---------------- instCallConstraints :: CtOrigin -> TcThetaType -> TcM HsWrapper -- Instantiates the TcTheta, puts all constraints thereby generated -- into the LIE, and returns a HsWrapper to enclose the call site. instCallConstraints _ [] = return idHsWrapper instCallConstraints origin (pred : preds) | Just (ty1, ty2) <- getEqPredTys_maybe pred -- Try short-cut = do { traceTc "instCallConstraints" $ ppr (mkEqPred (ty1, ty2)) ; co <- unifyType ty1 ty2 ; co_fn <- instCallConstraints origin preds ; return (co_fn <.> WpEvApp (EvCoercion co)) } | otherwise = do { ev_var <- emitWanted origin pred ; co_fn <- instCallConstraints origin preds ; return (co_fn <.> WpEvApp (EvId ev_var)) } ---------------- instStupidTheta :: CtOrigin -> TcThetaType -> TcM () -- Similar to instCall, but only emit the constraints in the LIE -- Used exclusively for the 'stupid theta' of a data constructor instStupidTheta orig theta = do { _co <- instCallConstraints orig theta -- Discard the coercion ; return () } \end{code} %************************************************************************ %* * Literals %* * %************************************************************************ In newOverloadedLit we convert directly to an Int or Integer if we know that's what we want. This may save some time, by not temporarily generating overloaded literals, but it won't catch all cases (the rest are caught in lookupInst). \begin{code} newOverloadedLit :: CtOrigin -> HsOverLit Name -> TcRhoType -> TcM (HsOverLit TcId) newOverloadedLit orig lit@(OverLit { ol_val = val, ol_rebindable = rebindable , ol_witness = meth_name }) res_ty | not rebindable , Just expr <- shortCutLit val res_ty -- Do not generate a LitInst for rebindable syntax. -- Reason: If we do, tcSimplify will call lookupInst, which -- will call tcSyntaxName, which does unification, -- which tcSimplify doesn't like = return (lit { ol_witness = expr, ol_type = res_ty }) | otherwise = do { hs_lit <- mkOverLit val ; let lit_ty = hsLitType hs_lit ; fi' <- tcSyntaxOp orig meth_name (mkFunTy lit_ty res_ty) -- Overloaded literals must have liftedTypeKind, because -- we're instantiating an overloaded function here, -- whereas res_ty might be openTypeKind. This was a bug in 6.2.2 -- However this'll be picked up by tcSyntaxOp if necessary ; let witness = HsApp (noLoc fi') (noLoc (HsLit hs_lit)) ; return (lit { ol_witness = witness, ol_type = res_ty }) } ------------ mkOverLit :: OverLitVal -> TcM HsLit mkOverLit (HsIntegral i) = do { integer_ty <- tcMetaTy integerTyConName ; return (HsInteger i integer_ty) } mkOverLit (HsFractional r) = do { rat_ty <- tcMetaTy rationalTyConName ; return (HsRat r rat_ty) } mkOverLit (HsIsString s) = return (HsString s) \end{code} %************************************************************************ %* * Re-mappable syntax Used only for arrow syntax -- find a way to nuke this %* * %************************************************************************ Suppose we are doing the -XRebindableSyntax thing, and we encounter a do-expression. We have to find (>>) in the current environment, which is done by the rename. Then we have to check that it has the same type as Control.Monad.(>>). Or, more precisely, a compatible type. One 'customer' had this: (>>) :: HB m n mn => m a -> n b -> mn b So the idea is to generate a local binding for (>>), thus: let then72 :: forall a b. m a -> m b -> m b then72 = ...something involving the user's (>>)... in ...the do-expression... Now the do-expression can proceed using then72, which has exactly the expected type. In fact tcSyntaxName just generates the RHS for then72, because we only want an actual binding in the do-expression case. For literals, we can just use the expression inline. \begin{code} tcSyntaxName :: CtOrigin -> TcType -- Type to instantiate it at -> (Name, HsExpr Name) -- (Standard name, user name) -> TcM (Name, HsExpr TcId) -- (Standard name, suitable expression) -- *** NOW USED ONLY FOR CmdTop (sigh) *** -- NB: tcSyntaxName calls tcExpr, and hence can do unification. -- So we do not call it from lookupInst, which is called from tcSimplify tcSyntaxName orig ty (std_nm, HsVar user_nm) | std_nm == user_nm = do rhs <- newMethodFromName orig std_nm ty return (std_nm, rhs) tcSyntaxName orig ty (std_nm, user_nm_expr) = do std_id <- tcLookupId std_nm let -- C.f. newMethodAtLoc ([tv], _, tau) = tcSplitSigmaTy (idType std_id) sigma1 = substTyWith [tv] [ty] tau -- Actually, the "tau-type" might be a sigma-type in the -- case of locally-polymorphic methods. addErrCtxtM (syntaxNameCtxt user_nm_expr orig sigma1) $ do -- Check that the user-supplied thing has the -- same type as the standard one. -- Tiresome jiggling because tcCheckSigma takes a located expression span <- getSrcSpanM expr <- tcPolyExpr (L span user_nm_expr) sigma1 return (std_nm, unLoc expr) syntaxNameCtxt :: HsExpr Name -> CtOrigin -> Type -> TidyEnv -> TcRn (TidyEnv, SDoc) syntaxNameCtxt name orig ty tidy_env = do inst_loc <- getCtLoc orig let msg = vcat [ptext (sLit "When checking that") <+> quotes (ppr name) <+> ptext (sLit "(needed by a syntactic construct)"), nest 2 (ptext (sLit "has the required type:") <+> ppr (tidyType tidy_env ty)), nest 2 (pprArisingAt inst_loc)] return (tidy_env, msg) \end{code} %************************************************************************ %* * Instances %* * %************************************************************************ \begin{code} getOverlapFlag :: TcM OverlapFlag getOverlapFlag = do { dflags <- getDOpts ; let overlap_ok = xopt Opt_OverlappingInstances dflags incoherent_ok = xopt Opt_IncoherentInstances dflags safeOverlap = safeLanguageOn dflags overlap_flag | incoherent_ok = Incoherent safeOverlap | overlap_ok = OverlapOk safeOverlap | otherwise = NoOverlap safeOverlap ; return overlap_flag } tcGetInstEnvs :: TcM (InstEnv, InstEnv) -- Gets both the external-package inst-env -- and the home-pkg inst env (includes module being compiled) tcGetInstEnvs = do { eps <- getEps; env <- getGblEnv; return (eps_inst_env eps, tcg_inst_env env) } tcExtendLocalInstEnv :: [Instance] -> TcM a -> TcM a -- Add new locally-defined instances tcExtendLocalInstEnv dfuns thing_inside = do { traceDFuns dfuns ; env <- getGblEnv ; inst_env' <- foldlM addLocalInst (tcg_inst_env env) dfuns ; let env' = env { tcg_insts = dfuns ++ tcg_insts env, tcg_inst_env = inst_env' } ; setGblEnv env' thing_inside } addLocalInst :: InstEnv -> Instance -> TcM InstEnv -- Check that the proposed new instance is OK, -- and then add it to the home inst env -- If overwrite_inst, then we can overwrite a direct match addLocalInst home_ie ispec = do -- Instantiate the dfun type so that we extend the instance -- envt with completely fresh template variables -- This is important because the template variables must -- not overlap with anything in the things being looked up -- (since we do unification). -- -- We use tcInstSkolType because we don't want to allocate fresh -- *meta* type variables. -- -- We use UnkSkol --- and *not* InstSkol or PatSkol --- because -- these variables must be bindable by tcUnifyTys. See -- the call to tcUnifyTys in InstEnv, and the special -- treatment that instanceBindFun gives to isOverlappableTyVar -- This is absurdly delicate. let dfun = instanceDFunId ispec (tvs', theta', tau') <- tcInstSkolType (idType dfun) let (cls, tys') = tcSplitDFunHead tau' dfun' = setIdType dfun (mkSigmaTy tvs' theta' tau') ispec' = setInstanceDFunId ispec dfun' -- Load imported instances, so that we report -- duplicates correctly eps <- getEps let inst_envs = (eps_inst_env eps, home_ie) -- Check functional dependencies case checkFunDeps inst_envs ispec' of Just specs -> funDepErr ispec' specs Nothing -> return () -- Check for duplicate instance decls let (matches, unifs, _) = lookupInstEnv inst_envs cls tys' dup_ispecs = [ dup_ispec | (dup_ispec, _) <- matches , let (_,_,_,dup_tys) = instanceHead dup_ispec , isJust (tcMatchTys (mkVarSet tvs') tys' dup_tys)] -- Find memebers of the match list which ispec itself matches. -- If the match is 2-way, it's a duplicate -- If it's a duplicate, but we can overwrite home package dups, then overwrite isGHCi <- getIsGHCi overlapFlag <- getOverlapFlag case isGHCi of False -> case dup_ispecs of dup : _ -> dupInstErr ispec' dup >> return (extendInstEnv home_ie ispec') [] -> return (extendInstEnv home_ie ispec') True -> case (dup_ispecs, home_ie_matches, unifs, overlapFlag) of (_, _:_, _, _) -> return (overwriteInstEnv home_ie ispec') (dup:_, [], _, _) -> dupInstErr ispec' dup >> return (extendInstEnv home_ie ispec') ([], _, u:_, NoOverlap _) -> overlappingInstErr ispec' u >> return (extendInstEnv home_ie ispec') _ -> return (extendInstEnv home_ie ispec') where (homematches, _) = lookupInstEnv' home_ie cls tys' home_ie_matches = [ dup_ispec | (dup_ispec, _) <- homematches , let (_,_,_,dup_tys) = instanceHead dup_ispec , isJust (tcMatchTys (mkVarSet tvs') tys' dup_tys)] traceDFuns :: [Instance] -> TcRn () traceDFuns ispecs = traceTc "Adding instances:" (vcat (map pp ispecs)) where pp ispec = ppr (instanceDFunId ispec) <+> colon <+> ppr ispec -- Print the dfun name itself too funDepErr :: Instance -> [Instance] -> TcRn () funDepErr ispec ispecs = addDictLoc ispec $ addErr (hang (ptext (sLit "Functional dependencies conflict between instance declarations:")) 2 (pprInstances (ispec:ispecs))) dupInstErr :: Instance -> Instance -> TcRn () dupInstErr ispec dup_ispec = addDictLoc ispec $ addErr (hang (ptext (sLit "Duplicate instance declarations:")) 2 (pprInstances [ispec, dup_ispec])) overlappingInstErr :: Instance -> Instance -> TcRn () overlappingInstErr ispec dup_ispec = addDictLoc ispec $ addErr (hang (ptext (sLit "Overlapping instance declarations:")) 2 (pprInstances [ispec, dup_ispec])) addDictLoc :: Instance -> TcRn a -> TcRn a addDictLoc ispec thing_inside = setSrcSpan (mkSrcSpan loc loc) thing_inside where loc = getSrcLoc ispec \end{code} %************************************************************************ %* * Simple functions over evidence variables %* * %************************************************************************ \begin{code} unitImplication :: Implication -> Bag Implication unitImplication implic | isEmptyWC (ic_wanted implic) = emptyBag | otherwise = unitBag implic hasEqualities :: [EvVar] -> Bool -- Has a bunch of canonical constraints (all givens) got any equalities in it? hasEqualities givens = any (has_eq . evVarPred) givens where has_eq = has_eq' . classifyPredType has_eq' (EqPred {}) = True has_eq' (IPPred {}) = False has_eq' (ClassPred cls _tys) = any has_eq (classSCTheta cls) has_eq' (TuplePred ts) = any has_eq ts has_eq' (IrredPred _) = True -- Might have equalities in it after reduction? ---------------- Getting free tyvars ------------------------- tyVarsOfCt :: Ct -> TcTyVarSet tyVarsOfCt (CTyEqCan { cc_tyvar = tv, cc_rhs = xi }) = extendVarSet (tyVarsOfType xi) tv tyVarsOfCt (CFunEqCan { cc_tyargs = tys, cc_rhs = xi }) = tyVarsOfTypes (xi:tys) tyVarsOfCt (CDictCan { cc_tyargs = tys }) = tyVarsOfTypes tys tyVarsOfCt (CIPCan { cc_ip_ty = ty }) = tyVarsOfType ty tyVarsOfCt (CIrredEvCan { cc_ty = ty }) = tyVarsOfType ty tyVarsOfCt (CNonCanonical { cc_id = ev }) = tyVarsOfEvVar ev tyVarsOfCDict :: Ct -> TcTyVarSet tyVarsOfCDict (CDictCan { cc_tyargs = tys }) = tyVarsOfTypes tys tyVarsOfCDict _ct = emptyVarSet tyVarsOfCDicts :: Cts -> TcTyVarSet tyVarsOfCDicts = foldrBag (unionVarSet . tyVarsOfCDict) emptyVarSet tyVarsOfCts :: Cts -> TcTyVarSet tyVarsOfCts = foldrBag (unionVarSet . tyVarsOfCt) emptyVarSet tyVarsOfWC :: WantedConstraints -> TyVarSet tyVarsOfWC (WC { wc_flat = flat, wc_impl = implic, wc_insol = insol }) = tyVarsOfCts flat `unionVarSet` tyVarsOfBag tyVarsOfImplication implic `unionVarSet` tyVarsOfCts insol tyVarsOfImplication :: Implication -> TyVarSet tyVarsOfImplication (Implic { ic_skols = skols, ic_wanted = wanted }) = tyVarsOfWC wanted `minusVarSet` skols tyVarsOfEvVarX :: EvVarX a -> TyVarSet tyVarsOfEvVarX (EvVarX ev _) = tyVarsOfEvVar ev tyVarsOfEvVarXs :: Bag (EvVarX a) -> TyVarSet tyVarsOfEvVarXs = tyVarsOfBag tyVarsOfEvVarX tyVarsOfEvVar :: EvVar -> TyVarSet tyVarsOfEvVar ev = tyVarsOfType $ evVarPred ev tyVarsOfEvVars :: [EvVar] -> TyVarSet tyVarsOfEvVars = foldr (unionVarSet . tyVarsOfEvVar) emptyVarSet tyVarsOfBag :: (a -> TyVarSet) -> Bag a -> TyVarSet tyVarsOfBag tvs_of = foldrBag (unionVarSet . tvs_of) emptyVarSet ---------------- Tidying ------------------------- tidyCt :: TidyEnv -> Ct -> Ct -- Also converts it to non-canonical tidyCt env ct = CNonCanonical { cc_id = tidyEvVar env (cc_id ct) , cc_flavor = tidyFlavor env (cc_flavor ct) , cc_depth = cc_depth ct } tidyWC :: TidyEnv -> WantedConstraints -> WantedConstraints tidyWC env (WC { wc_flat = flat, wc_impl = implic, wc_insol = insol }) = WC { wc_flat = mapBag (tidyCt env) flat , wc_impl = mapBag (tidyImplication env) implic , wc_insol = mapBag (tidyCt env) insol } tidyImplication :: TidyEnv -> Implication -> Implication tidyImplication env implic@(Implic { ic_skols = tvs , ic_given = given , ic_wanted = wanted , ic_loc = loc }) = implic { ic_skols = mkVarSet tvs' , ic_given = map (tidyEvVar env1) given , ic_wanted = tidyWC env1 wanted , ic_loc = tidyGivenLoc env1 loc } where (env1, tvs') = mapAccumL tidyTyVarBndr env (varSetElems tvs) tidyEvVar :: TidyEnv -> EvVar -> EvVar tidyEvVar env var = setVarType var (tidyType env (varType var)) tidyWantedEvVar :: TidyEnv -> WantedEvVar -> WantedEvVar tidyWantedEvVar env (EvVarX v l) = EvVarX (tidyEvVar env v) l tidyWantedEvVars :: TidyEnv -> Bag WantedEvVar -> Bag WantedEvVar tidyWantedEvVars env = mapBag (tidyWantedEvVar env) tidyFlavor :: TidyEnv -> CtFlavor -> CtFlavor tidyFlavor env (Given loc gk) = Given (tidyGivenLoc env loc) gk tidyFlavor _ fl = fl tidyGivenLoc :: TidyEnv -> GivenLoc -> GivenLoc tidyGivenLoc env (CtLoc skol span ctxt) = CtLoc (tidySkolemInfo env skol) span ctxt tidySkolemInfo :: TidyEnv -> SkolemInfo -> SkolemInfo tidySkolemInfo env (SigSkol cx ty) = SigSkol cx (tidyType env ty) tidySkolemInfo env (InferSkol ids) = InferSkol (mapSnd (tidyType env) ids) tidySkolemInfo _ info = info ---------------- Substitution ------------------------- substCt :: TvSubst -> Ct -> Ct -- Conservatively converts it to non-canonical: -- Postcondition: if the constraint does not get rewritten substCt subst ct | ev <- cc_id ct, pty <- evVarPred (cc_id ct) , sty <- substTy subst pty = if sty `eqType` pty then ct { cc_flavor = substFlavor subst (cc_flavor ct) } else CNonCanonical { cc_id = setVarType ev sty , cc_flavor = substFlavor subst (cc_flavor ct) , cc_depth = cc_depth ct } substWC :: TvSubst -> WantedConstraints -> WantedConstraints substWC subst (WC { wc_flat = flat, wc_impl = implic, wc_insol = insol }) = WC { wc_flat = mapBag (substCt subst) flat , wc_impl = mapBag (substImplication subst) implic , wc_insol = mapBag (substCt subst) insol } substImplication :: TvSubst -> Implication -> Implication substImplication subst implic@(Implic { ic_skols = tvs , ic_given = given , ic_wanted = wanted , ic_loc = loc }) = implic { ic_skols = mkVarSet tvs' , ic_given = map (substEvVar subst1) given , ic_wanted = substWC subst1 wanted , ic_loc = substGivenLoc subst1 loc } where (subst1, tvs') = mapAccumL substTyVarBndr subst (varSetElems tvs) substEvVar :: TvSubst -> EvVar -> EvVar substEvVar subst var = setVarType var (substTy subst (varType var)) substWantedEvVars :: TvSubst -> Bag WantedEvVar -> Bag WantedEvVar substWantedEvVars subst = mapBag (substWantedEvVar subst) substWantedEvVar :: TvSubst -> WantedEvVar -> WantedEvVar substWantedEvVar subst (EvVarX v l) = EvVarX (substEvVar subst v) l substFlavor :: TvSubst -> CtFlavor -> CtFlavor substFlavor subst (Given loc gk) = Given (substGivenLoc subst loc) gk substFlavor _ fl = fl substGivenLoc :: TvSubst -> GivenLoc -> GivenLoc substGivenLoc subst (CtLoc skol span ctxt) = CtLoc (substSkolemInfo subst skol) span ctxt substSkolemInfo :: TvSubst -> SkolemInfo -> SkolemInfo substSkolemInfo subst (SigSkol cx ty) = SigSkol cx (substTy subst ty) substSkolemInfo subst (InferSkol ids) = InferSkol (mapSnd (substTy subst) ids) substSkolemInfo _ info = info \end{code}