
TOWARDS HUME SIMD VECTORISATION

Abdallah Al Zain, Valerie Gibson, Greg Michaelson

School of Mathematical & Computer Sciences, Heriot-Watt University, Riccarton, Scotland, EH14 4AS
phone: (+44) 131 451 4197, fax: + (+44) 131 451 3732, email: {ceeatia,vg8,greg }@macs.hw.ac.uk

web: www.macs.hw.ac.uk

Kevin Hammond, Steffen Jost

School of Computer Science, University of St Andrews, Scotland, KY16 9SX
phone: (+44) 133) 463241, fax: (+44) 1334 463278 email: {kh,jost}@dcs.st-and.ac.uk

web: www.dcs.st-and.ac.uk/~kh

Hans-Wolfgang Loidl

Ludwig-Maximilians University, D-80339 Munich, Germany
phone: (+49) 89 / 2180 9864 ,fax: (+49) 89 / 2180 9338,email: hwloidl@tcs.ifi.lmu.de

http://www.tcs.informatik.uni-muenchen.de/~hwloidl/

ABSTRACT
Hume is a novel formally-motivated programming language ori-
ented to developing software where strong assurance of resource
use is paramount, in particular embedded systems. In this paper,
we explore the use of Hume in a context of heterogeneous plat-
forms where resource knowledge may guide the mapping of activi-
ties to different platform components. We present an overview of
the Hume language design and methodology, and discuss its de-
ployment in the exploitation of SIMD vectorisation of a simple
low-level image processing routine.

1. INTRODUCTION
Contemporary hardware platforms offer considerable challenges
beyond traditional CPUs in integrating on-chip shared memory
multi-core and SIMD vector processing, with GPU and FPGA co-
processing. It is often difficult to map standard sequential algor-
ithms onto such platforms to gain optimal performance benefits
from such heterogeneous opportunities.
We have recently begun to elaborate an approach based on the
novel Hume programming language which has been designed to
enable highly accurate analyses of software component resource
use. In particular, generic models of Hume time (WCET) and
space resource use may be parameterised on hardware specific
properties to enable direct comparisons of likely behaviours of the
same components in different hardware realisations. And this may,
in principle, be achieved without actually constructing and instru-
menting different concrete versions of such components.

2. HUME
Hume [4] is a contemporary language in the functional tradition,
oriented to applications where a high degree of confidence is re-
quired that programs meet resource constraints such as time and
space needs. Its strength lies in the very tight integration both of its
formal design, offering strongly coupled semantics and type-based

cost models, and of its tool chain, with equally closely coupled static
resource analyses and native code compilation.
Hume embodies a number of novel design choices which underpin
its satisfaction of practical, applied and declarative concerns. It
draws strongly on modern functional languages like SML and
Haskell, providing recursive functions over rich polymorphic types.
However, rather than offering a traditional monolithic language,
Hume explicitly separates coordination, realised as concurrent finite
state boxes communicating over wires, from control, realised as
generalised transitions with boxes from patterns over inputs to ex-
pressions over outputs. Boxes are repeatedly invoked, consuming
inputs and generating outputs, but each box invocation is single shot
and pure declarative, with no internal state persisting between invo-
cations. Thus, by varying the types on wires and the expressiveness
of control within boxes, Hume may be treated as a family of lan-
guages from full-Hume, which is Turing complete, to FSM- (Finite
State Machine) and HW-(Hardware) Humes with highly accurate
cost models and analyses.
Hume is implemented via a core abstract machine which unifies
cost modelling and compilation. A common front end parses and
type-checks Hume programmes, and constructs an abstract syntax
tree (AST). The native code compiler then traverses the tree generat-
ing C for subsequent compilation via gcc. Similarly, the cost analys-
ers traverse ASTs calculating costs. Cost analysis may be integrated
into the compiler to guide space allocation and time constraint
checking.
Hume has been deployed in a wide range of applications, including
real-time control and image analysis for the Pioneer P3-AT robot
and the Cycab autonomous vehicle, both under Linux, and for low
level, stand-alone embedded use on a Renesas M32C board with
24K of memory.
For example, the following program generates a sequence of as-
cending integers on the standard output, starting with 0. Note that
line numbers are not part of Hume but are used in subsequent dis-
cussion.

1 -- counter - inc.hume
2 program

17th European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009

© EURASIP, 2009 2683

3 stream output to "std_out";
4 box inc
5 in (n::int 64)
6 out (n’::int 64,shown::(int 64,char))
7 match
8 x -> (x+1,(x,’\n’));
9 wire inc
10 (inc.n’ initially 0)
11 (inc.n,output);

1: Comments begin with --.
2: Programs start with program or module.
3: The stream output is associated with standard output, named
through the string "std out".
4: The box is named inc.
5: The box has one input called n, a 64 bit integer.
6: The box has two outputs. n’ is a 64 bit integer. shown is a tuple
of a 64 bit integer and a character.
7-8: If there is a value on input n, then the pattern x will set a new
local variable called x to that value and evaluate the right hand side.
Output n’ will be set to x+1. Output shown will be set to (x,’\n’)
i.e. x followed by a newline character.
9: Box inc is now wired by position.
10: inc’s input n is wired implicitly to inc’s input n’. n is initial-
ised to 0.
11: inc’s output n’ is wired implicitly to inc’s input n. inc’s
output shown is wired to output and hence to "std out".
The program is illustrated in the following Figure

3. HUME COST ANALYSIS
Determining the cost of executing a sequence of instructions can be
easy for a given machine model, if each instruction has a constant
cost. It is also possible to determine a useful upper bound on the
execution costs if the variation in cost is quite small for each in-
struction, such as bounding the cost of adding two arbitrary integer.
However, in practise the cost of many instructions varies signifi-
cantly, depending on arguments and/or the overall state of the ma-
chine. As an extreme example, a function call might return after an
arbitrarily large amount of time, which makes it useless to assume
the worst case (never). Therefore one needs to consider all possible
machine states at the start of the computation and track all possible
state transformations during execution, which is a tedious and gen-
erally infeasible approach. The only solution to this problem is to
abstract all possible states into smaller, more manageable classes of
equivalent states. Our approach is especially radical, since we ab-
stract the entire state and represent it by a single, nonnegative ra-
tional number, referred to as the potential of the machine state.
Note that we will never actually compute this number, the poten-

tial, for any actual machine state other than the initial state. Instead,
we examine the effect of each operation on the overall potential
and define the amortised cost [5,6] of an instruction as a suitable
constant such that:

amortised_cost = actual_cost - potential_before + potential_after

holds for all possible states, with equality being preferred. The
benefit is that determining the amortised cost for a sequence of
operation is very easy, since the amortised cost is constant and does
not depend on the machine. The actual cost of the entire sequence
is then bounded by the sum of the amortised costs plus the potential
of the initial state.
Automatically performing the analysis means that we first con-
struct a standard typing derivation. Next, each constructor is then
assigned a resource variable (ranging over non-negative rational
numbers), representing the potential credited by each node of that
constructor of that particular type (note that types may differ by
their potential only). The analysis generates a set of constraints
over those variables, according to the dataflow and the actual cost
occurring in each possible path of computation.
For example, the actual worst-case execution costs for the Renesas
M32C/85U processor have been determined by the aiT tool [8] for
machine-code level instructions. Each instruction of the source
program is examined precisely once. Loops in the source program
are dealt with by identifying some resource variables contained in
the constraint set. The generated constraint sets are well behaved
and can easily be solved by using a standard LP-solver, such as [1].
In this way, bounds on resource consumption are associated with
each expression in the program through their types. The potential
annotated types then give rise to a linear closed form expression,
depending on the input sizes, which represents an upper bound on
the execution costs. Because we have used a type-based approach,
we have already formally proven that our analysis will always give
a guaranteed upper bound on resource consumption

4. VECTORISATION
SIMD processors are optimised for parallel operations on con-

tiguous bit sequences, typically 128 bits, which are relatively long
by comparison with CPU’s 32 or 64 bits but extremely short com-
pared with data sequences measured at least in kilobytes. Thus,
opportunities for vectorisation are found deep in programs in the
lowest-level bodies of loops, processing linear sequences of values
which may be easily coerced to sequences of adjacent bytes.

General purpose CPUs have provided additional SIMD vec-
torisation for at least 10 years. However, with the notable exception
of Cockshott’s Vector Pascal[2], programming language implemen-
tations have been curiously slow in offering portable technologies
for exploiting SIMD processing. Commonly, programmers write
sub-systems themselves in processor-specific assembly language or
call out to compiler-specific SIMD libraries.

Our long term objective is to use Cockshott’s approach to iden-
tifying vectorising opportunities. However, where Cockshott uses a
universal abstract machine language, with translators to and from
source and target languages, we intend to analyse directly Hume
vector operations in the Hume Abstract Machine code. As a major
step towards this, we are exploring the hand vectorisation of sub-
stantial image processing algorithms in C, identifying a core set of
vectoriseable tropes in this domain, and then exploring their use in
Hume, again by hand in the first instance.
There are two possible routes to such deployment of vector routines.
First of all, Hume provides a foreign function interface (FFI) for
accessing and automatically compiling and linking external routines
written in other languages, in particular C/C++ and Java. For an FFI

2684

call, there must be a mapping from the Hume types to the foreign
types and back, and correspondences between the function calling
conventions in parameter passing.
Secondly, Hume also provides a skeletal operation box which
may be associated with potentially “unsafe” foreign function calls,
that is calls whose effects on the internal states of Hume programs
are unpredictable. The operation form has similar language
correspondence requirements to FFI, but enables external activities
to be more cleanly delineated at the box level.
We are currently completing a first set of experiments in using the
FFI route to exploit vectorisation: these are discussed next.

5. EXAMPLE: EDGE DETECTION
To illustrate the potential for foreign function vectorisation in
Hume, we consider a simple edge detection algorithm. In our ex-
periment, the program takes a 240*240 image and runs a standard
convolution method. This is done by using a Gaussian mask (a 5*5
matrix) and sliding it over every viable pixel in the image. An
edge is a sharp difference in the intensity of a pixel and its sur-
rounding elements and the Gaussian mask helps to enhance these
intensity differences.

We assume that the reader is familiar with this technique, and
focus on its expression in Hume and how vectorisation opportunities
may be exploited.

First of all, we declare basic Hume types aliases, in particular
for sized integers:

type integer = int 32;
type Int = int 32;

and for the vectors we will manipulate:

type pixel = vector 1..3 of integer;
type irow = vector 1..240 of pixel;
type iImage = vector 1..240 of irow;
type mrow = vector 1..5 of pixel;
type mImage = vector 1..5 of mrow;
type drow = vector 1..236 of pixel;
type dImage = vector 1..236 of drow;
type pixelCH = vector 1..3 of char;
type im_rowCH = vector 1..240 of pixelCH;
type ImageCH = vector 1..240 of im_rowCH;

The conversion from integer to character and back makes use of
Hume’s high level vector operation vecmap which applies a
function to every element of a vector:

c2i i = vecmap i c2i_c; c2i_c c = vecmap c c2i_p3; c2i_p3
c = vecmap c c2i_p;
c2i_p g = (g::char) as Int;

numCh i = vecmap i numCh_2; numCh_2 c = vecmap c numCh_3;
numCh_3 c = vecmap c numCh_4; numCh_4 g = if g>40 then 255
else 0;

i2c i = vecmap i i2c_c; i2c_c c = vecmap c i2c_p3;
i2c_p3 c = vecmap c i2c_p; i2c_p g = (g::Int) as char;

We need a function to access elements of 2D images:

get5 v n p = ...

and various masks for convolutions:

minus1 = <<(-1),(-1),(-1)>>;

mask = << <<minus1, minus1, minus1,minus1, minus1 >>, ...
>>;

To aid vectorisation, we make explicit the base operations on pixels
and construct an explicit systematic hierarchy of image manipula-

tion functions (rgbconv, colconv, matconv, col-
sum, matsum).

We also require functions to ensure that after convolution all
values are within the RGB range (newvalue, newpixel), to
find the average values of pixels and fill pixels with average values
(avgpix, finalpix).

The main convolution is a nested hierarchy of recursive calls to
process rows by columns:

MAXR = 236; MAXC = 236;

col i j n v =
 if j>n then []
 else finalpix
 (newvalue
 (avgpix
 (newpixel
 (matsum
 (matconv
 (get5 v i j) mask))))):
 col i (j+1) n v;

row i m v =
 if i>m then []
 else col i 1 MAXC v++row (i+1) m v;

Auxilliary functions are required to pad out the image to the origi-
nal size (pad), convert list to a linear or 2D vector (list-
ToVec2) , construct a vector of zero pixels (makeZero), take and
drop elements from lists, and construct new vectors and images of
the same shape as exemplars (makerow).

Finally, the main program(run):

run image = numCh (listToVec2 (pad 1 240 240 3 3 236 236
(row 1 MAXR image)));

is embodied in a loop that converts and integer sequence to charac-
ters for manipulation (i2c) and calls the top-level processing func-
tion:

box runable
 in (imgch::iImage)
 out (out1::ImageCH)
 match
 (j)->(i2c (run j));

In turn, the box is connected to standard input and output:

wire runable (input)(output);

6. VECTORISATION IN C
These days, many C compilers try to output vector instructions but
this is non-trivial. For one thing, vector units are often quite picky
about alignment; while a CPU might only require alignment on 4-
byte boundaries for loads, its vector unit could need data aligned on
16-byte boundaries. For another, the compiler has to make sure that
it can make the operations happen at the same time without altering
the program semantics of the code [9].
One solution to this problem is to use vector intrinsics, which look
like normal C functions, but have a one-to-one mapping with vector
instructions. This isn’t a new concept; the square root instruction on
architectures such as x86 is typically generated in the same way by
compilers.
Using vector intrinsics has a significant disadvantage, however.
Vector instruction sets differ between architectures. Using intrinsics,
which have a one-to-one mapping with instructions, restricts code to
one architecture. It also prevents code from working on older chips
that don’t have a vector unit.

2685

What is really needed is a method of writing vector code that isn’t
tied to a specific instruction set. Sadly, the C specification does not
provide this mechanism. Fortunately, however, the GNU Compiler
Collection (GCC) does.
The additions to C for supporting vector operations in GCC are very
simple. Vector types are defined with typedef, just as scalar types
are. The only difference is an attribute that indicates the number of
elements in the vector. The following example shows how to define
a vector of four signed integers:

typedef int v4si __attribute__
 ((vector_size(4*sizeof(int))));

The only constraint is that the size must be a power of two multiple
of a scalar type. Once this type is defined, it can be operated on as if
it were a scalar type.
However, everything comes with a price, and in this case the price is
compiler compatibility. It is straightforward to move pure ISO C
from GCC to any other standards-compliant C compiler, such as the
Intel C++ Compiler (ICC) or XL C, that might give better perform-
ance on a particular architecture. But once GCC extensions are used,
only GCC can be employed subsequently. However, if every plat-
form targeted is already supported by GCC, the code is not for dis-
tribution, or GCC extensions are already used elsewhere, this re-
striction may not matter.
First, the necessary vector data types are provided. This is done
using an appropriate typedef, for instance the declaration of a
pixel causes the compiler to set the mode for the pixel_4 type to
be 32-bit int and to compose a vector of 4 such units.

typedef int pixel_4
__attribute__((vector_size(4*sizeof(int32_t))));
typedef union pixel_4__
{
 pixel_4 v; int32_t i[4];
}pixel_4_;

typedef int row_16
__attribute__((vector_size(16*sizeof(int32_t))));
typedef union row_16__
{
 row_16 v; int32_t i[16];
}row_16_;

typedef int image_128
__attribute__((vector_size(128*sizeof(int32_t))));
typedef union image_128__
{
 image_128 v; int32_t i[128];
}image_128_;

Note that image_128_ is a union of a vector (v) and a
constant pointer (i) to an array of elements. The latter is needed
when an operation is not supported by vectorisation and the array
must be cast to a normal array.
These types are then used to define the variables that will be
mapped to SIMD registers in the host CPU. If a function is declared
as inline extern, the compiler does not generate a non-inline version
of it; which means it is not possible create a pointer to the function,
but it prevents linker errors from multiply-defined symbols:

#define INLINE inline extern
__attribute__((always_inline))

typedef int32_t pixel_[4];
typedef int32_t pixel_3[3];
typedef pixel_ row_[240];
typedef pixel_3 row_3[240];

The main function is identified for vectorisation by the generic
INLINE. By declaring a function inline, GCC can be directed to
make calls to that function faster. GCC inline achieves better

integration of the function's code into the code for its callers. This
makes execution faster by eliminating the function-call overhead; in
addition, if any of the actual argument values are constant, their
known values may permit simplifications at compile time so that not
all of the inline function's code needs to be included. The effect
on code size is less predictable; object code may be larger or smaller
with function inlining, depending on the particular case.

INLINE HEAP * image_ (int maxRow, int maxCol, HEAP * or-
igImage)
{
 row_3 tmpImage[240], final_image[240];
 image_128_ img5x5, mask_image;
 row_16_ tmp_row; pixel_4_ final_pixel;
 int32_t final_value;
 HEAP * newImage;
 int i,j,i1, j1, co, ro, index, j_tmp, avgPixel;

 image_128 mask__ = { ...};
 row_16 row_zero = {...};
 pixel_4 pixel_zero = {0,0,0,0};
 mask_image.v = mask__;
 heapToBytes((int8*) tmpImage, origImage);

 for(ro=0; ro< maxRow; ro++){
 for(co=0; co< maxCol; co++){
 index = 0;
 for(i=ro; (i < (ro+5)) && (i < maxRow); i++)
 for(j=co; (j< (co+5)) && (j< maxRow); j++){
 img5x5.i[index++] = tmpImage[i][j][2];
 img5x5.i[index++] = tmpImage[i][j][1];
 img5x5.i[index++] = tmpImage[i][j][0];
 }
 } } } }

In the next fragment, in a unitary vector operation, each of the 25
elements in img5x5.v will be multiplied by the corresponding ele-
ment in mask_image.v and the resulting vector will be stored in
img5x5.v:

 img5x5.v = img5x5.v * mask_image.v;

Here, img5x5 and mask_image are of type image_128_
which includes an explicitly nominated vector so GCC can insert
low-level SIMD code for these operations.
One of the advantages of vector operations is that a vector type can
be specified as a return type for a function, vector types can also be
used as function arguments, and vectors can be assigned to other
vectors:

final_pixel.v = pixel_zero;
tmp_row.v = row_zero;

One of the disadvantages is that it is not possible to operate between
vectors of different lengths or different signedness without a cast.
Furthermore, as noted above, if the vector operation is not supported
directly by GCC, the vector type needs to be cast to an array:

for(j_tmp=0; j_tmp<15; j_tmp++){
 for(j=j_tmp; j<75;j=j+15)
 tmp_row.i[j_tmp] = tmp_row.i[j_tmp]+
 img5x5.i[j];
 }
 for(i=0; i<15; i=i+3){
 final_pixel.i[0] = final_pixel.i[0] +
 tmp_row.i[i+0];
 final_pixel.i[1] = final_pixel.i[1] +
 tmp_row.i[i+1];
 final_pixel.i[2] = final_pixel.i[2] +
 tmp_row.i[i+2];
 }

newImage = bytesToHeap((int8*) final_image) return
newImage;
}

Hume now calls vector code as:

2686

foreign import ccall "hlib.h i2cRow" i2cR_ ::
 row_240 -> im_rowCH;

foreign import ccall "hlib.h i2cPixel" i2cP_ ::
pixel -> pixelCH;

foreign import ccall "hlib.h image_" image_ ::
Int -> Int -> image_240x240 -> image_240x240 ;

to replace the original calls to convert integers to characters and
pixels, and for the convolution itself. Note that only one line is
needed to initiate each of the external C functions.

7. DISCUSSION
The improvement for this simple vectorisation is dramatic. The
original Hume time for processing a 240*240 pixel image is of the
order of 2280 milliseconds, whereas the vectorisation reduces this
by almost 60% to 956 millisecond.
While acknowledging that the example is simple, and that unneces-
sary overheads are introduced by the conversion between vectors
and lists, we think that this initial experiment shows considerable
potential for improvement of vector based image processing in
Hume.
However, such vectorisation still remains something of a black art.
Thus we will seek to:
a) systematically elaborate a library of domain specific vector

operations;
b) embed such operations as Hume box operations;
c) explore the identification of opportunities for vectorisation in

high-level Hume and in HAM;
d) develop automatic parallelisation that can substitute/wire appro-

priate FFI calls/operations for such opportunities;
e) build cost models of vector operations on well characterised

SIMD processors;
f) inform automatic parallelisation using the analyses derived from

the cost models.
Vectorisation seems most applicable at the Hume expression level
within boxes. In the longer term, we are also exploring the exploit-
ation of multiple cores using multi-threading technologies across
Hume boxes. It will be extremely interesting to investigate how
SIMD and multi-core acceleration may optimally complement each
other. We anticipate that our cost models and analyses will play a
central role in such optimisation by determining the relative benefits
of different balances of SIMD and thread parallelism.

ACKNOWLEDGEMENTS
This research is supported by UK EPSRC project EP/F030592/1
`Adaptive Hardware Systems with Novel Algorithmic Design and

Guaranteed Resource Bounds’. We would like to thank our col-
leagues Andy Wallace and Jing Ye for their collaboration.

REFERENCES

1. M. Berkelaar, K. Eikland, and P. Notebaert. lp solve: Open source

(mixedinteger) linear programming system. GNU LGPL (Lesser Gen-
eral Public Licence). http://lpsolve.sourceforge.net/5.5.

2. P. Cockshott and K. Renfrew. SIMD Programming Manual for

Linux and Windows. Springer, 2003. ISBN 1-85233-794.

3. C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt,

H. Theiling, S. Thesing, and R. Wilhelm. Reliable and precise WCET
determination for a reallife
processor. In EMSOFT, pages 469–485. Springer-Verlag LNCS 2211,
2001.

4. K. Hammond and G. Michaelson. Hume: a Domain-Specific Language

for Real-Time Embedded Systems. In Proc. 2003 Intl. Conf. on Gen‐
erative Programming and Component Engineering, – GPCE 2003,
Erfurt, Germany, pages 37–56. Springer-Verlag LNCS 2830, Sep.
2003.

5. M. Hofmann and S. Jost. Static prediction of heap space usage for first-
order functional programs. In Proceedings of the 30th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL), pages 185–197. ACM, 2003.

6. M. Hofmann and S. Jost. Type-based amortised heap-space analysis
(for an objectoriented language). In P. Sestoft, editor, Proceedings of
the 15th European Symposium on Programming (ESOP), Program-
ming Languages and Systems, volume 3924 of LNCS, pages 22–37.
Springer, 2006.

7. C. Okasaki. Purely Functional Data Structures. Cambridge University
Press, 1998.

8. R. E. Tarjan. Amortized computational complexity. SIAM Journal on

Algebraic and Discrete Methods, 6(2):306–318, April 1985.

9. D. Chisnall. Vector programming with GCC. InformIT rticle is pro-
vided courtesy of Prentice Hall Professional, March 30 2007.

2687

