% % (c) The University of Glasgow 2006 % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % \section[TcMonoType]{Typechecking user-specified @MonoTypes@} \begin{code} {-# OPTIONS -fno-warn-tabs #-} -- The above warning supression flag is a temporary kludge. -- While working on this module you are encouraged to remove it and -- detab the module (please do the detabbing in a separate patch). See -- http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces -- for details module TcHsType ( tcHsSigType, tcHsSigTypeNC, tcHsDeriv, tcHsVectInst, tcHsInstHead, tcHsQuantifiedType, UserTypeCtxt(..), -- Kind checking kcHsTyVars, kcHsSigType, kcHsLiftedSigType, kcLHsType, kcCheckLHsType, kcHsContext, kcApps, kindGeneralizeKind, kindGeneralizeKinds, -- Sort checking scDsLHsKind, scDsLHsMaybeKind, -- Typechecking kinded types tcHsType, tcCheckHsType, tcHsKindedContext, tcHsKindedType, tcHsBangType, tcTyVarBndrs, tcTyVarBndrsKindGen, dsHsType, tcDataKindSig, tcTyClTyVars, ExpKind(..), ekConstraint, expArgKind, checkExpectedKind, -- Pattern type signatures tcHsPatSigType, tcPatSig ) where #include "HsVersions.h" #ifdef GHCI /* Only if bootstrapped */ import {-# SOURCE #-} TcSplice( kcSpliceType ) #endif import HsSyn import RnHsSyn import TcRnMonad import RnEnv ( dataKindsErr ) import TcHsSyn ( mkZonkTcTyVar ) import TcEvidence( HsWrapper ) import TcEnv import TcMType import TcUnify import TcIface import TcType import {- Kind parts of -} Type import Kind import Var import VarSet import TyCon import DataCon ( DataCon, dataConUserType ) import TysPrim ( liftedTypeKindTyConName, constraintKindTyConName ) import Class import RdrName ( rdrNameSpace, nameRdrName ) import Name import NameSet import TysWiredIn import BasicTypes import SrcLoc import DynFlags ( ExtensionFlag( Opt_DataKinds ) ) import Util import UniqSupply import Outputable import BuildTyCl ( buildPromotedDataTyCon ) import FastString import Control.Monad ( unless ) \end{code} ---------------------------- General notes ---------------------------- Generally speaking we now type-check types in three phases 1. kcHsType: kind check the HsType *includes* performing any TH type splices; so it returns a translated, and kind-annotated, type 2. dsHsType: convert from HsType to Type: perform zonking expand type synonyms [mkGenTyApps] hoist the foralls [tcHsType] 3. checkValidType: check the validity of the resulting type Often these steps are done one after the other (tcHsSigType). But in mutually recursive groups of type and class decls we do 1 kind-check the whole group 2 build TyCons/Classes in a knot-tied way 3 check the validity of types in the now-unknotted TyCons/Classes For example, when we find (forall a m. m a -> m a) we bind a,m to kind varibles and kind-check (m a -> m a). This makes a get kind *, and m get kind *->*. Now we typecheck (m a -> m a) in an environment that binds a and m suitably. The kind checker passed to tcHsTyVars needs to look at enough to establish the kind of the tyvar: * For a group of type and class decls, it's just the group, not the rest of the program * For a tyvar bound in a pattern type signature, its the types mentioned in the other type signatures in that bunch of patterns * For a tyvar bound in a RULE, it's the type signatures on other universally quantified variables in the rule Note that this may occasionally give surprising results. For example: data T a b = MkT (a b) Here we deduce a::*->*, b::* But equally valid would be a::(*->*)-> *, b::*->* Validity checking ~~~~~~~~~~~~~~~~~ Some of the validity check could in principle be done by the kind checker, but not all: - During desugaring, we normalise by expanding type synonyms. Only after this step can we check things like type-synonym saturation e.g. type T k = k Int type S a = a Then (T S) is ok, because T is saturated; (T S) expands to (S Int); and then S is saturated. This is a GHC extension. - Similarly, also a GHC extension, we look through synonyms before complaining about the form of a class or instance declaration - Ambiguity checks involve functional dependencies, and it's easier to wait until knots have been resolved before poking into them Also, in a mutually recursive group of types, we can't look at the TyCon until we've finished building the loop. So to keep things simple, we postpone most validity checking until step (3). Knot tying ~~~~~~~~~~ During step (1) we might fault in a TyCon defined in another module, and it might (via a loop) refer back to a TyCon defined in this module. So when we tie a big knot around type declarations with ARecThing, so that the fault-in code can get the TyCon being defined. %************************************************************************ %* * \subsection{Checking types} %* * %************************************************************************ \begin{code} tcHsSigType, tcHsSigTypeNC :: UserTypeCtxt -> LHsType Name -> TcM Type -- Do kind checking, and hoist for-alls to the top -- NB: it's important that the foralls that come from the top-level -- HsForAllTy in hs_ty occur *first* in the returned type. -- See Note [Scoped] with TcSigInfo tcHsSigType ctxt hs_ty = addErrCtxt (pprHsSigCtxt ctxt hs_ty) $ tcHsSigTypeNC ctxt hs_ty tcHsSigTypeNC ctxt hs_ty = do { kinded_ty <- case expectedKindInCtxt ctxt of Nothing -> fmap fst (kc_lhs_type_fresh hs_ty) Just k -> kc_lhs_type hs_ty (EK k (ptext (sLit "Expected"))) -- The kind is checked by checkValidType, and isn't necessarily -- of kind * in a Template Haskell quote eg [t| Maybe |] ; ty <- tcHsKindedType kinded_ty ; checkValidType ctxt ty ; return ty } -- Like tcHsType, but takes an expected kind tcCheckHsType :: LHsType Name -> Kind -> TcM Type tcCheckHsType hs_ty exp_kind = do { kinded_ty <- kcCheckLHsType hs_ty (EK exp_kind (ptext (sLit "Expected"))) ; ty <- tcHsKindedType kinded_ty ; return ty } tcHsType :: LHsType Name -> TcM Type -- kind check and desugar -- no validity checking because of knot-tying tcHsType hs_ty = do { (kinded_ty, _) <- kc_lhs_type_fresh hs_ty ; ty <- tcHsKindedType kinded_ty ; return ty } tcHsInstHead :: UserTypeCtxt -> LHsType Name -> TcM ([TyVar], ThetaType, Class, [Type]) -- Typecheck an instance head. We can't use -- tcHsSigType, because it's not a valid user type. tcHsInstHead ctxt lhs_ty@(L loc hs_ty) = setSrcSpan loc $ -- No need for an "In the type..." context -- because that comes from the caller do { kinded_ty <- kc_hs_type hs_ty ekConstraint ; ty <- ds_type kinded_ty ; let (tvs, theta, tau) = tcSplitSigmaTy ty ; case getClassPredTys_maybe tau of Nothing -> failWithTc (ptext (sLit "Malformed instance type")) Just (clas,tys) -> do { checkValidInstance ctxt lhs_ty tvs theta clas tys ; return (tvs, theta, clas, tys) } } tcHsQuantifiedType :: [LHsTyVarBndr Name] -> LHsType Name -> TcM ([TyVar], Type) -- Behave very like type-checking (HsForAllTy sig_tvs hs_ty), -- except that we want to keep the tvs separate tcHsQuantifiedType tv_names hs_ty = kcHsTyVars tv_names $ \ tv_names' -> do { kc_ty <- kcHsSigType hs_ty ; tcTyVarBndrs tv_names' $ \ tvs -> do { ty <- dsHsType kc_ty ; return (tvs, ty) } } -- Used for the deriving(...) items tcHsDeriv :: HsType Name -> TcM ([TyVar], Class, [Type]) tcHsDeriv = tc_hs_deriv [] tc_hs_deriv :: [LHsTyVarBndr Name] -> HsType Name -> TcM ([TyVar], Class, [Type]) tc_hs_deriv tv_names1 (HsForAllTy _ tv_names2 (L _ []) (L _ ty)) = -- Funny newtype deriving form -- forall a. C [a] -- where C has arity 2. Hence can't use regular functions tc_hs_deriv (tv_names1 ++ tv_names2) ty tc_hs_deriv tv_names ty | Just (cls_name, hs_tys) <- splitHsClassTy_maybe ty = kcHsTyVars tv_names $ \ tv_names' -> do { cls_kind <- kcClass cls_name ; (tys, _res_kind) <- kcApps cls_name cls_kind hs_tys ; tcTyVarBndrsKindGen tv_names' $ \ tyvars -> do { arg_tys <- dsHsTypes tys ; cls <- tcLookupClass cls_name ; return (tyvars, cls, arg_tys) }} | otherwise = failWithTc (ptext (sLit "Illegal deriving item") <+> ppr ty) -- Used for 'VECTORISE [SCALAR] instance' declarations -- tcHsVectInst :: LHsType Name -> TcM (Class, [Type]) tcHsVectInst ty | Just (L _ cls_name, tys) <- splitLHsClassTy_maybe ty = do { cls_kind <- kcClass cls_name ; (tys, _res_kind) <- kcApps cls_name cls_kind tys ; arg_tys <- dsHsTypes tys ; cls <- tcLookupClass cls_name ; return (cls, arg_tys) } | otherwise = failWithTc $ ptext (sLit "Malformed instance type") \end{code} These functions are used during knot-tying in type and class declarations, when we have to separate kind-checking, desugaring, and validity checking \begin{code} kcHsSigType, kcHsLiftedSigType :: LHsType Name -> TcM (LHsType Name) -- Used for type signatures kcHsSigType ty = addKcTypeCtxt ty $ kcArgType ty kcHsLiftedSigType ty = addKcTypeCtxt ty $ kcLiftedType ty tcHsKindedType :: LHsType Name -> TcM Type -- Don't do kind checking, nor validity checking. -- This is used in type and class decls, where kinding is -- done in advance, and validity checking is done later -- [Validity checking done later because of knot-tying issues.] tcHsKindedType hs_ty = dsHsType hs_ty tcHsBangType :: LHsType Name -> TcM Type -- Permit a bang, but discard it -- Input type has already been kind-checked tcHsBangType (L _ (HsBangTy _ ty)) = tcHsKindedType ty tcHsBangType ty = tcHsKindedType ty tcHsKindedContext :: LHsContext Name -> TcM ThetaType -- Used when we are expecting a ClassContext (i.e. no implicit params) -- Does not do validity checking, like tcHsKindedType tcHsKindedContext hs_theta = addLocM (mapM dsHsType) hs_theta \end{code} %************************************************************************ %* * The main kind checker: kcHsType %* * %************************************************************************ First a couple of simple wrappers for kcHsType \begin{code} --------------------------- kcLiftedType :: LHsType Name -> TcM (LHsType Name) -- The type ty must be a *lifted* *type* kcLiftedType ty = kc_lhs_type ty ekLifted kcArgs :: SDoc -> [LHsType Name] -> Kind -> TcM [LHsType Name] kcArgs what tys kind = sequence [ kc_lhs_type ty (expArgKind what kind n) | (ty,n) <- tys `zip` [1..] ] --------------------------- kcArgType :: LHsType Name -> TcM (LHsType Name) -- The type ty must be an *arg* *type* (lifted or unlifted) kcArgType ty = kc_lhs_type ty ekArg --------------------------- kcCheckLHsType :: LHsType Name -> ExpKind -> TcM (LHsType Name) kcCheckLHsType ty kind = addKcTypeCtxt ty $ kc_lhs_type ty kind \end{code} Like tcExpr, kc_hs_type takes an expected kind which it unifies with the kind it figures out. When we don't know what kind to expect, we use kc_lhs_type_fresh, to first create a new meta kind variable and use that as the expected kind. \begin{code} kcLHsType :: LHsType Name -> TcM (LHsType Name, TcKind) -- Called from outside: set the context kcLHsType ty = addKcTypeCtxt ty (kc_lhs_type_fresh ty) kc_lhs_type_fresh :: LHsType Name -> TcM (LHsType Name, TcKind) kc_lhs_type_fresh ty = do kv <- newMetaKindVar r <- kc_lhs_type ty (EK kv (ptext (sLit "Expected"))) return (r, kv) kc_lhs_types :: [(LHsType Name, ExpKind)] -> TcM [LHsType Name] kc_lhs_types tys_w_kinds = mapM (uncurry kc_lhs_type) tys_w_kinds kc_lhs_type :: LHsType Name -> ExpKind -> TcM (LHsType Name) kc_lhs_type (L span ty) exp_kind = setSrcSpan span $ do { traceTc "kc_lhs_type" (ppr ty <+> ppr exp_kind) ; ty' <- kc_hs_type ty exp_kind ; return (L span ty') } kc_hs_type :: HsType Name -> ExpKind -> TcM (HsType Name) kc_hs_type (HsParTy ty) exp_kind = do ty' <- kc_lhs_type ty exp_kind return (HsParTy ty') kc_hs_type (HsTyVar name) exp_kind -- Special case for the unit tycon so it benefits from kind overloading | name == tyConName unitTyCon = kc_hs_type (HsTupleTy HsBoxedOrConstraintTuple []) exp_kind | otherwise = do (ty, k) <- kcTyVar name checkExpectedKind ty k exp_kind return ty kc_hs_type (HsListTy ty) exp_kind = do ty' <- kcLiftedType ty checkExpectedKind ty liftedTypeKind exp_kind return (HsListTy ty') kc_hs_type (HsPArrTy ty) exp_kind = do ty' <- kcLiftedType ty checkExpectedKind ty liftedTypeKind exp_kind return (HsPArrTy ty') kc_hs_type (HsKindSig ty sig_k) exp_kind = do sig_k' <- scDsLHsKind sig_k ty' <- kc_lhs_type ty (EK sig_k' (ptext (sLit "An enclosing kind signature specified"))) checkExpectedKind ty sig_k' exp_kind return (HsKindSig ty' sig_k) -- See Note [Distinguishing tuple kinds] in HsTypes kc_hs_type ty@(HsTupleTy HsBoxedOrConstraintTuple tys) exp_kind@(EK exp_k _ctxt) | isConstraintOrLiftedKind exp_k -- (NB: not zonking, to avoid left-right bias) = do { tys' <- kcArgs (ptext (sLit "a tuple")) tys exp_k ; return $ if isConstraintKind exp_k then HsTupleTy HsConstraintTuple tys' else HsTupleTy HsBoxedTuple tys' } | otherwise -- It is not clear from the context if it's * or Constraint, -- so we infer the kind from the arguments = do { k <- newMetaKindVar ; tys' <- kcArgs (ptext (sLit "a tuple")) tys k ; k' <- zonkTcKind k ; if isConstraintKind k' then do { checkExpectedKind ty k' exp_kind ; return (HsTupleTy HsConstraintTuple tys') } -- If it's not clear from the arguments that it's Constraint, then -- it must be *. Check the arguments again to give good error messages -- in eg. `(Maybe, Maybe)` else do { tys'' <- kcArgs (ptext (sLit "a tuple")) tys liftedTypeKind ; checkExpectedKind ty liftedTypeKind exp_kind ; return (HsTupleTy HsBoxedTuple tys'') } } {- Note that we will still fail to infer the correct kind in this case: type T a = ((a,a), D a) type family D :: Constraint -> Constraint While kind checking T, we do not yet know the kind of D, so we will default the kind of T to * -> *. It works if we annotate `a` with kind `Constraint`. -} kc_hs_type ty@(HsTupleTy tup_sort tys) exp_kind = do { tys' <- kcArgs cxt_doc tys arg_kind ; checkExpectedKind ty out_kind exp_kind ; return (HsTupleTy tup_sort tys') } where arg_kind = case tup_sort of HsBoxedTuple -> liftedTypeKind HsUnboxedTuple -> argTypeKind HsConstraintTuple -> constraintKind _ -> panic "kc_hs_type arg_kind" out_kind = case tup_sort of HsUnboxedTuple -> ubxTupleKind _ -> arg_kind cxt_doc = case tup_sort of HsBoxedTuple -> ptext (sLit "a tuple") HsUnboxedTuple -> ptext (sLit "an unboxed tuple") HsConstraintTuple -> ptext (sLit "a constraint tuple") _ -> panic "kc_hs_type tup_sort" kc_hs_type ty@(HsFunTy ty1 ty2) exp_kind@(EK _ ctxt) = do ty1' <- kc_lhs_type ty1 (EK argTypeKind ctxt) ty2' <- kc_lhs_type ty2 (EK openTypeKind ctxt) checkExpectedKind ty liftedTypeKind exp_kind return (HsFunTy ty1' ty2') kc_hs_type ty@(HsOpTy ty1 (_, l_op@(L loc op)) ty2) exp_kind = do (wop, op_kind) <- kcTyVar op [ty1',ty2'] <- kcCheckApps l_op op_kind [ty1,ty2] ty exp_kind let op' = case wop of HsTyVar name -> (WpKiApps [], L loc name) HsWrapTy wrap (HsTyVar name) -> (wrap, L loc name) _ -> panic "kc_hs_type HsOpTy" return (HsOpTy ty1' op' ty2') kc_hs_type ty@(HsAppTy ty1 ty2) exp_kind = do let (fun_ty, arg_tys) = splitHsAppTys ty1 [ty2] (fun_ty', fun_kind) <- kc_lhs_type_fresh fun_ty arg_tys' <- kcCheckApps fun_ty fun_kind arg_tys ty exp_kind return (mkHsAppTys fun_ty' arg_tys') kc_hs_type ipTy@(HsIParamTy n ty) exp_kind = do ty' <- kc_lhs_type ty (EK liftedTypeKind (ptext (sLit "The type argument of the implicit parameter had"))) checkExpectedKind ipTy constraintKind exp_kind return (HsIParamTy n ty') kc_hs_type ty@(HsEqTy ty1 ty2) exp_kind = do (ty1', kind1) <- kc_lhs_type_fresh ty1 (ty2', kind2) <- kc_lhs_type_fresh ty2 checkExpectedKind ty2 kind2 (EK kind1 (ptext (sLit "The left argument of the equality predicate had"))) checkExpectedKind ty constraintKind exp_kind return (HsEqTy ty1' ty2') kc_hs_type (HsCoreTy ty) exp_kind = do checkExpectedKind ty (typeKind ty) exp_kind return (HsCoreTy ty) kc_hs_type (HsForAllTy exp tv_names context ty) exp_kind = kcHsTyVars tv_names $ \ tv_names' -> do { ctxt' <- kcHsContext context ; ty' <- kc_lhs_type ty exp_kind -- The body of a forall is usually a type, but in principle -- there's no reason to prohibit *unlifted* types. -- In fact, GHC can itself construct a function with an -- unboxed tuple inside a for-all (via CPR analyis; see -- typecheck/should_compile/tc170). -- -- Moreover in instance heads we get forall-types with -- kind Constraint. -- -- Really we should check that it's a type of value kind -- {*, Constraint, #}, but I'm not doing that yet -- Example that should be rejected: -- f :: (forall (a:*->*). a) Int ; return (HsForAllTy exp tv_names' ctxt' ty') } kc_hs_type (HsBangTy b ty) exp_kind = do { ty' <- kc_lhs_type ty exp_kind ; return (HsBangTy b ty') } kc_hs_type ty@(HsRecTy _) _exp_kind = failWithTc (ptext (sLit "Unexpected record type") <+> ppr ty) -- Record types (which only show up temporarily in constructor signatures) -- should have been removed by now #ifdef GHCI /* Only if bootstrapped */ kc_hs_type (HsSpliceTy sp fvs _) exp_kind = do (ty, k) <- kcSpliceType sp fvs checkExpectedKind ty k exp_kind return ty #else kc_hs_type ty@(HsSpliceTy {}) _exp_kind = failWithTc (ptext (sLit "Unexpected type splice:") <+> ppr ty) #endif kc_hs_type (HsQuasiQuoteTy {}) _exp_kind = panic "kc_hs_type" -- Eliminated by renamer -- Remove the doc nodes here, no need to worry about the location since -- it's the same for a doc node and its child type node kc_hs_type (HsDocTy ty _) exp_kind = kc_hs_type (unLoc ty) exp_kind kc_hs_type ty@(HsExplicitListTy _k tys) exp_kind = do { ty_k_s <- mapM kc_lhs_type_fresh tys ; kind <- unifyKinds (ptext (sLit "In a promoted list")) ty_k_s ; checkExpectedKind ty (mkListTy kind) exp_kind ; return (HsExplicitListTy kind (map fst ty_k_s)) } kc_hs_type ty@(HsExplicitTupleTy _ tys) exp_kind = do ty_k_s <- mapM kc_lhs_type_fresh tys let tupleKi = mkTyConApp (tupleTyCon BoxedTuple (length tys)) (map snd ty_k_s) checkExpectedKind ty tupleKi exp_kind return (HsExplicitTupleTy (map snd ty_k_s) (map fst ty_k_s)) kc_hs_type (HsWrapTy {}) _exp_kind = panic "kc_hs_type HsWrapTy" -- We kind checked something twice --------------------------- kcApps :: Outputable a => a -> TcKind -- Function kind -> [LHsType Name] -- Arg types -> TcM ([LHsType Name], TcKind) -- Kind-checked args kcApps the_fun fun_kind args = do { (args_w_kinds, res_kind) <- splitFunKind (ppr the_fun) 1 fun_kind args ; args' <- kc_lhs_types args_w_kinds ; return (args', res_kind) } kcCheckApps :: Outputable a => a -> TcKind -> [LHsType Name] -> HsType Name -- The type being checked (for err messages only) -> ExpKind -- Expected kind -> TcM ([LHsType Name]) kcCheckApps the_fun fun_kind args ty exp_kind = do { (args_w_kinds, res_kind) <- splitFunKind (ppr the_fun) 1 fun_kind args ; args_w_kinds' <- kc_lhs_types args_w_kinds ; checkExpectedKind ty res_kind exp_kind ; return args_w_kinds' } --------------------------- splitFunKind :: SDoc -> Int -> TcKind -> [b] -> TcM ([(b,ExpKind)], TcKind) splitFunKind _ _ fk [] = return ([], fk) splitFunKind the_fun arg_no fk (arg:args) = do { mb_fk <- matchExpectedFunKind fk ; case mb_fk of Nothing -> failWithTc too_many_args Just (ak,fk') -> do { (aks, rk) <- splitFunKind the_fun (arg_no+1) fk' args ; return ((arg ,expArgKind (quotes the_fun) ak arg_no) :aks ,rk) } } where too_many_args = quotes the_fun <+> ptext (sLit "is applied to too many type arguments") --------------------------- kcHsContext :: LHsContext Name -> TcM (LHsContext Name) kcHsContext ctxt = wrapLocM (mapM kcHsLPredType) ctxt kcHsLPredType :: LHsType Name -> TcM (LHsType Name) kcHsLPredType pred = kc_lhs_type pred ekConstraint --------------------------- kcTyVar :: Name -> TcM (HsType Name, TcKind) -- See Note [Type checking recursive type and class declarations] -- in TcTyClsDecls kcTyVar name -- Could be a tyvar, a tycon, or a datacon = do { traceTc "lk1" (ppr name) ; thing <- tcLookup name ; traceTc "lk2" (ppr name <+> ppr thing) ; case thing of ATyVar _ ty -> wrap_mono (typeKind ty) AThing kind -> wrap_poly kind AGlobal (ATyCon tc) -> wrap_poly (tyConKind tc) AGlobal (ADataCon dc) -> kcDataCon dc >>= wrap_poly _ -> wrongThingErr "type" thing name } where wrap_mono kind = do { traceTc "lk3" (ppr name <+> dcolon <+> ppr kind) ; return (HsTyVar name, kind) } wrap_poly kind | null kvs = wrap_mono kind | otherwise = do { traceTc "lk4" (ppr name <+> dcolon <+> ppr kind) ; kvs' <- mapM (const newMetaKindVar) kvs ; let ki = substKiWith kvs kvs' ki_body ; return (HsWrapTy (WpKiApps kvs') (HsTyVar name), ki) } where (kvs, ki_body) = splitForAllTys kind -- IA0_TODO: this function should disapear, and use the dcPromoted field of DataCon kcDataCon :: DataCon -> TcM TcKind kcDataCon dc = do let ty = dataConUserType dc unless (isPromotableType ty) $ promoteErr dc ty let ki = promoteType ty traceTc "prm" (ppr ty <+> ptext (sLit "~~>") <+> ppr ki) return ki where promoteErr dc ty = failWithTc (quotes (ppr dc) <+> ptext (sLit "of type") <+> quotes (ppr ty) <+> ptext (sLit "is not promotable")) kcClass :: Name -> TcM TcKind kcClass cls = do -- Must be a class thing <- tcLookup cls case thing of AThing kind -> return kind AGlobal (ATyCon tc) | Just cls <- tyConClass_maybe tc -> return (tyConKind (classTyCon cls)) _ -> wrongThingErr "class" thing cls \end{code} %************************************************************************ %* * Desugaring %* * %************************************************************************ Note [Desugaring types] ~~~~~~~~~~~~~~~~~~~~~~~ The type desugarer is phase 2 of dealing with HsTypes. Specifically: * It transforms from HsType to Type * It zonks any kinds. The returned type should have no mutable kind or type variables (hence returning Type not TcType): - any unconstrained kind variables are defaulted to AnyK just as in TcHsSyn. - there are no mutable type variables because we are kind-checking a type Reason: the returned type may be put in a TyCon or DataCon where it will never subsequently be zonked. You might worry about nested scopes: ..a:kappa in scope.. let f :: forall b. T '[a,b] -> Int In this case, f's type could have a mutable kind variable kappa in it; and we might then default it to AnyK when dealing with f's type signature. But we don't expect this to happen because we can't get a lexically scoped type variable with a mutable kind variable in it. A delicate point, this. If it becomes an issue we might need to distinguish top-level from nested uses. Moreover * it cannot fail, * it does no unifications * it does no validity checking, except for structural matters, such as (a) spurious ! annotations. (b) a class used as a type \begin{code} zonkTcKindToKind :: TcKind -> TcM Kind -- When zonking a TcKind to a kind we instantiate kind variables to AnyK zonkTcKindToKind = zonkType (mkZonkTcTyVar (\ _ -> return anyKind) mkTyVarTy) dsHsType :: LHsType Name -> TcM Type -- All HsTyVarBndrs in the intput type are kind-annotated -- See Note [Desugaring types] dsHsType ty = ds_type (unLoc ty) ds_type :: HsType Name -> TcM Type -- See Note [Desugaring types] ds_type ty@(HsTyVar _) = ds_app ty [] ds_type (HsParTy ty) -- Remove the parentheses markers = dsHsType ty ds_type ty@(HsBangTy {}) -- No bangs should be here = failWithTc (ptext (sLit "Unexpected strictness annotation:") <+> ppr ty) ds_type ty@(HsRecTy {}) -- No bangs should be here = failWithTc (ptext (sLit "Unexpected record type:") <+> ppr ty) ds_type (HsKindSig ty _) = dsHsType ty -- Kind checking done already ds_type (HsListTy ty) = do tau_ty <- dsHsType ty checkWiredInTyCon listTyCon return (mkListTy tau_ty) ds_type (HsPArrTy ty) = do tau_ty <- dsHsType ty checkWiredInTyCon parrTyCon return (mkPArrTy tau_ty) ds_type (HsTupleTy hs_con tys) = do con <- case hs_con of HsUnboxedTuple -> return UnboxedTuple HsBoxedTuple -> return BoxedTuple HsConstraintTuple -> return ConstraintTuple _ -> panic "ds_type HsTupleTy" -- failWithTc (ptext (sLit "Unexpected tuple component kind:") <+> ppr kind') let tycon = tupleTyCon con (length tys) tau_tys <- dsHsTypes tys checkWiredInTyCon tycon return (mkTyConApp tycon tau_tys) ds_type (HsFunTy ty1 ty2) = do tau_ty1 <- dsHsType ty1 tau_ty2 <- dsHsType ty2 return (mkFunTy tau_ty1 tau_ty2) ds_type (HsOpTy ty1 (wrap, (L span op)) ty2) = setSrcSpan span (ds_app (HsWrapTy wrap (HsTyVar op)) [ty1,ty2]) ds_type ty@(HsAppTy _ _) = ds_app ty [] ds_type (HsIParamTy n ty) = do tau_ty <- dsHsType ty return (mkIPPred n tau_ty) ds_type (HsEqTy ty1 ty2) = do tau_ty1 <- dsHsType ty1 tau_ty2 <- dsHsType ty2 return (mkEqPred (tau_ty1, tau_ty2)) ds_type (HsForAllTy _ tv_names ctxt ty) = tcTyVarBndrsKindGen tv_names $ \ tyvars -> do theta <- mapM dsHsType (unLoc ctxt) tau <- dsHsType ty return (mkSigmaTy tyvars theta tau) ds_type (HsDocTy ty _) -- Remove the doc comment = dsHsType ty ds_type (HsSpliceTy _ _ kind) = do { kind' <- zonkType (mkZonkTcTyVar (\ _ -> return liftedTypeKind) mkTyVarTy) kind -- See Note [Kind of a type splice] ; newFlexiTyVarTy kind' } ds_type (HsQuasiQuoteTy {}) = panic "ds_type" -- Eliminated by renamer ds_type (HsCoreTy ty) = return ty ds_type (HsExplicitListTy kind tys) = do kind' <- zonkTcKindToKind kind ds_tys <- mapM dsHsType tys return $ foldr (\a b -> mkTyConApp (buildPromotedDataTyCon consDataCon) [kind', a, b]) (mkTyConApp (buildPromotedDataTyCon nilDataCon) [kind']) ds_tys ds_type (HsExplicitTupleTy kis tys) = do MASSERT( length kis == length tys ) kis' <- mapM zonkTcKindToKind kis tys' <- mapM dsHsType tys return $ mkTyConApp (buildPromotedDataTyCon (tupleCon BoxedTuple (length kis'))) (kis' ++ tys') ds_type (HsWrapTy (WpKiApps kappas) ty) = do tau <- ds_type ty kappas' <- mapM zonkTcKindToKind kappas return (mkAppTys tau kappas') dsHsTypes :: [LHsType Name] -> TcM [Type] dsHsTypes arg_tys = mapM dsHsType arg_tys \end{code} Note [Kind of a type splice] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider these terms, each with TH type splice inside: [| e1 :: Maybe $(..blah..) |] [| e2 :: $(..blah..) |] When kind-checking the type signature, we'll kind-check the splice $(..blah..); we want to give it a kind that can fit in any context, as if $(..blah..) :: forall k. k. In the e1 example, the context of the splice fixes kappa to *. But in the e2 example, we'll desugar the type, zonking the kind unification variables as we go. When we encournter the unconstrained kappa, we want to default it to '*', not to AnyK. Help functions for type applications ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \begin{code} ds_app :: HsType Name -> [LHsType Name] -> TcM Type ds_app (HsAppTy ty1 ty2) tys = ds_app (unLoc ty1) (ty2:tys) ds_app ty tys = do arg_tys <- dsHsTypes tys case ty of HsTyVar fun -> ds_var_app fun arg_tys _ -> do fun_ty <- ds_type ty return (mkAppTys fun_ty arg_tys) ds_var_app :: Name -> [Type] -> TcM Type -- See Note [Type checking recursive type and class declarations] -- in TcTyClsDecls ds_var_app name arg_tys | isTvNameSpace (rdrNameSpace (nameRdrName name)) = do { thing <- tcLookup name ; case thing of ATyVar _ ty -> return (mkAppTys ty arg_tys) _ -> wrongThingErr "type" thing name } | otherwise = do { thing <- tcLookupGlobal name ; case thing of ATyCon tc -> return (mkTyConApp tc arg_tys) ADataCon dc -> return (mkTyConApp (buildPromotedDataTyCon dc) arg_tys) _ -> wrongThingErr "type" (AGlobal thing) name } addKcTypeCtxt :: LHsType Name -> TcM a -> TcM a -- Wrap a context around only if we want to show that contexts. -- Omit invisble ones and ones user's won't grok addKcTypeCtxt (L _ other_ty) thing = addErrCtxt (typeCtxt other_ty) thing typeCtxt :: HsType Name -> SDoc typeCtxt ty = ptext (sLit "In the type") <+> quotes (ppr ty) \end{code} %************************************************************************ %* * Type-variable binders %* * %************************************************************************ Note [Kind-checking kind-polymorphic types] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider: f :: forall (f::k -> *) a. f a -> Int Here, the [LHsTyVarBndr Name] of the forall type will be [f,a], where a is a UserTyVar -> type variable without kind annotation f is a KindedTyVar -> type variable with kind annotation If were were to allow binding sites for kind variables, thus f :: forall @k (f :: k -> *) a. f a -> Int then we'd also need k is a UserKiVar -> kind variable (they don't need annotation, since we only have BOX for a super kind) \begin{code} kcHsTyVars :: [LHsTyVarBndr Name] -> ([LHsTyVarBndr Name] -> TcM r) -- These binders are kind-annotated -- They scope over the thing inside -> TcM r kcHsTyVars tvs thing_inside = do { kinded_tvs <- mapM (wrapLocM kcHsTyVar) tvs ; tcExtendKindEnvTvs kinded_tvs thing_inside } kcHsTyVar :: HsTyVarBndr Name -> TcM (HsTyVarBndr Name) -- Return a *kind-annotated* binder, whose PostTcKind is -- initialised with a kind variable. -- Typically the Kind inside the KindedTyVar will be a tyvar with a mutable kind -- in it. We aren't yet sure whether the binder is a *type* variable or a *kind* -- variable. See Note [Kind-checking kind-polymorphic types] -- -- If the variable is already in scope return it, instead of introducing a new -- one. This can occur in -- instance C (a,b) where -- type F (a,b) c = ... -- Here a,b will be in scope when processing the associated type instance for F. kcHsTyVar tyvar = do in_scope <- getInLocalScope if in_scope (hsTyVarName tyvar) then do inscope_tyvar <- tcLookupTyVar (hsTyVarName tyvar) return (UserTyVar (tyVarName inscope_tyvar) (tyVarKind inscope_tyvar)) else kcHsTyVar' tyvar where kcHsTyVar' (UserTyVar name _) = UserTyVar name <$> newMetaKindVar kcHsTyVar' (KindedTyVar name kind _) = do kind' <- scDsLHsKind kind return (KindedTyVar name kind kind') ------------------ tcTyVarBndrs :: [LHsTyVarBndr Name] -- Kind-annotated binders, which need kind-zonking -> ([TyVar] -> TcM r) -> TcM r -- Used when type-checking types/classes/type-decls -- Brings into scope immutable TyVars, not mutable ones that require later zonking -- Fix #5426: avoid abstraction over kinds containing # or (#) tcTyVarBndrs bndrs thing_inside = do tyvars <- mapM (zonk . hsTyVarNameKind . unLoc) bndrs tcExtendTyVarEnv tyvars (thing_inside tyvars) where zonk (name, kind) = do { kind' <- zonkTcKind kind ; checkTc (noHashInKind kind') (ptext (sLit "Kind signature contains # or (#)")) ; return (mkTyVar name kind') } tcTyVarBndrsKindGen :: [LHsTyVarBndr Name] -> ([TyVar] -> TcM r) -> TcM r -- tcTyVarBndrsKindGen [(f :: ?k -> *), (a :: ?k)] thing_inside -- calls thing_inside with [(k :: BOX), (f :: k -> *), (a :: k)] tcTyVarBndrsKindGen bndrs thing_inside = do { let kinds = map (hsTyVarKind . unLoc) bndrs ; (kvs, zonked_kinds) <- kindGeneralizeKinds kinds ; let tyvars = zipWith mkTyVar (map hsLTyVarName bndrs) zonked_kinds ktvs = kvs ++ tyvars -- See Note [Kinds of quantified type variables] ; traceTc "tcTyVarBndrsKindGen" (ppr (bndrs, kvs, tyvars)) ; tcExtendTyVarEnv ktvs (thing_inside ktvs) } \end{code} Note [Kinds of quantified type variables] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ tcTyVarBndrsKindGen quantifies over a specified list of type variables, *and* over the kind variables mentioned in the kinds of those tyvars. Note that we must zonk those kinds (obviously) but less obviously, we must return type variables whose kinds are zonked too. Example (a :: k7) where k7 := k9 -> k9 We must return [k9, a:k9->k9] and NOT [k9, a:k7] Reason: we're going to turn this into a for-all type, forall k9. forall (a:k7). blah which the type checker will then instantiate, and instantiate does not look through unification variables! Hence using zonked_kinds when forming 'tyvars'. \begin{code} tcTyClTyVars :: Name -> [LHsTyVarBndr Name] -- LHS of the type or class decl -> ([TyVar] -> Kind -> TcM a) -> TcM a -- tcTyClTyVars T [a,b] calls thing_inside with -- [k1,k2,a,b] (k2 -> *) where T : forall k1 k2 (a:k1 -> *) (b:k1). k2 -> * -- -- No need to freshen the k's because they are just skolem -- constants here, and we are at top level anyway. tcTyClTyVars tycon tyvars thing_inside = do { thing <- tcLookup tycon ; let { kind = case thing of AThing kind -> kind _ -> panic "tcTyClTyVars" -- We only call tcTyClTyVars during typechecking in -- TcTyClDecls, where the local env is extended with -- the generalized_env (mapping Names to AThings). ; (kvs, body) = splitForAllTys kind ; (kinds, res) = splitKindFunTysN (length names) body ; names = hsLTyVarNames tyvars ; tvs = zipWith mkTyVar names kinds ; all_vs = kvs ++ tvs } ; tcExtendTyVarEnv all_vs (thing_inside all_vs res) } -- Used when generalizing binders and type family patterns -- It takes a kind from the type checker (like `k0 -> *`), and returns the -- final, kind-generalized kind (`forall k::BOX. k -> *`) kindGeneralizeKinds :: [TcKind] -> TcM ([KindVar], [Kind]) -- INVARIANT: the returned kinds are zonked, and -- mention the returned kind variables kindGeneralizeKinds kinds = do { -- Quantify over kind variables free in -- the kinds, and *not* in the environment ; zonked_kinds <- mapM zonkTcKind kinds ; gbl_tvs <- tcGetGlobalTyVars -- Already zonked ; let kvs_to_quantify = tyVarsOfTypes zonked_kinds `minusVarSet` gbl_tvs ; kvs <- ASSERT2 (all isKiVar (varSetElems kvs_to_quantify), ppr kvs_to_quantify) zonkQuantifiedTyVars kvs_to_quantify -- Zonk the kinds again, to pick up either the kind -- variables we quantify over, or *, depending on whether -- zonkQuantifiedTyVars decided to generalise (which in -- turn depends on DataKinds) ; final_kinds <- mapM zonkTcKind zonked_kinds ; traceTc "generalizeKind" ( ppr kinds <+> ppr kvs_to_quantify <+> ppr kvs <+> ppr final_kinds) ; return (kvs, final_kinds) } kindGeneralizeKind :: TcKind -> TcM ( [KindVar] -- these were flexi kind vars , Kind ) -- this is the old kind where flexis got zonked kindGeneralizeKind kind = do (kvs, [kind']) <- kindGeneralizeKinds [kind] return (kvs, kind') ----------------------------------- tcDataKindSig :: Kind -> TcM [TyVar] -- GADT decls can have a (perhaps partial) kind signature -- e.g. data T :: * -> * -> * where ... -- This function makes up suitable (kinded) type variables for -- the argument kinds, and checks that the result kind is indeed *. -- We use it also to make up argument type variables for for data instances. tcDataKindSig kind = do { checkTc (isLiftedTypeKind res_kind) (badKindSig kind) ; span <- getSrcSpanM ; us <- newUniqueSupply ; let uniqs = uniqsFromSupply us ; return [ mk_tv span uniq str kind | ((kind, str), uniq) <- arg_kinds `zip` dnames `zip` uniqs ] } where (arg_kinds, res_kind) = splitKindFunTys kind mk_tv loc uniq str kind = mkTyVar name kind where name = mkInternalName uniq occ loc occ = mkOccName tvName str dnames = map ('$' :) names -- Note [Avoid name clashes for associated data types] names :: [String] names = [ c:cs | cs <- "" : names, c <- ['a'..'z'] ] badKindSig :: Kind -> SDoc badKindSig kind = hang (ptext (sLit "Kind signature on data type declaration has non-* return kind")) 2 (ppr kind) \end{code} Note [Avoid name clashes for associated data types] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider class C a b where data D b :: * -> * When typechecking the decl for D, we'll invent an extra type variable for D, to fill out its kind. We *don't* want this type variable to be 'a', because in an .hi file we'd get class C a b where data D b a which makes it look as if there are *two* type indices. But there aren't! So we use $a instead, which cannot clash with a user-written type variable. Remember that type variable binders in interface files are just FastStrings, not proper Names. (The tidying phase can't help here because we don't tidy TyCons. Another alternative would be to record the number of indexing parameters in the interface file.) %************************************************************************ %* * Scoped type variables %* * %************************************************************************ tcAddScopedTyVars is used for scoped type variables added by pattern type signatures e.g. \ ((x::a), (y::a)) -> x+y They never have explicit kinds (because this is source-code only) They are mutable (because they can get bound to a more specific type). Usually we kind-infer and expand type splices, and then tupecheck/desugar the type. That doesn't work well for scoped type variables, because they scope left-right in patterns. (e.g. in the example above, the 'a' in (y::a) is bound by the 'a' in (x::a). The current not-very-good plan is to * find all the types in the patterns * find their free tyvars * do kind inference * bring the kinded type vars into scope * BUT throw away the kind-checked type (we'll kind-check it again when we type-check the pattern) This is bad because throwing away the kind checked type throws away its splices. But too bad for now. [July 03] Historical note: We no longer specify that these type variables must be univerally quantified (lots of email on the subject). If you want to put that back in, you need to a) Do a checkSigTyVars after thing_inside b) More insidiously, don't pass in expected_ty, else we unify with it too early and checkSigTyVars barfs Instead you have to pass in a fresh ty var, and unify it with expected_ty afterwards \begin{code} tcHsPatSigType :: UserTypeCtxt -> LHsType Name -- The type signature -> TcM ([TyVar], -- Newly in-scope type variables Type) -- The signature -- Used for type-checking type signatures in -- (a) patterns e.g f (x::Int) = e -- (b) result signatures e.g. g x :: Int = e -- (c) RULE forall bndrs e.g. forall (x::Int). f x = x tcHsPatSigType ctxt hs_ty = addErrCtxt (pprHsSigCtxt ctxt hs_ty) $ do { -- Find the type variables that are mentioned in the type -- but not already in scope. These are the ones that -- should be bound by the pattern signature in_scope <- getInLocalScope ; let span = getLoc hs_ty sig_tvs = userHsTyVarBndrs $ map (L span) $ filterOut in_scope $ nameSetToList (extractHsTyVars hs_ty) ; (tyvars, sig_ty) <- tcHsQuantifiedType sig_tvs hs_ty ; checkValidType ctxt sig_ty ; return (tyvars, sig_ty) } tcPatSig :: UserTypeCtxt -> LHsType Name -> TcSigmaType -> TcM (TcType, -- The type to use for "inside" the signature [(Name, TcType)], -- The new bit of type environment, binding -- the scoped type variables HsWrapper) -- Coercion due to unification with actual ty -- Of shape: res_ty ~ sig_ty tcPatSig ctxt sig res_ty = do { (sig_tvs, sig_ty) <- tcHsPatSigType ctxt sig -- sig_tvs are the type variables free in 'sig', -- and not already in scope. These are the ones -- that should be brought into scope ; if null sig_tvs then do { -- The type signature binds no type variables, -- and hence is rigid, so use it to zap the res_ty wrap <- tcSubType PatSigOrigin ctxt res_ty sig_ty ; return (sig_ty, [], wrap) } else do { -- Type signature binds at least one scoped type variable -- A pattern binding cannot bind scoped type variables -- The renamer fails with a name-out-of-scope error -- if a pattern binding tries to bind a type variable, -- So we just have an ASSERT here ; let in_pat_bind = case ctxt of BindPatSigCtxt -> True _ -> False ; ASSERT( not in_pat_bind || null sig_tvs ) return () -- Check that all newly-in-scope tyvars are in fact -- constrained by the pattern. This catches tiresome -- cases like -- type T a = Int -- f :: Int -> Int -- f (x :: T a) = ... -- Here 'a' doesn't get a binding. Sigh ; let bad_tvs = filterOut (`elemVarSet` exactTyVarsOfType sig_ty) sig_tvs ; checkTc (null bad_tvs) (badPatSigTvs sig_ty bad_tvs) -- Now do a subsumption check of the pattern signature against res_ty ; sig_tvs' <- tcInstSigTyVars sig_tvs ; let sig_ty' = substTyWith sig_tvs sig_tv_tys' sig_ty sig_tv_tys' = mkTyVarTys sig_tvs' ; wrap <- tcSubType PatSigOrigin ctxt res_ty sig_ty' -- Check that each is bound to a distinct type variable, -- and one that is not already in scope ; binds_in_scope <- getScopedTyVarBinds ; let tv_binds = map tyVarName sig_tvs `zip` sig_tv_tys' ; check binds_in_scope tv_binds -- Phew! ; return (sig_ty', tv_binds, wrap) } } where check _ [] = return () check in_scope ((n,ty):rest) = do { check_one in_scope n ty ; check ((n,ty):in_scope) rest } check_one in_scope n ty = checkTc (null dups) (dupInScope n (head dups) ty) -- Must not bind to the same type variable -- as some other in-scope type variable where dups = [n' | (n',ty') <- in_scope, eqType ty' ty] \end{code} %************************************************************************ %* * Checking kinds %* * %************************************************************************ We would like to get a decent error message from (a) Under-applied type constructors f :: (Maybe, Maybe) (b) Over-applied type constructors f :: Int x -> Int x \begin{code} -- The ExpKind datatype means "expected kind" and contains -- some info about just why that kind is expected, to improve -- the error message on a mis-match data ExpKind = EK TcKind SDoc instance Outputable ExpKind where ppr (EK k _) = ptext (sLit "Expected kind:") <+> ppr k ekLifted, ekArg, ekConstraint :: ExpKind ekLifted = EK liftedTypeKind (ptext (sLit "Expected")) ekArg = EK argTypeKind (ptext (sLit "Expected")) ekConstraint = EK constraintKind (ptext (sLit "Expected")) -- Build an ExpKind for arguments expArgKind :: SDoc -> TcKind -> Int -> ExpKind expArgKind exp kind arg_no = EK kind (ptext (sLit "The") <+> speakNth arg_no <+> ptext (sLit "argument of") <+> exp <+> ptext (sLit "should have")) unifyKinds :: SDoc -> [(LHsType Name, TcKind)] -> TcM TcKind unifyKinds fun act_kinds = do kind <- newMetaKindVar let checkArgs (arg_no, (ty, act_kind)) = checkExpectedKind ty act_kind (expArgKind (quotes fun) kind arg_no) mapM_ checkArgs (zip [1..] act_kinds) return kind checkExpectedKind :: Outputable a => a -> TcKind -> ExpKind -> TcM () -- A fancy wrapper for 'unifyKind', which tries -- to give decent error messages. -- (checkExpectedKind ty act_kind exp_kind) -- checks that the actual kind act_kind is compatible -- with the expected kind exp_kind -- The first argument, ty, is used only in the error message generation checkExpectedKind ty act_kind ek@(EK exp_kind ek_ctxt) = do traceTc "checkExpectedKind" (ppr ty $$ ppr act_kind $$ ppr ek) (_errs, mb_r) <- tryTc (unifyKind act_kind exp_kind) case mb_r of Just _ -> return () -- Unification succeeded Nothing -> do -- So there's definitely an error -- Now to find out what sort exp_kind <- zonkTcKind exp_kind act_kind <- zonkTcKind act_kind env0 <- tcInitTidyEnv let (exp_as, _) = splitKindFunTys exp_kind (act_as, _) = splitKindFunTys act_kind n_exp_as = length exp_as n_act_as = length act_as n_diff_as = n_act_as - n_exp_as (env1, tidy_exp_kind) = tidyOpenKind env0 exp_kind (env2, tidy_act_kind) = tidyOpenKind env1 act_kind err | n_exp_as < n_act_as -- E.g. [Maybe] = ptext (sLit "Expecting") <+> speakN n_diff_as <+> ptext (sLit "more argument") <> (if n_diff_as > 1 then char 's' else empty) <+> ptext (sLit "to") <+> quotes (ppr ty) -- Now n_exp_as >= n_act_as. In the next two cases, -- n_exp_as == 0, and hence so is n_act_as | isConstraintKind tidy_act_kind = text "Predicate" <+> quotes (ppr ty) <+> text "used as a type" | isConstraintKind tidy_exp_kind = text "Type of kind" <+> ppr tidy_act_kind <+> text "used as a constraint" | isLiftedTypeKind exp_kind && isUnliftedTypeKind act_kind = ptext (sLit "Expecting a lifted type, but") <+> quotes (ppr ty) <+> ptext (sLit "is unlifted") | isUnliftedTypeKind exp_kind && isLiftedTypeKind act_kind = ptext (sLit "Expecting an unlifted type, but") <+> quotes (ppr ty) <+> ptext (sLit "is lifted") | otherwise -- E.g. Monad [Int] = ptext (sLit "Kind mis-match") $$ more_info more_info = sep [ ek_ctxt <+> ptext (sLit "kind") <+> quotes (pprKind tidy_exp_kind) <> comma, ptext (sLit "but") <+> quotes (ppr ty) <+> ptext (sLit "has kind") <+> quotes (pprKind tidy_act_kind)] failWithTcM (env2, err) \end{code} %************************************************************************ %* * Sort checking kinds %* * %************************************************************************ scDsLHsKind converts a user-written kind to an internal, sort-checked kind. It does sort checking and desugaring at the same time, in one single pass. It fails when the kinds are not well-formed (eg. data A :: * Int), or if there are non-promotable or non-fully applied kinds. \begin{code} scDsLHsKind :: LHsKind Name -> TcM Kind scDsLHsKind k = addErrCtxt (ptext (sLit "In the kind") <+> quotes (ppr k)) $ sc_ds_lhs_kind k scDsLHsMaybeKind :: Maybe (LHsKind Name) -> TcM (Maybe Kind) scDsLHsMaybeKind Nothing = return Nothing scDsLHsMaybeKind (Just k) = do k' <- scDsLHsKind k return (Just k') sc_ds_lhs_kind :: LHsKind Name -> TcM Kind sc_ds_lhs_kind (L span ki) = setSrcSpan span (sc_ds_hs_kind ki) -- The main worker sc_ds_hs_kind :: HsKind Name -> TcM Kind sc_ds_hs_kind k@(HsTyVar _) = sc_ds_app k [] sc_ds_hs_kind k@(HsAppTy _ _) = sc_ds_app k [] sc_ds_hs_kind (HsParTy ki) = sc_ds_lhs_kind ki sc_ds_hs_kind (HsFunTy ki1 ki2) = do kappa_ki1 <- sc_ds_lhs_kind ki1 kappa_ki2 <- sc_ds_lhs_kind ki2 return (mkArrowKind kappa_ki1 kappa_ki2) sc_ds_hs_kind (HsListTy ki) = do kappa <- sc_ds_lhs_kind ki checkWiredInTyCon listTyCon return $ mkListTy kappa sc_ds_hs_kind (HsTupleTy _ kis) = do kappas <- mapM sc_ds_lhs_kind kis checkWiredInTyCon tycon return $ mkTyConApp tycon kappas where tycon = tupleTyCon BoxedTuple (length kis) -- Argument not kind-shaped sc_ds_hs_kind k = panic ("sc_ds_hs_kind: " ++ showPpr k) -- Special case for kind application sc_ds_app :: HsKind Name -> [LHsKind Name] -> TcM Kind sc_ds_app (HsAppTy ki1 ki2) kis = sc_ds_app (unLoc ki1) (ki2:kis) sc_ds_app (HsTyVar tc) kis = do arg_kis <- mapM sc_ds_lhs_kind kis sc_ds_var_app tc arg_kis sc_ds_app ki _ = failWithTc (quotes (ppr ki) <+> ptext (sLit "is not a kind constructor")) -- IA0_TODO: With explicit kind polymorphism I might need to add ATyVar sc_ds_var_app :: Name -> [Kind] -> TcM Kind -- Special case for * and Constraint kinds sc_ds_var_app name arg_kis | name == liftedTypeKindTyConName || name == constraintKindTyConName = do unless (null arg_kis) (failWithTc (text "Kind" <+> ppr name <+> text "cannot be applied")) thing <- tcLookup name case thing of AGlobal (ATyCon tc) -> return (mkTyConApp tc []) _ -> panic "sc_ds_var_app 1" -- General case sc_ds_var_app name arg_kis = do (_errs, mb_thing) <- tryTc (tcLookup name) case mb_thing of Just (AGlobal (ATyCon tc)) | isAlgTyCon tc || isTupleTyCon tc -> do data_kinds <- xoptM Opt_DataKinds unless data_kinds $ addErr (dataKindsErr name) let tc_kind = tyConKind tc case isPromotableKind tc_kind of Just n | n == length arg_kis -> return (mkTyConApp (mkPromotedTypeTyCon tc) arg_kis) Just _ -> err tc_kind "is not fully applied" Nothing -> err tc_kind "is not promotable" -- It is in scope, but not what we expected Just thing -> wrongThingErr "promoted type" thing name -- It is not in scope, but it passed the renamer: staging error Nothing -> ASSERT2 ( isTyConName name, ppr name ) failWithTc (ptext (sLit "Promoted kind") <+> quotes (ppr name) <+> ptext (sLit "used in a mutually recursive group")) where err k m = failWithTc ( quotes (ppr name) <+> ptext (sLit "of kind") <+> quotes (ppr k) <+> ptext (sLit m)) \end{code} %************************************************************************ %* * Scoped type variables %* * %************************************************************************ \begin{code} pprHsSigCtxt :: UserTypeCtxt -> LHsType Name -> SDoc pprHsSigCtxt ctxt hs_ty = sep [ ptext (sLit "In") <+> pprUserTypeCtxt ctxt <> colon, nest 2 (pp_sig ctxt) ] where pp_sig (FunSigCtxt n) = pp_n_colon n pp_sig (ConArgCtxt n) = pp_n_colon n pp_sig (ForSigCtxt n) = pp_n_colon n pp_sig _ = ppr (unLoc hs_ty) pp_n_colon n = ppr n <+> dcolon <+> ppr (unLoc hs_ty) badPatSigTvs :: TcType -> [TyVar] -> SDoc badPatSigTvs sig_ty bad_tvs = vcat [ fsep [ptext (sLit "The type variable") <> plural bad_tvs, quotes (pprWithCommas ppr bad_tvs), ptext (sLit "should be bound by the pattern signature") <+> quotes (ppr sig_ty), ptext (sLit "but are actually discarded by a type synonym") ] , ptext (sLit "To fix this, expand the type synonym") , ptext (sLit "[Note: I hope to lift this restriction in due course]") ] dupInScope :: Name -> Name -> Type -> SDoc dupInScope n n' _ = hang (ptext (sLit "The scoped type variables") <+> quotes (ppr n) <+> ptext (sLit "and") <+> quotes (ppr n')) 2 (vcat [ptext (sLit "are bound to the same type (variable)"), ptext (sLit "Distinct scoped type variables must be distinct")]) \end{code}