
“Carbon Credits” for Resource-Bounded
Computations using Amortised Analysis

Steffen Jost1, Hans-Wolfgang Loidl2, Kevin Hammond1,
Norman Scaife3, and Martin Hofmann2

1 St Andrews University, St Andrews, Scotland, UK
jost,kh@cs.st-andrews.ac.uk

2 Ludwig-Maximilians University, Munich, Germany
hwloidl,mhofmann@tcs.ifi.lmu.de

3 Université Blaise-Pascal, Clermont-Ferrand, France
Norman.Scaife@univ-bpclermont.fr

Abstract. Bounding resource usage is important for a number of ar-
eas, notably real-time embedded systems and safety-critical systems. In
this paper, we present a fully automatic static type-based analysis for
inferring upper bounds on resource usage for programs involving general
algebraic datatypes and full recursion. Our method can easily be used
to bound any countable resource, without needing to revisit proofs. We
apply the analysis to the important metrics of worst-case execution time,
stack- and heap-space usage. Our results from several realistic embed-
ded control applications demonstrate good matches between our inferred
bounds and measured worst-case costs for heap and stack usage. For time
usage we infer good bounds for one application. Where we obtain less
tight bounds, this is due to the use of software floating-point libraries.

1 Introduction

Programs often produce undesirable “emissions”, such as littering the memory
with garbage. Our work is aimed at predicting limits on such emissions in advance
of execution. “Emissions” here refer to any quantifiable resource that is used by
the program. In this paper, we will focus on the key resources of worst-case
execution time, heap allocations, and stack usage. Predicting emissions limits is
clearly desirable in general, and can be vital in safety-critical, embedded systems.

Our method can be explained by analogy to an attempted countermeasure to
global warming: some governments are attempting to reduce industrial pollution
by issuing tradable carbon credits. The law then dictates that each CO2 emission
must be offset by expending an appropriate number of carbon credits. It follows
that the total amount of emissions is a priori bounded by the number of car-
bon credits that have been previously issued by the authorities. Following this
analogy, we will similarly issue credits for computer programs. The “emissions”
of each program operation must then be immediately justified by spending a
corresponding number of credits. The use of “carbon credits” for software anal-
ysis does, however, have several advantages over the political situation: i) we can

Authors version for personal use only. Published at Formal Methods 2009. The original publication is available at www.springerlink.com

www.springerlink.com

prove that each and every emission that occurs is legitimate and that it has been
properly paid for by spending credits; ii) we have zero bureaucratic overhead,
since we use an efficient compile-time analysis, there need be no modifications
whatever to the original program, and we therefore do not change actual execu-
tion costs; and iii) we provide an automatic static analysis that, when successful,
provides a guaranteed upper bound on the number of credits that must be issued
initially to ensure that a program can run to completion, rather than using a
heuristic to determine the requirements. The amount of credits a program is
allowed to spend is specified as part of its type. This allows the absolute number
of credits to vary in relation to the actual input, as shown below.

Example: Tree Processing. Consider a tree-processing function mill , whose argu-
ment has been determined by our analysis to have type tree(Node〈7〉 | Leaf〈0.5〉).
Given this type, we can determine that processing the first tree below requires
at most 23 = b23.5c credits†: 7 credits per node and 0.5 credits for each leaf
reference; and that processing either of the other trees requires at most b15.5c
credits, regardless of aliasing.

z

�� �� ��
y

 ��

x w

		 ��
v u t s

a

		 ��
b c

		 ��
d e

a

��

''

c

�� ��
e

In fact, the type given by our analysis allows us to easily determine an upper
bound on the cost of mill for any input tree. For example, for a tree of 27 nodes
and 75 leaves, we can compute the credit quota from the type as 7 ·27+0.5 ·75 =
226.5, without needing to consider the actual node or leaf values. The crucial
point is that while we are analysing mill , our analysis only needs to keep track
of this single number. Indeed, the entire dynamic state of the program at any
time during its execution could be abstracted into such a number, representing
the total unspent credits at that point in its execution. Because the number of
credits must always be non-negative, this then establishes an upper bound on
the total future execution costs (time or space, etc.) of the program. Note that
since this includes the cost incurred by all subsequent function calls, recursive or
otherwise, it follows that our analysis will also deal with outsourced emissions.

Novel contributions made by this paper: We present a fully automatic compile-
time analysis for inferring upper bounds on generic program execution costs, in
the form of a new resource-aware type system. The underlying principle used
in our automatic analysis is a modified version of Tarjan’s amortised cost anal-
ysis [17], as previously applied to heap allocation by Hofmann and Jost [11].
We prove that the annotated type of terms describes its maximal resource re-
quirement with respect to a given operational semantics. Our analysis becomes
automatic by providing type inference for this system and solving any constraints
that are generated by using an external linear programming solver.
† Note while only whole credits may be spent, fractional credits can be accumulated.

Authors version for personal use only. Published at Formal Methods 2009. The original publication is available at www.springerlink.com

www.springerlink.com

Moreover, we extend previous work:

a) by dealing with arbitrary (recursive) algebraic datatypes;
b) by providing a unified generic approach that presents a soundness proof that

holds for arbitrary cost metrics and for many different operational models;
c) by applying the approach to real-world examples, notably worst-case execu-

tion time on the Renesas M32C/85U processor.

Section 2 introduces a simple functional language that exhibits our analysis.
We consider the soundness of our analysis in Section 5, discuss several example
programs in Section 6 and cover related work in Section 7. Section 8 concludes.

2 The Schopenhauer Notation

We illustrate our approach using a simple, strict, purely functional programming
language Schopenhauer (named after the German philosopher), which includes
recursive datatypes and full recursion, and which is intended as a simple core
language for richer notations, such as our own Hume language [9]. Schopenhauer
programs comprise a set of one or more (possibly mutually recursive) function
declarations. For simplicity, functions and datatypes are monomorphic (we are
currently investigating the extension to polymorphic definitions).

prog ::= varid1 vars1 = expr1 ; . . . ; varidn varsn = exprn n ≥ 1
vars ::= 〈 varid1 , . . . , varidn 〉 n ≥ 0
expr ::= const | varid | varid vars | conid vars

| case varid of conid vars -> expr1 | expr2

| let varid = expr1 in expr2

| LET varid = expr1 IN expr2

The Schopenhauer syntax is fairly conventional, except that: i) we distinguish
variable and constructor identifiers; ii) pattern matches are not nested and only
allow two branches; iii) we have two forms of let-expression; and iv) function
calls are in let-normal form, i.e. arguments are always simple variables. The
latter restriction is purely for convenience, since it simplifies the construction of
our soundness proof in Section 5 by removing some tedious redundancies. There
is no drawback to this since Schopenhauer features two kinds of let-expressions,
let and LET, the former appearing in source programs, and the latter introduced
as a result of internal translation. Both forms have identical semantics but they
may have differing operational costs, depending on the desired operational model
and on the translation into let-normal form. Since the ordinary let-expression
usually incurs some overhead for managing the created reference, it cannot be
used to transform expressions into let-normal form in a cost-preserving manner.

3 Schopenhauer Operational Semantics

Our operational semantics (Figure 1) is fairly standard, using a program sig-
nature Σ to map function identifiers to their defining bodies. The interesting

Authors version for personal use only. Published at Formal Methods 2009. The original publication is available at www.springerlink.com

www.springerlink.com

feature of our semantics is that it is instrumented by a (non-negative) resource
counter, which defines the cost of each operation. This counter is intended to
measure execution costs, with the execution being stuck if the counter becomes
negative. We will prove later that our analysis determines an upper bound on
the smallest starting value for this counter, and so prevents this from happening.

An environment, V, is a mapping from variables to locations, denoted by `.
A heap, H, is a partial map from locations to values w. H[` 7→ w] denotes a
heap that maps ` to value w and otherwise acts as H. Values are simple tuples
whose first component is a flag that indicates the kind of the value, e.g. (bool, tt)
for the boolean constant true, (int, 42) for the integer 42, etc. The judgement

V,H
n

n′ e ; `,H′

then means that under the initial environment V and heap H, the expression
e evaluates to location ` (all values are boxed) and post-heap H′, provided
at least n units of the selected resource are available before the computation.
Furthermore, n′ units are available after the computation. Hence, for example,
V,H

3

1 e ; `,H′ simply means that 3 resource units are sufficient for evaluat-
ing e, and that exactly one is unused after the computation. This one unit might,
or might not, have been used temporarily. We will simply write V,H ` e ; `,H′

if there exists n, n′ such that V,H
n

n′ e ; `,H′.

Cost Parameters. The operational rules involve a number of constants which
serve as parameters for an arbitrary cost model. For example, the constant
KmkInt denotes the cost for an integer constant. If an integer occupies two heap
units, and we are interested in heap usage, we set this constant to two; if each
pointer occupies a single stack unit, and we are interested in stack usage, we set
this value to one; and so on. Some cost parameters are parametrised to allow
better precision to be obtained, e.g. for execution time, the cost of matching a
constructor may vary according to the number of arguments it has.

It is important to note that our soundness proof does not rely on any spe-
cific values for these constants. Any suitable values may be used according to
the required operational cost model. While it would be possible to expand the
cost parameters to vectors, in order to deal with several simultaneous metrics,
for example, this would require similar vector annotations in our type systems,
requiring a high notational overhead, without making a new contribution.

4 Schopenhauer Type Rules

The annotated types of Schopenhauer are given by the following grammar:

T ::= int | X | µX.{ c1:(q1,
−→
T1) | . . . | ck:(qk,

−→
Tk) } |

−→
T −→pp′ T ′

where X is a type variable, ci ∈ Constrs are constructor labels; p, p′, qi are either
non-negative rational constants or resource variables belonging to the infinite

Authors version for personal use only. Published at Formal Methods 2009. The original publication is available at www.springerlink.com

www.springerlink.com

n ∈ Z ` /∈ dom(H)

V,H
q′ + KmkInt

q′ n ; `,H
ˆ
` 7→ (int, n)

˜ V(x) = `

V,H
q′ + KpushVar

q′ x ; `,H

Σ(fid) =
`
ef ; y1, . . . , yk;C;ψ

´
[y1 7→V(x1), . . . , yk 7→V(xk)] ,H

q − Kcall(k)

q′+ Kcall′(k) ef ;`,H′

V,H
q
q′ fid 〈x1, · · · , xk〉; `,H′

c ∈ Constrs ` /∈ dom(H) k ≥ 0 w =
`
constrc,V(x1), . . . ,V(xk)

´
V,H

q′ + KCons(k)

q′ c 〈x1, . . . , xk〉; `,H[` 7→ w]

H(k) =
`
c, k 1, . . . , k k

´
V[y1 7→ k 1, . . . , yk 7→ k k],H

q − KCaseT(k)

q′+ KCaseT′(k) e1 ; `,H′

V[x 7→ k],H
q
q′ case x of c 〈y1, . . . , yk〉 -> e1|e2 ; `,H′

H
`
V(x)

´
6=

`
c, k 1, . . . , k k

´
V,H

q − KCaseF(k)

q′+ KCaseF′(k) e2 ; `,H′

V,H
q
q′ case x of c 〈y1, . . . , yk〉 -> e1|e2 ; `,H′

V,H
q1 − KLet1

q2 e1 ; `1,H1 V[x 7→ `1],H1

q2 − KLet2

q′ + KLet3 e2 ; `2,H2

V,H
q1
q′ let x = e1 in e2 ; `2,H2

Note that the rule for LET . . . IN is identical to that for let . . . in above, except in
replacing constants KLet1, KLet2 and KLet3 with KLET1, KLET2 and KLET3, respectively.

Fig. 1. Schopenhauer Operational Semantics

set of resource variables CV ranging over Q+; and we write
−→
T for 〈 T1 . . . Tn 〉

where n ≥ 0. For convenience, we extend all operators pointwise when used in
conjunction with the vector notation i.e.

−→
A =

−→
B stands for ∀i . Ai = Bi. Let

ψ, φ, ξ range over sets of linear inequalities over resource variables. We write
ψ ⇒ φ to denote that ψ entails φ, i.e. all valuations v : CV → Q+ which satisfy
ψ also satisfy all constraints in φ. We write v ⇒ φ if the valuations satisfies
all constraints. We extend valuations to types and type contexts in the obvious
way. Valuations using non-negative real numbers are permissible, but rational
annotations are of most interest since they allow the use of in-place update, as
described in [11].

Algebraic datatypes are defined as usual, except that the type carries a re-
source variable for each constructor. The type rules for Schopenhauer then gov-
ern how credits are associated with runtime values of an annotated type. The
number of credits associated with a runtime value w of type A is denoted by
Φv

H(w : A), formalised in Definition 2 in Section 5. Intuitively, it is the sum over
all constructor nodes reachable from w, where the weight of each constructor in
the sum is determined by the type A. As we have seen in the tree/mill example
in the introduction, a single constructor node may contribute many times to this

Authors version for personal use only. Published at Formal Methods 2009. The original publication is available at www.springerlink.com

www.springerlink.com

sum, possibly each time with a different weight, determined by the type of the
reference used to access it. While this definition is paramount to our soundness
proof, any practical application only requires the computation of this number
for the initial memory configuration, for which it can always be easily computed.
It is easy to see, for example, that the number of credits associated with a list
of integers having the type µX.{Nil : (z0, 〈〉)|Cons : (z, 〈int, X〉)} is simply
z0 +n · z, where n is the length of the list. We naturally extend this definition to
environments and type contexts by summation over the domain of the context.

We can now formulate the type rules for Schopenhauer (which are standard
apart from the references to cost and resource variables). Let Γ denote a typing
context mapping identifiers to annotated Schopenhauer types. The Schopen-
hauer typing judgement Γ

q

q′ e : A | φ then reads “for all valuations v that
satisfy all constraints in φ, the expression e has Schopenhauer type v(A) under
context v(Γ); moreover evaluating e under environment V and heap H requires
at most v(q) + Φv

H(V : Γ) credits and leaves at least v(q′) + Φv
H(V : Γ) credits

available afterwards”. The types thus bound resource usage and we will formalise
the above statement as our main theorem (Theorem 1), which requires as a pre-
condition that the context, environment and heap are all mutually consistent.

A Schopenhauer program is a mapping Σ, called the signature of the pro-
gram, which maps function identifiers fid belonging to the set Var to a quadruple
consisting of: i) a term defining the function’s body; ii) an ordered list of argu-
ment variables; iii) a type; and iv) a set of constraints involving the annotations
of the type. Since the signature Σ is fixed for each program to be analysed,
for simplicity, we omit it from the premises of each type rule. A Schopenhauer
program is well-typed if and only if for each identifier fid

Σ(fid) = (efid ; y1, . . . , ya; 〈A1, . . . , Aa〉−→
p

p′ C;ψ) =⇒

y1:A1, . . . , ya:Aa
p− Kcall(a)

p′ + Kcall′(a) efid : C | ψ

Basic Expressions. Primitive terms have fixed costs. Requiring all available cred-
its to be spent simplifies proofs, without imposing any restrictions, since a sub-
structural rule allows costs to be relaxed where required.

n ∈ Z

∅ KmkInt

0 n : int | ∅
(Int)

x:A
KpushVar

0 x : A | ∅
(Var)

Function Call. The cost of function application is represented by the constants
Kcall(k) and Kcall′(k), which specify, respectively, the absolute costs of setting
up before the call and clearing up after the call. In addition, each argument may
carry further credits, depending on its type, to pay for the function’s execution.
For simplicity, we have prohibited zero-arity function calls.

Σ(fid) =
(
efid ; y1, . . . , yk; 〈A1, . . . , Ak〉−→

p

p′ C;ψ
)

k ≥ 1

y1:A1, . . . , yk:Ak
p+ Kcall(k)

p′−Kcall′(k) fid 〈y1, · · · , yk〉 :C | ψ
(App)

Authors version for personal use only. Published at Formal Methods 2009. The original publication is available at www.springerlink.com

www.springerlink.com

Algebraic Datatypes. The Constr rule plays a crucial role in our annotated
type system, since this is where available credits may be associated with a new
data structure. Credits cannot be used while they are associated with data.

c ∈ Constrs C = µX.{· · · |c : (p, 〈B1, . . . , Bk〉)| · · · }
Ai = Bi

[
C
/
X
]

(for i = 1, . . . , k)

x1:A1, . . . , xk:Ak
p+ KCons(k)

0 c 〈x1, . . . , xk〉 : C | ∅
(Constr)

The dual to the above rule is the Case rule; the only point where credits as-
sociated with data can be released again. This is because this is the only point
where we know about the actual constructor that is referenced by a variable, i.e.
where we know whether a variable of a list type refers to a non-empty list, etc.

c ∈ Constrs Γ, y1:B1[A/X], . . . , yk:Bk[A/X]
qt

q′t
e1 : C | ψt

A = µX.{· · · |c : (p, 〈B1, . . . , Bk〉)| · · · } Γ, x:A
qf

q′f
e2 : C | ψf

ψ =

{
p+ q = qt + KCaseT(k) q′t = q′ + KCaseT′(k)

q = qf + KCaseF(k) q′f = q′ + KCaseF′(k)

}
Γ, x:A

q

q′ case x of c 〈y1, . . . yk〉 -> e1|e2 : C | ψ ∪ ψt ∪ ψf
(Case)

Let-bindings. The two rules for let-expressions are the only ones that thread
credits sequentially through the sub-rules. As in the operational semantics rules,
the type rule for LET . . . IN is identical to that below, except in replacing KLet1,
KLet2, KLet3 with KLET1, KLET2, KLET3, respectively. Note that we use a comma
for the disjoint union of contexts throughout, hence duplicated uses of variables
must be introduced through the Share rule, described in the next paragraph.

Γ
q1
q′1

e1 : A1 | ψ1 ∆,x:A1
q2
q′2

e2 : A2 | ψ2

ψ0 =
{
q1 = q − KLet1 q2 = q′1 − KLet2 q′ = q′2 − KLet3

}
Γ,∆

q

q′ let x = e1 in e2 : A2 | ψ0 ∪ ψ1 ∪ ψ2

(Let)

Substructural rules. We use explicit substructural type rules. Apart from
simplifying proofs, the Share rule makes multiple uses of a variable explicit.
Unlike in a strictly linear type system, variables can be used several times.
However, the types of all occurrences must “add up” in such a way that the
total credit associated with all occurrences is no larger than the credit initially
associated with the variable. It is the job of the Share rule to track multiple
occurrences, and it is the job of the .-function to apportion credits.

Γ, x:B
q

q′ e : C | φ ψ ` A<:B

Γ, x:A
q

q′ e : C | φ ∪ ψ
(Supertype)

Γ
q

q′ e : D | φ ψ ` D<:C

Γ
q

q′ e : C | φ ∪ ψ
(Subtype)

Authors version for personal use only. Published at Formal Methods 2009. The original publication is available at www.springerlink.com

www.springerlink.com

Γ
p

p′ e : A | ψ
φ⇒ ψ ∪ {q ≥ p, q − p ≥ q′ − p′}

Γ
q

q′ e : A | φ
(Relax) Γ

q

q′ e : C | ψ
Γ, x:A

q

q′ e : C | φ
(Weak)

Γ, x:A1, y:A2
q

q′ e : C | φ
Γ, z:A

q

q′ e[z/x, z/y] : C | φ ∪ .(A |A1, A2)
(Share)

The ternary function .(A |B,C) is only defined for structurally-identical type-
triples which differ in at most the names of resource variables. It returns a set
of constraints that enforce the property that each resource variable in A is equal
to the sum of its counterparts in B and C. The crucial property of this function
is expressed in Lemma 4. For example,

A = µX.{Nil:(a,〈〉)|Cons:(d,〈int, X〉)} B = µX.{Nil:(b,〈〉)|Cons:(e,〈int, X〉)}
C = µX.{Nil:(c,〈〉)|Cons:(f,〈int, X〉)} .(A |B,C) = {a = b+ c, d = e+ f}

Subtyping. The type rules for subtyping depend on another inductively defined
relation ξ ` A<:B between two types A and B, relative to constraint set ξ. For
any fixed constraint set ξ, the relation is both reflexive and transitive.

ξ ` A<:A

for all i holds ξ ⇒ {pi ≥ qi} and ξ `
−→
Ai <:

−→
Bi

ξ ` µX.{· · · |ci:(pi,
−→
Ai)| · · · }<:µX.{· · · |ci:(qi,

−→
Bi)| · · · }

ξ ⇒
{
p ≤ q , p′ ≥ q′

}
ξ `
−→
B <:

−→
A ξ ` C <:D

ξ `
−→
A −→pp′ C <:

−→
B −→qq′ D

The inference itself follows straightforwardly from these type rules. First, a stan-
dard typing derivation is constructed, and each type occurrence is annotated
with fresh resource variables. The standard typing derivation is then traversed
once to gather all the constraints. Since we found this easier to implement, sub-
structural rules have been amalgamated with the other typing rules. Because all
types have been annotated with fresh resource variables, subtyping is required
throughout. Subtyping simply generates the necessary inequalities between cor-
responding resource variables, and will always succeed, since it is only permitted
between types that differ at most in their resource annotations. Likewise, the
Relax rule is applied at each step, using the minimal constraints shown in the
rule. (However, inequalities are turned into equalities using explicit slack vari-
ables, in order to minimise wasted credits.) The Weak and Share rule are
applied based on the free variables of the subterms.

In the final step, the constraints that have been gathered are fed to an LP-
solver [2]. Any solution that is found is presented to the user in the form of an
annotated type and a human-readable closed cost formula. In practice, we have
found that these constraints can be easily solved by a standard LP-solver running
on a typical laptop or desktop computer, partly because of their structure [11].
Since only a single pass over the program code is needed to construct these
constraints, this leads to a highly efficient analysis.

Authors version for personal use only. Published at Formal Methods 2009. The original publication is available at www.springerlink.com

www.springerlink.com

5 Soundness of the Analysis

We now sketch the important steps for proving the main theorem. We first
formalise the notion of a “well-formed” machine state, which simply says that
for each variable, the type assigned by the typing context agrees with the actual
value found in the heap location assigned to that variable by the environment.
This is an essential invariant for our soundness proof.

Definition 1. A memory configuration consisting of heap H and stack V is
well-formed with respect to context Γ and valuation v , written H�vV :Γ , if and
only if H�vV(x) :Γ (x) can be derived for all variables x ∈ Γ .

H(`) = (int, n) n ∈ Z
H�v` :int

H�v` :A ∃φ . v ⇐ φ ∧ φ ` A<:B
H�v` :B

H(`) = (constrc, `1, . . . , `k) C = µX.{· · · |c : (q, 〈B1, . . . , Bk〉)| · · · }
∀i ∈ {1, . . . , k} .H�v`i :Bi

[
C
/
X
]

H�v` :C

Lemma 1. If H�vV :Γ and V,H ` e ; `,H′ then also H′�vV :Γ .

We remark that one might wish to prove a stronger statement to the effect that
the result ` of the valuation is also well-formed given that the expression e was
typeable. Unfortunately such a statement cannot be proven on its own and must
necessarily be interwoven in Theorem 1.

We now formally define how credits are associated with runtime values, fol-
lowing our intuitive description from the previous section.

Definition 2. If H�v` :A holds, then Φv
H(`:A) denotes the number of credits

associated with location ` for type A in heap H under valuation v . This value is
always zero, except when A is a recursive datatype in which case it is recursively
defined by

Φv
H(`:A) = v(q) +

∑
i

Φv
H(`i:Bi[A/X])

when A = µX.{· · · |c:(q, 〈B1, . . . , Bk〉)| · · · } and H(`) = (constrc, `1, . . . , `k).
We extend to contexts by Φv

H(V : Γ) =
∑
x∈dom(Γ) Φv

H

(
V(x):v

(
Γ (x)

))
Subsumption cannot increase the number of associated credits.

Lemma 2. If H�v` :A and φ ` A<:B holds and v is a valuation satisfying φ,
then Φv

H(`:A) ≥ Φv
H(`:B)

If a reference is duplicated, then the type of each duplicate must be a subtype
of the original type.

Lemma 3. If .(A |B,C) = φ holds then also φ ` A<:B and φ ` A<:C.

The number of credits attached to any value of a certain type is always linearly
shared between the two types introduced by sharing. In other words, the overall
amount of available credits does not increase by using Share.

Authors version for personal use only. Published at Formal Methods 2009. The original publication is available at www.springerlink.com

www.springerlink.com

Lemma 4. If the judgements H�v` :A and .(A |B,C) = φ hold and v satisfies
the constraint set φ then Φv

H(`:A) = Φv
H(`:B) + Φv

H(`:C). Moreover, for A = B
and A = C, it follows that Φv

H(`:A) = 0 also holds.

We can now formulate the main theorem (described intuitively in Section 4).

Theorem 1 (Soundness). Fix a well-typed Schopenhauer program. Let r ∈ Q+

be fixed, but arbitrary. If the following statements hold

Γ
q

q′ e:A | φ (5.1)
V,H ` e ; `,H′ (5.2)

v : CV→ Q+, satisfying φ (5.3)
H�vV :v(Γ) (5.4)

then for all m ∈ N such that

m ≥ v(q) + Φv
H

(
V :v(Γ)

)
+ r (5.5)

there exists m′ ∈ N satisfying

V,H
m

m′ e ; `,H′ (5.6)
m′ ≥ v(q′) + Φv

H′

(
`:v(A)

)
+ r (5.7)

H′�v` :v(A) (5.8)

The proof is by induction on the lengths of the derivations of (5.2) and (5.1)
ordered lexicographically, with the derivation of the evaluation taking priority
over the typing derivation. This is required since an induction on the length of
the typing derivation alone would fail for the case of function application, which
increases the length of the typing derivation. On the other hand, the length of the
derivation for the term evaluation never increases, but may remain unchanged
where the final step of the typing derivation was obtained by a substructural
rule. In these cases, the length of the typing derivation does decrease, allowing
an induction over lexicographically ordered lengths of both derivations.

The proof is complex, but unsurprising for most rules. The arbitrary value
r is required to “hide” excess credits when applying the induction hypothesis
for subexpressions, which leaves those credits untouched. We show one case to
provide some flavour of the overall proof:
; Case Succeed: By the induction hypothesis, we obtain for all m0 ≥ v(qt)+

Φv
H(k i:Bi[A/X]) + Φv

H(V:Γ) + r a suitable m′0 ≥ v(q′t) + Φv
H(`:C) + r such

that e1 evaluates under the annotated operational semantics with m0 and
m′0. Observe that we have Φv

H(k :A) = v(p)+
∑
i Φv

H(k i:Bi[A/X]) and v(p)+
v(q) = v(qt) + KCaseT(k) and v(q′t) = v(q′) + KCaseT′(k). Therefore m =
m0 + KCaseT(k) ≥ v(q) + v(p) + Φv

H(k i:Bi[A/X]) + Φv
H(V:Γ) + r = v(q) +

Φv
H(k :A)+Φv

H(V:Γ)+r and m′ = m′0−KCaseT′(k) ≥ val(q′)+Φv
H(`:C)+r

as required.

Authors version for personal use only. Published at Formal Methods 2009. The original publication is available at www.springerlink.com

www.springerlink.com

Constant Stack Heap WCET‡ Constant Stack Heap WCET‡

KmkInt

KpushVar

Kcall(k)
Kcall′(k)
KCons(k)
KCaseT(k)
KCaseT′(k)

1
1

4 + k
− (4 + k)

1− k
k − 1
− k

2
0
0
0

2 + k
0
0

83
39

142
53 + Ret
107 + 54k
301 + 80k
65 + Ret

KCaseF(k)
KCaseF′(k)

KLet1

KLet2

KLet3

KLET1

KLET2

KLET3

0
0
1
0
− 1

0
0
0

0
0
0
0
0
0
0
0

205
56 + Ret

142
0

3 + Ret
0
0
0

Table 1. Table of Resource Constants for Stack, Heap and Time

N = 1 N = 2 N = 3 N = 4 N = 5

H
ea

p

S
ta

ck

T
im

e

H
ea

p

S
ta

ck

T
im

e

H
ea

p

S
ta

ck

T
im

e

H
ea

p

S
ta

ck

T
im

e

H
ea

p

S
ta

ck

T
im

e

revApp
Analysis 14 25 2440 24 26 3596 34 27 4752 44 28 5908 54 29 7064
Measured 14 24 1762 24 24 2745 34 24 3725 44 24 4707 54 24 5687
Ratio 1 1.04 1.39 1 1.08 1.31 1 1.13 1.27 1 1.17 1.26 1 1.21 1.24

flatten
Analysis 17 24 3311 34 34 6189 51 44 9067 68 54 11945 85 64 14823
Measured 17 24 2484 34 33 4372 51 43 6260 68 43 8148 85 43 10036
Ratio 1 1.00 1.33 1 1.03 1.42 1 1.02 1.45 1 1.26 1.47 1 1.49 1.48

Table 2. Measurement and Analysis Results for Tree-Flattening

6 Example Cost Analysis Results

In this section, we compare the bounds inferred by our analysis with concrete
measurements for one operational model. Heap and stack results were obtained
by instrumenting the generated code. Time measurements were obtained from
unmodified code on a 32MHz Renesas M32C/85U embedded micro-controller
with 32kB RAM. The cost parameters used for this operational model are shown
in Table 1. The time metrics were obtained by applying AbsInt GmbH’s aiT
tool [8] to the compiled code of individual abstract machine instructions.

Our first example is a simple tree-flattening function and its auxiliary func-
tion, reverse-append. The heap space consumption inferred by our analysis is
encoded as the following annotated type

SCHOPENHAUER typing for HumeHeapBoxed:

0, (tree[Leaf<10>:int|Node:#,#]) -(2/0)-> list[C:int,#|N] ,0

which reads, “for a given tree with l leaves, the heap consumption is 10l +
2.” Table 2 compares analysis and measurement results. As test input, we use
‡ Returns are performed through a fixed size table. On the Renesas M32C/85U this is

compiled to a series of branches and the WCET therefore depends on the number of
calling points in the program. We have Ret = max

`
116, 51 + 15 · (#ReturnLabels)

´
.

Authors version for personal use only. Published at Formal Methods 2009. The original publication is available at www.springerlink.com

www.springerlink.com

balanced trees with N = 1 . . . 5 leaves. Heap prediction is an exact match for the
measured results. Stack prediction follows a linear bound over-estimating actual
costs, which are logarithmic in general, using a tail-recursive reverse function.
This linear bound is due to the design of our analysis, which cannot infer re-
use of stack space in all cases (Campbell has described an extension to our
approach [4] that may improve this). The predicted time costs are between 33%
and 48% higher than the measured worst-cases.

6.1 Control Application: Inverted Pendulum

Our next example is an inverted pendulum controller. This implements a simple,
real-time control engineering problem. A pendulum is hinged upright at the end
of a rotating arm. Both rotary joints are equipped with angular sensors, which
are the inputs for the controller (arm angle θ and pendulum angle α). The
controller should produce as its output the electric potential for the motor that
rotates the arm in such a way that the pendulum remains in an upright position.

The Hume code comprises about 180 lines of code, which are translated into
about 800 lines of Schopenhauer code for analysis. The results for heap and stack
usage (upper part of Table 3) show exact matches in both cases. For time we
have measured the best-case (36118), worst-case (47635) and average number of
clock cycles (42222) required to process the controlling loop over 6000 iterations
during an actual run, where the Renesas M32C/85U actually controlled the
inverted pendulum. Compared to the worst-case execution time (WCET) bound
given by our automated analysis (63678) we have a margin of 33.7% between the
predicted WCET and the worst measured run. The hard real-time constraint on
this application is that the pendulum controller can only be made stable with a
loop time of less than about 10ms. The measured loop time is 1.488ms, while our
predicted loop time would be 1.989ms, showing that our controller is guaranteed
to be fast enough to successfully control the pendulum under all circumstances.

6.2 Control Application: Biquadratic Filter

Our final control application is a second-order recursive linear filter, a biquadratic
filter, so named because the transfer function is a ratio of two quadratic polyno-
mials. It is commonly used in audio work and can be used to implement low-pass,
high-pass, band-pass and notch filters. Well-known algorithms exist for comput-
ing filter coefficients from the desired gain, centre frequency and sample rate [14].

The lower part of Table 3 compares analysis results against measured costs
for the components of the biquadratic filter. For heap, we obtain exact bounds for
all but one box. For stack, we find a close match of the bounds with the measured
values (within 12% units). For time, however, the bounds are significantly worse
than the measured values. This is mainly due to the heavy use of floating-point
operations in this application, which are implemented in software on the Renesas
M32C/85U. This means that the WCET bounds for the primitive operations in
the analysis cost table are already very slack.

Authors version for personal use only. Published at Formal Methods 2009. The original publication is available at www.springerlink.com

www.springerlink.com

Box Analysis Measured Ratio
Heap Stack Time Heap Stack Time Heap Stack Time

pendulum
control 299 93 63678 299 93 47635 1.00 1.00 1.34

biquad
biquad 33 32 10330 33 32 5848 1.00 1.00 1.77
compute filter 73 62 26392 73 59 13176 1.00 1.05 2.00
compute params 40 38 47307 40 34 16107 1.00 1.12 2.94
scale in 14 15 3919 10 15 1844 1.40 1.00 2.13
scale out 33 33 16044 33 33 5920 1.00 1.00 2.71

Table 3. Comparison of Results for Pendulum and Biquad Filter Applications

The critical path through the system comprises the scale in, biquad and
scale out boxes. If we sum their bounds, we obtain a total of 30293 clock cycles,
or 947µs. This gives us a sample rate of about 1.056kHz, obviously well short
of audio sampling rates of about 48kHz. However, this is a concrete guarantee
for the application, and it tells us at an early stage, without any measurement,
that the hardware we are using is not fast enough for real-time audio process-
ing. The heap and stack bounds confirm, however, that we can fit static and
dynamic memory on the board. The components are executed sequentially, so
the largest component governs the dynamic memory for the entire system: this
is 73 heap + 62 stack cells for the compute filter box, or a maximum of 540
bytes of memory, well within our design maximum of 32kB.

One distinctive feature of our analysis is that it attributes costs to individual
data type constructors. Therefore, our bounds are not only size-dependent, as
would be expected, but more generally data-dependent. For a worst-case execu-
tion time analysis of compute filter, we produce the following explanation:

Worst-case Time-units required to compute box compute_filter once:

359 + 9374*X1 + 16659*X2 + 16123*X3 + 14570*X4 where

X1 = one if 1. wire is live, zero if the wire is void

X2 = number of "BPF" nodes at 1. position

X3 = number of "HPF" nodes at 1. position

X4 = number of "LPF" nodes at 1. position

In particular, since BPF, HPF and LPF are elements of an enumeration type,
selecting a band pass, high pass or low pass filter, respectively, we know that
only one of the three costs attached to these constructors (16659, 16123 or 14570)
will apply. Furthermore, in the case where a null filter is selected, by providing
NULLF as input, none of these three costs applies and the time bound for this case
is, therefore, 9733 clock cycles. Being data-dependent, this parametrised bound
is more accurate than the worst-case bound specified in Table 3, where we take
the worst-case over all constructors to derive a value of 26392 clock cycles.

Authors version for personal use only. Published at Formal Methods 2009. The original publication is available at www.springerlink.com

www.springerlink.com

7 Related Work

While there has been significant interest in the use of amortised analysis for
resource usage, in contrast to the work presented in this paper, none of this work
considers multiple resources, none of the work has studied worst-case execution
time, and none of it covers arbitrary recursive data structures. In particular, a
notable difference to Tarjan’s seminal work [17] (in addition to the fact that we
perform automatic inference) is that credits are associated on a per-reference
basis and not on the basis of the pure data layout in the memory. Okasaki [15]
resorted to the use of lazy evaluation to solve this problem. In contrast, our
per-reference credits can be directly applied to strict evaluation.

Hofmann and Jost were the first to develop an automatic amortised analysis
for heap consumption [11], exploiting a difference metric similar to that used
by Crary and Weirich [7] (the latter, however, only check bounds, and do not
infer them, as we do). Hofmann and Jost have extended their method to cover
a comprehensive subset of Java, including imperative updates, inheritance and
type casts [12]. Shkaravska et al. subsequently considered heap consumption
inference for first-order polymorphic lists, and are currently studying extensions
to non-linear bounds [16]. Finally, Campbell [4] has developed the ideas of depth-
based and temporary credit uses to give better results for stack usage.

A related idea is that of sized types [13], which express bounds on data
structure sizes, and are attached to types in the same way as our weights. The
difference to our work is that sized types express bounds on the size of the under-
lying data structure, whereas our weights are factors of the corresponding sizes,
which may remain unknown. The original work on sized types was limited to
type checking, but subsequent work has developed inference mechanisms [5,18].

A number of authors have recently studied analyses for heap usage. Al-
bert et al. [1] present a fully automatic, live heap-space analysis for an object-
oriented bytecode language with a scoped-memory manager. Most notably it is
not restricted to a certain complexity class, and produces a closed-form upper
bound function over the size of the input. However, unlike our system, data-
dependencies cannot be expressed. Braberman et al. [3] infer polynomial bounds
on the live heap usage for a Java-like language with automatic memory manage-
ment. However, unlike our system, they do not cover general recursive methods.
Finally, Chin et al. [6] present a heap and a stack analysis for a low-level (as-
sembler) language with explicit (de-)allocation, which is also restricted to linear
bounds.

8 Conclusions and Further Work

By developing a new type-based analysis, we have been able to automatically in-
fer linear bounds on real-time, heap and stack costs for strict functional programs
with algebraic data-types. The use of amortised costs allows us to determine a
provable upper bound on the overall resource cost of running a program, by
attaching numerical annotations to constructors. Thus, our analysis is not just

Authors version for personal use only. Published at Formal Methods 2009. The original publication is available at www.springerlink.com

www.springerlink.com

size-dependent but also data-dependent. We have extended previous work on
the inference of amortised costs [11] by considering arbitrary (recursive) data
structures and by constructing a generic treatment of resource usage through
our resource tables. In this way, we are able to separate the mechanics of our
approach from the operational semantics that applies to the usage of a given
resource. Previous work [10,11,12,18] has been restricted to the treatment of a
single resource type, and usually also to list homomorphisms. For all programs
studied here, we determine very tight bounds on both heap and stack usage.
Our results show that the bounds we infer for worst-case execution times can be
within 33.7% of the measured costs. However, in some degenerate cases they can
be significantly higher (in some cases due to the use of software floating-point
operations whose time behaviour can be difficult to analyse effectively).

We are currently experimenting with a number of further extensions. We
have developed a working prototype implementation dealing with higher-order
functions with flexible cost annotations and partial application (http://www.
embounded.org/software/cost/cost.cgi). The corresponding (and extensive)
theoretical proof is still, however, in preparation. This implementation also deals
with many useful extended language constructs, such as optimised conditionals
for a boolean base type, pattern-matches having multiple cases, multiple let-
definitions, etc. Most of these extensions are theoretically straightforward, and
in the interest of brevity, we have therefore excluded them from this paper.

We now intend to study how to improve our time results, to determine how
to extend our work to non-linear bounds, and to determine whether sized types
can be effectively combined with amortised analysis. We are also working to
extend our study of worst-case execution time so that it covers other interest-
ing embedded systems architectures, e.g. the Freescale MPC555 for automotive
applications. Since this has a hardware floating-point unit, we anticipate that
the issues we have experienced with software floating-point operations on the
Renesas M32C/85U will no longer be a concern on this new architecture.

Acknowledgements

We thank Hugo Simões and our anonymous reviewers for their useful comments,
and Christoph Herrmann for performing measurements on the Renesas archi-
tecture. This work is supported by EU Framework VI grants IST-510255 (Em-
Bounded) and IST-15905 (Mobius); and by EPSRC grant EP/F030657/1 (Islay).

References

1. E. Albert, S. Genaim, and M. Gómez-Zamalloa. Live Heap Space Analysis for
Languages with Garbage Collection. In Proc. ISMM 2009: Intl. Symp. on Memory
Management, pages 129–138, Dublin, Ireland, June 2009. ACM.

2. M. Berkelaar, K. Eikland, and P. Notebaert. lp solve: Open source (mixed-
integer) linear programming system. GNU LGPL (Lesser General Public Licence).
http://lpsolve.sourceforge.net/5.5.

Authors version for personal use only. Published at Formal Methods 2009. The original publication is available at www.springerlink.com

http://www.embounded.org/software/cost/cost.cgi
http://www.embounded.org/software/cost/cost.cgi
http://lpsolve.sourceforge.net/5.5
www.springerlink.com

3. V. Braberman, F. Fernández, D. Garbervetsky, and S. Yovine. Parametric Predic-
tion of Heap Memory Requirements. In Proc. ISMM 2008: Intl. Symp. on Memory
Management, pages 141–150, Tucson, USA, June 2008. ACM.

4. B. Campbell. Amortised Memory Analysis Using the Depth of Data Structures. In
Proc. ESOP 2009: 18th European Symposium on Programming, LNCS 5502, pages
190–204, York, UK, Mar. 2009. Springer.

5. W.-N. Chin and S.-C. Khoo. Calculating Sized Types. Higher-Order and Symbolic
Computing, 14(2,3):261–300, Sept. 2001.

6. W.-N. Chin, H. Nguyen, C. Popeea, and S. Qin. Analysing Memory Resource
Bounds for Low-Level Programs. In Proc. ISMM 2008: Intl. Symp. on Memory
Management, pages 151–160, Tucson, USA, June 2008. ACM.

7. K. Crary and S. Weirich. Resource Bound Certification. In Proc. POPL 2000:
ACM Symp. on Principles of Prog. Langs., pages 184–198, Boston, USA, Jan.
2000. ACM.

8. C. Ferdinand, F. Martin, R. Wilhelm, and M. Alt. Cache Behavior Prediction by
Abstract Interpretation. Science of Comp. Prog., 35(2):163–189, 1999.

9. K. Hammond and G. Michaelson. Hume: a Domain-Specific Language for Real-
Time Embedded Systems. In Proc. GPCE 2003: Intl. Conf. on Generative Prog.
and Component Eng., LNCS 2830, pages 37–56, Erfurt, Germany, Sept. 2003.
Springer.

10. M. Hofmann. A Type System for Bounded Space and Functional In-Place Update.
Nordic Journal of Computing, 7(4):258–289, Winter 2000.

11. M. Hofmann and S. Jost. Static Prediction of Heap Space Usage for First-Order
Functional Programs. In Proc. POPL 2003: ACM Symp. on Principles of Prog.
Langs., pages 185–197, New Orleans, USA, Jan. 2003. ACM.

12. M. Hofmann and S. Jost. Type-Based Amortised Heap-Space Analysis. In Proc.
ESOP 2006: 15th European Symposium on Programming, LNCS 3924, pages 22–37,
Vienna, Austria, Mar. 2006. Springer.

13. R. Hughes, L. Pareto, and A. Sabry. Proving the Correctness of Reactive Systems
Using Sized Types. In Proc. POPL 1996: ACM Symp. on Principles of Prog.
Langs., pages 410–423, St. Petersburg Beach, USA, Jan. 1996. ACM.

14. S. M. Kuo, B. H. Lee, and W. Tian. Real-Time Digital Signal Processing: Imple-
mentations and Applications. Wiley, 2nd edition, Apr. 2006.

15. C. Okasaki. Purely Functional Data Structures. Cambridge University Press, 1998.
16. O. Shkaravska, R. van Kesteren, and M. van Eekelen. Polynomial Size Analysis of

First-Order Functions. In Proc. TLCA 2007: Intl. Conf. on Typed Lambda Calculi
and Applications, LNCS 4583, pages 351–365, Paris, France, June 2007. Springer.

17. R. E. Tarjan. Amortized Computational Complexity. SIAM Journal on Algebraic
and Discrete Methods, 6(2):306–318, April 1985.

18. P. Vasconcelos and K. Hammond. Inferring Cost Equations for Recursive, Polymor-
phic and Higher-Order Functional Programs. In Proc. IFL 2003: Intl. Workshop on
Impl. of Functional Languages, LNCS 3145, pages 86–101, Edinburgh, UK, Sept.
2003. Springer.

Authors version for personal use only. Published at Formal Methods 2009. The original publication is available at www.springerlink.com

www.springerlink.com

	``Carbon Credits'' for Resource-Bounded Computations using Amortised Analysis
	 Steffen Jost and Hans-Wolfgang Loidl and Kevin Hammond and Norman Scaife and Martin Hofmann
	Introduction
	The Schopenhauer Notation
	Schopenhauer Operational Semantics
	Schopenhauer Type Rules
	Soundness of the Analysis
	Example Cost Analysis Results
	Control Application: Inverted Pendulum
	Control Application: Biquadratic Filter

	Related Work
	Conclusions and Further Work

