
F1TENTH: An Over-taking Algorithm Using
Machine Learning

Jiancheng Zhang
School of Mathematical and Computer Sciences

Heriot-Watt University
Edinburgh, United Kingdom

jz76@hw.ac.uk

Hans-Wolfgang Loidl
School of Mathematical and Computer Sciences

Heriot-Watt University
Edinburgh, United Kingdom
h.w.loidl@hw.ac.uk

Abstract—In this paper we report on the development of a
novel over-taking algorithm of cars in a simulated environment.
The algorithm uses machine learning techniques, specifically
recurrent neural networks (RNNs) and dense neural networks.
We take LiDAR data, current speed, and current steering
angle as input and produce control information in the form of
output speed and steering angle. We obtain the training data by
monitoring a human driver over-taking a car, controlled by a
model predictive control (MPC) algorithm.

After having trained several models (using Keras and Tensor-
flow), two unseen racetracks are used for evaluating the models.
We set up experiments on these two racetracks in the simulator,
to test whether the models can overtake in different and unseen
cases. The best model (simple RNN) can pass 84 out of 90 cases
on both racetracks. We identify faster training and lower risk of
overfitting as key advantages for RNNs compared to other NNs
we explored.

Index Terms—Machine learning, Neural Networks, F1TENTH,
Racing, Over-taking.

I. INTRODUCTION

Autonomous control of vehicles is a rich topic for the
application of artificial intelligence and machine learning tech-
niques. In this paper we focus on the problem of over-taking a
car in the context of a Formula 1 race track simulation engine,
F1TENTH. We apply advanced machine learning techniques,
and compare their effectiveness in controlled experiments.

The main aim of this work is to develop a machine learning
algorithm for over-taking manoeuvres in a multi-agent racing
scenario within a simulated environment. To achieve this main
aim, we also extend the existing F1TENTH simulator [1] to a
multi-agent simulator (see Section III).

Our implementation uses the Keras library [2] in the Ten-
sorFlow framework [3] for machine learning. This framework
provides numerous useful functions that can build a range
of different neural network (NN) models. In this work, we
explore three classes of NNs: dense NNs, recurrent NNs, and
LSTM NNs. In these NNs, the input value of the over-taking
algorithm is LiDAR data, current velocity, and current steering
angle The output value is a driving command, which contains
desired speed and desired steering angle. We train these neural
network (NN) models to perform over-taking in a simulated
environment. Finally, we test the over-taking algorithm in the
extended F1TENTH Simulator, and we measure how many
failures and successes in over-taking are observed.

Our main contributions are1:
• We report on the training and testing of several neural-

network-based over-taking algorithms.
• We measure success and failure of these algorithms in

simulations of over-taking, using two unseen race-tracks.
• We identify the main reasons for the recurrent neural

network model performing best.

II. LITERATURE REVIEW

In contrast to modular systems, which work as a pipeline
that processes information step-by-step [4], end-to-end plan-
ning is more like a black box. It generates controlling
commands directly from sensors’ output data [5]. A range
of machine learning approached can be used in end-to-end
planning, such as deep learning [6] or reinforcement learn-
ing [7], [8], [9]. The quality of the machine learning model
generated typically depends on the quality of the dataset. The
generated model can then solve the specific problem directly.
The shortcoming is the difficulty to verify or debug the model.
In this paper, we are going to use an end-to-end approach for
developing a machine learning model that can perform over-
taking manoeuvres, as visualised in Fig. 1(b).

Fig. 1: Difference between modular approach and end-to-end
approach (from [10]).

One of the simplest autonomous driving algorithms is the
“Follow the Gap Method” (FGM) [11], which is designed
without any prior knowledge of the race-track. The FGM
will output steering angle by processing LiDAR data (with
timestamps) directly. First, after given the data array, it will
model obstacles as bubbles, by adding an extra boundary to

1A presentation video is available here: https://youtu.be/LjTMYoEPjOk

https://youtu.be/LjTMYoEPjOk


obstacles of half the size of the vehicle. This reduces the
vehicle to just one point and decreases the problem complexity
to find the maximum gap in the new array. After the maximum
gap is found, the angle between gap centre and current heading
direction is calculated, so that the vehicle will start heading
toward this gap. The advantage of this algorithm is that its time
complexity is linear. The disadvantage is that if the maximum
gap is a U-shape dead-end, the algorithm will fail, because it
has no knowledge about the places LiDAR data cannot detect.
FGM was used as controlling algorithm in the PORTO 2018
F1TENTH head-to-head racing and achieved championship.

For the machine learning approach, the work in [12] com-
bined long short-term memory (LSTM) with convolutional
neural network (CNN), which is used to process images from
the TORCS simulator and to output driving commands by
applying a softmax function to the output of the LSTM.
Training data is generated by a human driver and contains
137,500 frames where frames are recorded continuously. Each
frame is labelled with the corresponding driving commands,
and there are nine types of driving commands. The result
shows that the model has 86.94% accuracy on training data
and 85.67% accuracy on validation data where accuracy is
measured as a match between driving command and a human
driver’s decision. Compared with no LSTM joined, the result
is 84.19% accuracy on training data and 79.76% accuracy on
validation data, therefore, with LSTM used, the performance
of the algorithm increased.

The work in [13] combined a LSTM with CNN as a model
but uses the F1 2019 simulator, which has a more photo-
realistic and accurate physics system. The training dataset
has 12000 frames, which are collected by manually driving.
The frames in both datasets are labeled with synchronised
steering angle and acceleration. The result shows that the
model has 0.0368 root mean square error on the testing dataset.
Moreover, they also applied the model to a real F1tenth car.
After collecting human driving data on the real car and training
the model again, the model still performs well, which has 0.14
root mean square error on the test racetrack.

III. F1TENTH SIMULATOR

The F1TENTH Simulator [1] is a lightweight two-
dimensional simulator designed for a F1TENTH car, and this
simulator is developed on top of the Racecar Simulator [14],
which is designed for the MIT Racecar [15]. This simulator
runs on Ubuntu 16.04 or 20.04 with ROS Melodic or Noetic.
It uses C++ and Python 3 as development languages. Our
work uses this simulator as a basis. The reason we choose
this simulator is that a two-dimensional world is sufficient
for testing autonomous racing algorithms because the car’s
movement is limited to one plane and the LiDAR sensor can
only detect one plane. Moreover, the simulator runs on top of
the ROS framework, which is the same as the F1Tenth System.

The simulator is based on the F1TENTH car, a 1
10 size

Formula One car with light detection and ranging (LiDAR),
camera, and an embedded graphics processing unit. The 2D
LiDAR sensor has 270-degree angle of view and one beam

with 1081 steps; each step will return the distance between an
obstacle and sensor, which is one-dimensional information. In
total, the 1081 steps form a two-dimension plane. The camera
provides video of the car’s point of view to the front but with
a 90-degree angle of view. We will not use the camera in this
project.

The simulator aims at reducing the time and cost of testing
functionalities. Racing car simulators are designed for racing
environment simulation, which includes vehicle modelling,
racetrack modelling, physics simulation, kinematic simulation,
and perception simulation. Fig. 2 gives an illustration of
software stack. We developed this after discussion with a
group working on the physical car, showing that after a ROS
workspace setup, the simulator will work on the top of the
ROS workspace, and users can apply their algorithm to the
simulator. There are three main purposes for using and
extending a simulator.

• the user can setup the virtual world in the simulator as
they want, such as editing car model, changing parame-
ters of a car, modelling racetrack, etc;

• the user can apply an algorithm to the cars in the
simulator;

• the user can collect data that is generated by the sensors
or the algorithm.

Fig. 2: Software stack for our autonomous car control.

We extend the open-source F1TENTH Simulator [1] to
a multi-agents simulator. The C++ code can be found on
GitHub2 including a user guide. The implementation can be
divided into four main sections:

• Adding the second vehicle to the simulator.
• Adding a box collider.
• Adding LiDAR pattern.
• Improving vehicle model.
The nodes diagram of the multi-agent F1TENTH Simulator

in Fig. 3 shows the main relationships between nodes, which
remains the same as the original simulator. The simulator
node is the place where the computation of simulation is
done; the mux node subscribes to all sources of driving
commands but only publishes the selected driving commands
for each car. The keyboard and joystick nodes are for
publishing input information of keyboard and joystick. The
behavior_controller node will turn the raw input of

2https://github.com/JZ76/f1tenth simulator two agents

https://github.com/JZ76/f1tenth_simulator_two_agents


keyboard and joystick into driving command. The MPC_red
and ML_overtaking_red nodes contain the MPC and the
over-taking algorithm respectively. These nodes will generate
output driving commands.

Fig. 3: Nodes diagram with critical ROS topics.

IV. MACHINE LEARNING TECHNIQUES FOR OVER-TAKING

The main requirement on the over-taking algorithm is: the
algorithm can over-take an opponent with different speed, i.e.,
the opponent may drive at a very low speed or a very high
speed, and according to the speed of the opponent, the algo-
rithm needs to take different manoeuvres, such as following,
wheel-to-wheel, etc, in order to over-take if possible.

As mentioned in Section II, we used the end-to-end ap-
proach as a guideline. While this provides an all-in-one
solution, if successful, it is less flexible and explainable
than a modular approach. In particular, debugging undesirable
behaviour is difficult. However, the developer can tune the
hyper-parameters in the models and improve dataset quality.
Since there is no freely available dataset for over-taking in the
available racing environment, we create our own datasets and
use imitation learning. Thus, the over-taking algorithm will
try to imitate over-taking behaviour from a human driver and
should be able to over-take on unseen testing racetracks.

A. Data Generation

Before starting to create a dataset, we set three principles
as boundaries of the different cases to explore. Note that the
leading vehicle is the car that will be overtaken, and the ego
vehicle is the car that performs over-taking.

• The leading vehicle will only drive with minimum time
trajectory.

• The maximum speed of the leading vehicle is always
slower than the ego vehicle.

• The leading vehicle cannot defend from the ego vehicle.
Four racetracks are used to create datasets. All of them

are from Formula One Grand Prix and they were chosen for
varying levels of difficulty: Australian, Chinese, Bahrain, and
Malaysian. For each racetrack, we set up several starting points
along a racetrack, red dots in Fig. 4, usually in a straight
track and before a turn. The green arrow indicates the racing
direction. For each starting position, the position of the leading
vehicle is always ahead of the position of the ego vehicle. We
will run several times in the same beginning position with

different maximum speed of the leading vehicle by changing
an index in the matrix for the MPC algorithm. There are
three speed tiers used for the leading vehicle, high: 6–6.5m/s,
medium: 5.5–6m/s, low: 4.5–5.5m/s. The maximum speed of
the ego vehicle remains at 7m/s. The leading vehicle (red car)
uses the MPC algorithm whilst the ego vehicle (blue car) is
manually driven.

After two cars starting at the same time, we start recording
data, and we stop recording data once the ego vehicle finishes
over-taking, i.e., the leading vehicle cannot be detected by
the ego’s LiDAR anymore. Recorded data includes LiDAR
data and driving commands of the blue car, car state of the
blue and red car. As a result, there are 136, 193, 67, and
192 instances created on Australian, Chinese, Bahrain, and
Malaysian racetracks, respectively. Each instance has three
files: “ML dataset”, “carstate blue”, and “carstate red”. The
“ML dataset” files contain LiDAR data and human driver
inputs while the “carstate” files record the state of each car.

Fig. 4: Australian racetrack (top-left), Chinese racetrack (top-
right), Bahrain racetrack (bottom-left), Malaysian racetrack
(bottom-right). Green arrow indicates racing direction.

B. Machine Learning Techniques

a) Dense NN version: Our first NN model consists of
a very basic, dense layer, which stacks multiple layers into
one model. Only LiDAR data from the “ML dataset” files is
used as input. The output data is a pair of two elements: the
throttle and the steering angle. The loss function uses mean
square root between the output pair and the respective data
in the “ML dataset” files. A fully connected dense layer is
suitable for fast training and prototype building, so that we
can use it as a base and add other kinds of layers to it. There
is no split of the testing data, since higher accuracy on a
testing dataset does not necessarily mean better over-taking
performance on a testing racetrack. Two testing racetracks are
used in the evaluation of the models. We train several models
with different hyper-parameters, such as adding more layers,
adding more nodes in each layer, and changing the activation
function. However, the behaviour of these models is poor: the
model car drives in a straight line most of the time and only
has a slight steering angle when reaching a curve.



The main reason for this poor performance of the fully dense
model is that the model treats each frame of the LiDAR data
stream independently. This misses the time-series nature of the
data stream with only small changes between frames. Notably,
the two important, directly controllable parameters of speed
and rotation of the car are not explicit. Hence, we decided
to use in the next step recurrent neural networks (RNNs) for
processing LiDAR data. The rationale is that RNNs are good
at processing sequential, time-series data. The frames in the
data stream have relationships and contain more information
in the context of the time-series. This nature of the data is akin
to, e.g. natural language, video, or voice data. Moreover, the
problem can be classified as a sequence-to-sequence problem,
i.e. given a sequence of LiDAR data, the output should be a
sequence of driving commands.

b) LSTM version: Long Short-Term Memory (LSTM) is
a special kind of RNN, which can remember longer periods of
data than simple RNNs [16]. The data processing for LSTMs
can be divided into four operations: forget gate, input gate,
conveyor belt, and output gate. The forget gate is used for
deciding which old data needs to be forgotten. In the input
gate, new data will be selected and added to the conveyor
belt. The conveyor belt contains both old data and new data,
whilst it can keep data from a long period ago. Notably, the
conveyor belt structure solves the gradient vanishing problem
in simple RNNs. The output gate is the place of calculating
the result, and the result will be used for updating those four
parameter matrices.

Considering that there are thousands of rows/frames of
LiDAR data in each instance, as a starting point for our
machine learning development we believe the LSTM layer is
a good candidate, because it can remember a lot of LiDAR
data. With this rationale, we replace the first dense layer by
an LSTM layer and keep the other dense layers the same. The
performance of this model is better than the previous one. The
car tries to avoid collisions if it is too close to the opponent
or the racetrack. However, it does not seem to know how to
drive forward rather just idling around. Hence, we consider
other improvements to the NN design.

c) SimpleRNN version: In the next phase, we make the
following three major improvements on the neural network
models discussed above. The structure of the improved NNs
is shown in Fig. 5.

First, because the training time of the LSTM model is too
long, we switch to SimpleRNNs. Due to the large dimension-
ality of the input data, 1081 data items per timestamp, if the
output shape of the LSTM layer is of a similar size, there will
be around one million parameters. These need to be trained
in generating a model, and training time for each epoch for
such a LSTM model is nearly 4 hours. In contrast, training
time for the SimpleRNN layer is only about 1 hour.

Second, in each of the NNs shown in Fig. 5 we added an
embedding layer. This structure is borrowed from natural
language processing (NLP) [17]. The embedding layer can
reduce the dimensionality of the input data and can add a
weight to the data. This is useful because not every column in

the LiDAR data is equally important when making decisions.
The weights will be learnt from the data during training. We
test different sizes of embedding layers, with the following
trade-offs. If the size is too large, the amount of data is
insufficient to train the embedding layer well. If the size is
too small, some important information may be lost after the
embedding layer.

Third, we add two pieces of information as new input: the
current speed and steering angle of the car. Both are easily
obtainable from sensors in a real car as well, and therefore
valid choices as input data. When the car is driving forward on
a very straight racetrack, there is very little difference between
two LiDAR data points at different timestamps. Thus, little
variation in the input data to make a decision on.

The structure of the new models is shown in detail in Fig. 5.
InputA is the same as before, which is LiDAR data, InputB
is the new data, a pair of current speed and steering angle.
Fig. 5 also gives different hyper-parameter settings in detail
that impact over-taking performance. The main differences
between them are the size of the RNNs layer and the size,
number, and activation function of dense layers, shown as
purple in Fig. 5. When choosing the size of each layer, we
consider that the size represents the capacity of processing
data and it should not change suddenly, which may cause
loss of information. For the activation function, we chose the
ReLU function and hyperbolic tangent function, due to the
ReLU function solving the gradient vanishing problem and
the hyperbolic tangent function being able to map data into
a central symmetry of 0. Moreover, before feeding the input
data to the models, we need to apply a padding function to
the input data and add a masking layer after the input layer,
so that the length of input data will be same.

We apply several versions of this NN-based AI, Sim-
pleRNN, on the Australian track as dataset, and we find the
performance of the new structure much better than previous
structures. We discuss details in the following section. In
total, we created 20 models with different hyper-parameters
(activation function, size of RNNs layer, and number and size
of dense layers) by using cross-validation.

After having used four testing datasets (Australian, Chinese,
Bahrain, Malaysian) and two shuffled datasets (combining
Australian+Malaysian and all four racetracks), we got five
models that can over-take successfully in most cases on those
four racetracks. These models are RNN 10 3, RNN 10 4,
RNN 12 3, RNN 14 3, and RNN 14 5. The reason we used
two shuffled datasets is to balance the bias of the steering
angle, in each mixed dataset, since the proportion of full
steering angle data on Chinese and Malaysian racetrack is
greater than the proportion on Australian and Bahrain. The
naming convention encodes information about the model as
follows: the first part characterises the kind of NN; the second
part specifies the number for a setting of the hyper-parameters;
the last part is an index for the race-track (Australian, Chinese,
Bahrain, Malaysia, Australian+Malaysian, all four tracks).
Note that for the latter, all tracks up to this number are used as
training sets. For example, RNN 12 3 and RNN 14 3 used



(a) RNN 12 (b) RNN 14

Fig. 5: Structure and hyper-parameters of models RNN 12 and
RNN 14

different hyper-parameters but both models have been trained
on Australian, Chinese, Bahrain, and Malaysian datasets.

A concern with more sophisticated NN designs is the
increase in training time. Tab. I shows how long it takes
to train a model. Compared with the corresponding stage of
RNN 10 series, the LSTM 10 series has significantly longer
training time of an epoch, which is 9, 8.7, 4.5, and 8.3 times
longer, respectively. There are two reasons for this result, one
is that the number of parameters in the LSTM layer is greater
compared to the RNN layer; another reason is that training an
LSTM layer requires much more memory than an RNN layer,
causing memory swapping when exceeding the main memory.

TABLE I: Training time of models RNN 10 and LSTM 10

Model Name Number of Epochs Training Time of an Epoch (Seconds)
RNN 10 10 146

RNN 10 1 10 132
RNN 10 2 10 220
RNN 10 3 10 149
RNN 10 4 5 2042
LSTM 10 10 1314

LSTM 10 1 5 1147
LSTM 10 2 5 983
LSTM 10 3 5 1236

V. RESULTS

In this section we evaluate whether our models meet the
main requirement: “the algorithm can overtake an opponent
with different speed, i.e., the opponent may drive at a very low
speed or a very high speed”. We use two unseen racetracks
and set up various experiments to illustrate the result. Both
race-tracks are from Formula One: United States and Spanish.

Note that the racing direction of Circuit of The Americas is
anti-clockwise where all racetracks in the training dataset are
clockwise. We set several beginning positions, and set up two
cars in a beginning position, one leading vehicle (blue car) and
one ego vehicle (red car). The leading vehicle starts ahead of
the ego vehicle. The leading vehicle is manually controlled
with three tiers of maximum speed, low: 4.5m/s, moderate:
5.5m/s, and high: 6.5m/s. This also determines the difficulty of
overtaking. The ego vehicle is controlled by one of our over-
taking models with 6.8m/s max speed. Due to the different
maximum speed of the leading vehicle, the ego vehicle will
overtake at different places. For each model and track, we test
three beginning positions and three different maximum speeds
of the leading vehicle, repeating the same experiment 5 times,
amounting to 45 experiments per model and track.

The data in Fig. 6 shows the number of successful overtak-
ing experiments out of five experiments in different beginning
positions and racetracks. The x axis is the beginning position
(encoded as 1, 2, and 3). The y axis is the number of
successful over-takes (out of 5; thus a value of 5 means perfect
performance) for each of the models (colour coded). In the
upper figure, we can see that most models failed at the second
and third beginning position. The possible reason is that the
direction of racing on The Americas track is anti-clockwise
and there is a sharp curve where the car needs to turn left
sharply, but all sharp curves in the training datasets are
right-turns. Therefore, most models cannot follow the curve
correctly and collide with the racetrack. For the third beginning
position, when the maximum speed of the blue car is high,
the overtaking will happen at the second curve after the third
beginning position, which is another sharp left-turn curve, and
most models fail again. But if the maximum speed of the
blue (leading) car is low or moderate, the red (following)
car will finish overtaking before the sharp curve, and the
successful cases are much larger. Obviously, the limitation of
imitation learning is that the training dataset needs to contain
all over-taking scenarios, otherwise the model is likely to
fail in difficult unseen cases. In direct comparison, the worst
model is RNN 14 3 (yellow), with only 8 out of 45 success
cases in over-taking, compared to the best model, RNN 12 3
(orange), with 39 out of 45 success cases in over-taking on The
Americas racetrack. For the LSTM models, only LSTM 10 2
can pass at least one test per beginning position. We believe
that the distribution of the training data is too biased and the
LSTM layers are over-fitted to the training data.

On the lower figure, for The Spanish track, all models can
perform over-taking successfully, except model RNN 14 3.
Although the models never trained on this racetrack, the
training datasets include all kinds of curves on this racetrack.
This is the main reason why most models have a very high
success rate. The result is the same as on The Americas
racetrack, the best model is RNN 12 3, which achieves a
perfect result of 45 out of 45 successes in over-taking. The
worst model is RNN 14 3, which has only 13 out of 45
success cases. Summarising the results on both racetracks,
model RNN 12 3 has the highest number of successful



over-taking cases, 84 out of 90 cases. We believe that the
structure and size of simple RNNs (as shown in Fig. 5) and
the training level of RNN 12 3 is most suitable for this task.

Fig. 6: Successful overtakes of each model on Circuit of The
Americas and Spanish racetrack with high speed tier of the
leading vehicle (manual driving).

VI. CONCLUSIONS

We have tried dense neural networks, long short-term mem-
ory (LSTM), and simple RNNs on the problem of an over-
taking algorithm for cars in a simulator. We found the Sim-
pleRNN model is the most suitable structure. The additional
input (real speed and steering angle) proved to be crucial
and fair information, since it is available to the physical car
as well. Compared with a fully dense model, the SimpleRNN
model has capacity to process sequential data, in the form
of the LiDAR data at different timestamps being connected
rather than independent. Compared with an LSTM model, a
SimpleRNN model is faster to train and less prone to
overfitting. Due to the number of parameters in LSTM being
four times that of SimpleRNN, it will take longer to update all
parameters and it will be more likely to tightly fit the dataset
than SimpleRNN. In the SimpleRNN models, the average
training time is 5 minutes for each epoch. In comparison,
the LSTM models take three and half hours for each epoch.
But the distribution of predicted values in our dataset is
biased, thus LSTM models suffer from overfitting. Notably,
the embedding layer helped with reducing the dimensionality
of LiDAR data, which also reduced the total number of
parameters in the following RNN layer and training time.

From these results we see that the hyper-parameters have
a significant impact on the performance of over-taking. It is

difficult to predict the quality, in over-taking behaviour, of a
certain hyper-parameter setting of a model. Compared with
the modular pipeline approach in Fig. 1, improving models
is more like data engineering rather than control engineering,
which limits its usage in many fields. From our study we can
summarise that, although NN models are not necessarily the
best solution for autonomous driving, they can handle specific
tasks like controlling a car in a simulated environment to over-
take another car.

Additionally to the above results, we also used data from a
past F1TENTH head-to-head virtual competition (IROS 2020).
We used the same setting as in the competition: one car
is controlled by a combination of MPC and the over-taking
algorithm, whilst another car is controlled manually and mea-
suring lap time. The fastest experiment ranks in the top 2,
compared with the data on the competition website. This gives
an indication that, despite not competing ourselves, our simple
RNN based AI should perform well compared to other control
algorithms for this simulated car.

REFERENCES

[1] U. of Pennsylvania, “F1tenth simulator,” 2020. [Online]. Available:
https://github.com/f1tenth/f1tenth simulator

[2] F. Chollet et al., “Keras,” 2015. [Online]. Available: https://github.com/
keras-team/keras

[3] TensorFlow Developers, “Tensorflow,” Feb. 2023. [Online]. Available:
https://doi.org/10.5281/zenodo.7641790

[4] R. McAllister et al., “Concrete problems for autonomous vehicle safety:
Advantages of bayesian deep learning.” International Joint Conferences
on Artificial Intelligence, Inc., 2017.

[5] M. Bojarski et al., “End to end learning for self-driving cars,”
arXiv:1604.07316, 2016.

[6] Y. Pan et al., “Agile autonomous driving using end-to-end deep imitation
learning,” arXiv preprint arXiv:1709.07174, 2017.

[7] Y. Song et al., “Autonomous overtaking in gran turismo sport using
curriculum reinforcement learning,” in IEEE Intl Conference on Robotics
and Automation (ICRA). IEEE, 2021, pp. 9403–9409.

[8] G. Williams et al., “Information theoretic mpc for model-based rein-
forcement learning,” in IEEE Intl Conf on Robotics and Automation
(ICRA). IEEE, 2017, pp. 1714–1721.

[9] P. R. Wurman et al., “Outracing champion gran turismo drivers with
deep reinforcement learning,” Nature, vol. 602, no. 7896, pp. 223–228,
2022.

[10] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of
autonomous driving: Common practices and emerging technologies,”
IEEE access, vol. 8, pp. 58 443–58 469, 2020.

[11] V. Sezer and M. Gokasan, “A novel obstacle avoidance algo-
rithm:“follow the gap method”,” Robotics and Autonomous Systems,
vol. 60, no. 9, pp. 1123–1134, 2012.

[12] S. Chen, Y. Leng, and S. Labi, “A deep learning algorithm for simulating
autonomous driving considering prior knowledge and temporal infor-
mation,” Computer-Aided Civil and Infrastructure Engineering, vol. 35,
no. 4, pp. 305–321, 2020.

[13] T. Weiss and M. Behl, “Deepracing: A framework for autonomous
racing,” in 2020 Design, automation & test in Europe conference &
exhibition (DATE). IEEE, 2020, pp. 1163–1168.

[14] M. Boulet, O. Guldner, M. Lin, and S. Karaman, “MIT racecar
simulator,” 2019. [Online]. Available: https://github.com/mit-racecar/
racecar simulator

[15] ——. (2019) MIT racecar. [Online]. Available: https://racecar.mit.edu/
[16] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

computation, vol. 9, no. 8, pp. 1735–1780, 1997.
[17] Y. Bengio, R. Ducharme, and P. Vincent, “A neural probabilistic

language model,” Advances in neural information processing systems,
vol. 13, 2000.

https://github.com/f1tenth/f1tenth_simulator
https://github.com/keras-team/keras
https://github.com/keras-team/keras
https://doi.org/10.5281/zenodo.7641790
https://github.com/mit-racecar/racecar_simulator
https://github.com/mit-racecar/racecar_simulator
https://racecar.mit.edu/

	Introduction
	Literature Review
	F1TENTH Simulator
	Machine Learning Techniques for Over-taking
	Data Generation
	Machine Learning Techniques

	Results
	conclusions
	References

