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Abstract. The core of our resource analysis for the embedded sys-
tems language Hume is a resource-generic, type-based inference engine
that employs the concept of amortised costs to statically infer resource
bounds. In this paper we present extensions and improvements of this
resource analysis in several ways. We develop and assess a call count
analysis for higher-order programs, as a specific instance of our inference
engine. We address usability aspects in general and in particular discuss
an improved presentation of the inferred resource bounds together with
the possibility of interactively tuning these bounds. Finally, we demon-
strate improvements in the performance of our analysis.

1 Introduction

In the past [22] we have developed an amortised cost based resource analysis for
a higher-order, strict functional language, namely expression-level Hume [15].
Salient features of this analysis are its strong formal foundations, building on
amortised program complexity and type systems, high performance due to em-
ploying efficient linear program solvers, and the possibility to express not only
size-dependent but also data-dependent bounds on (generic) resource consump-
tion. This analysis has been successfully used to infer upper bounds on the heap-
and stack-space consumption and on the worst-case execution time of several
embedded systems applications [23].

One of the main strengths of our analysis is its flexible design, which per-
mits easy adaptation to model other quantitative resources. In essence, only a
cost table, mapping abstract machine instructions to basic costs, needs to be
modified. We use this flexibility to develop a call count analysis for higher-order
programs. The bounds inferred by our analysis are in general data-dependent
and we demonstrate this strength on a standard textbook example of insertion
into a red-black tree, which is discussed in context of our automatic amortised
resource analysis herein for the first time.

This paper also addresses practical aspects of our type-based analysis, with
the goal of increasing acceptance. We have found that the presentation of re-
source bounds in the form of numeric annotations to the types is difficult to
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understand for the non-expert user. We therefore produced an elaboration mod-
ule, which translates the annotated types, produced by our analysis, into more
easily digestible closed form expressions. Furthermore, the bounds shown to the
user are just one of many possible solutions, picked by a heuristic. All solutions
to the linear program yield valid cost bounds and there is no “best” solution.
Starting with the solution presented by our heuristic, we now allow the user to
interactively explore the solution space, which we describe here for the first time.

While our analysis was designed from the start to be highly efficient, we
identified several possibilities of further improving its performance. These issues
cover the tuning of the Haskell implementation as well as more tightly integrating
the constraint solving phase into the overall analysis. As a result we achieve a
speedup factor of up to 1.36.

The main contributions of this paper are:

– the development and assessment of a function call count analysis for higher-
order programs, as an instance of our resource-generic amortised-cost-based
resource analysis;

– concrete evidence of enhanced resource bounds due to the data-dependence,
rather than only size-dependence, of our analyses;

– the development of an elaboration module providing interactive resource
bounds phrased in natural-language as opposed to special type annotations;

– and the development and assessment of several improvements to the perfor-
mance of the analysis.

The structure of the paper is as follows. In Section 2 we present a call count anal-
ysis. In Section 3 we discuss improvements made to the usability of our analysis,
discussing an elaboration module for annotated types and the exploration of the
solution space. In Section 4 we discuss and quantify performance improvements.
Section 5 reviews related work. Finally, Section 6 summarises our results.

2 Call Count Analysis

In this section we use the flexibility of our resource analysis to instantiate a
call count analysis. The goal of this analysis is to determine, within the inher-
ent limitations to a static analysis, an upper bound on the number of function
calls made in the program, possibly restricting the count to explicitly named
functions. This metric is of particular interest for higher-order programs, where
determining a bound on the number of calls to a certain function requires an
inter-procedural analysis, since a call to one function may trigger further calls
to itself or other functions.

Beyond being of just theoretical interest, call count information is of practi-
cal relevance for example on mobile devices, where the function of interest may
be the transmission of a message, which is charged for by the mobile network
provider. In this scenario the “costs” of a function call are very real and mea-
surable in pounds. Therefore, this particular example has been studied in the
Mobius project [2], where Java bytecode has been analysed.
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Our cost table for the call count metric therefore features three parameters:
a boolean value indicating whether or not calls to built-in functions (like vector
operations) should be counted; a list of function identifiers not to be counted; and
a list of function identifiers to be counted. Note that the latter two are mutually
exclusive, since either all function calls except for the named ones are counted, or
conversely, all function calls are ignored except for calls to the named functions.
These parameters are useful in the above depicted usage scenario, where only
certain functions use a chargeable service.

The resulting cost table is relatively simple,3 with almost all entries in the
cost table being zero, except for three: true function applications, built-in func-
tion application and closure creation overhead. Recall that the higher-order
Hume language features under- and over-application, but not a general lambda
abstraction4. We therefore distinguish between calling a true top-level function
and a closure, since these generally have different costs. For the call count met-
ric, the cost parameter for the application of closures is zero, since the actual
function called depends on how the closure was created. Therefore at the time
of closure creation, an overhead parameter is added to the cost of applying the
created closure later, which thus accounts for each use of that closure. As a con-
crete example, we want to count the number of calls to the add function in the
following definition of sum, using a higher-order fold function:

add :: num -> num -> num;

add x y = x + y;

fold :: (num -> num -> num) -> num -> [num] -> num;

fold f n [] = n;

fold f n (x:xs) = fold f (f n x) xs;

sum :: [num] -> num;

sum xs = fold add 0 xs;

Since we count only add, the type of the add closure created by under-application
in the body of sum shows a cost of one per application of the closure. When
folding this closure over a list, a cost proportional to the length of the list will
be inferred. We get as a result the following type for sum

ARTHUR3 typing for Call Count sum: (list[Cons<2>:int,#|Nil]) -(2/0)-> int

which encodes a cost of 2 for each cons-cell of the input list plus a constant of
2, i.e. a bound of 2n + 2, where n is the length of the input list.5

3 See [22] for detailed cost tables with 15 entries each, showing the constants used
to analyse for WCET, heap- and stack-space usage; the actual implementation has
many more entries, roughly two per syntax construct and built-in operator.

4 However, our prototype implementation also features lambda abstraction directly.
5 The annotated function type A-(x/y)->B means that execution requires at most x

resource units, of which y are free for reuse afterwards. Any constructor followed by
<n> within type A means that up to n resources may be additionally required for
each occurrence of that constructor within the input. Also see Section 3.1.
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Table 1. Results from the Resource Analyses (N = 10)

Program
Cost

Model Analysis Ratio
Cost

Model Analysis Ratio

Call Count Heap Space
sum 22 22 1.00 88 88 1.00
zipWith 21 21 1.00 190 192 1.01
repmin 60 60 1.00 179 179 1.00
rbInsert 10 20 2.00 208 294 1.41

WCET Stack Space
sum 16926 21711 1.28 34 39 1.15
zipWith 27812 32212 1.16 139 140 1.01
repmin 47512 58759 1.24 81 222 2.74
rbInsert 27425 43087 1.57 82 155 1.89

Table 1 presents analysis results for call counts, heap- and stack-space con-
sumption, and worst-case execution time (measured in clock cycles). The cost
model results have been obtained from an instrumented version of the Hume
abstract machine [14]. The cost model simply counts resource usage according
to the cost table during an execution on some test input. The lists and trees
used as test input for the cost model execution had a size of 10 each.

The sum example computes the sum over a list of integers, using a higher-
order fold function, as shown above. The zipWith example implements a variant
of the zip function parametrised with the function to apply to each pair of
elements (which is add in the tested code). The repmin example replaces all
leaves in a binary tree by the minimal element in the tree, using map and fold
functions over trees. Finally, the rbInsert function inserts an element into a
red-black tree, possibly re-balancing the resulting tree.

The results for heap- and stack-space consumption in Table 1 show generally
good results. The tree-based programs, repmin and rbInsert, deliver poorer
bounds for stack, since our analysis currently cannot express bounds in terms
of the depth of a data-structure, as would be appropriate in this case. This
problem is most pronounced for repmin, which performs two tree traversals.
The rbInsert example will be discussed in more detail below. The time bounds
are necessarily less accurate, since the costs for the basic machine instructions are
already worst-case bounds, which we obtained through analysis of the generated
machine code with the aiT tool [10]. In general we aim for bounds within 30%
of the observed costs, which might not be the worst case. We achieve this goal
for three of the four test programs. The results for the call counts show an
exact match for the sum, zipWith and the repmin examples, all of which use
higher-order operations.

In the following we take a closer look on the rbInsert example, with the
source code given in Figure 1. This example is directly taken from Okasaki’s text-
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type num = int 16;

data colour = Red | Black;

data tree = Leaf | Node colour tree num tree;

balance :: colour -> tree -> num -> tree -> tree;

balance Black (Node Red (Node Red a x b) y c) z d =

Node Red (Node Black a x b) y (Node Black c z d);

balance Black (Node Red a x (Node Red b y c)) z d =

Node Red (Node Black a x b) y (Node Black c z d);

balance Black a x (Node Red (Node Red b y c) z d) =

Node Red (Node Black a x b) y (Node Black c z d);

balance Black a x (Node Red b y (Node Red c z d)) =

Node Red (Node Black a x b) y (Node Black c z d);

balance c a x b = Node c a x b;

ins :: num -> tree -> tree;

ins x Leaf = Node Red Leaf x Leaf;

ins x (Node col a y b) = if (x<y) then balance col (ins x a) y b

else if (x>y) then balance col a y (ins x b)

else (Node col a y b);

rbInsert :: num -> tree -> tree;

rbInsert x t = case ins x t of (Node _ a y b) -> Node Black a y b;

Fig. 1. Example rbInsert: insertion into a red-black tree

book [24]. A red-black tree is a binary search tree, in which nodes are coloured
red or black. With the help of these colours, invariants can be formulated that
guarantee that a tree is roughly balanced. The invariants are that on each path
no red node is followed by another red node, and that the number of black
nodes is the same on all paths. These invariants guarantee that the lengths of
any two paths in the tree differs by at most a factor of two. This loose balancing
constraint has the benefit that all balancing operations in the tree can be done
locally. The balance function only has to look at the local pattern and restruc-
ture the tree if a red-red violation is found. The rbInsert function in Figure 1
performs the usual binary tree search, finally inserting the node as a red node
in the tree, if it does not already exist in the tree, and balancing all trees in the
path down to the inserted node.

The heap bound for the rbInsert function, inferred by our analysis is:

ARTHUR3 typing for HumeHeapBoxed:

(int,tree[Leaf|Node<10>:colour[Red|Black<18>],#,int,#]) -(20/0)->

tree[Leaf|Node:colour[Red|Black],#,int,#]

This bound expresses that the total heap consumption of the function is 10n +
18b + 20, where the n is the number of nodes in the tree, and b is the number
of black nodes in the tree. The latter demonstrates how our analysis is able to
produce data-dependent bounds by attaching annotations to constructors of the
input structure. This gives a more precise formula compared to one that only
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refers to the size of the input structure. In this example the 18b part of the
formula reflects the costs of applying the balance function, which restructures a
sub-tree with a black root in the case of a red-red violation. The analysis assumes
a worst-case, where every black node is affected by a balancing operation. Note
that, due to the above invariants, this cannot occur for a well-formed red-black
tree: any insertion into the tree will trigger at most two balancing operations
(see [8][Chapter 13]). As expected, these (semantic) constraints are not captured
by our analysis: our analysis must account for the worst-case of all well-typed
programs. However, the type of red-black trees does not capture such semantic
conditions and includes malformed trees (e.g. a tree with all nodes being red is
still well-typed), whose processing must thus be accounted for.

Similarly the upper bound on the number of clock cycles required to compute
the rbInsert function is associated with the black nodes in the input tree:

ARTHUR3 typing for Time:

(int,tree[Leaf|Node<2889>:colour[Red|Black<1901>],#,int,#]) -(2712/0)->

tree[Leaf|Node:colour[Red|Black],#,int,#]

Finally, the call count analysis for rbInsert yields:

ARTHUR3 typing for Call Count:

(int,tree[Leaf|Node<2>:colour[Red|Black],#,int,#]) -(1/0)->

tree[Leaf|Node:colour[Red|Black],#,int,#]

This type encodes a bound of 2n+1, where n is the number of nodes. By attaching
costs to the constructors of the input it is possible to distinguish between nodes
and leaves. However, it is currently not possible to express the fact that in the
tree traversal the number of nodes visited on each path is at most log n. In the
extension of the amortised cost based analysis, developed by Campbell [5], such
information on the depth of data structures is available, and his system is able
to infer logarithmic bounds on space consumption for such examples.

3 Usability Improvements

3.1 Elaboration Module

Input dependent bounds on resource usage of programs are only useful if they
easily allow one to distinguish large classes of inputs of roughly the same resource
usage. Consider having a black box for a program that can compute the precise
execution cost for any particular input. Even if this black box computes very fast,
one still needs to examine all inputs one by one in order to determine the worst
case or to establish an overview of the general cost-behaviour. Since the number
of concrete inputs may be large or even infinite, this is generally infeasible.

The original amortised analysis technique as proposed by Tarjan [27], being
very powerful, may generally produce such a precise “black box” cost oracle.
This is not a hindrance for a manual technique, as the mathematician perform-
ing the method has direct control over the complexity and behaviour of the
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“black box” that is created. However, for an automated analysis we must en-
sure that the outcome is always simple enough to be understood and useful.
The cost bounds produced by our automated version of the amortised analysis
technique are always simple. Namely, they are linear in the sizes of the input.
This restriction to linearly dependent bounds is our chosen trade-off to obtain
an automated inference for the amortised analysis. Recent research [16] shows
how this restriction of the inference to linear bounds may be lifted. This design
guarantees that we can easily divide all possible inputs into large classes having
a similar cost. For example, for a program processing two lists we might learn
instantly from the result of our efficient analysis that the execution cost can be
bounded by a constant times the length of the second list, thereby collecting all
inputs which only differ in the first argument in the same cost class. Furthermore
we immediately know the execution cost for infinitely many such input classes.

We now exploit this even further to produce cost bounds expressed in nat-
ural language. Previously, the cost bound had only been communicated to the
user using type annotations. While these allowed a concise and comprehensive
presentation of the derived bounds, they also required a fair amount of expertise
to understand, despite most derived bounds being actually rather simple. The
new elaboration module helps to interpret the annotated types by ignoring irrel-
evant information, summing up weights in equivalent positions and producing a
commented cost-formula, parametrised over a program’s input.

We now revisit the results for the red-black tree insertion function from
Section 2. We use the option --speak to immediately obtain:

ARTHUR3 typing for HumeHeapBoxed:

(int,tree[Leaf<20>|Node<18>:colour[Red|Black<10>],#,int,#]) -(0/0)->

tree[Leaf|Node:colour[Red|Black],#,int,#]

Worst-case Heap-units required to call rbInsert in relation to its input:

20*X1 + 18*X2 + 10*X3

where X1 = number of "Leaf" nodes at 1. position

X2 = number of "Node" nodes at 1. position

X3 = number of "Black" nodes at 1. position

This makes it easy to see that the number of black nodes is significant for the cost
formula. Furthermore the cost formula 20X1 + 18X2 + 10X3 is obviously much
more compact and easy to understand. We are directly told that X1 corresponds
to the number of leaves in the first tree argument (there is only one tree argument
here); that X2 corresponds to the number of all nodes and that X3 corresponds
to the number of black nodes. Note that this bound is inferior to the one shown
in Section 2, and we will address this in the second part of Section 3.2.

A further simplification implemented in our elaboration module is the recog-
nition of list types and list-like types, i.e. all constructors are single recursive
(e.g. Cons), except for precisely one constructor being non-recursive (e.g. Nil).
In this case it is clear that each element of such a type must have precisely
one such terminating constructor. Therefore the weight attached to the terminal
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constructor may be moved outwards. For example, consider the annotated type
of a function that receives a list of integer lists as its input:6

(list[Nil<1>|Cons<2>:list[Nil<3>|Cons<4>:int,#],#]) -(5/0)-> int]

Worst-case Heap-units required to call foo in relation to its input:

6 + 5*X1 + 4*X2

where X1 = number of "Cons" nodes at 1. position

X2 = number of "Cons" nodes at 2. position

We see that the cost formula is much simpler than the annotated type, which
features 5 non-zero annotations, whereas the cost formula has only three pa-
rameters. However, this useful simplification naturally incurs a slight loss of
information. The annotated type expresses that 3 resource units are only needed
once the end of the inner list is reached. If the program may sometimes choose
to abort processing a list to the very end, those 3 resource units are not needed.
This detail is almost always irrelevant and thus intentionally simplified. Never-
theless it is conceivable that a programmer might sometimes make use of this
additional knowledge about the resource behaviour of the program.

3.2 Interactive Solution Space Exploration

Programs often admit several possible resource bounds and it is in general not
clear which bound is preferable. For a simple example, we consider the standard
list zipping, such as adding two lists of numerical values. Using a Haskell-style
syntax we have:

zipWith add [ ] [10, 20] = [ ]
zipWith add [1, 2, 3, 4] [10, 20] = [11, 22]
zipWith add [1, 2, 3, 4] [10, 20, 30, 40, 50, 60] = [11, 22, 33, 44]

We immediately see that the resource consumption, be it time or space, de-
pends on the length of the shorter input list. Therefore, we have the following
admissible annotated types for the closure created by zipWith add:

(list[Cons<6>:int,#|Nil<2>],list[Cons<0>:int,#|Nil<2>]) -(0/0)->

list[Cons:int,#|Nil]

Worst-case Heap-units required to call zipWith add in relation to input:

2 + 6*X1

where X1 = number of "Cons" nodes at 1. position

(list[Cons<0>:int,#|Nil<2>],list[Cons<6>:int,#|Nil<2>]) -(0/0)->

list[Cons:int,#|Nil]

Worst-case Heap-units required to call zipWith add in relation to input:

2 + 6*X1

where X1 = number of "Cons" nodes at 2. position

6 The output was simplified to ease understanding. Our prototype implementation
requires monomorphisation, so each list type would require unique constructors.
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The first type says that the cost is proportional to six times the length of the
first input list plus two whereas the latter type says that the cost is proportional
to six times the length of the second input list plus two. Both bounds are equally
useful, and it depends on external knowledge which one is preferable.

Our analysis is capable of expressing this choice within the constraints gen-
erated for the program. In fact, if we were to run the prototype analysis on a
program involving the function zipWith, where the input for zipWith is gener-
ated in another part of the analysed program and in such a manner that one
input list is often significantly shorter than the other one, the analysis would
pick the type that admits the overall lower cost bound.

The problem here lies in communicating this choice to the user, when we
analyse function zipWith all on its own. The analysis cannot guess which type
would be preferable to the user, based on the intended use of the function. On
the other hand, the overall meaning of a set of constraints is generally incom-
prehensible to a human due to sheer size, even after extensive simplification. A
set of constraints describes an n-dimensional polytope, where n is the number of
input sizes7, i.e. the number of constructors per position in the input and output
plus one for each annotation on the function arrows.

We resolve this dilemma through interaction. The analysis automatically
presents a solution as usual. The user may then increase or decrease the “penalty”
attached to a resource variable in the type. The constraints are then re-solved
with an adjusted objective function, in which the modified penalties may cause
another solution to be produced. This re-solving can be done almost instanta-
neously, thanks to the improvements described in Section 4, most notably due to
keeping the pre-solved constraints and solution in memory. The new solution is
printed on the screen again, and the user may then specify another cost variable
to be altered, until the cost bound is satisfactory. Step-by-step, the user can thus
explore the entire solution space for the analysed program.

Note that our implementation of the analysis has always employed a heuristic
that was able to guess the “desired” result for many program examples right
away. However, allowing the user to tune the solver’s priorities is also a good
way of understanding the overall resource behaviour of a program. So even in
the many cases that are already properly resolved by the heuristic guessing a
suitable objective function, this interaction may offer valuable insights.

Optimising the bound for red-black tree insertion. We again revisit the
red-black tree example from Section 2, this time to show how the interactive
optimisation of the solution works. Invoking our analysis for the heap space
metric as before, but adding the command-line option for interaction, we obtain
a prompt after the solution.

7 Note that the solution space generally has a much higher dimension due to the
necessary introduction of intermediate variables. Furthermore our experience showed
that eliminating these intermediate variables is either best left to the LP solver, which
is far more efficient at this task, or rather omitted entirely, since the intermediate
variables have actually proven useful for the heuristic to pick a “good” solution.
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ARTHUR3 typing for HumeHeapBoxed:

(int,tree[Leaf<20>|Node<18>:colour[Red|Black<10>],#,int,#]) -(0/0)->

tree[Leaf|Node:colour[Red|Black],#,int,#]

Worst-case Heap-units required in relation to input:

20*X1 + 18*X2 + 10*X3

where X1 = number of "Leaf" nodes at 1. position

X2 = number of "Node" nodes at 1. position

X3 = number of "Black" nodes at 1. position

Enter variable for weight adjustment or "label","obj" for more info:

We are unhappy with the high cost associated with the leaves of the tree,
since it seems unreasonable to require such a high cost for processing an empty
leaf. Therefore we ask the analysis to lower this value considerably, by arbitrarily
increasing the penalty of the associated resource variable from 6 to 36.

Enter variable for weight adjustment or "label","obj" for more info: X1

Old objective weight: 6.0 Enter relative weight change: 30

Setting CVar ’351’ to weight ’36.0’ in objective function.

(int,tree[Leaf|Node<10>:colour[Red|Black<18>],#,int,#]) -(20/0)->

tree[Leaf|Node:colour[Red|Black],#,int,#]

Worst-case Heap-units required in relation to input:

20 + 10*X1 + 18*X2

where X1 = number of "Node" nodes at 1. position

X2 = number of "Black" nodes at 1. position

This already results in the solution shown in Section 2. The fixed costs in-
crease from 0 to 20, the costs associated with all leaves drop from 20 to 0, and
the cost of each red node decreases by 8. Since every tree contains at least one
leaf, this bound is clearly better for all inputs.

In this example the heuristic for choosing a solution picked a clearly inferior
one. However, both solutions represent guaranteed upper bounds on the resource
consumption. So it could be that the first solution was already precise enough.
Furthermore, if we analyse a program that also constructs a red-black tree as
input for the rbInsert function, then the LP-Solver automatically chooses the
second solution in order to minimise the overall cost, which includes the cost of
creating the input and all the potential associated with the input data-structure.

It is important to note that each and every function application will choose
the most appropriate admissible annotated type for the function, albeit each
function is analysed only once. This is achieved by simply copying the constraints
associated with a function for each of its applications, using fresh variable names
throughout. Since the generated LPs are sparse and easily solvable [17], this
blow-up of constraints is of little concern. More information on this mechanism
for resource parametricity can be found in [21]. This once more illustrates that
the result for analysing a function is the set of all admissible annotations, rather
than any single annotation.
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4 Performance Improvements

The combined Hume prototype analyses delegate the solving of the generated
linear programming (LP) problem to the LP-solver lp solve [3], which is available
under the GNU Lesser General Public Licence. In early versions of the analyses,
this was done by writing all constraints in a human readable format to a file
and then calling lp solve to solve that file. The solution was then read via a
Unix pipe and also recorded in a text file. This solution had the advantage that
the generated LP was directly tangible. The file contained various comments, in
particular the line and column of the source code that ultimately had triggered
the generation of that particular constraint. This yielded very high transparency
and was very useful in developing and validating the resource analysis. Further-
more, one could alter the LP by hand for experimentation and feed it to the
solver again without any difficulties.

However, this solution also had several drawbacks, namely:

1. Communicating large data-structures, such as linear programming problems,
via files on the hard-disk of a computer is very slow.

2. Altering the constraints just slightly, requires the full, slow repetition of
transmitting the entire LP and solving it from scratch.

3. Running the analysis requires the user to install and maintain the lp solve
command-line tool separately.

4. lp solve only allows very limited floating point precision when using file com-
munication, causing rounding errors of minor significance.

We have thus added the option of calling the lp solve library, written in C, di-
rectly through the foreign function interface (FFI) of the Glasgow Haskell Com-
piler (GHC) [11]. This solution now resolves all of the above issues. The library
is linked into the combined Hume prototype analyses’ executable file, producing
an easy to use stand-alone tool. Furthermore, eliminating the first two problems
was a direct prerequisite for realising the interactive solution space exploration
described in Section 3.2. Interaction can only work if the time the user is required
to wait between each step is very small. The solver lp solve supports this by fast
incremental solving, where the last solution and the pre-solved constraints are
kept in the memory and can be adjusted for subsequent solving. Therefore in all
program examples examined thus far on our contemporary hardware, re-solving
the linear program could be done within a fraction of a second, for example less
than 0.02 seconds for the biquad filter program example, as opposed to 0.418
seconds required for first-time solving as shown in Table 2.

Solving the linear programming problem via the foreign function interface is
therefore the default setting now. However, the previous mechanism of calling
lp solve via the command-line is still available through option --noapisolve,
since this is still quite useful when transparency is desired more than perfor-
mance, which is often the case when studying the combined Hume analysis itself
by applying it to small program examples.
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Table 2. Run-time for Analysis and for LP-solving

Program Constraints Run-time non-FFI Run-time FFI Speedup
Number Variables Total LP-solve Total LP-solve Total LP-solve

biquad 2956 5756 1.94s 1.335s 1.43s 0.418s 1.36 3.20
cycab 3043 6029 2.81s 2.132s 2.75s 1.385s 1.02 1.54
gravdragdemo 2692 5591 2.16s 1.605s 2.14s 1.065s 1.01 1.51
matmult 21485 36638 104.88s 101.308s 84.17s 21.878s 1.25 4.63
meanshift 8110 15005 11.32s 9.851s 11.01s 6.414s 1.03 1.54
pendulum 1115 2214 0.76s 0.479s 0.67s 0.260s 1.13 1.84

Table 2 summarises the run-times8 of both versions of the combined Hume
resource analysis on some program examples: the non-FFI version, which uses
lp solve via the command-line to solve the constraint set, and the FFI version,
which calls the lp solve library through the foreign-function-interface. For each
version we show the total run-time of the analysis as well as the run-time for
just the LP-solving component (both in seconds). The final two columns show
the speedup of the FFI version over the non-FFI version.

The applications used in Table 2 to compare the run-times of the analysis
are as follows. The biquad application is a biquadratic filter application. The
gravdragdemo application is a simple, textbook satellite tracking program us-
ing a Kalman filter, developed in preparation for the biquad application. The
cycab application is the messaging component of an autonomous vehicle. The
pendulum application balances an inverted pendulum on a robot arm with one
degree of freedom. The meanshift computer vision application is a simple lane
tracking program. Finally, matmult is a function for matrix multiplication, which
was automatically generated from low-level, C-like code. The generated program
makes heavy use of higher-order functions and of vectors for modelling the state
space, due to the design of the automatic transformation. This results in a high
number of constraints and therefore in a compute-intensive analysis phase.

We see that the speedup for the LP-solving part is quite impressive (1.51–
4.63). However, one should recall that the command-line version (non-FFI) is
required to build the C data-structures holding the constraint set, whereas in the
library version (FFI), this task is performed by our prototype analysis, delivering
the constraints ready-to-use. This also explains why the overall run-time does
not decrease by the same amount as the time spent on LP solving.

The overall speedup is largely varying for our program examples (1.01–1.36),
but with the overall run-time being just around 1–3 seconds, it is hard to judge
which is the dominating factor in processing. For the large matmult example,
the only one where the analysis is actually working for a noticeable time, the
overall run-time could be reduced by an impressive 20%, or roughly 20 seconds.

8 The performance measurements in Table 2 have been performed on a 1.73GHz Intel
Pentium M with 2MB cache and 1GB main memory.
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5 Related Work

Type-based Resource Analysis: Using type inference to statically determine quan-
tifiable costs of a program execution has a long history. Most systems use the
basic type inference engine to separately infer information on resource consump-
tion. In contrast, our analysis uses a tight integration of resource information
into the type, by associating numeric values to constructors in the type. These
values are the factors in a linear formula expressing resource consumption. An-
other notable system, which uses such a tight integration of resources into the
type system, is the sized type system by Hughes et al. [20], which attaches
bounds on data structure sizes to types. The main difference to our work is
that sized types express bounds on the size of the underlying data structure,
whereas our weights are factors of a linear bound on resource consumption. The
original work was limited to type checking, but subsequent work has developed
inference mechanisms [6,19,29]. Vasconcelos’ PhD thesis [28] extended these pre-
vious approaches by using abstract interpretation techniques to automatically
infer linear approximations of the sizes of recursive data types and the stack and
heap costs of recursive functions. A combination of sized types and regions is
also being developed by Peña and Segura [25], building on information provided
by ancillary analyses on termination and safe destruction.

Amortised Costs: The concept of amortised costs has first been developed in the
context of complexity analysis by Tarjan [27]. Hofmann and Jost were the first
to develop an automatic amortised analysis for heap consumption [17], exploit-
ing a difference metric similar to that used by Crary and Weirich [9]. The latter
work, however, only checks bounds, and does not infer them, as we do. Apart
from inference, a notable difference of our work to the work of Tarjan [27] is that
credits are associated on a per-reference basis instead of the pure layout of data
within the memory. Okasaki [24] also noted this as a problem, resorting to the
use of lazy evaluation. In contrast, per-reference credits can be directly applied
to strict evaluation. Hofmann and Jost [18] have extended their method to cover
a comprehensive subset of Java, including imperative updates, inheritance and
type casts. Shkaravska et al. [26] subsequently considered the inference of heap
consumption for first-order polymorphic lists, and are currently studying exten-
sions to non-linear bounds. Hoffmann and Hofmann [16] have recently presented
an extension to the amortised resource analysis that can produce polynomial
bounds for programs over lists and trees. Campbell [5] has studied how the Hof-
mann/Jost approach can be applied to stack analysis for first-order programs,
using “give-back” annotations to return potential. This improves the quality of
the analysis results that can be obtained for stack-like metrics. While, in order
to keep the presentation clear, we have not done so here, there is no techni-
cal reason why “give-back” potential cannot also be applied to the higher-order
analysis that we have described.

Other Resource Analyses: Another system that is generic over the resource being
analysed is the COSTA system [1]. Its inference engine is based on abstract
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interpretation. First a set of recurrence relations are generated, which are then
solved by a recurrence solver that is tailored for the use of resource analysis and
as such produces better results than general recurrence solvers.

Gómez and Liu [12] have constructed an abstract interpretation of determin-
ing time bounds on higher-order programs. This executes an abstract version
of the program that calculates cost parameters, but which otherwise mirrors
the normal program execution. Unlike our type-based analysis, the cost of this
analysis therefore depends directly on the complexity of the input data. Gul-
wani et al.’s SPEED system [13] uses a symbolic evaluation approach to cal-
culate non-linear complexity bounds for C/C++ procedures using an abstract
interpretation-based invariant generation tool. Precise loop bounds are calcu-
lated for 50% of the production loops that have been studied.

Several systems aim specifically at the static prediction of heap space con-
sumption. Braberman et al. [4] infer polynomial bounds on the live heap usage
for a Java-like language with automatic memory management. However, unlike
our system, they do not cover general recursive methods. Chin et al. [7] present
a heap and a stack analysis for a low-level (assembler) language with explicit
(de-)allocation. By inferring path-sensitive information and using symbolic eval-
uation they are able to infer exact stack bounds for all but one example program.

WCET Analysis: Calculating bounds on worst-case execution time (WCET) is
a very active field of research, and we refer to [30] for a detailed survey.

6 Summary

This paper presented extensions and improvements of our amortised cost based
resource analysis for Hume [22]. By instantiating our resource inference to the
new cost metric of call counts, we obtain information on the number of (possibly
specific) function calls in higher-order programs. While initial results from an
early call count analysis where presented in [21], we here give the first discussion
of the analysis itself and assess it for a range of example programs. In particular,
we demonstrate for a standard textbook example of insertion into a red-black
tree that the inferred bounds are in general data-dependent and therefore more
accurate than bounds that are only size-dependent.

Furthermore, we presented improvements of our analysis in terms of usability,
performance, and quality of the bounds. As an important new feature for the
acceptance of our type based analysis, the resource bounds are now translated
into closed-form cost formulae. Based on feedback from developers of Hume code
in interpreting the resource bounds, encoded in annotated types, we consider the
improvement in usability through the elaboration module as the biggest step in
making our analysis available to a wider community. Although this improvement
is the most difficult one to quantify, we believe that such presentation of resource
bounds as closed-form formulae is essential for the acceptance of a type-based
inference approach.

We have also reported on significant improvements made to the performance
of the analysis. For the example programs used in this paper, we observe a
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speedup factor of up to 1.36, mainly due to a tighter integration of the linear
program solving through the FFI interface provided by GHC.

As future work we plan to investigate whether combining our approach with
a sized-type analysis might also allow the inference of super-linear bounds, while
still using efficient LP-solver technology, possibly multiple times. One challenge
for the analysis will be to capture all future code optimisations that might be
added to the Hume compiler. We are experimenting with approaches where
resource usage is exposed in the form of explicit annotations to a high-level
intermediate form, retaining a close correlation of the analysis with the source
language, while being able to model a wider range of compiler optimisations.

The prototype implementation of our amortised analysis is available on-
line at http://www.embounded.org/software/cost/cost.cgi. Several exam-
ple Hume programs are provided, and arbitrary programs may be submitted
through the web interface.
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