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Abstract

This paper provides a performance and programmability compari-
son of high-level parallel programming support in Haskell, F# and
Scala. Developing several parallel versions, we employ skeleton-
based, semi-explicit and explicit approaches to parallelism. We fo-
cus on advanced language features for separating computational
and coordination aspects of the code and tuning performance. We
also assess the impact of functional purity and multi-paradigm de-
sign of the languages on program development and performance.
Basis for these comparisons are several Barnes-Hut implementa-
tions of the n-body problem in all three languages, on both Linux
and Windows. Our performance measurements on state-of-the-art
multi-cores achieve a speedup up to 5.62 (on 8 cores) with a
highly-tuned Haskell version. For comparable implementations in
Scala and F# we achieve speedups of 4.51 (on 8 cores) and 2.28
(on 4 cores), respectively. We observe that near best speedups are
achieved using the highest level abstractions in these languages.

Categories and Subject Descriptors D.1.3 [Programming tech-
nigues]: Concurrent programming—Parallel programming

General Terms Languages, Performance

Keywords Haskell, F#, Scala, Parallelism, Barnes-Hut

1. Introduction

Because functional languages are not defined in terms of operations
on a hidden global state, they avoid unnecessary sequentialisation
and provide ample latent parallelism that can be exploited by com-
piler or runtime-system. This property makes them an attractive
platform for exploiting common-place parallel hardware without
imposing new concepts of explicit threads with explicit communi-
cation onto every parallel application.

With functional programming, the programmer needs only to
specify what instead of how to compute something. Managing
parallelism is all about how and therefore largely hidden from
the programmer. However, for tuning parallel performance, some
limited control of operational aspects is desirable. The approaches
to efficiently exploit such latent parallelism, provided in the latest
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implementations of state-of-the art languages such as Haskell, F#
and Scala, all aim to be minimally intrusive to the code, while
giving the expert parallel programmer sufficient control to perform
parallel performance tuning. In this paper we evaluate language
mechanisms provided in each of these three languages, and present
a head-to-head comparison of the resulting parallel performance.

A new generation of programming languages, such as F# and
Scala, often take a multi-paradigm approach, embedding the advan-
tages of functional languages into a main-stream, object-oriented
language. They use existing, highly-optimised VM technology,
.NET and JVM respectively, to combine the ease of expressing
parallelism with efficient sequential execution. In this paper we per-
form a head-to-head programmability comparison between purely
functional Haskell and multi-paradigm F# and Scala. We assess
the impact of key language design issues, in particular laziness and
mutable data-structures, on sequential and parallel performance.
Finally, we give a head-to-head parallel performance comparison
of Haskell, F# and Scala, using different techniques to expose par-
allelism at different levels of abstraction. The results from our
measurements of a Barnes-Hut implementation of the n-body algo-
rithm show that we achieve respectable speedups in all languages.
We achieve a speedup of 5.62 (on 8 cores) with a highly-tuned
Haskell version. With the implementations in Scala and F# we
achieve speedups of 4.51 (on 8 cores) and 2.28 (on 4 cores), re-
spectively.

The remainder of the paper is organised as follows: Section 2
presents related work; Section 3 presents the background behind
Haskell, F# and Scala, and their support for parallelism; Sec-
tion 4 presents our multiple Barnes-Hut algorithm implementa-
tions, both sequential and parallel; Section 5 presents results from
our measurements on two different multi-core architectures, an 8-
core Linux machine and a 4-core (with hyperthreading) Windows
machine; and we summarise our findings in Section 6.

2. Related Work

We can broadly classify parallel declarative languages as implicitly
parallel, without any explicit control of parallelism, semi-explicit,
only exposing potential parallelism, and explicit, with constructs
for the generation and handling of explicit threads. In this section
we focus on and survey semi-explicit approaches, although the
lower level constructs in Scala can also be classified as explicit.
The general area of parallel declarative programming languages is
surveyed in depth in [32]. A more focused comparison of parallel
Haskell variants is given in [31].

Crucial to a high-performance implementation of a declarative
language is an adaptive runtime-system, that can make good deci-
sions about the management of parallelism, usually deferred to the
programmer in explicit languages. Important concepts are futures

2012/6/10



as handles for a data-structure, that might be evaluated in parallel
and on which other threads should synchronise, first introduced in
the Mul-T [13] variant of Lisp. Importantly for performance, this
system introduced lazy task creation [22] as a technique, where
one task can automatically subsume the computation of another
task, thus increasing the granularity of the parallelism. Both, the
language- and the system-level contributions have been picked up
in recent implementations of parallel functional languages: both
F# and Polyml [21] provide language-level futures; GpH’s runtime
system uses lazy task creation, by representing potential parallelism
as “sparks” that can move freely and cheaply between processors
and work represented by one spark can be subsumed by a running
thread if no additional parallelism is required. Another key runtime-
system design goal is to support light-weight threads, thus reducing
the overhead for creating parallelism and encouraging a program-
ming style that generates a massive amount of parallelism, giving
the runtime-system the flexibility to arrange the parallelism in a
way most suitable to the underlying hardware. Haskell/GHC excels
at light-weight threads, as shown by the thread-ring benchmark of
the Computer Language Shootout [1]. Filaments [17] and Cilk [11],
now integrated in Intel’s Cilk Plus compiler, are other examples of
runtime-systems for light-weight threads.

Several experimental languages explored the use of high-
level, parallelism language features in object-oriented languages:
Fortress [28], X10 [7] and Chapel [6]. Of these, Chapel is currently
best supported, in particular on massively parallel supercomput-
ers. These languages introduce high-level constructs such as vir-
tual shared memory (X10), structured programming constructs for
parallel execution (Chapel), and software transactional memory
(Fortress) to avoid a re-design of the software architecture due to
specifics of the underlying, parallel architecture.

An increasingly important area of high-level abstractions for
parallelism are parallel patterns or algorithmic skeletons [8],
higher-order functions with pre-defined parallel computation struc-
tures. Because they can hide all complexities of the efficient, pos-
sibly hardware-dependent, handling of parallelism in a library, it is
being picked up as technology of choice in main-stream languages
without built-in high-level parallelism support. Prominent exam-
ples are Google’s MapReduce [10] implementation, on large-scale,
distributed architectures, Intel’s Task Building Block [26] library,
and to some extent the Task Parallel Library [15].

3. Background
3.1 Haskell

Haskell [20] is a statically typed, lazy and purely functional lan-
guage. Haskell is strongly typed but type definitions are rarely
needed as it uses type inference to deduce types automatically. Its
advanced type system also supports algebraic data types and poly-
morphic functions. Type classes are used as interfaces with default
implementations. Instances of a specific type class group types to-
gether e.g. the Num type groups int, double and other numeri-
cal types. One of its most distinctive features is its lazy semantics,
which means that expressions are only ever evaluated when they are
demanded. This demand-driven evaluation strategy makes it possi-
ble to have infinite data structures and circular programs in Haskell.
As a pure language, Haskell prohibits side-effects, which guaran-
tees that a call to a function only returns a value without causing
any change to global states. Functions are first-class, they can be
passed as argument, returned as results, and treated as values.
Haskell makes use of monads to separate pure from side-
effecting (impure) computations. With no default evaluation order
specified, computations are chained using monads and through use
of syntactic sugar such as the do notation. This gives imperative
flavour of coding, but underlying these constructs are simply func-
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tions. Haskell comes with a number of data structures, the most
notable is the list. Lists fit well in a functional context and are om-
nipresent in Haskell codes. They are implemented as singly-linked
lists. Other common data structures include arrays, both immutable
and mutable, which provide element access time of O(1).

GHC is the main implementation of the Haskell language. It
consists of a highly optimising, transformation-based compiler and
graph-reduction-based runtime system. GHC has good support for
semi-explicit parallelism. Though evaluation of functions can hap-
pen independently and in any order, parallelising all of them of-
ten leads to too fine-grained parallelism. By default, GHC now
includes parallel support through the GpH extension for shared-
memory via GHC-SMP.

3.1.1 GpH

Glasgow parallel Haskell [18, 19, 33] is a minimal, conservative,
parallel extension of Haskell, supported by the GHC compiler. It
extends standard Haskell by providing two basic primitives for
specifying and controlling parallelism.

— parallel composition
par :: a—>b —>b

— sequential composition
pseq :: a—>b —>b

par allows the programmer to annotate computations that can
be usefully be evaluated in parallel. The first argument is sparked
and may potentially be executed in parallel with the evaluation of
the second argument. pseq enforces sequential ordering which is
needed to arrange parallel computations.

Naive usage of these primitives can lead to unexpected parallel
behaviour, for example generating sparks for already evaluated
data. Evaluation strategies are abstractions over the primitives to
provide an even higher level of control of parallelism. Evaluation
strategies provide a clean separation of the coordination aspects
from the main computation. For example, parList can be used
to demand parallel evaluation of each list element, separately from
defining the contents of the list. Additionally, evaluation degree and
evaluation order can be specified using evaluation strategies.

The following example uses the parList strategy to define a
parMap skeleton:

— definition parallel map using strategies

parMap strat f xs = map f xs ‘using ° parList
strat

— usage

parMap rdeepseq f xs

32 F#

F# [29] combines the features of a strict, higher-order, impurely
functional language of an ML-style, with features of main-stream
object-oriented languages. Both paradigms are made available to
the programmer, who can make a choice based on the suitabil-
ity of the paradigm for the application and on his familiarity with
the paradigm. On balance, F# emphasises its heritage from ML,
though, demonstrated through ML compatibility in its light mode.
The F# implementation compiles to .NET as the VM and can there-
fore build on highly-optimised VM implementations, and interact
with libraries in other languages also targeting this intermediate
platform. The latter is important and convenient when switching
between data structures. For example, data structures like list and
seq are instances of the .NET IEnumerable interface. Exposing
functional code through objects is often useful when interacting
with other, foreign language .NET objects.

From a pragmatic point of view the rich tool support through Vi-
sualStudio and its apparent backing by Microsoft make it a very at-
tractive language in particular for programmers previously unaware
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of functional programming. There is a tendency in its implementa-
tion to hide details of the parallel execution from the programmer.
While this encourages a high-level of abstraction, best supported
through data-parallel PLINQ, it also complicates the tuning of the
program for the expert parallel programmer.

F# makes a clear distinction between between value and vari-
able. The former, which includes functions, are immutable. The lat-
ter is defined using the mutable keyword which denotes a variable
whose value can change using the left arrow operator, thus allowing
mutable states. F# computation expressions hide the complexity of
monadic syntax behind heavy use of syntactic sugar.

The most prominent F# collections are mutable arrays, ordered
lists and ordered sequences, in which evaluation is demand-driven,
but LazyList from the F# PowerPack are also available and similar
to Haskell lists. It uses caching and allows pattern matching unlike
sequence.

In terms of parallelism support, F# benefits from the .NET Par-
allel Extensions. The extensions provide a number of high-level
constructs to write and execute parallel programs. The Parallel Ex-
tensions consist of the Task Parallel Library, Parallel LINQ and
a set of coordination data structures. In addition to these, Asyn-
chronous Workflows, which is intended mainly for operations in-
volving 1/O, provide basic parallelisation. These libraries can be
combined to take advantage of potential parallelism in a program.

3.2.1 Asynchronous Workflows

Asynchronous workflows allow the creation of multiple threads in
an otherwise single-threaded application in order to avoid blocking
asynchronous operations such as I/O or interactions in user inter-
faces. They can be used to add basic parallelisation to the code with
limited code changes. A computation can be executed in parallel by
wrapping it inside an async block (a workflow) that will run asyn-
chronously without blocking the current computation thread. For
example, a web server can handle requests simultaneously. On a
parallel machine, these requests are executed in parallel thus im-
proving the performance. It is also possible to specify a continua-
tion function when the computation ends.

let handleRq rq = async { (x some code here x*) }
Async.RunSynchronously (handleRq request)

3.2.2 Task Parallel Library

The Task Parallel Library [5, 15] simplifies the process of adding
parallelism to a program by abstracting over low-level mechanisms
such as thread creation, management and scheduling behind a set of
high-level APIs. TPL scales the degree of parallelism automatically
depending on the number of available processors. The following
constructs are either provided by TPL or built on top of it.

Tasks: The main construct for task parallelism is built around
the concept of a rask which represents a unit of work that
can be executed independently. Tasks provides a high-level
abstraction compared to working directly with threads. The
Task type represents a computation that does not return any
value. The Task<TResult> type represents an operation that
calculates a value of type TResult eventually i.e. a future. The
computation of a future happens in the background thread and
synchronisation is implicit, i.e. if the result is not yet computed
when requested, the asking thread will block until the result
is available. TPL provides several methods for composing and
working with tasks for e.g. task continuation and cancellation
functions.

let tasks ts =
[| for t in ts
Task . Factory . StartNew (fun () —
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process t)

]

Task. WaitAll tasks

Parallel Class: TPL supports data parallelism through the Parallel
class which includes static methods such as Parallel.For and
Parallel.ForEach for basic loops parallelisation. These methods
provide an easy way of parallelising for loops.

Parallel .For(0, n, (fun i —> process i))

Parallel LINQ: PLINQ is a declarative model for data parallelism
based on Language Integrated Query. It provides a shallow em-
bedding of an SQL-like query language directly in the general
purpose, host language (in this case F#) and allows to query
XML data, databases or objects from standard data collections.
The latter is how we use PLINQ. The implementation uses TPL
internally for efficient implementation, and is the highest level
language mechanism for parallelism in F#.

3.3 Scala

Scala is a general purpose, statically typed, strict, multi-paradigm
programming language, combining functional and object-oriented
features [24]. The language allows the expression of common pro-
gramming patterns in a concise, elegant and type-safe manner.
Scala’s compiler targets the Java Virtual Machine (JVM) platform
and its implementation is freely available as an open source project.
Scala is fully interoperable with Java, thus empowering the pro-
grammer with the full range of Java libraries and frameworks. The
language was also designed with extensibility in mind, meaning
that new features can be easily added in the form of new libraries
without the need to change the syntax of the language.

A main focus of Scala is to deliver state-of-the-art high-level
constructs and abstractions for concurrent programming, emphasis-
ing large-scale distribution, scalability and fault-tolerance. Towards
this goal it provides a number of parallel and distributed program-
ming frameworks, most notably the Scala Parallel Collections [25]
and the Scala Actors [12].

3.3.1 Scala Parallel Collections Framework

Scala 2.8 was a major milestone for the language as it introduced
a new collections framework that focuses on providing an easy to
use, concise, safe and uniform approach for interacting with the
available data structures [23]. The framework is based on a sophis-
ticated class hierarchy where each collection inherits and extends
the functionality defined in its parent classes. The collection hier-
archy splits into three main categories: seq (indexed collections),
map (key and value pairs) and set (collections without duplicate
elements). These three categories are blueprints for the rest of the
available Scala collections. The framework also contains two ma-
jor subpackages, mutable and immutable, each one providing a
different set of data structure implementations. One of the main
benefits of such a hierarchical approach is that the programmer can
easily swap a collection for another and still using the same opera-
tions. This leads to easier and more approachable tuning, refactor-
ing and maintenance of programs.

Scala 2.9 was released in 2011, enhancing the collections frame-
work with semi-explicit parallelism [25]. Instead of defining a new
set of parallel methods for each collection, the chosen design was
to build upon the existing hierarchy of collections. The subpack-
age parallel was introduced, which defines parallel implementa-
tions for sequences, maps and sets, together with common parallel
operations. The programmer can use the method par on a sequen-
tial collection to invoke its corresponding parallel implementation.
With the method seq the parallel collection behaves again in a se-
quential manner. The benefit of this approach is that parallel oper-
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ations can have the same names as their sequential versions, which
means that the programmer can easily introduce parallelism by just
providing the method par in the right places, as shown below.

xs.map( (x: Int) = x + 1 ) // sequential
xs.par.map( (x: Int) = x + 1 ).seq // parallel

The implementation of the parallel collections library is built on
top of the Java Fork/Join framework [14]. This is basically a thread
pool implementation that aims to efficiently schedule fork/join
tasks among available processors. Inspired by divide and conquer
and recursive approaches to parallelism, a fork/join task can spawn
(fork) new tasks and wait for them to finish (join) before progress-
ing with the execution. Currently the fork/join implementation uses
two core techniques, adaptive work stealing [9, 14] and exponential
task splitting [9], in order to efficiently control the task granularity.
Although the programmer does not currently have much control
over the level of parallelism provided by the Scala Parallel Collec-
tions Framework, the implementation has been carefully tuned to
ensure a high parallel performance.

3.3.2 Scala Actors Library

Scala aims to support concurrency by providing an explicit message
passing programming model based on actors. Actors are first-class,
light-weight processes that communicate with each other by ex-
changing asynchronous messages [2]. These messages are gathered
in the receiving actor’s mailbox. An actor is able to iterate through
its mailbox and respond to the various messages it has gathered by
using pattern matching, a staple approach in functional program-
ming. Responses to messages include among other actions: creat-
ing a new actor; sending a new message to the sender; and changing
the underlying behaviour of the receiving actor. This design is mo-
tivated by Erlang [3].

// actor sending a message
a ! msg

// receiving msgs and responding with actions
receive {

case msg_pattern_-1 => action_1

case msg._pattern_-2 => action.2

case msg_pattern.n => action_n

}

3.4 Summary

In summary, the following table compares and contrasts the key
features of each of the three languages and their parallelism support
listed in order of their level of abstraction.

Key Features

Parallelism Support

Haskell  functional, Eval strategies (skel-
lazy evaluation, etons), par and pseq
static/inferred typing (semi-explicit)

F# functional, imperative, =~ TPL, PLINQ (skel-
object oriented, etons), Async work-
strict evaluation, flows (semi-explicit)
static/inferred typing,

NET interoperability
Scala functional, imperative,  Parallel Collections

object oriented,

strict evaluation,
static/inferred typing,
Java interoperability

(skeletons), Actors
(explicit)
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Haskell is designed as a purely functional language and there-
fore does not include features for object-oriented and imperative
programming. However, it does support foreign language integra-
tion e.g. C through the FFI library, which can perform unsafe oper-
ations inside the IO monad. F# is mostly functional but its design
aims at integration with other paradigms from the offset. Scala is
mainly influenced by Java and so many of the language concepts
are tied to objects. However, it does provide fairly good functional
support, though the syntax differs from more traditional functional
languages a bit.

All three languages provide advanced type systems with au-
tomatic type inference and support high-level approaches for
multi-core parallelism. Platform-wise, Haskell has its own graph-
reduction-based runtime-system, F# compiles down to .NET Com-
mon Intermediate Language (CIL) and then runs on the Common
Language Runtime (CLR), Scala programs compile to Java Byte
Code and runs on the Java Virtual Machine (JVM).

4. Implementation

In this section, we provide implementations for the n-body prob-
lem in Haskell, F# and Scala. A detailed implementation of the
problem in Haskell is provided in [30]. We produce the F# and
Scala versions based on this implementation. All versions are used
to compare the facilities and difficulties in each language and their
performance.

4.1 N-Body Problem

Informally, the N-body problem is the problem of predicting and
simulating the motion of a system of N bodies that interact with
each other gravitationally. It represents an important algorithm in
many areas of science e.g. simulation of particles in astrophysics
and molecules in biological systems. In direct gravitational N-body
simulations, the bodies (e.g. stars, galaxies or molecules) interact
with each other by applying the gravitational force, which affects
the movement of both nearby and far away bodies in the system
(in a different scale). The simulation proceeds over a specified
number of time steps, where the acceleration of each body with
respect to the other bodies is calculated and then used to update the
corresponding position and velocity in each iteration.

£

Figure 1. Points in a 3D Barnes-Hut nbody simulation are con-
tained in a region (bounding box) which is sub-divided recursively
into smaller regions.

The naive method of solving the problem consists of a body-to-
body force comparison (see all-pairs implementation in [30]). This
approach is not feasible for large number of bodies and therefore
hierarchical force-calculation algorithm such as Barnes-Hut [4]
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algorithm provides an efficient approximation solution. The core
of the algorithm consists of two phases: tree construction and force
calculation, the latter being the most compute-intensive phase. In
the first phase, an octree is constructed from the list of bodies (see
Figure 1). In the second phase, the acceleration due to each body is
computed by traversing the tree and approximating bodies that are
too far away by using the centre of mass of nearby bodies. In the
algorithm, opportunity for parallelism exists at the tree construction
and accelerations calculation stage. The tree construction phase,
however, accounts for a small percentage of the overall time. So
we focus on parallelising the force calculation phase which can be
done independently for each body once the tree is constructed. The
following is the algorithm for the Barnes-Hut nbody simulation:

function doStep (bs,n)
if (n==0) return bs
else
//find the bounding box of the bodies
bbox = findBounds bs
// build the BH tree (also calculate centre
of mass of each region)
tree = buildTree (bbox,bs)
//use tree to update velocities and
positions
foreach b in bs

accel = calcAccel b tree
//deduct acceleration from velocity of
body b

b = updateVel b accel

//move body b

b = updatePos b
doStep(bs,n—1)

The calcAccel function calculates the acceleration of a given
body against the others by traversing the Barnes-Hut tree. It is the
main source of parallelism and can be performed independently for
each body.

4.2 Sequential Implementations and Optimisations

The first step in writing parallel code is to come up with an efficient
sequential implementation. Towards this goal, the opportunity to
introduce parallelism should be preserved. Using mutable states
to get the best sequential performance destroys any opportunity
for parallelism. Instead, keeping the implementation pure usually
eases the parallelisation step. In our case, the sequential Barnes-
Hut algorithm is initially implemented in all three languages. The
chosen data structure is list, as it is the most commonly used
in functional languages. Next, we try to improve the sequential
implementation by applying a number of generic and language
specific optimisations.

4.2.1 Generic Optimisations

A number of general optimisation techniques can be used in the
Barnes-Hut algorithm in order to get efficient sequential implemen-
tations across all languages. These optimisation techniques are (we
assess their impact on performance in Section 5):

Deforestation can be used as an instance of (manual) program
transformation. For example, elimination of multiple traversals
of data structures can improve sequential runtimes by doing fu-
sion, such as merging fold and map, and using function compo-
sition in map operations: map (f . g) xsinHaskell;f << g
in F#; and £ andThen g in Scala. Some of these transforma-
tions are done automatically, e.g. by GHC, with full optimisa-
tion enabled.

Tail-calls elimination ensures constant stack usage by making
sure that recursive functions return an accumulated value in
their last call without any further evaluation. This can be often
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achieved by using the right built-in functions in the language
e.g. foldl instead of foldr. The former is tail recursive and uses
an accumulator which is returned in the last call.

Compiler optimisations can be enabled selectively to perform au-
tomatic source-to-source transformations, typically on interme-
diate language code. Haskell’s GHC compiler provides several
levels of optimisations, enabled with -0, -01, -02. The F# com-
piler has similar options using the --optimize+ flag during
compilation. This performs JIT, cross-module, tail-calls opti-
misations. There is also the possibility of specifying on which
platform (e.g. x86 or x64) the generated code will run. Scala
has the flag —optimise. However, in the current version the
Scala compiler does not seem to perform any significant op-
timisations, based on our measurements of the code. Notably,
the F# and Scala compilers do most optimisations without hav-
ing to specify any flag (enabled by default), whereas the GHC
Haskell compiler allows selective enabling of optimisations and
provides several optimisation levels.

4.2.2 Haskell

We start with an initial sequential implementation of the Barnes-
Hut algorithm in Haskell, where the expressiveness of the language
helps to easily translate the advanced problem into functional code.
Initially, the program is not well optimised and is unable to execute
on a large number of input due to stack overflow. Several iterations
of optimisation are required in order to produce an efficient sequen-
tial version (reported in [30]). These optimisations are:

Strictness annotation: Being a lazy language, some optimisations
are specific to Haskell. For example, often it is not necessary
to delay evaluation of values to avoid unnecessary thunking of
computations. A number of ways to force evaluation is available
in Haskell: using the pseq primitive, strict application function
($!) or simply the exclamation (!) from BangPatterns exten-
sion. These annotations are typically placed in data type defini-
tions, to effect every usage of such data. All data types are de-
fined with strict data fields consequently reducing the heap con-
sumption and runtime. Additionally, the UNPACK pragma is used
to refer to the values directly instead of pointers, thus removing
one level of indirection and reducing memory consumption.

foldr/build: Another important optimisation in Haskell is fol-
dr/build short cut fusion. This eliminates the intermediate data
structures produced by a build followed by a foldr. The com-
piler can spot this specific sequence and automatically fuse the
code.

423 F#

The F# version is a direct translation of the Haskell code and the
changes are mainly syntactic In contrast to Haskell’s lazy list, we
use the default strict list in F#. Other versions using sequence and
array are implemented and the results are given in the next section.

F# does not require any optimisations related to laziness as
the language is strict by default. After translation from Haskell,
the main optimisation involves manually merging fold/map in F#
which is done by using foldr/map in Haskell. For e.g. in the fol-
lowing the operation done in the map is moved into the lambda
function of fold.

List.fold g acc (List.map (fun x — f x) xs)
— becomes
List.fold (fun state x —> g state (f x)) acc xs

Inlining functions is another way of improving performance.
The inline annotation indicates that a function definition should
be embedded into any code which uses it.
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4.2.4 Scala

The Scala version is largely based on the Haskell and the F# imple-
mentations and the main differences are in the syntax. This requires
to wrap functions inside classes or singleton objects. The val key-
word is used to indicate immutability. Similar to F#, Scala provides
by default strict evaluation, using strict lists, and, thus, does not
require any optimisations related to laziness. Following the initial
implementation, which was largely translated from Haskell and F#,
the two main sequential optimisations are:

Tail recursion optimisation: This generic optimisation technique
seems to play a significant role towards achieving good per-
formance in Scala in the case of the Barnes-Hut algorithm. Tail
calls are not natively supported in the JVM, as opposed to .NET,
which explains why such a source code transformation is more
important than in F#. Although some tail-call optimisation was
recently introduced to the Scala compiler, it is still quite basic
and only able to convert simple recursive functions into loops
during compile time. Quite handy, the annotation @tailrec
can be used to check if a recursive function is tail-call optimised
during compilation.

Unnecessary object initialisations removal: Object allocation in
Scala is very light-weight, something which is very important as
objects are an integral part of the language. Object initialisation,
though, causes some additional performance overhead espe-
cially when used inside heavy numerical computations such as
in the recursive calcAccel function, which is the main worker
function in the Barnes-Hut code.

4.3 Parallel Implementations and Tuning

The main source of parallelism occurs in the acceleration calcula-
tion step as shown by time profiling the program in all languages.
The tree construction stage is insignificant in terms of the overall
percentage of time spent in it. Thus, we focus our efforts in par-
allelising the top level map function that uses the constructed tree
and computes the acceleration for each body in the list. The compu-
tation of acceleration for each body is independent from the other
bodies, which means no synchronisation locks are required.

4.3.1 Haskell

The strategies library provides a parallel map implementation
parMap which is implemented using parList, a high-order com-
posable strategy that applies a given evaluation degree to each
element in the list in parallel. parMap is the starting point to intro-
duce data parallelism in the code. Usually it will give good parallel
performance if the list to which it is applied is not too big and the
function applied to each list element does enough work to cover the
overhead of creating a spark for each list item. With a large input
size, parMap is inefficient as a spark is generated for each elements
in the list structure resulting in more overheads than actual benefit
of parallelism especially if the work is too fine-grained.

It is usually not a problem to create many sparks in GpH as it
amounts to a pointer for each spark created only. However this may
lead to too fine-grained parallelism and poor performance.

Parallel tuning: The right balance of spark creation to match the
number of cores on the system is important in order to achieve good
parallel performance. If too many sparks are created, they might not
end up being taken for execution by the runtime; while too few of
them may result in under exploitation of processing units.

We use strategic chunking as a method to control the number
of sparks in Haskell. Explicit chunking and clustering are covered
in more detail in [30]. Strategic chunking makes use of the high-
order strategy from the library which performs the chunking im-
plicitly. This involves using parListChunk, which takes an ad-
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ditional chunksize parameter, instead of parList. The chunk size
specifies the size of the sublists and is calculated depending on the
number of processor cores (using numCapabilities in GpH) and
input size. This ensures that the work is properly balanced among
the processors. The two lines of code below are all that is needed
to make the parallel implementation scale.

chunksize = (length bs) ‘quot‘ (numCapabilities =*
4)

new_bs = map f bs ‘using ° parListChunk chunksize
rdeepseq

43.2 F#

We first use asynchronous workflow to implement a parallel map
in F#. By marking the function application to each element in
the list with the async keyword, the sequential map operation
is made concurrently, with each function application not block-
ing each other. Adding Async.Parallel to the pipeline enables the
function applications to run in parallel if multiple cores are used.
Async.RunSynchronous waits to synchronise at the end.

let pmap_async f xs =
seq { for x in xs — async { return f x } }
|> Async.Parallel
|> Async.RunSynchronously
|> Seq.toList

While asynchronous workflow is a fairly easy way to introduce
parallelism and get initial speedup, it is also fairly intrusive and
changes the code structure. If the main source of parallelism can
be identified in one specific higher-order function, or skeleton, one
would typical use tasks from the TPL library for independent opera-
tions. For instance, similar to the Haskell initial parMap implemen-
tation where a spark is created for each list element, we try creating
a task for each list element using the task factory from TPL. This
surely incurs overhead if the cost of creating a task for an element
is higher than the cost of processing (applying a function to) the
element.

let pmap_tpl_tasks f (xs:list<_>) =
let createTask x = Task<_>.Factory.StartNew (
fun () — f x).Result
let tasks = xs |> List.map createTask
tasks

/1 chunking
let pmap_tpl_tasks_chunk f (xs:list<.>) =
let chunks = chunksOf (xs.Length / (numProc x
2)) xs
let chunkTask chunk = Task<_>.Factory.
StartNew (fun () —>
List.map f chunk).Result
let tasks = List.map chunkTask (chunks |> Seq
.toList)
tasks |> List.concat

The code extract shows explicit task creation for each list el-
ement in a naive parallel map implementation (comparable to
parMap in Haskell). The intention is to compare the overhead
of spark versus task creation in Haskell and F# respectively. As
we expected this does not give good performance. Thus we use a
chunking mechanism to try to limit the number of tasks created.
The results are discussed in Section 5.

Using tasks directly is not a good fit for our data-parallel prob-
lem. Many higher-level constructs are provided in TPL to achieve a
more declarative way of enabling data parallelism. These are typi-
cally implemented on top of tasks. PLINQ presents the best choice.
It hides the details of task creation and management in its imple-
mentation and provides a nice, familiar interface to easily express
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parallel queries. For example, doing an operation on each element
in a list in parallel is enabled by simply marking the container
as parallel which hints to the underlying system that the latter is
to be processed in parallel i.e. converting it into a parallel query.
PLINQ uses TPL tasks in the background and handles load balanc-
ing across the cores implicitly, though it also offers some limited
control. In the PLINQ-style parallel map implementation, the Se-
lect actually performs a map operation on each element.

let pmap_pling f (xs:list<.>) =
xs. AsParallel ()
.Select(fun x —> f x) |> Seq.toList

Imperative style programming: The other main construct for
data parallelism is Parallel.For/ForEach. However, this does not
prove to be convenient with lists but is mostly useful with mutable
arrays, where the action inside the loop is to update elements in the
array. Implementing a different version of the algorithm that uses
arrays enables us to use Parallel.For to introduce parallelism and
thus examining the effect of inplace update.

let pmap_tpl_parfor f (xs:array<.>) =
let new_xs = Array.zeroCreate xs.Length
Parallel .For(0, xs.Length, (fun i —>
new_xs.[1] <— f (xs.[i]) )) |> ignore
new_xs

Alternatively, there already exists a parallel map in the Ar-
ray.Parallel namespace which is a basic implementation and uses
uses Parallel.For behind the scene.

let res = Array.Parallel .map f arr

Tuning: PLINQ and TPL provide some options for tuning, al-
though we find that the default settings are usually sufficient.

Maximum degree of parallelism: A thread pool is used to
schedule tasks and the number of threads can be controlled by using
maximum degree of parallelism. This configuration specifies the
maximum number of concurrently executing tasks.

Parallel.For and similar methods take an additional parame-
ter specifying this parameter. In PLINQ, the parameter AsParal-
lel().MaxDegreeOfParallelism can be set explicitly to the same ef-
fect. As an upper bound this parameter is used to restrict the amount
of parallelism at one time in the execution, but does not ensure that
the specified number is generated.

Chunking/Partitioning: We implement custom chunking to
control the granularity of tasks created explicitly as above — to
achieve similar effect as in Haskell.

There is also a Partitioner class with static methods to partition
collections. It supports chunking partitioning with dynamic alloca-
tion, but also range partitioning with static allocation. A partitioner
can be passed as argument to Parallel.For to specify a custom parti-
tioning. Therefore, it is best used with arrays as it gives the intervals
for each partitions.

4.3.3 Scala

Through the use of Parallel Collections in Scala, parallelisation is
semi-explicit by using the keyword par to call a parallel version of
the list which implements parallel operations.

nbody . par.map((b: Body) => new Body(b.mass,
updatePos(b), updateVel(b))).seq

The method par is applied on the list of bodies to call scala.
collection.parallel.immutable.ParSeq, which is the de-
fault parallel implementation of the list. When we subsequently
apply the map function on the parallel list, the parallel map func-
tion is invoked on the list elements. In this way, it achieves a
similar separation of coordination and computation as parList
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in GpH. Finally, we have to convert the result to a sequential list
by applying the method seq on the results of the mapping calling
scala.collection.immutable.List.

Parallel Collections requires small changes to the code to
achieve initial speedup. The main disadvantage is that the frame-
work does not currently provide much control over the parallelism.
As an example, it is not possible to control how many threads are
spawned or define the size of the underlying thread pool. Instead,
these details are handled by the underlying implementation, which
uses sophisticated work stealing and chunking techniques.

In a second approach, we implement parallel map skeletons us-
ing the scala.actors.Futures package from the Actors library.
A Future abstracts over send and receive primitives and represents
an object that is created to store a result that has not yet been com-
puted. The result is computed concurrently at a later time and can
be collected on demand. Our first skeleton is the classic parallel
map function:

def pmap[T](f: T => T) (xs: List[T]): List[T] = {
val tasks = xs.map((x: T) => Futures.future { f
(x) })
tasks .map(future => future.apply())

}

In pmap a future is explicitly created for each element in the
given list, mapping the given function on the corresponding list
element. The results of the parallel map are then returned to the
user as the output of the skeleton.

The second skeleton we implement is a parallel map using
chunking to explicitly control the granularity of the parallelism,
directly corresponding to the initial Haskell implementation:

def chunk[T](xs: List[T], size: Int): List[List[T
11 = xs.isEmpty match {
case true => List()
case false =>
val split = (xs.take(size), xs.drop(size))
(split._1) +: chunk(split._2, size)

def pmap_chunk[T]J(f : T => T, size
List[T]): List[T] = {
val chunks = chunk(xs, size)
val task_chunks = chunks.map((c: List[T]) =>
Futures. future { c.map((x: T) = f(x)) })

Int) (xs:

val tasks = task_chunks.map(future => future.
apply ())
tasks . flatten
}
5. Results

5.1 Experimental Setup

Platforms: All three languages are supported both on Linux and
Windows platforms either natively or through independent (open-
source) implementations. This provides ground for comparison of
the language implementations across the two platforms and dis-
cuss the results on each. Haskell’s GHC implementation is cross-
platform. GHC offers the option to compile code down to C and run
on a standard C compiler. F#’s official Microsoft implementation is
intended to run on the .NET Framework on machines running Win-
dows. The open-source implementation of the runtime, Mono, is
available to compile and run F# code under Linux. Scala runs on
JVM, which has good support on both platforms. The following are
the machines used for the experiments:

2012/6/10



Linux Windows
Version CentOS 5.8 XP
Architecture  64-bit 32-bit
CPU Intel Xeon ES410  Intel Core i7 860
2.33GHz 2.80GHz
# cores 8 4 (8 HyperThreads)
RAM 7986 MB 3520 MB

Language Implementations: The following are the language im-
plementations used with the corresponding version numbers on
each platform:

Linux Windows
Haskell GHC 7.4.1 GHC 7.4.1
F# F#2.0/Mono 2.11.1 F#2.0/.NET 4.0

Scala Scala2.10/JVM 1.7 Scala2.10/JVM 1.7

Input:  All parallel measurements for the Barnes-Hut algorithm
are taken using 80,000 bodies as the input and the execution is
based on 1 iteration of the nbody simulation. We focus on a single
iteration to assess the potential for parallelism in this application
core for each language, rather than an application tuning exercise.

5.2 Baseline

We use the all-pairs implementations from the Computer Language
Shootout website' as baseline for comparison. The implementa-
tions on the shootout webpage are highly-optimised by experts in
each language community. However, the implementations are im-
pure and they make heavy use of inplace updates and other unsafe
constructs provided in the languages in order to get the best perfor-
mance out of the implementation. This approach however destroys
the possibility to add parallelism easily to the sequential code. Of-
ten the whole program would have to change in order to parallelise
it. Therefore, we do not take these versions as starting points for
our parallelisation. The original shootout runtimes on a Linux x64
Intel Q6600 machine are taken for 5 bodies and 50 million itera-
tions. We take measurements on our machines using 16000 bodies
and 1 iteration only, and we exclude the input generation and en-
ergy calculation times as we are interested in the main iteration and
parallelising it. The runtimes are given in Table 1.

Table 1. Baseline (a) — language shootout results (all-pairs). The
numbers in brackets are slow-downs w.r.t. the Haskell version.

Linux (Original) Linux Windows

5 bodies, 5S0M iterations (16k bodies, 1 iteration)

Haskell 25.23 (1.00) 9.24 (1.00)  7.66 (1.00)
F# 41.36 (1.63) 9.37(1.01) 4.88 (0.63)
Scala 23.47 (0.93) 5.51(0.59) 14.25(1.86)

Both the original runtimes and those taken on our Linux ma-
chine show that the Scala implementation is fastest, followed by
Haskell, then F#. However, on Windows platform, interestingly, the
slowest of the three, F#, performs the best. This highlights that the
F# NET implementation on that platform is very well-tuned and
Microsoft technologies integrate well together. On the other hand,
Scala goes from best to worst performance under Windows.

We also use our pure all-pairs implementations, which do not
use destructive updates, as a baseline. The results are shown in Ta-
ble 2, Haskell gives the best performance under Linux, and second
best under Windows, though closely followed by F# under the same

'http://shootout.alioth.debian.org/
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platform. Scala gives decent performance on both platforms. F# on
Linux is very slow by factor of 8.5 compared to Windows for the
pure baseline, as opposed to 1.9 for the impure baseline. We also
observe that, as expected, the pure implementations are slower than
the impure ones between 1.7 to 3.9 times. We intentionally not use
impure features to enable easy parallelisation.

Table 2. Baseline (b) — our pure all-pairs implementations (16k
bodies, 1 iteration). The numbers in brackets are slow-downs w.r.t.
the Haskell version.

Linux Windows

Haskell 20.77 (1.00)  15.55 (1.00)
F# 123.22 (5.93) 14.45(0.92)
Scala 21.88 (1.05) 24.71 (1.58)

Comparing the runtimes from Tables 1 and 2, we can also
assess the sequential performance of our all-pairs implementations,
giving an estimate of the quality of our sequential code: 49.3%
for Haskell, 33.8% for F#, 57.5% in Scala. Avoiding any use of
impure features we lose some performance initially, but we gain
ample opportunities for parallelisation in exchange. Later in this
section we will show that selective usage of impure features after
parallelisation can further enhance performance. We believe that
efficiencies for the Barnes-Hut algorithm are similar, but in the
absence of similarly tuned implementations we cannot make a
direct comparison for this algorithm.

In the following subsections, we see how these figures relate to
the pure Barnes-Hut implementations, where the algorithm is more
complex than the all-pairs, on the two platforms. The discussions
focus on 3 metrics: performance, programmability and pragmatic
aspects of the languages.

5.3 Performance Evaluation

Tables 3 and 4 summarise the runtimes and speedups in each lan-
guage on Linux and Windows respectively. As ancillary data, Ta-
ble 5 shows the peak memory usage under the Windows platform,
as observed by an external, OS-level task manager.

Table 5. Peak memory usage on a Windows machine

Haskell F# Scala
Sequential 57MB 32MB 58 MB
Parallel (4 cores) 71 MB 36 MB 62 MB

We use the same data structure, in this case list, across the
different implementations to have comparable results. The results
highlight a number of interesting points.

5.3.1 Sequential Performance

Tables 3 and 4 show that Haskell gives the best sequential perfor-
mance on both platforms. This has been made possible due to ex-
tensive sequential optimisations, using a range of techniques.

Most notably, the initial, naive Haskell version — without strict
data fields — gives a runtime of 479.94s. By using strict data fields
and UNPACK pragma, the runtime goes down to 33.02s, amounting
to a sequential speedup of 14.5. Enabling foldr/build optimisations
by code restructuring, as a GHC specific compiler optimisation,
gives a further 23% reduction in runtime resulting in 25.28s. All
results are measured under Linux. A detailed discussion of both
implementations is given in [30].

The F# sequential runtime is slightly better than that of Haskell
under Windows. This directly corresponds to the lower memory
footprint of F# as shown in Table 5.
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Table 3. Runtimes (in seconds) on Linux (8 cores)

Haskell F# Scala
GpH AsyncWork TPL ParColl Actors
#cores | parMap parMapChunk Tasks  Tasks/chunk  PLINQ pmap  pmapchunk
seq 25.39 25.28 118.12 118.12 118.12 118.12 39.04  39.04 39.04
1 2591 26.38 211.78 197.72 209.76 196.14  48.02  45.38 40.01
2 25.77 14.48 129.07 154.09 162.32 120.78 2572 25.18 22.34
4 22.69 7.41 89.63 128.99 134.54 80.91 16.41 16.42 14.88
8 23.17 4.50 70.41 120.26 122.45 70.67 13.48 14.34 13.26
Table 4. Runtimes (in seconds) on Windows (4 cores plus hyperthreading)
Haskell F# Scala
GpH AsyncWork TPL ParColl Actors
#cores | parMap parMapChunk Tasks  Tasks/chunk PLINQ pmap pmapchunk
seq 17.64 17.64 21.12 21.12 21.12 21.12 66.65  66.65 66.65
1 17.77 18.05 21.26 23.31 21.10 21.39 66.96  68.30 67.24
2 17.61 9.41 16.96 26.47 21.36 17.32 5796  58.63 58.66
4 16.94 6.80 10.18 36.06 21.50 10.56 3448  33.64 33.84
8 (HT) 17.61 4.77 8.82 36.28 21.05 8.64 26.18  24.74 25.28

The F# version is a direct translation from Haskell with some
F# specific optimisations. Some optimisations native to Haskell
e.g. strictness annotations, are not required in F#. Other program
transformations, in particular merging fold and map operations
thereby eliminating intermediate data structures, have to be done
manually in F# and improve the runtime from 28.43 to 22.15s.
Inlining of functions reduces the runtime by 5% to 21.12s.

Another general observation is that the Mono implementation
of the .NET runtime, used under Linux, is not as well optimised
as the corresponding Microsoft .NET implementation, used under
Windows. Since the Mono project is now focusing on providing
a .NET infrastructure on embedded systems, rather than focusing
on high-performance computing, this is not surprising. However,
this is one of the first systematic comparisons of both platforms
for parallel computation. The difference in runtime is particularly
remarkable, since the hardware used for running the F#/Mono
instance was faster than the hardware for running F#/.NET.

The Scala version is the slowest one under Windows, but signif-
icantly better under Linux. This behaviour is consistent with the all-
pairs baseline results in Tables 3 and 4. We attribute this difference
mainly to the Scala compiler and the memory management over-
head imposed by it. It has been reported elsewhere [27] that Scala
makes heavy use of boxed types, resulting in a fairly high memory
footprint, as shown in Table 5 where the peak memory consumption
of the strict Scala implementation (58 MB) is even higher than the
lazy Haskell implementation (57 MB). On the Windows machine
the smaller amount of main memory will cause this high mem-
ory consumption to have a stronger impact on total runtime. Addi-
tionally, as a mixed paradigm language, Scala makes heavy use of
objects, resulting in initialisation overhead. Under Linux, the ini-
tial Scala implementation, without the optimisations described in
Section 4.2.4, gives a runtime of 55.44s. By using tail recursion
optimisation, the runtime goes down to 45.48s (-18%). Removing
unnecessary object instantiations helps to further improve the per-
formance to 39.04s (-14%).

Using Lazy Data Structures: All 3 languages support lazy data
structures and here we compare their sequential performance.

As reported above, the unoptimised Haskell version, with lazy
data structure by default loses a factor of 14.5 performance.
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The LazyList version in F#, as a direct comparison with this
initial Haskell version, exhibits an increase in sequential runtimes
from 118.12 to 604.19s (Linux), and from 21.12 to 81.68s (Win-
dows), representing a factor of 5 and 4, respectively. The memory
usage under Windows peaks at 115 MB (from 32 MB using the de-
fault strict list). This suggests that this library is not well-optimised
for LazyList and fewer compiler optimisations, aiming at eliminat-
ing unnecessary laziness are applied. It is worth noting that this
structure is available as part of the PowerPack, is not officially sup-
ported and is still under development.

Similarly, in Scala, the use of streams as lazy structures in lieu
of lists results in an increase in sequential runtimes from 39.04 to
89.35s (Linux), and from 66.65 to 92.24s (Windows). The memory
usage under Windows peaks at 100 MB, which is a 72% increase
from the 58 MB using the default strict list.

5.3.2 Parallel Performance

Figures 2(a) and 2(b) summarise the speedups obtained with the
best versions of each language implementation on Linux and Win-
dows, respectively. For F#, we use PLINQ speedups instead of
Async Workflow as the differences are small and we want to com-
pare parallel construct in the plots. Tables 3 and 4 elaborate on
the runtimes of several versions with the best parallel runtimes in
each language highlighted. Comparing the performance of the lan-
guages, Haskell displays the best speedups, up to 5.6 on 8 cores,
and remains scalable. This is achieved through strategic chunking
to improve thread granularity.

Since this is a data-parallel application, with limited scope for
thread-subsumption, such explicit granularity control is crucial,
as can be seen from the poor performance of the naive parMap
implementation, which generates a spark for each list element. In
terms of absolute parallel performance, the Haskell version is 3
times faster than the Scala version on an 8-core Linux machine,
and 1.5 times faster than F# on an 4-core Windows machine.

Due to the poor performance of Mono, for F# the Windows ver-
sion is the more interesting. Here the implementation achieves a
respectable speedup of 2 on 4 cores, which increases to 2.4 when
using hyperthreading. Notably, the highest-level PLINQ implemen-
tation is the best performing on this platform, although speedup in
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Figure 2. Absolute speedups on the two platforms for the best versions in all languages and impure versions in F# and Scala.

itself is not as good as in the Haskell version. Interestingly, the heap
consumption of F# is significantly lower, even with the unoptimised
version where it remains the same, than that of the Haskell version
(Table 5), but this does not translate into faster runtimes. We con-
jecture that this is mainly due to GHC performing more aggressive
optimisations than F#. We note that the task-based implementations
in effect result in a slow-down, mainly due to the high task man-
agement overhead, which is reduced when employing chunking. In
contrast to the GpH version, F# tasks are mandatory, so this over-
head is more pronounced than in GpH. The highest level PLINQ
implementation, best suited for data-parallelism gives almost as
good a result as the lower level asynchronous workflow implemen-
tation (-3.7% on 4 cores). Given the simplicity of the PLINQ code
(see Section 3.2.1) this is a strong argument in favour of this ab-
straction mechanism for data-parallel code.

For the Scala version we focus on the better performing Linux
version. All three parallel versions exhibit good speedups, although
trailing the Haskell results. In this implementation, chunking has a
far lower impact on performance compared to the Haskell version.
Together with the good 1 processor performance this indicates very
efficient task management for actor code in Scala. The highest level
parallel collection implementation is within 1.7% of the 8-core per-
formance, almost as good as a tuned actor implementation. The
parallel performance of the pure version tails out for higher core
counts, with an 8-core speedup of 2.9 using the Parallel Collec-
tions, but the impure implementation, discussed below, achieves a
speedup of 4.5. This simplest version achieves almost as good a
performance as the lower-level actor-based implementations.

Mutable Data Structures: The remaining results use impure lan-
guage features, in particular mutable data structures, to further im-
prove performance. The use of arrays in F# which update the body
inplace gives only a small performance gain under Windows, a
1.7% decrease in sequential runtime from 21.12s to 20.76 (Table 6).
Interestingly, the memory usage remains the same as using list. This
might be due to the imprecision of using an external, OS-level tool
to determine peak usage, as opposed to maximum residency. Under
Linux, where the sequential runtime is already slower by a high fac-
tor, arrays give a 19% improvement from 118.12 to 95.33s in run-
time. The main advantage of using arrays, though, are as mentioned
earlier: the use of the built-in parallel map from Array.Parallel mod-
ule, and Parallel.For with the default or custom partitioning. The
default partitioner, which creates partitions based on the processor
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count and input size, exhibits very good parallel performance that
does not improve significantly with a custom partitioner.

We also developed an impure functional implementation in
Scala using inplace updates. In this case, the maximum residency
indeed drops from 114.75 MB to 91.72 MB (20% reduction) on
the Linux platform, as obtained by internal, JVM-level monitoring.
This directly translates into faster sequential and parallel runtimes
than the pure versions under Linux (see Table 7). In Scala this
difference is quite remarkable, improving speedup to 4.51 (on 8
cores), as opposed to 2.9 in the pure version (Figure 2(a)). This
improvement in parallel speedup is most likely due to the reduc-
tion in heap contention on this shared memory architecture, in this
more memory efficient version. The impure Scala implementation
also gains significantly better sequential performance on the Win-
dows platform: 47.86s (28% runtime reduction from the pure Scala
implementation) and a 4—cores parallel runtime of 20.78s (39%
runtime reduction and 14% speedup improvement from the paral-
lel pure implementation using pmap_chunk).

Table 6. F# runtime results (in seconds) using arrays on Windows
(4 cores plus hyperthreading).

Best Pure | Array.Par.map Parallel.For
# cores default  partitioner
seq 21.12 20.76 20.76 20.76
1 21.39 21.56 21.2 21.35
2 17.32 15.83 15.66 16.05
4 10.56 9.09 9.09 9.32
8 8.64 7.33 7.33 7.15

Table 7. Runtime results (in seconds) for the impure Scala imple-
mentation on Linux (8 cores).

#cores | Best Pure | ParColl pmap pmapchunk
seq 39.04 32.81 3281 32.81
1 40.01 3692  34.86 36.09
2 22.34 17.66  22.05 19.14
4 14.88 1123 12.55 10.96
8 13.26 8.47 8.57 7.27
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5.4 Programmability

Due to the high-level nature of all three languages, introducing
parallelism to a pure version is easy and often amounts only to
using a suitable data-parallel skeleton, e.g. parMap instead of a map
in the computational core of the application. In the impure versions,
we start from a pure version to introduce parallelism and then add
inplace updates selectively in such a way that does not require locks
as the operations are independent.

In the Haskell version we use evaluation strategies, which sep-
arate the parallel code from main computation logic. In another
paper [30] we compared this implementation with alternatives for
introducing parallelism in Haskell, in particular with Eden [16]
and the ParMonad [18], achieving similar performance. However,
Haskell requires more parallel performance tuning to achieve good
parallel performance. In particular, the naive parMap does not work
well when used directly, because its implementation does not auto-
matically introduce chunks. Instead the programmer has to choose
the parMapChunk variant or, to tune performance further, can im-
plement customised chunking to control thread granularity.

F# supports several paradigms of parallel programming at sev-
eral different levels of abstraction, making it easier for program-
mers to make the transition from sequential to parallel program-
ming. The preferred mechanism for data-parallelism is to use the
SQL-like PLINQ language, which represents the highest level of
abstraction, and still gives close to optimal performance. Scala of-
fers parallelism support through two libraries. On a data structure
level parallelism is very easily introduced through the keyword
par, which calls a parallel version of a collection causing most
subsequent functions applied on it to be executed in parallel. The
lower-level Actors message passing model offers explicit messag-
ing between actors, but also allows to build higher-level solutions
on top of Futures for introducing parallelism.

Optimisations are important in getting good performance but
most be chosen carefully to avoid sequentialisation. Due to lazi-
ness, Haskell requires some optimisations to work around laziness
to get good sequential results. In F# and Scala, some optimisations
are necessary and easily introduced with the functional style e.g.
ensuring recursive functions make tail-calls and avoiding multiple
traversal of data structures using function composition in function
argument to a map. Several of these (manual) optimisations are per-
formed automatically by GHC.

Other language features such as purity in each language helps to
structure the code so that the main n-body simulation code is writ-
ten in an entirely pure functional way. This provides a good separa-
tion between pure and impure code, for example, the main function
which generates the input, and output the simulation result.

Both F# and Scala allow integration of object-oriented features
with functional programming. Although, we tried to integrate some
of the available object-oriented features (e.g., classes) in our F#
and Scala implementations, we did not notice any difference in the
sequential or parallel performance. That makes intuitive sense be-
cause object-orientation is mainly used to help towards large-scale
software development, by using features such as polymorphism,
inheritance and encapsulation. In a high performance computing
application, though, we found that we did not really require these
features to achieve good performance.

One of the main difficulties of Haskell is to understand the
implications of laziness. It is hard to predict when expressions are
evaluated, and to estimate how much work is involved. However,
laziness allows us to make use of infinite data structures. F# and
Scala on the other hand have strict evaluation by default. This
makes it easier to reason about the program.

Haskell vs. F#vs. Scala

5.5 Pragmatics

Haskell comes with powerful tool support which is helpful in op-
timising both sequential and parallel algorithms. As an example,
time and heap allocation profiling reports, both textual and visual,
are useful in identifying the hot-spot of the execution and poten-
tial space leaks. Threadscope is a parallel visualisation tool partic-
ularly useful to see work distribution across the number of cores.
Although F# comes with very good tool support, such as a pro-
filer, unfortunately it is only available on the ultimate version of
Microsoft’s Visual Studio. Due to the lack of these tools, it was
difficult for us to find out why the same code in Haskell performs
badly in F#. Free tools are difficult to find, as most third party op-
tions are commercial. Scala is based on the JVM and, thus, enjoys
a wide range of both monitoring and analysis tools, such as Visu-
alVM, which we used as a JVM-level monitor.

6. Conclusion

In this paper we compare parallel implementations of the Barnes-
Hut algorithm for solving the N-body problem, implemented in
the purely functional language Haskell and in the modern multi-
paradigm languages F# and Scala. We assess both programmabil-
ity and parallel performance, when executing on a state-of-the-art
multi-core. We use a number of alternative parallel programming
constructs provided in each language, in particular GpH in Haskell,
Asynchronous Workflows and TPL in F#, and Parallel Collections
and Actors in Scala.

The type of parallelism in this application is data-oriented and
to this end, we implemented a number of parallel map skeletons
in F# and similarly in Scala. We achieve speedups up to 5.62 in
Haskell (8 cores), 2.28 in F# (4 cores) and 4.51 in Scala (8 cores).

With a caveat that our observations are based on parallel variants
of only one application, we draw the following conclusions:

e Across all languages, the version using the highest abstraction
level also produced the (near) best runtimes.

e Providing first-class parallelism support in the language, through
primitives rather than annotations or libraries, is important in
the Haskell version in order to explicitly tune thread granularity,
e.g. using higher-order functions in a chunking parMap.

Careful (sequential) optimisation of the lazy Haskell version
results in sequential performance, surpassing that of the strict
F# and Scala versions.

Aggressive, sequential code optimisations, using impure lan-
guage features early on, seriously hamper the parallelisation of
the code, as can be seen from the (sequential) implementations
on the language shootout page, which are a poor starting point
for parallelisation due to enforced sequentialisation on mutable
data structures. However, selective use of impure features at the
end of the parallelisation process can gain notable additional
performance, demonstrated, e.g. in the Scala implementation.

The poor performance of F# on Linux, due to a fairly low-
performance .NET implementation provided by Mono, does
not make F# a viable choice for parallelism on Linux at the
moment.

The additional expressive power provided by lower-level Actor-
based code in Scala does not manage to improve performance
significantly and therefore the extra programming effort is not
justified in this example.

In comparison to other main-stream parallel languages, we
found that all languages provide fairly high-level constructs for
parallelism but the degree of control provided in them differs. For
instance, Haskell allows initial parallelism to be easily specified,
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as parallel versions of well-known higher-order functions. Since
parallelism is provided through primitives, rather than annotations
or libraries, the full power of the languages is available and user-
customisable to tune parallel performance using chunking. On the
other hand, F# and Scala confine most control of parallelism inside
the runtime-system implementation, aiming for automatic manage-
ment without any programmer input. Therefore tuning parallelism
is more difficult for the expert parallel programmer in these lan-
guages.
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