% % (c) The University of Glasgow 2006 % FamInstEnv: Type checked family instance declarations \begin{code} {-# OPTIONS -fno-warn-tabs #-} -- The above warning supression flag is a temporary kludge. -- While working on this module you are encouraged to remove it and -- detab the module (please do the detabbing in a separate patch). See -- http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces -- for details module FamInstEnv ( FamInst(..), famInstTyCon, famInstTyVars, pprFamInst, pprFamInstHdr, pprFamInsts, famInstHead, mkLocalFamInst, mkImportedFamInst, FamInstEnvs, FamInstEnv, emptyFamInstEnv, emptyFamInstEnvs, extendFamInstEnv, overwriteFamInstEnv, extendFamInstEnvList, famInstEnvElts, familyInstances, lookupFamInstEnv, lookupFamInstEnvConflicts, lookupFamInstEnvConflicts', -- Normalisation topNormaliseType, normaliseType, normaliseTcApp ) where #include "HsVersions.h" import InstEnv import Unify import Type import TypeRep import TyCon import Coercion import VarSet import Name import UniqFM import Outputable import Maybes import Util import FastString \end{code} %************************************************************************ %* * \subsection{Type checked family instance heads} %* * %************************************************************************ \begin{code} data FamInst = FamInst { fi_fam :: Name -- Family name -- INVARIANT: fi_fam = case tyConFamInst_maybe fi_tycon of -- Just (tc, tys) -> tc -- Used for "rough matching"; same idea as for class instances , fi_tcs :: [Maybe Name] -- Top of type args -- INVARIANT: fi_tcs = roughMatchTcs fi_tys -- Used for "proper matching"; ditto , fi_tvs :: TyVarSet -- Template tyvars for full match , fi_tys :: [Type] -- Full arg types -- INVARIANT: fi_tvs = tyConTyVars fi_tycon -- fi_tys = case tyConFamInst_maybe fi_tycon of -- Just (_, tys) -> tys , fi_tycon :: TyCon -- Representation tycon } -- Obtain the representation tycon of a family instance. -- famInstTyCon :: FamInst -> TyCon famInstTyCon = fi_tycon famInstTyVars :: FamInst -> TyVarSet famInstTyVars = fi_tvs \end{code} \begin{code} instance NamedThing FamInst where getName = getName . fi_tycon instance Outputable FamInst where ppr = pprFamInst -- Prints the FamInst as a family instance declaration pprFamInst :: FamInst -> SDoc pprFamInst famInst = hang (pprFamInstHdr famInst) 2 (vcat [ ifPprDebug (ptext (sLit "Coercion axiom:") <+> pp_ax) , ptext (sLit "--") <+> pprDefinedAt (getName famInst)]) where pp_ax = case tyConFamilyCoercion_maybe (fi_tycon famInst) of Just ax -> ppr ax Nothing -> ptext (sLit "") pprFamInstHdr :: FamInst -> SDoc pprFamInstHdr (FamInst {fi_tycon = rep_tc}) = pprTyConSort <+> pp_instance <+> pprHead where Just (fam_tc, tys) = tyConFamInst_maybe rep_tc -- For *associated* types, say "type T Int = blah" -- For *top level* type instances, say "type instance T Int = blah" pp_instance | isTyConAssoc fam_tc = empty | otherwise = ptext (sLit "instance") pprHead = pprTypeApp fam_tc tys pprTyConSort | isDataTyCon rep_tc = ptext (sLit "data") | isNewTyCon rep_tc = ptext (sLit "newtype") | isSynTyCon rep_tc = ptext (sLit "type") | isAbstractTyCon rep_tc = ptext (sLit "data") | otherwise = panic "FamInstEnv.pprFamInstHdr" pprFamInsts :: [FamInst] -> SDoc pprFamInsts finsts = vcat (map pprFamInst finsts) famInstHead :: FamInst -> ([TyVar], TyCon, [Type]) famInstHead (FamInst {fi_tycon = tycon}) = case tyConFamInst_maybe tycon of Nothing -> panic "FamInstEnv.famInstHead" Just (fam, tys) -> (tyConTyVars tycon, fam, tys) -- Make a family instance representation from a tycon. This is used for local -- instances, where we can safely pull on the tycon. -- mkLocalFamInst :: TyCon -> FamInst mkLocalFamInst tycon = case tyConFamInst_maybe tycon of Nothing -> panic "FamInstEnv.mkLocalFamInst" Just (fam, tys) -> FamInst { fi_fam = tyConName fam, fi_tcs = roughMatchTcs tys, fi_tvs = mkVarSet . tyConTyVars $ tycon, fi_tys = tys, fi_tycon = tycon } -- Make a family instance representation from the information found in an -- unterface file. In particular, we get the rough match info from the iface -- (instead of computing it here). -- mkImportedFamInst :: Name -> [Maybe Name] -> TyCon -> FamInst mkImportedFamInst fam mb_tcs tycon = FamInst { fi_fam = fam, fi_tcs = mb_tcs, fi_tvs = mkVarSet . tyConTyVars $ tycon, fi_tys = case tyConFamInst_maybe tycon of Nothing -> panic "FamInstEnv.mkImportedFamInst" Just (_, tys) -> tys, fi_tycon = tycon } \end{code} %************************************************************************ %* * FamInstEnv %* * %************************************************************************ Note [FamInstEnv] ~~~~~~~~~~~~~~~~~~~~~ A FamInstEnv maps a family name to the list of known instances for that family. The same FamInstEnv includes both 'data family' and 'type family' instances. Type families are reduced during type inference, but not data families; the user explains when to use a data family instance by using contructors and pattern matching. Neverthless it is still useful to have data families in the FamInstEnv: - For finding overlaps and conflicts - For finding the representation type...see FamInstEnv.topNormaliseType and its call site in Simplify - In standalone deriving instance Eq (T [Int]) we need to find the representation type for T [Int] \begin{code} type FamInstEnv = UniqFM FamilyInstEnv -- Maps a family to its instances -- See Note [FamInstEnv] type FamInstEnvs = (FamInstEnv, FamInstEnv) -- External package inst-env, Home-package inst-env data FamilyInstEnv = FamIE [FamInst] -- The instances for a particular family, in any order Bool -- True <=> there is an instance of form T a b c -- If *not* then the common case of looking up -- (T a b c) can fail immediately instance Outputable FamilyInstEnv where ppr (FamIE fs b) = ptext (sLit "FamIE") <+> ppr b <+> vcat (map ppr fs) -- INVARIANTS: -- * The fs_tvs are distinct in each FamInst -- of a range value of the map (so we can safely unify them) emptyFamInstEnvs :: (FamInstEnv, FamInstEnv) emptyFamInstEnvs = (emptyFamInstEnv, emptyFamInstEnv) emptyFamInstEnv :: FamInstEnv emptyFamInstEnv = emptyUFM famInstEnvElts :: FamInstEnv -> [FamInst] famInstEnvElts fi = [elt | FamIE elts _ <- eltsUFM fi, elt <- elts] familyInstances :: (FamInstEnv, FamInstEnv) -> TyCon -> [FamInst] familyInstances (pkg_fie, home_fie) fam = get home_fie ++ get pkg_fie where get env = case lookupUFM env fam of Just (FamIE insts _) -> insts Nothing -> [] extendFamInstEnvList :: FamInstEnv -> [FamInst] -> FamInstEnv extendFamInstEnvList inst_env fis = foldl extendFamInstEnv inst_env fis extendFamInstEnv :: FamInstEnv -> FamInst -> FamInstEnv extendFamInstEnv inst_env ins_item@(FamInst {fi_fam = cls_nm, fi_tcs = mb_tcs}) = addToUFM_C add inst_env cls_nm (FamIE [ins_item] ins_tyvar) where add (FamIE items tyvar) _ = FamIE (ins_item:items) (ins_tyvar || tyvar) ins_tyvar = not (any isJust mb_tcs) overwriteFamInstEnv :: FamInstEnv -> FamInst -> FamInstEnv overwriteFamInstEnv inst_env ins_item@(FamInst {fi_fam = cls_nm, fi_tcs = mb_tcs}) = addToUFM_C add inst_env cls_nm (FamIE [ins_item] ins_tyvar) where add (FamIE items tyvar) _ = FamIE (replaceFInst items) (ins_tyvar || tyvar) ins_tyvar = not (any isJust mb_tcs) match _ tpl_tvs tpl_tys tys = tcMatchTys tpl_tvs tpl_tys tys inst_tycon = famInstTyCon ins_item (fam, tys) = expectJust "FamInstEnv.lookuFamInstEnvConflicts" (tyConFamInst_maybe inst_tycon) arity = tyConArity fam n_tys = length tys match_tys | arity > n_tys = take arity tys | otherwise = tys rough_tcs = roughMatchTcs match_tys replaceFInst [] = [ins_item] replaceFInst (item@(FamInst { fi_tcs = mb_tcs, fi_tvs = tpl_tvs, fi_tys = tpl_tys }) : rest) -- Fast check for no match, uses the "rough match" fields | instanceCantMatch rough_tcs mb_tcs = item : replaceFInst rest -- Proper check | Just _ <- match item tpl_tvs tpl_tys match_tys = ins_item : rest -- No match => try next | otherwise = item : replaceFInst rest \end{code} %************************************************************************ %* * Looking up a family instance %* * %************************************************************************ @lookupFamInstEnv@ looks up in a @FamInstEnv@, using a one-way match. Multiple matches are only possible in case of type families (not data families), and then, it doesn't matter which match we choose (as the instances are guaranteed confluent). We return the matching family instances and the type instance at which it matches. For example, if we lookup 'T [Int]' and have a family instance data instance T [a] = .. desugared to data :R42T a = .. coe :Co:R42T a :: T [a] ~ :R42T a we return the matching instance '(FamInst{.., fi_tycon = :R42T}, Int)'. \begin{code} type FamInstMatch = (FamInst, [Type]) -- Matching type instance -- See Note [Over-saturated matches] lookupFamInstEnv :: FamInstEnvs -> TyCon -> [Type] -- What we are looking for -> [FamInstMatch] -- Successful matches -- Precondition: the tycon is saturated (or over-saturated) lookupFamInstEnv = lookup_fam_inst_env match True where match _ tpl_tvs tpl_tys tys = tcMatchTys tpl_tvs tpl_tys tys lookupFamInstEnvConflicts :: FamInstEnvs -> FamInst -- Putative new instance -> [TyVar] -- Unique tyvars, matching arity of FamInst -> [FamInstMatch] -- Conflicting matches -- E.g. when we are about to add -- f : type instance F [a] = a->a -- we do (lookupFamInstConflicts f [b]) -- to find conflicting matches -- The skolem tyvars are needed because we don't have a -- unique supply to hand -- -- Precondition: the tycon is saturated (or over-saturated) lookupFamInstEnvConflicts envs fam_inst skol_tvs = lookup_fam_inst_env my_unify False envs fam tys1 where inst_tycon = famInstTyCon fam_inst (fam, tys) = expectJust "FamInstEnv.lookuFamInstEnvConflicts" (tyConFamInst_maybe inst_tycon) skol_tys = mkTyVarTys skol_tvs tys1 = substTys (zipTopTvSubst (tyConTyVars inst_tycon) skol_tys) tys -- In example above, fam tys' = F [b] my_unify old_fam_inst tpl_tvs tpl_tys match_tys = ASSERT2( tyVarsOfTypes tys1 `disjointVarSet` tpl_tvs, (ppr fam <+> ppr tys1) $$ (ppr tpl_tvs <+> ppr tpl_tys) ) -- Unification will break badly if the variables overlap -- They shouldn't because we allocate separate uniques for them case tcUnifyTys instanceBindFun tpl_tys match_tys of Just subst | conflicting old_fam_inst subst -> Just subst _other -> Nothing -- Note [Family instance overlap conflicts] conflicting old_fam_inst subst | isAlgTyCon fam = True | otherwise = not (old_rhs `eqType` new_rhs) where old_tycon = famInstTyCon old_fam_inst old_tvs = tyConTyVars old_tycon old_rhs = mkTyConApp old_tycon (substTyVars subst old_tvs) new_rhs = mkTyConApp inst_tycon (substTyVars subst skol_tvs) -- This variant is called when we want to check if the conflict is only in the -- home environment (see FamInst.addLocalFamInst) lookupFamInstEnvConflicts' :: FamInstEnv -> FamInst -> [TyVar] -> [FamInstMatch] lookupFamInstEnvConflicts' env fam_inst skol_tvs = lookupFamInstEnvConflicts (emptyFamInstEnv, env) fam_inst skol_tvs \end{code} Note [Family instance overlap conflicts] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - In the case of data family instances, any overlap is fundamentally a conflict (as these instances imply injective type mappings). - In the case of type family instances, overlap is admitted as long as the right-hand sides of the overlapping rules coincide under the overlap substitution. eg type instance F a Int = a type instance F Int b = b These two overlap on (F Int Int) but then both RHSs are Int, so all is well. We require that they are syntactically equal; anything else would be difficult to test for at this stage. While @lookupFamInstEnv@ uses a one-way match, the next function @lookupFamInstEnvConflicts@ uses two-way matching (ie, unification). This is needed to check for overlapping instances. For class instances, these two variants of lookup are combined into one function (cf, @InstEnv@). We don't do that for family instances as the results of matching and unification are used in two different contexts. Moreover, matching is the wildly more frequently used operation in the case of indexed synonyms and we don't want to slow that down by needless unification. \begin{code} ------------------------------------------------------------ -- Might be a one-way match or a unifier type MatchFun = FamInst -- The FamInst template -> TyVarSet -> [Type] -- fi_tvs, fi_tys of that FamInst -> [Type] -- Target to match against -> Maybe TvSubst type OneSidedMatch = Bool -- Are optimisations that are only valid for -- one sided matches allowed? lookup_fam_inst_env' -- The worker, local to this module :: MatchFun -> OneSidedMatch -> FamInstEnv -> TyCon -> [Type] -- What we are looking for -> [FamInstMatch] -- Successful matches lookup_fam_inst_env' match_fun one_sided ie fam tys | not (isFamilyTyCon fam) = [] | otherwise = ASSERT2( n_tys >= arity, ppr fam <+> ppr tys ) -- Family type applications must be saturated lookup ie where -- See Note [Over-saturated matches] arity = tyConArity fam n_tys = length tys extra_tys = drop arity tys (match_tys, add_extra_tys) | arity > n_tys = (take arity tys, \res_tys -> res_tys ++ extra_tys) | otherwise = (tys, \res_tys -> res_tys) -- The second case is the common one, hence functional representation -------------- rough_tcs = roughMatchTcs match_tys all_tvs = all isNothing rough_tcs && one_sided -------------- lookup env = case lookupUFM env fam of Nothing -> [] -- No instances for this class Just (FamIE insts has_tv_insts) -- Short cut for common case: -- The thing we are looking up is of form (C a -- b c), and the FamIE has no instances of -- that form, so don't bother to search | all_tvs && not has_tv_insts -> [] | otherwise -> find insts -------------- find [] = [] find (item@(FamInst { fi_tcs = mb_tcs, fi_tvs = tpl_tvs, fi_tys = tpl_tys, fi_tycon = tycon }) : rest) -- Fast check for no match, uses the "rough match" fields | instanceCantMatch rough_tcs mb_tcs = find rest -- Proper check | Just subst <- match_fun item tpl_tvs tpl_tys match_tys = (item, add_extra_tys $ substTyVars subst (tyConTyVars tycon)) : find rest -- No match => try next | otherwise = find rest -- Precondition: the tycon is saturated (or over-saturated) lookup_fam_inst_env -- The worker, local to this module :: MatchFun -> OneSidedMatch -> FamInstEnvs -> TyCon -> [Type] -- What we are looking for -> [FamInstMatch] -- Successful matches -- Precondition: the tycon is saturated (or over-saturated) lookup_fam_inst_env match_fun one_sided (pkg_ie, home_ie) fam tys = lookup_fam_inst_env' match_fun one_sided home_ie fam tys ++ lookup_fam_inst_env' match_fun one_sided pkg_ie fam tys \end{code} Note [Over-saturated matches] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ It's ok to look up an over-saturated type constructor. E.g. type family F a :: * -> * type instance F (a,b) = Either (a->b) The type instance gives rise to a newtype TyCon (at a higher kind which you can't do in Haskell!): newtype FPair a b = FP (Either (a->b)) Then looking up (F (Int,Bool) Char) will return a FamInstMatch (FPair, [Int,Bool,Char]) The "extra" type argument [Char] just stays on the end. %************************************************************************ %* * Looking up a family instance %* * %************************************************************************ \begin{code} topNormaliseType :: FamInstEnvs -> Type -> Maybe (Coercion, Type) -- Get rid of *outermost* (or toplevel) -- * type functions -- * newtypes -- using appropriate coercions. -- By "outer" we mean that toplevelNormaliseType guarantees to return -- a type that does not have a reducible redex (F ty1 .. tyn) as its -- outermost form. It *can* return something like (Maybe (F ty)), where -- (F ty) is a redex. -- Its a bit like Type.repType, but handles type families too topNormaliseType env ty = go [] ty where go :: [TyCon] -> Type -> Maybe (Coercion, Type) go rec_nts ty | Just ty' <- coreView ty -- Expand synonyms = go rec_nts ty' go rec_nts (TyConApp tc tys) | isNewTyCon tc -- Expand newtypes = if tc `elem` rec_nts -- See Note [Expanding newtypes] in Type.lhs then Nothing else let nt_co = mkAxInstCo (newTyConCo tc) tys in add_co nt_co rec_nts' nt_rhs | isFamilyTyCon tc -- Expand open tycons , (co, ty) <- normaliseTcApp env tc tys -- Note that normaliseType fully normalises 'tys', -- It has do to so to be sure that nested calls like -- F (G Int) -- are correctly top-normalised , not (isReflCo co) = add_co co rec_nts ty where nt_rhs = newTyConInstRhs tc tys rec_nts' | isRecursiveTyCon tc = tc:rec_nts | otherwise = rec_nts go _ _ = Nothing add_co co rec_nts ty = case go rec_nts ty of Nothing -> Just (co, ty) Just (co', ty') -> Just (mkTransCo co co', ty') --------------- normaliseTcApp :: FamInstEnvs -> TyCon -> [Type] -> (Coercion, Type) normaliseTcApp env tc tys | isFamilyTyCon tc , tyConArity tc <= length tys -- Unsaturated data families are possible , [(fam_inst, inst_tys)] <- lookupFamInstEnv env tc ntys = let -- A matching family instance exists rep_tc = famInstTyCon fam_inst co_tycon = expectJust "lookupFamInst" (tyConFamilyCoercion_maybe rep_tc) co = mkAxInstCo co_tycon inst_tys first_coi = mkTransCo tycon_coi co (rest_coi,nty) = normaliseType env (mkTyConApp rep_tc inst_tys) fix_coi = mkTransCo first_coi rest_coi in (fix_coi, nty) | otherwise -- No unique matching family instance exists; -- we do not do anything = (tycon_coi, TyConApp tc ntys) where -- Normalise the arg types so that they'll match -- when we lookup in in the instance envt (cois, ntys) = mapAndUnzip (normaliseType env) tys tycon_coi = mkTyConAppCo tc cois --------------- normaliseType :: FamInstEnvs -- environment with family instances -> Type -- old type -> (Coercion, Type) -- (coercion,new type), where -- co :: old-type ~ new_type -- Normalise the input type, by eliminating *all* type-function redexes -- Returns with Refl if nothing happens normaliseType env ty | Just ty' <- coreView ty = normaliseType env ty' normaliseType env (TyConApp tc tys) = normaliseTcApp env tc tys normaliseType env (AppTy ty1 ty2) = let (coi1,nty1) = normaliseType env ty1 (coi2,nty2) = normaliseType env ty2 in (mkAppCo coi1 coi2, mkAppTy nty1 nty2) normaliseType env (FunTy ty1 ty2) = let (coi1,nty1) = normaliseType env ty1 (coi2,nty2) = normaliseType env ty2 in (mkFunCo coi1 coi2, mkFunTy nty1 nty2) normaliseType env (ForAllTy tyvar ty1) = let (coi,nty1) = normaliseType env ty1 in (mkForAllCo tyvar coi, ForAllTy tyvar nty1) normaliseType _ ty@(TyVarTy _) = (Refl ty,ty) \end{code}