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iiiAbstractThis thesis demonstrates how to reduce the runtime of large non-strict functionalprograms using parallel evaluation. The parallelisation of several programs showsthe importance of granularity, i.e. the computation costs of program expressions.The aspect of granularity is studied both on a practical level, by presenting andmeasuring runtime granularity improvement mechanisms, and at a more formal level,by devising a static granularity analysis.By parallelising several large functional programs this thesis demonstrates for the �rsttime the advantages of combining lazy and parallel evaluation on a large scale: lazinessaids modularity, while parallelism reduces runtime. One of the parallel programs isthe Lolita system which, with more than 47,000 lines of code, is the largest existingparallel non-strict functional program. A new mechanism for parallel programming,evaluation strategies, to which this thesis contributes, is shown to be useful in thisparallelisation. Evaluation strategies simplify parallel programming by separatingalgorithmic code from code specifying dynamic behaviour. For large programs theabstraction provided by functions is maintained by using a data-oriented style ofparallelism, which de�nes parallelism over intermediate data structures rather thaninside the functions.A highly parameterised simulator, GranSim, has been constructed collaborativelyand is discussed in detail in this thesis. GranSim is a tool for architecture-independentparallelisation and a testbed for implementing runtime-system features of the paral-lel graph reduction model. By providing an idealised as well as an accurate modelof the underlying parallel machine, GranSim has proven to be an essential part ofan integrated parallel software engineering environment. Several parallel runtime-system features, such as granularity improvement mechanisms, have been tested viaGranSim. It is publicly available and in active use at several universities worldwide.In order to provide granularity information this thesis presents an inference-basedstatic granularity analysis. This analysis combines two existing analyses, one forcost and one for size information. It determines an upper bound for the computationcosts of evaluating an expression in a simple strict higher-order language. By exposingrecurrences during cost reconstruction and using a library of recurrences and theirclosed forms, it is possible to infer the costs for some recursive functions. The possibleperformance improvements are assessed by measuring the parallel performance of ahand-analysed and annotated program.
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Chapter 1
Introduction
After decades of claiming that functional programming languages are well suited forimplicitly-parallel execution, only a few systems have demonstrated this on a largescale. The research towards e�cient implementations has revealed many problemsin designing a parallel runtime-system that e�ciently manages the generated paral-lelism without overwhelming the machine with bookkeeping overhead. The limitedinformation provided by the programmer about the parallel execution of the programnecessitates very sophisticated, and very general, runtime-system techniques.One of the major strengths of functional languages is their clear and simple declarativesemantics. From a compiler-design point of view this makes it possible to put theory tosome practical use. For example static analyses are easily developed, which provide,at compile time, information about some runtime properties of the program. Inthe maturing sequential compiler technology for functional languages these analysesprovide crucial information for program transformation steps, which represent thebackbone of compiler optimisations. For the parallel execution of functional languagesthey can provide information to enable the runtime-system to manage the parallelismmore e�ciently.This thesis investigates how to statically extract information about the granularity ofpotential parallel threads, i.e. the computation costs of these threads, and how to usethis information in the runtime-system. In evaluating the importance of granularityfor the e�ciency of parallel program execution a set of large functional programsis studied. It transpires that a combinator-oriented approach towards exposing po-tential parallelism in the program leads to rather obfuscated code with intertwinedbehavioural and algorithmic code. To remedy this shortcoming this thesis contributes1



2 Chapter 1. Introductionto a programming technique for separating these two kinds of code. This techniqueis used in the parallelisation of several programs, the largest of which consists ofmore than 47,000 lines of Haskell, making it the largest existing parallel non-strictfunctional program.1.1 Parallel Lazy Functional ProgrammingParallel computation o�ers an enticing picture of the performance that can be achievedby the next generation of computers: no longer is the program required to run on onlyone processor but it becomes possible to execute parts of the program on di�erentprocessors. This enables the programmer to reduce the runtime of a program furtherby decomposing it into parallel components, either automatically or by hand. Poten-tially, it o�ers scalability in the performance of multiprocessors: in order to speed-upa machine it is only necessary to add new processors.However, with most existing parallel programming models it is necessary to specifyexplicitly the decomposition of the program into parallel threads, the order of threadcreation, the synchronisation, the communication between threads etc. In practicethis often requires signi�cant restructuring or even recoding of a sequential program.The root of this complication is the speci�cation of an algorithm as a sequence ofoperations performed on a global store in an imperative programming model. Incontrast, a declarative program does not specify such a sequence of operations. Thecompiler and the runtime-system are free to choose di�erent orders of operations, orevaluation order, provided the semantics of the language is preserved. This opens upthe possibility for an implicitly parallel execution of a declarative program where theprogrammer does not have to specify anything more than is needed for the sequentialexecution anyway.Our programming model is therefore a combination of three models:� parallel programming to reduce runtime by executing a program on several pro-cessors,� functional programming to achieve a higher level of programming by abstractingover operational aspects,



1.1. Parallel Lazy Functional Programming 3� non-strict programming to increase modularity by decoupling control and de�-nition.The implementationmodel used in this thesis is parallel graph reduction. Section 2.3.1discusses this model in more detail.1.1.1 Parallel ProgrammingA parallel program reduces runtime by sharing the work to be done amongst manyprocessors. To achieve such a reduction in runtime several threads, independentunits of computation, are executed on di�erent processors1. Introducing the conceptof threads means that mechanisms for generating threads, synchronising threads,communicating data between threads, and terminating threads have to be established.We term these aspects of the program execution the dynamic behaviour of a parallelprogram. Clearly, the dynamic behaviour of a parallel program is signi�cantly morecomplex than that of a sequential program.Many existing parallel programming languages require the programmer to explicitlyspecify these aspects of parallel program execution. Objects speci�c to parallel exe-cution, like semaphores and monitors, are used to describe synchronisation betweenthreads. Managing these new objects, however, adds a new dimension of complex-ity to program development, for example the results of the parallel program mightbecome non-deterministic, and especially the design of robust large-scale parallel sys-tems becomes a daunting challenge.The approach towards parallel computation advocated in this thesis is to let most ofthese resources be managed by the runtime-system in order to avoid the additionalcomplexity for the programmer to handle these resources explicitly. All the pro-grammer has to do is to expose parallelism, i.e. to identify parts of the program thatmay be usefully evaluated in parallel. This model is therefore termed one of semi-explicit parallelism. Ideally a compiler should automatically partition the programinto parallel threads. If accurate strictness information is present this could be doneby generating a parallel thread for every strict argument of an expression. However,the e�ects of di�erent decompositions, or partitions, of the program into sequential1We do not distinguish between complete heavy-weight threads, sometimes called tasks, andlight-weight threads that can only exist within a task.



4 Chapter 1. Introductioncomponents are of special importance for the work presented in this thesis. Thereforethe programmer is required to expose the potential parallelism in the program. Insummary, our model o�ers the possibility of reducing the runtime by only exposingpotential parallelism and without explicitly managing the parallel threads.1.1.2 Functional ProgrammingFunctional languages, as well as other declarative languages, describe what to com-pute without specifying the order in which to compute it. The exact evaluation orderis only loosely de�ned by the data dependencies between expressions in the program.The compiler can choose any evaluation order of independent expressions. In par-ticular, they can be evaluated in parallel. The semantic property that allows such a
exibility in the evaluation order is referential transparency, stating that the resultof an expression does not change if a subexpression is replaced by another expressionwith the same result. For formal reasoning this allows to use the technique of replac-ing equals for equals. In the context of parallel computation this allows the compiler,or the runtime-system, to choose various orders of evaluation and to change themdynamically.Based on this property of functional languages it is easy to implement a naive au-tomatically parallelising compiler. For example, all strict arguments of a functioncall as well as the function body itself can be evaluated in parallel. However, theproblem with this approach is the management overhead related to the vast amountof parallelism generated. Often the generated threads are too short to warrant anexecution by a parallel thread altogether. Therefore, much e�ort has been put intoincreasing the length of these threads, which increases their granularity because eachthread performs more computation.This thesis studies how to increase the granularity of the generated threads andthereby improve the performance of the parallel program. A compile-time approachis taken, in which information about the granularity of potential parallel tasks isinferred at compile-time and forwarded, via automatically inserted annotations, to theruntime-system, which then uses this information in order to decide whether a parallelthread should be generated. This design naturally splits into one static componentfor inferring computation costs, a granularity analysis, and one dynamic componentfor using this information, granularity improvement mechanisms. It should be noted



1.1. Parallel Lazy Functional Programming 5that the use of compile-time information from a static analysis does not amount toa static partitioning of the program. In our model the runtime-system is free toignore parallelism. Thus, it is possible that di�erent pieces of code that have beenmarked for parallel execution are actually merged into one thread by the runtime-system. In summary, we focus on functional languages because the lack of an explicitevaluation order speci�ed in a program gives the compiler and the runtime-system ahigh degree of freedom in choosing a speci�c evaluation order. Although the use ofimplicit parallelism is not the immediate goal, this work makes some progress towardsthis long term goal.1.1.3 Lazy ProgrammingAn algorithm in a declarative language describes a property rather than a procedure.Executing the algorithm amounts to �nding a solution for the property speci�ed. Thisapproach can be taken further to the level where values are bound to variables. Theoperational meaning of such a binding is to evaluate the expression. The declarativemeaning, however, only identi�es a variable with a value.The idea of lazy evaluation, or more precisely of non-strict languages, is to decoupledenotational de�nition from operational control. De�ning the value of a variable doesnot mean that the de�nition has to be evaluated immediately. The de�nition onlydescribes a property between a variable and a value in the program. The evaluationdegree and the evaluation order are de�ned by the data dependencies in the program.This enables the reuse of the same variable in many di�erent contexts, which examinedi�erent parts of the value. Thus, abstracting this control aspect out of the algorithmincreases the modularity of programs.There is an obvious tension between the goal of lazy evaluation, to abstract overcontrol aspects of the code, and parallel computation, to enforce a parallel controlstructure of the code. Lazy evaluation tries to evaluate as small a portion of the resultas possible, whereas parallel computation aims at generating independent threads ofsome minimal size. In order to achieve good parallel performance this means thatat some places it may be necessary to specify how far a data structure should beevaluated, i.e. to specify its evaluation degree. Still, lazy evaluation is valuable formodular program design because this evaluation degree can be speci�ed separatelyfrom the de�nition of the data structure itself. This encourages a data-oriented style of



6 Chapter 1. Introductionparallel programming, i.e. a style where the parallelism is speci�ed over intermediatedata structures rather than in the modules that generate these data structures. In theprogramming technique the parallel programming group at Glasgow has developed,evaluation strategies, this style of programming has proven to be extremely useful forlarge parallel programs.The high degree of modularity provided by lazy languages is particularly importantfor the design of large programs. Furthermore, extremely time consuming programs,which would pro�t most from a reduction in runtime provided by parallel compu-tation, are typically very large. Therefore, it is important that the language forparallelising the program supports modularity. Otherwise the gain in performancewould have been bought with a loss in maintainability. In summary, the use of lazyevaluation decouples de�nition from control. This aides modularity and code re-usein a sequential model of computation. In a parallel model it also aides top downparallelisation of big programs by using data-oriented parallelism over intermediatedata structures.1.1.4 Relationship to Other Approaches for Parallel Pro-grammingThe approach towards parallelism taken by functional languages is in stark contrastto that taken by High Performance Fortran (HPF) (Rice 1993) and other parallelextensions of imperative languages. In parallel functional programming the program-ming language itself is unchanged. However, at certain points additional informationis added to the program and used by the parallel runtime-system. This additionalinformation only represents hints to the runtime-system that may be ignored ratherthan directives that must be obeyed. Therefore, the annotations do not change thesemantics of the program. These annotations are in some sense analogous to regis-ter declarations in imperative languages that allow the programmer to add valuableoperational information to the program but can be ignored by the compiler. It is inter-esting to note that many of these annotations, like register declarations, are nowadaysrarely used and that most of the time automatic register allocation performed by thecompiler is perfectly satisfactory for the programmer. Clearly, this state has not yetbeen achieved with parallelism annotations for functional languages. But the distinc-tion between functional language features and operational annotations for parallelism



1.2. The Dynamic Behaviour of Parallel Programs 7enables a similar approach.In contrast, parallel programs written in HPF-like languages aim at a near optimalusage of parallel machine resources. In doing so, they reveal low-level machine detailsand allow the program to specify details of the program execution leading to highlymachine speci�c programs. As a result abstractions over primitive low-level constructsare evolving in the same way as high-level programming language constructs evolvedout of common patterns of low-level instructions.Based on these di�erences in the language design we consider parallel functional lan-guages to be most useful for achieving moderate speed-up with only minimal changesin the code. Hopefully the necessary changes in the code that are still needed todaycan be reduced to zero with further progress towards implicit parallelism. HPF-likelanguages are more appropriate for applications in the supercomputing area where itis feasible to spend large programmer e�ort in restructuring code in order to get nearoptimal performance. However, we believe that the programming techniques used inour model, like data-oriented parallelism via non-strict data structures, can also beapplied for this kind of languages in order to build high-level abstractions for certainkinds of parallelism.1.2 The Dynamic Behaviour of Parallel ProgramsThe main reason for the complexity of writing parallel programs is the complex dy-namic behaviour generated by a set of cooperating threads. In addition to the cor-rectness of the sequential pieces of computation the timing of communication has tobe considered in order to avoid deadlock situations and to guarantee both correct-ness and termination of the parallel program. Furthermore, the performance tuningof a parallel program requires a �ne balance between several competing goals likecreating many threads to use idle time of processors during the computation andlimiting the number of generated threads to limit the bookkeeping overhead for theruntime-system.Many parallel languages allow the programmer to control all these aspects of thedynamic behaviour. In our model, however, almost all of these details are hidden bythe runtime-system. This design decision is based on the observation that the pro-grammer is often overwhelmed with the complexity of writing a parallel program and



8 Chapter 1. Introductionexplicitly managing the dynamic behaviour. In order to make such an semi-explicitapproach feasible, the runtime-system has to make sophisticated decisions on how tomanage the parallelism. For example, in our model the creation of parallel threadsis based, to some extent, on the current load of a processor. The communicationbetween threads is implicitly performed via reading and writing shared structures.The only extension necessary for specifying the parallelism in the program is a com-binator that exposes parallelism called par. However, in order to get a more detailedcontrol over the partitioning of the program into parallel threads it is often neces-sary to specify the evaluation order in an expression. This is done via adding seqcombinators. Ideally, both kinds of combinators could be inserted into the programby an automatically parallelising compiler. However, �rst e�cient runtime-systemtechniques to manage the parallelism have to be devised. The long term goal of thiswork is to automate this process of adding annotations describing the parallelism inthe program.One of the aspects of the dynamic behaviour is the granularity of a computation. Bythe granularity of a program expression we mean the computation costs of evaluatingthis expression. The ine�ciency of �ne-grained threads lies in the fact that they spendmost of their computation on parallelism overhead like generating the thread or com-municating with other threads. Historically, this has proven to be a severe problemfor machines like ALICE (Darlington & Reeve 1981) and runtime-systems based onboth graph-reduction (Hammond & Peyton Jones 1992, Hammond et al. 1994) anddata
ow (Arvind & Nikhil 1990, Shaw et al. 1996). In order to mitigate this prob-lem the programmer often tries to increase the granularity of the generated threadsin the performance tuning stage of parallel program development. One goal of thisthesis is to investigate how this process can be automated using statically-extractedinformation about the granularity of the generated threads. This information is usedin the runtime-system to improve the performance of the parallel program withoutfurther information provided by the user.This thesis studies granularity as one of the most important aspects of the dynamicbehaviour of parallel program execution. However, it is, of course, not the sole impor-tant aspect of the dynamic behaviour. For example, the communication behaviour ofthe runtime-system determines the size of the graph structures that are sent withinone unit of communication, determining the granularity of the communication. Wehave previously studied di�erent fetching schemes in order to reduce the total commu-



1.3. Static Information about Dynamic Behaviour 9nication overhead (Loidl & Hammond 1996b). Similarly, the scheduling mechanismis important to hide latency in a system involving a lot of communication. The datalocality is an important property, which deserves further study, too.1.3 Static Information about Dynamic BehaviourOne of the attractive features of functional languages for compiler optimisations isthe fact that due to their clear semantic properties a lot of information about theprogram's dynamic behaviour can be inferred statically. The most important exampleof such a static analysis is strictness analysis, which detects expressions in a non-strictprogram that can be evaluated eagerly, and therefore more cheaply, without violatingthe semantics of the program. State-of-the-art compilers for non-strict functionallanguages like the Glasgow Haskell Compiler (GHC) (Peyton Jones et al. 1993, PeytonJones 1996) heavily rely on the information provided by these analyses to perform asequence of meaning preserving program transformations that improve the e�ciencyof the program.Such statically-inferred information can also be exploited for parallel computation.However, because of the di�erent dynamic behaviour of a parallel program additionalinformation about the program execution is required. This thesis focuses on theaspect of granularity and presents a static granularity analysis, which is able to give anestimation of the computation costs of evaluating program expressions. Providing thisadditional information to the parallel runtime-system is an important step towardstruly implicit parallelism for functional languages.One important di�erence to classical analyses like strictness analysis, however, is thefact that granularity analysis has to infer information about an intensional prop-erty of the program execution. It can therefore be only correct with respect to aninstrumented semantics, which itself models the property of interest. In this casecomputation costs are modelled as computation steps and inferred as an estimate foran upper bound. This indirect way of extracting information a�ects the quality of theresult. However, in contrast to strictness analysis wrong granularity information willnot a�ect the semantics of the generated program but only its performance. Thereforeit is possible to design an analysis that sometimes makes guesses about computationcosts.
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Figure 1.1 Possible structure of a parallelising compilerFigure 1.1 summarises a possible overall structure of a parallelising compiler. Thefront end of the compiler translates the input program into an intermediate language,called L. This language is designed to be simple in order to ease later analysis andprogram transformation stages, operating on this language. The program transfor-mation stages, which present the main part of the compiler, perform program optimi-sations and make use of the information provided by various static analyses such asgranularity analysis to obtain information about the evaluation costs of program ex-pressions. In the programming model used in this thesis parallelism annotations haveto be present in the input program already. The program transformations can thenadd further information to the existing annotations. However, at this stage enoughinformation is available to automatically insert parallelism annotations, if the goalis implicit parallelism. Finally, the code generation stage of the compiler producesa parallel executable. In the setup used in this thesis the parallel executable will



1.4. Contributions 11be machine independent by using a runtime-system that hides details of the parallelarchitecture. As a further optimisation it would be possible to generate specialisedcode for particular parallel machines. The granularity improvement mechanisms thatare developed in this thesis then make use of the additional granularity informationattached to sparks and threads to make better scheduling decisions based on thisadditional information.In summary, this thesis focuses on the parallel execution of non-strict functionalprograms that are annotated in order to expose potential parallelism. A parallelgraph reduction model is used to implement the parallel execution of the program.In particular, this thesis tackles two parts in the structure shown in Figure 1.1: thegranularity analysis and the granularity improvement mechanisms.1.4 ContributionsThis section gives a list of research contributions made in this thesis. A more detaileddiscussion of the contents of the contributions with a separation of the authorship ofparts in the contributions is given at the end of the thesis in Section 7.2.1. Parallelisation of large lazy functional programs (Loidl & Trinder 1997): Thisthesis demonstrates how to combine the advantages of lazy evaluation, in par-ticular modularity, and of parallel evaluation, namely reduced runtime, on alarge scale. In the parallelisation of a set of large algorithms the modularityprovided by lazy evaluation helps to minimise the code changes required to im-prove the parallel performance of the program. The implementation includesboth the design of parallel functional algorithms, such as LinSolv, as well as par-allelising existing code, such as Lolita. With more than 47,000 lines of Haskellcode Lolita is the largest existing parallel non-strict functional program. Theprograms demonstrate a crucially important aspect of strategic programmingin the large, namely the separation of behavioural from algorithmic code.2. Highly parameterised, accurate simulator (GranSim) (Hammond et al. 1995):The collaboratively developed GranSim simulator is of use for architecture-in-dependent parallelisation as well as a testbed for the implementation of speci�cruntime-system features. Its robustness has been tested with large parallel ap-plications. By being highly parameterised it is very 
exible in the parallelisation



12 Chapter 1. Introductionand tuning of functional programs. By being accurate and closely related tothe parallel GUM runtime-system it encourages prototype implementations ofspeci�c runtime-system features. GranSim has been integrated into an engi-neering environment for parallel program development in order to facilitate thedevelopment and performance tuning of large programs. A set of visualisationtools has proven crucial for understanding the dynamic behaviour of GranSimand GUM programs. Primary contributions to GranSim made in this the-sis include the design of the communication system, the implementation of anidealised simulation, and the integration of GranSim into GHC.3. Use and re�nement of evaluation strategies (Trinder et al. 1998): This thesiscontributes to evaluation strategies by adding strategic function application andby providing some of the �rst uses of strategies. The latter in part drove thedesign of the current version of strategies. Strategic function application hasproven very useful in large parallel applications such as Lolita. In particular,it supports data-oriented parallelisation, which achieves high modularity bydecoupling the de�nition of a function from the speci�cation of its parallelism.4. A static granularity analysis (Loidl & Hammond 1996a): A granularity anal-ysis for inferring upper bounds of computation costs in a simple strict higher-order language, based on existing analyses (Hughes et al. 1996, Reistad &Gi�ord 1994), is presented. The analysis is formulated as a subtype inferencesystem. A detailed outline of an implementation is given and an extended costreconstruction algorithm is developed. The analysis has not been implementedbut measurements with a hand analysed program allow some assessment of theimportance of the inferred information.5. Implementation and measurement of runtime-system features to improve paral-lel performance: (Loidl & Hammond 1995): This thesis discusses several gran-ularity improvement mechanisms the author has implemented in GranSim.Measurements studying their impact on the parallel performance of a set of testprograms are provided. As a result moderate improvements in performance havebeen achieved for programs that are annotated with granularity information.In addition to the major contributions above this thesis also makes less signi�cant con-tributions towards a comparison of imperative and functional parallel programming by



1.5. Thesis Structure 13presenting results from parallel imperative implementations of three computer alge-bra algorithms in Section 4.7. Chapter 2 gives a detailed survey of several techniquesfor the parallel implementation of functional languages, going beyond the issues ad-dressed in the main part of the thesis, and Sections 5.7 and 6.7 survey alternativeapproaches for improving granularity and for designing analyses extracting granularityinformation, respectively. In the examination of large programs other runtime-systemaspects of the parallel execution of lazy functional programs have proven important.Di�erent packing and rescheduling schemes have been implemented in GranSim, ad-dressing the issue of e�cient communication in a parallel graph reduction system (seeSection 3.3.1). Details of the implementation and various measurements are presentedelsewhere (Loidl & Hammond 1996b).1.5 Thesis StructureThe structure of this thesis is as follows.Chapter 2 gives a survey of various approaches towards a parallel implementationof functional languages. In particular, this chapter describes details of the parallelgraph reduction model that is used in this thesis and its relationship to other executionmodels. The discussion distinguishes key runtime-system issues for parallel programexecution: the evaluation model, the storage management model, the communicationmodel, and the load distribution mechanism.Chapter 3 gives a detailed description of the GranSim simulator that is developedin this thesis. GranSim is a 
exible and accurate simulator for the parallel execu-tion of Haskell programs. It supports both an idealised simulation and an accuratesimulation modelling the characteristics of a particular architecture. In parallelisinga set of large Haskell programs GranSim has been extensively used for developingand tuning the parallel code. In later chapters GranSim will be used as the platformfor measurements on granularity.Chapter 4 discusses the parallelisation of several large lazy functional programs.This chapter �rst presents evaluation strategies, which have been developed in a groupe�ort. Then three programs are discussed in detail: a parallel Alpha-Beta searchalgorithm, highlighting the interplay between lazy and parallel evaluation, LinSolv,a symbolic computation algorithm using in�nite intermediate data structures, and



14 Chapter 1. IntroductionLolita, a large natural language engineering system.Chapter 5 focuses on the aspect of granularity for the dynamics of parallel programexecution. For a set of programs the granularity of the generated threads is measured.It is shown that by increasing the granularity the performance of the programs canbe improved. Three di�erent granularity improvement mechanisms are discussed andmeasured: explicit thresholding, priority sparking, and priority scheduling.Chapter 6 presents a static granularity analysis for a simple strict functional lan-guage. This analysis infers an upper bound for the number of computation stepsneeded to evaluate a program expression. The analysis is developed as an inferencesystem together with an analysis for the size of program values. A detailed out-line of a possible implementation is given, combining two existing analyses. Finally, asmall test program is hand-analysed and the resulting annotated program is measuredshowing some performance improvements.Chapter 7 draws conclusions from the presented approach towards improving theperformance of parallel lazy functional programs. It evaluates the importance of astructured approach towards program parallelisation, in particular for the perfor-mance tuning stage of parallel program development. And it identi�es areas of futurework, in particular for achieving the long term goal of truly implicitly parallel execu-tion of functional programs.



Chapter 2
The Parallel Implementation ofFunctional Languages

CapsuleThis chapter discusses several approaches towards a parallel implementa-tion of functional languages. It starts with motivating the use of functionallanguages for parallel programming. Then it presents the basic ideas of pop-ular models for the implementation of functional languages and evaluates howeasily parallel evaluation can be expressed in these models. The main partof this chapter focuses on critical runtime-system issues and outlines severale�cient implementation techniques. The following runtime-system issues areexamined:� the evaluation model,� the storage management,� the communication model, and� load distribution.In this thesis a parallel graph reduction model is used. The mechanisms forimplementing the above runtime-system issues in this model are compared withpossible alternatives. The overall discussion is based on an implementation onstock hardware rather than specialised hardware for functional programming.15



16 Chapter 2. The Parallel Implementation of Functional Languages2.1 IntroductionIn assessing the quality of various kinds of programming languages the requirementof parallel execution usually complicates the language and therefore diminishes itsvalue for large-scale program design. Not so with functional languages! The higherlevel of abstraction, compared to imperative languages, decouples the semantics ofthe language from operational considerations such as sequential or parallel evaluation.In particular the referentially transparent nature of functional languages allows var-ious di�erent ways of evaluating an expression. However, implementing an e�cientsystem for parallel functional programming, consisting of an optimising compiler anda 
exible runtime-system, has proven to be quite di�cult.Functional languages and their implementation have a rather long history. Whereasearly models for implementing functional languages were de�ned on a rather lowlevel, e.g. the SECD machine (Landin 1964), more recent models such as the graphreduction and the data
ow models present a far higher level of abstraction, allowingparallelism to be expressed naturally in this framework. However, when implementingsuch a model many runtime-system issues have to be tackled. The core of this chap-ter deals with the e�cient implementation of these runtime-system issues on stockhardware. We do not consider special purpose hardware since the development onparallel hardware during the last years has shown a clear focus on general purposemachines.The structure of this chapter is as follows. Section 2.2 discusses how functionallanguages can express parallelism in general, and which kind of model is used in thisthesis. Section 2.3 outlines several models for implementing functional languages andevaluates how easily parallel evaluation can be expressed in these models. Section 2.4focuses on key issues of the runtime-system for the e�cient parallel implementation.Section 2.5 puts our model into the context developed thus far. Finally, Section 2.6summarises aspects of our implementation model that have to be addressed in orderto construct an e�cient parallel evaluation of functional languages.2.2 Principles of Parallel Functional LanguagesThis section discusses why functional languages are a good vehicle for writing parallelprograms. It discusses some semantic issues that have an important impact on the



2.2. Principles of Parallel Functional Languages 17parallel behaviour of the program, and connects them with runtime-system issuesdiscussed in more detail in subsequent sections.2.2.1 Why are Functional Languages Good for Parallelism?With the advent of parallel machine architectures and their promise of far higherperformance than it is possible for conventional architectures, the design of languagesfor parallel computation has become an important research topic. A key aspect in thedesign of parallel languages is the way that the parallel execution is described. Im-perative languages traditionally extend the sequential model with explicitly handledthreads to describe independent pieces of computation and messages to communicatedata between these threads. If these notions remain visible to the programmer hehas to cope with issues like possible deadlocks in the computation, the partitioningof the computation into components, and the placement of these computations ontothe processors of the parallel machine. This adds a new dimension of complexity tothe design of a parallel algorithm and distracts from the mathematical properties ofthe algorithm like its correctness.Another approach, which restricts the generality of this message passing style of com-putation, has recently become extremely popular: synchronous parallel computing.The two best known models in this class are BSP (McColl 1996) and SPMD (Smirniet al. 1995). The idea in these models is to synchronise all communication in the sys-tem by either alternating between supersteps of computation and communication, orby using an implicit barrier for �nishing all communication. This restriction enforces acertain structure of the parallel program. However, it also facilitates the performanceevaluation of the program. Furthermore, the basic communication operation in thesemodels, namely broadcast, can be implemented very e�ciently on the latest parallelhardware. Here hardware realisation and programming model go hand in hand, simi-lar to the success of RISC machines for sequential computation. However, usually theprogrammer still has to handle explicit threads and messages, which complicates theparallel program signi�cantly compared to the sequential model. This thesis focuseson a higher-level approach of parallel programming, hiding most of these aspects inthe runtime-system. It is, however, still possible to re-use existing lower-level codefor specialised tasks.In contrast, functional languages provide a higher level of abstraction by only speci-



18 Chapter 2. The Parallel Implementation of Functional Languagesfying what to compute without specifying a sequence of instructions describing howto compute the result. As a result functional languages are referentially transparent,which implies that independent parts of the program can be evaluated in parallel.Thus, the language does not necessarily need to be extended to deal with parallelevaluation. In principle, the problem of parallelising an algorithm can be reduced tothe problem of reducing data dependencies in the program | something that can bedone via source-to-source program transformations in much the same way as programoptimisations in sequential compilers. Reasoning about the correctness of such trans-formations is no more di�cult than for standard transformations used in sequentialoptimising compilers. Furthermore, parallelism based on functional languages yieldsa deterministic result, and it is guaranteed to be the same result as in the sequentialexecution. There is no danger for deadlock in such a model, unless a program runsout of resources.Of course, the higher level of abstraction also imposes some overhead on the execution.Therefore, an optimised parallel algorithm using lower level features like an imperativecomputation model and message passing for communication will usually result in abetter performance of the algorithm. However, especially for large programs it isextremely di�cult to work at such a low level of abstraction.2.2.2 The Role of StrictnessThis section discusses fundamental semantic properties of functional programminglanguages and their impact on the sequential and parallel evaluation of such languages.It focuses on strictness as the most important of these properties.De�nition of StrictnessOne important semantic property of a programming language is the strictness ofuser de�ned functions. A function is strict if its result is unde�ned, whenever the itsargument is unde�ned. A non-strict language is a language that permits the de�nitionof non-strict functions. More formally, a function f is strict if and only iff ? = ?



2.2. Principles of Parallel Functional Languages 19where ? represents an unde�ned result (e.g. caused by a failing or non-terminatingcomputation). A discussion of strictness is given for example in (Field & Harrison1988)[Chapter 4].One important advantage of non-strict over strict parallel languages is the ease ofexpressing producer/consumer parallelism in the former. In particular the coroutinenature of lazy evaluation avoids a barrier synchronisation between the producer andthe consumer process. Following the terminology of Goldberg (1988a) this means,it is easy to express vertical parallelism, i.e. parallelism between a function and itsargument, in a non-strict language. In contrast, strict languages tend to rely more onhorizontal parallelism, parallelism between di�erent arguments, which evaluates thearguments of a function in parallel. It should be noted that this form of parallelismcan also be used in non-strict languages, namely for those argument positions inwhich the function is strict. A separate strictness analysis is needed to determinewhich arguments can be safely evaluated before the function itself is called.In order to use a parallel function application, strictness information on user de�nedfunctions is needed, which ensures that creating parallel threads for each argumentsatis�es the non-strict semantics of the program. The resulting parallelism is calledconservative parallelism, i.e. the values of all parallel threads are known to be neededin the computation. If non-strict arguments are evaluated in parallel, too, specula-tive parallelism is generated. Dealing with this kind of parallelism complicates theunderlying evaluation model because it must be ensured that no process consumesall available resources and it should be possible to terminate processes. However, ifthis is guaranteed on runtime-system level then the parallel evaluation of all argu-ments in a function call satis�es the non-strict semantics, too. Although speculativeparallelism is an important issue for parallel functional languages, it is not directlyrelated to the main runtime-system aspect this thesis is investigating: granularity.Therefore, this thesis does not give an exhaustive survey of this particular branch ofthe �eld.Evaluation MechanismsThis section brie
y discusses possible evaluation mechanisms for functional languages.These de�nitions build on top of the notion of reduction in the lambda-calculus(Church 1941) and delta-reduction for built-in rules like basic arithmetic. The termi-



20 Chapter 2. The Parallel Implementation of Functional Languagesnology of this chapter follows (Field & Harrison 1988)[Chapter 6].De�nition 1 (redex) A redex (reducible expression) is an expression that can bereduced according to the rules of lambda-calculus or delta-reduction.Intuitively, a redex is an expression that can be immediately evaluated. To be moreprecise about the degree of evaluation several di�erent normal forms can be distin-guished.De�nition 2 (weak head normal form) An expression is in weak head normalform (WHNF) if, and only if, it is a constant or if it is of the formf e1 : : : en; for some 0 � n < arity of fwhere f is either a data constructor or function (primitive or user de�ned).Intuitively, evaluating an expression to weak head normal form means evaluating onlythe top level constructor. The expressions e1 : : : en may still contain redexes.De�nition 3 (normal form) An expression is in normal form if it does not containany redexes.An expression in normal form matches the intuitive notion of a value in the language.In an expression, which is not in normal form, the leftmost redex is the redex textuallyleft to all other redexes and the outermost redex is the redex not contained in anotherredex. Based on these de�nitions and the two normal forms above it is possible tospecify the reduction order yielding the two main evaluation mechanisms used in thisthesis.De�nition 4 (eager evaluation, call-by-value) An eager evaluation mechanismchooses in every reduction step the leftmost innermost redex and reduces it to weakhead normal form.De�nition 5 (lazy evaluation, call-by-need) A lazy evaluationmechanism choosesin every reduction step the leftmost outermost redex and reduces it to weak head nor-mal form. When substituting expressions for arguments no expression is duplicated,but they are shared in the reduced expression.



2.2. Principles of Parallel Functional Languages 21The evaluation transformer (Burn 1987, Burn 1991b) approach for automatic par-allelisation de�nes a whole set of such evaluation mechanisms, which are tuned tothe strictness of the result that should be computed in the given context. It usesdetailed strictness information obtained by a sophisticated strictness analysis to de-termine, given the demand on an expression, how far the components of the expres-sion have to be evaluated. Thus, all components can be safely evaluated in parallelto the degree determined by the evaluation transformer. However, this requires thegeneration of several variants of the code for each function, specialised to the partic-ular context in which it is used. This approach has been used by Burn (1991a), inthe distributed-memory HDG machine (Kingdon et al. 1991), in the PAM machine(Loogen et al. 1989), in Rushall's parallel implementation of the Spineless G-machineon top of a virtual shared-memory KSR1 machine (Rushall 1995), and in the shared-memory EQUALS system (Kaser et al. 1997).Beyond StrictnessIn order to preserve the semantics of the program, strictness information is neededfor implicit parallelisation in order to decide which arguments can be safely evaluatedin parallel. However, more information about dynamic properties of the program isuseful in order to extract e�cient parallelism. In particular, granularity informa-tion, i.e. information about the size of a computation, is needed in order to decidewhether it is worth paying thread creation and synchronisation overhead for comput-ing an expression in parallel. This question is discussed in detail in later chapters.Chapter 5 shows that too �ne granularity can deteriorate parallel performance anddevelops runtime-system mechanisms to increase granularity. Chapter 6 presents agranularity analysis for a simple strict, higher-order language to estimate the costs ofan evaluation.2.2.3 Language Support for Parallel ProgrammingThe previous section has shown that it is possible to automatically parallelise a func-tional program by executing all strict arguments of a function call in parallel. Shar-ing and granularity information, if available, can be used to determine whether it isworthwhile creating a thread for a computation.



22 Chapter 2. The Parallel Implementation of Functional LanguagesHowever, developing these analyses is a non-trivial problem. In fact, part of thisthesis is devoted to the development of a simple granularity analysis for a small strictfunctional language. In the absence of a compiler that can automatically detectparallelism it is useful to make the information about potential parallelism and thesize of the computation explicit in the language. In contrast to models of explicitparallelism, the sparking model used in this thesis only needs constructs for exposingparallelism. Creation of threads, synchronisation, and communication are all implicitin this model. Therefore, we call this a model of semi-explicit parallelism.This section �rst discusses some features of lazy functional languages, which are ofimportance for the rest of this thesis. Then the basic constructs for parallelism inthis language are described. Finally, a comparison with other approaches towardslanguage support for parallel computation is given.Lazy Functional ProgrammingThis section highlights the most important features of lazy functional languages thatare of relevance for this thesis. An excellent general discussion of lazy functionalprogramming is given in Bird & Wadler (1988).A lazy evaluation mechanism, as de�ned in the previous section, will only evaluate anexpression, if its value is required in the computation. This results in a demand-drivenorder of evaluation. An obvious advantage of this mechanism is that no unnecessaryexpressions will be evaluated. Another, even more important, aspect is the fact thatthe de�nition of a result is separated from its evaluation. Thus, it becomes possibleto describe details of the evaluation, such as parallelism, without modifying the codethat de�nes the result. This feature plays a crucial role in our technique for large-scaleparallel programming and will be elaborated in detail in Section 4.3.A very powerful feature provided by most functional languages is the availability ofhigher-order functions, i.e. functions that take other functions as arguments or thatreturn a function as a result. Such higher-order functions can be used to express com-mon patterns of computation. For example the Haskell prelude function map performsthe same operation, given as a �rst argument, to every element of a list, given as thesecond argument. In the context of parallel computation, higher-order functions area natural choice for expressing parallel behaviour. Indeed, our parallel programmingtechnique makes heavy use of higher-order functions. However, in contrast to related



2.2. Principles of Parallel Functional Languages 23approaches such as skeletons (Cole 1989), the parallelism is not restricted to a �xedset of higher-order functions.Functional languages o�er powerful constructs operating on algebraic data types. Thisencourages the construction of elaborate data structures such as lists or trees, whichare best �t for expressing a certain algorithm. This facility is of particular impor-tance in the area of symbolic computation where the data is typically non-numericand highly-structured. With algebraic data types pattern matching is often used tosimultaneously check the structure of a data item and to bind components to names.For example the aforementioned map function is de�ned as follows in Haskell 1.2:map :: (a -> b) -> [a] -> [b]map f [] = []map f (x:xs) = f x : map f xsThe �rst line speci�es the type of the function, which is useful for documentation ofthe code and as additional information for the compiler. In this case type variablesa and b are used, to express that map is a polymorphic function, which can operateon any list provided the domain of the function f has the same type as the elementsof the list provided as second argument. The result type will be a list with elementsof the same type as the codomain of the function f. Note that all type variables areuniversally quanti�ed to achieve this kind of polymorphism.The next two lines perform pattern matching on the list argument. If this argumentis non-empty it is constructed via the : operator with the arguments x and xs, whichare used on the right hand side of the de�nition. Note that, because f is a function,map is a higher-order function. With this de�nition map can be used to translate allcharacters in a string into upper case characters via map toUpper "hello". Beingpolymorphic it can be also used to, e.g. count the elements of all sub-lists in a givenlist of lists via map length [[1],[1,2],[1,2,3]].The above examples used Haskell prelude functions such as toUpper c for translatingthe character c into an upper case character and length xs, for computing the lengthof the list xs. Some other basic prelude functions that will be used in this thesis aretake n xs for returning the �rst n elements of the list xs, filter p xs for returninga list of all elements of xs for which the predicate p evaluates to true, and foldl f z



24 Chapter 2. The Parallel Implementation of Functional Languagesxs for combining, from left to right, all list elements of xs with the binary operatorf, using z as the start value. The construct xs!!n extracts the n-th element from thelist xs, and f$x applies the function f to the argument x (this construct is useful ina sequence of nested function applications in order to avoid nested parenthesis).GpHThis thesis uses GpH as a parallel functional programming language. GpH is anextension of the non-strict, purely functional programming language Haskell (Petersonet al. 1996). It is augmented with sequential and parallel combinators.Sequential Combinator: The seq operator speci�es the order of evaluating twoexpressions. The operational semantics of the expression e1 `seq` e2 is as follows:�rst evaluate the expression e1 then the expression e2. Both are evaluated to WHNF.It is an asymmetric combinator of type seq :: a -> b -> b, which returns thesecond argument as a result, i.e. the denotational semantics of seq isseq ? e2 = ?seq e1 e2 = e2 if e1 6= ?Parallel Combinator: The par operator introduces parallelism in the language.It also has the type par :: a -> b -> b. The operational semantics of the expres-sion e1 `par` e2 is as follows: �rst record that e1 can be evaluated in parallel thenevaluate e2. We christen the operation of recording the possibility of parallel evalu-ation to spark an expression. It is important to note that this is very di�erent fromcreating a thread for evaluating the expression. Sparking an expression can be donevery cheaply. In our model a pointer to an unevaluated expression is put into a sparkpool, a special data structure maintained by the runtime-system. Furthermore, thesparking model defers the decision whether to create a thread or not to a later time.Details of these runtime-system issues are discussed in detail in Section 2.4. Thedenotational semantics of par ispar e1 e2 = e2Note that seq is strict in its �rst argument, whereas par is non-strict in both argu-ments.



2.2. Principles of Parallel Functional Languages 25Extensions of GpHOne important aspect of the work in this thesis is to propagate information aboutthe program's behaviour to the runtime-system. The par construct can be seen as away to propagate information about potential parallelism to the runtime-system. Togive the programmer the possibility of specifying additional information about theparallel processes, several lower level constructs are provided. They take additionalarguments and propagate this information to the runtime-system. The denotationalsemantics of these constructs is the same as for par.Global Parallelism: The additional arguments in a parGlobal n g s p x y ex-pression have the following meaning: n is the name of the spark, g represents thegranularity of the computation, s represents the size of the result and p representsthe degree of parallelism created during the evaluation of the expression. The latteris an estimate on the number of sparks generated in the expression x. All of thesearguments are integers.The GranSim simulator discussed in Chapter 3 currently only uses the informationin the n and g �elds. The former helps to distinguish sparks from di�erent static sparksites. The latter is the main piece of information that is exploited via the granularitycontrol mechanisms described in Section 5.5.Local Parallelism: The parLocal construct, which takes the same arguments asparGlobal, enforces that the thread for the sparked expression, if it is created, willbe started on the same processor where it was created. However, since the runtime-system may use thread migration, this does not mean that the thread has to remainon that processor throughout its computation. The main purpose of this construct isto improve data-locality between sparks that operate on the same data.Thread Placement: The parAt construct is a generalisation of parLocal. It re-quires the thread to be generated on a speci�c processor, speci�ed by an integer value.This assumes that the names of all processors form a sequence from 0 to some integervalue n. This is an experimental feature that has been used in one parallel algorithmso far.



26 Chapter 2. The Parallel Implementation of Functional LanguagesOther ApproachesThe semi-explicit approach for describing parallelism, which is used in this thesis,defers most of the control of the parallelism to the runtime-system. On the languagelevel it is only necessary to provide constructs that expose parallelism. In the rangefrom implicit to explicit models of parallel computation our model is therefore closeto the implicit end. The following discussion locates the models that are discussed inmore detail in this chapter on this range from implicit to explicit parallelism.Some examples of fully implicit models are data
ow languages such as Id (Nikhil1989), pH (Aditya et al. 1995) and SISAL (B�ohm et al. 1991), evaluation transform-ers (Burn 1987), and data parallel languages such as NESL (Blelloch 1996). Algo-rithmic skeletons (Cole 1989) provide a set of higher-order functions with built-inparallelism. Therefore, the parallelism, although not explicitly speci�ed, depends onthe use of these skeletons in the program. A very powerful concept for describingparallelism is provided by process control languages. Most closely related to our par-allel programming technique discussed in Section 4.3 are Caliban (Kelly 1989) and�rst-class schedules (Mirani & Hudak 1995). Both systems provide separate controllanguages that can use functional expressions in specifying a structure of parallel pro-cesses. These systems will be discussed in more detail in Section 4.9.1. On the sideof explicit parallelism, extensions to Lisp, such as MultiLisp (Halstead, Jr. 1985) andMul-T (Kranz et al. 1989), have to be mentioned. The basic construct used in theselanguages, a future, is closely related to the par in GpH. Section 5.7.1 discussesthis relationship in more detail. Other systems that provide explicit annotationsfor controlling parallelism are Concurrent Clean (N�ocker, Smetsers, van Eekelen &Plasmeijer 1991), Hope+ (Kewley & Glynn 1989), and the system proposed by Burton(1984).2.3 Implementation of Functional LanguagesThis section discusses di�erent approaches to the implementation of functional lan-guages. The discussion focuses on the graph reduction and the data
ow models. Theypresent a high level of abstraction and thereby incorporate parallel execution in a verynatural way. Hammond (1994) presents a detailed discussion of di�erent models forthe parallel implementation of functional languages. Schreiner's annotated bibliogra-



2.3. Implementation of Functional Languages 27phy (Schreiner 1993) gives a comprehensive survey of the parallel implementation offunctional languages.Historically, the �rst implementations of functional languages used a stack-basedapproach such as the SECD machine (Landin 1964), which has been extended tolazy languages by Burge (1975) and Davie & McNally (1990). The SECD-M ma-chine adds concurrent threads and non-determinism to the basic design (Abramski &Sykes 1985). Both the eager and the lazy SECD machine are described in detail inField & Harrison (1988)[Chapter 10].Another approach is to use a �xed set of combinators, such as SK combinators knownfrom combinatory logic (Curry & Feys 1958), as the abstract machine language. Theimplementation of SASL was based on this design (Turner 1979). Later this approachwas extended to use program dependent super-combinators (Hughes 1984). A super-combinator is obtained from a function body by lifting maximal free expressions, i.e.the largest sub-expressions which contain free variables. This transformation main-tains the full laziness property that no expression will be evaluated twice, and di�ersin this aspect from the more basic �-lifting transformation (Johnsson 1985). The cat-egorical abstract machine (Curien 1986) combines the environment-based approach ofthe SECD machine, which is de�ned via state transitions, with the idea of using basicvariable-free combinators out of combinatory logic as the abstract machine language.2.3.1 The Graph Reduction ModelThe graph reduction model is based on the idea of representing the program as a graphstructure and de�ning evaluation as rewriting this graph (Wadsworth 1971, PeytonJones 1987). Figure 2.1 shows the lazy evaluation process of the expression square(1+2*3) where square x = x*x. Note that in the �rst step two redexes can bereduced in parallel: the de�nition of square can be applied and the expression 2*3can be reduced. The latter is possible because square, multiplication, and additionare strict. This example also shows how several instances of the parameter x areshared when applying square to a concrete argument. This avoids duplication ofwork.This approach has several advantages:� It is easy to express sharing of program expressions by sharing in the graph;



28 Chapter 2. The Parallel Implementation of Functional Languages� a call-by-need evaluation can be easily implemented by overwriting the reducednode with its result;� independent parts of the graph can be evaluated in parallel.

x

x

@

@

*

+
1

@

@

+
1

@

@

@

@

*

@

@

*

@

square

@

@

*
2

3

square:

x

6

7

49

Figure 2.1 The principle of parallel graph reductionBecause of the �rst two advantages most modern non-strict languages are imple-mented using graph-reduction. However, this pure graph reduction model is veryhigh-level, and a straightforward implementation is rather ine�cient. For example,the reduction process described in Figure 2.1 suggests an interpretive implementa-tion, solely operating on graph structures. In comparison most modern abstractmachines use an approach of compiled graph reduction. Rather than using a toplevel interpreter, each node in the graph, a \closure", contains code for perform-ing a reduction. In particular, user de�ned functions are compiled into code thatsimulates the construction of a graph structure. The generated code typically usesan evaluation stack to perform built-in operations, such as basic arithmetic, more



2.3. Implementation of Functional Languages 29e�ciently, without the need to allocate heap objects in this case. The G-machine(Johnsson 1987, Augustsson 1987) was the �rst machine that used compiled graphreduction, eliminating most of the interpretive overhead in the execution of non-strictLML programs. Many later abstract machines were based on the G-machine, e.g. theSpineless G-machine (Burn et al. 1988), the Spineless Tagless G-machine (PeytonJones 1992) etc. Peyton Jones (1987)[Chapter 20] gives a good overview of di�erentoptimisations of the basic graph reduction mechanism.From this thesis' point of view the most important advantage of the graph reductionmodel is the ease of expressing parallel computation in this model. A parallel graphreduction model can be very naturally expressed as a spark pool, i.e. a pool consistingof pointers to unevaluated expressions (\thunks"), and a set of processors that takesparks out of this pool and execute them by creating a thread, an independent processperforming standard graph reduction. These threads are kept and maintained in aseparate thread pool. In our model adding a new spark to a spark pool is performedby a par combinator. Mutual exclusion between threads trying to reduce the samepiece of graph has to be guaranteed, this will be discussed in Section 2.4.1. PeytonJones (1989) discusses parallel graph reduction in detail.2.3.2 The Data
ow ModelAnother high-level computation model that does not require a sequential evaluationmechanism is the data
ow-model (Dennis 1974). The idea in this model is to representoperations as nodes in a graph and to represent data as tokens passed between thenodes. Evaluation is governed by the \�ring rule": a node with tokens on every inputarc consumes these tokens, applies its function to their values, and sends a resulttoken with this value to its output arc. In short, the node \�res".The Principle of the Data
ow ModelIn contrast to the demand-driven graph reduction model, the data
ow model is data-driven. The evaluation of operations is determined by the availability of data ratherthan by the demand on a result. Thus, a natural evaluation mechanism is basedon eager evaluation. This aims at exposing a maximal amount of parallelism in thesystem, even if some of the parallelism is speculative.



30 Chapter 2. The Parallel Implementation of Functional LanguagesIt is important to distinguish the operational aspect of the evaluation model fromthe semantic aspect of strictness. Although parallel eager evaluation is safe in astrict language, e.g. SISAL (B�ohm et al. 1991), modern data
ow language such as Id(Nikhil 1989) and pH (Aditya et al. 1995) are non-strict in order to minimise datadependencies in the program. The runtime-system guarantees that the failure of oneevaluation does not necessarily result in a failure of the overall computation.Figure 2.2 demonstrates the execution of the expression square (1+2*3) wheresquare x = x*x in the data
ow model. Here the nodes in the graph are opera-tors and the arcs represent data dependencies. The graph is unchanged throughoutthe computation. In the �rst step the * operator can �re because both argumentsare available, whereas the + operator has to wait for its second argument. Within thesquare function the result token from the previous computation (7) is duplicated,corresponding to sharing the result of an expression in the data
ow model.Optimisations in the Data
ow ModelThe data
ow model aims at exposing a maximal amount of parallelism. Historically,it was mainly used as a concrete machine model for special purpose data
ow machineswith special hardware support for the basic machine operations, e.g. the Tagged-TokenData
ow Architecture (Arvind & Nikhil 1990), the Manchester Data
ow machine(Gurd et al. 1985), the Monsoon machine (Papadopoulos & Culler 1990), Sigma-1(Shimada et al. 1986), PIM-D (Ito et al. 1986) etc. More recent abstract data
owmachines signi�cantly depart from the pure data
ow model and use a control-
ow lan-guage as machine independent intermediate language, e.g. the TAM machine (Culleret al. 1993) and *T(Chiou et al. 1995). However, an implementation on stock hard-ware still faces serious e�ciency problems and to overcome these problems manyoptimisations to the basic model are performed.One of the major ine�ciencies of the data
ow model is the extremely �ne-grainedparallelism. Every primitive operation can be implemented as one node in thedata
ow graph. This yields a high overhead in the parallel execution of the pro-gram. Therefore, special compile time methods for partitioning the data
ow graphsand merging the partitions into \macro data
ow nodes" have been developed (Sarkar& Hennessy 1986). For example, the Id90 compiler for the TAM machine (Culleret al. 1993) iteratively computes dependence and demand sets between nodes in the
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49Figure 2.2 The principle of the data
ow modeldata
ow graph merging independent nodes into macro nodes. Each of these nodesis then realised as a thread in the abstract machine. This analysis can also be doneglobally as is shown in Traub et al. (1992). Furthermore, TAM distinguishes be-tween coarse-grained frames, which are the units of computation and are allocatedto processors, and these more �ne-grained threads operating within a certain frame.



32 Chapter 2. The Parallel Implementation of Functional LanguagesHaving many threads within a frame guarantees latency tolerance in a multi-threadedscheduling environment.As further optimisations several mechanisms from the compilation of imperative lan-guages are integrated into the data
ow model:� Activation Frames: Machines like Monsoon use bits in an activation frame toindicate availability of a result. In older data
ow architectures an expensiveassociative store was used.� Memory: Constructs like I-structures (Arvind et al. 1989), single assignmentvariables, and M-structures (Barth et al. 1991), mutual exclusion variables, areused for storing and retrieving values. In contrast, the pure data
ow model hasno store.� Split Phase Operations: Access to I-structures and M-structures is performedvia split phase operations, i.e. after executing the operation the thread willbe automatically descheduled. This is done to overlap communication withcomputation via variable access.� No explicit data
ow graph: The latest compilation model for pH avoids the useof data
ow graphs as an intermediate language (Arvind et al. 1996). Instead ituses a sugared version of a call-by-need �-calculus, the �S-calculus, with letrec toexpress sharing, with barriers for explicit synchronisation, and I-/M-structures.In summary, these optimisations in the data
ow model, as well as the optimisationsin the graph reduction model discussed in detail in Section 2.4 show a convergencetowards adopting e�cient techniques developed for parallel imperative languages.2.3.3 Other ModelsAlthough the SECD, graph reduction and data
ow models are the best known mod-els for parallel functional programming, many other approaches towards a parallelimplementation have been suggested. This section discusses some of these models.The Gamma model (Banâtre & Le M�etayer 1990) uses the metaphor of chemicalreactions to describe parallel evaluation. In this model an evaluation step resembles



2.4. Runtime-System Issues 33the chemical reaction in a pool, a multiset, of atoms: �rst a matching group of objectsin an object pool is selected, then an operation on these objects is performed andthese objects are replaced with result objects. This \rewriting" is repeated until nomore matching objects can be found. In this model a program is speci�ed by thefunctions for matching and evaluation. This model facilitates a high level programderivation approach as well as parallel computation because reactions on disjoint setsof atoms can be performed in parallel. However, an implementation faces problemsof e�ciently matching objects, similar to the problems met in token-based data
owimplementations. Gladitz & Kuchen (1996) describe a parallel implementation of thismodel on a shared memory multi-processor.The NESL system (Blelloch 1996) uses a model of nested data parallelism. It isprogrammed in an SML-like, strict, higher-order language. Parallelism can only beexpressed implicitly via using sequence operations, similar to Haskell's list compre-hensions, and via higher-order functions that process sequences in a data-parallelfashion. Again this restriction facilitates an e�cient implementation of the language.It is mainly used for running numerical algorithms on supercomputers such as CRAYY-MP, Connection Machine CM-2, and Encore Multimax.Finally, several models have been designed for the e�cient execution of speci�c par-allel programming paradigms. The idea here is to gain improved e�ciency for arestricted but important set of programs. One example of such a machine is ZAPP(Burton & Sleep 1981, Goldsmith et al. 1993), which has been designed for the e�cientparallel execution of divide-and-conquer programs. It performs parallel computationon a virtual tree of processors. Communication is performed by message passing.No global heap is implemented in this system. Experiments on a transputer basedimplementation of this machine reported nearly optimal speedups for some divide-and-conquer programs like n-queens (McBurney & Sleep 1987).2.4 Runtime-System IssuesThis section discusses key aspects of the runtime-system in a parallel functional lan-guage that are crucial to the performance of parallel programs. This discussion willfocus on a model of parallel graph reduction. However, most of these aspects arecentral to any implementation of a parallel functional language.



34 Chapter 2. The Parallel Implementation of Functional LanguagesMany of the issues discussed in this section can be hidden behind a distributed, or vir-tual shared memory implementation and lightweight threads. This has been done forSISAL (Freeh & Andrews 1995, Haines & B�ohm 1992) and in Rushall's implementa-tion of lazy task creation on top of a Spineless G-machine (Rushall 1995). However, inthis approach the possibility of directly in
uencing low-level issues, via the compiler,and optimising the system for a particular computational model like graph reductionare lost. Therefore, such an approach is usually just used for prototyping rather thanfor optimised parallel machines. This approach will not be discussed in greater detail.2.4.1 Evaluation ModelsA major issue in the evaluation model isHow are the parallel threads created and synchronised?In a parallel implementation it can, and probably will, happen that two parallelthreads try to evaluate the same expression. The evaluation model speci�es� how and when parallel threads are generated (sparking),� how to prevent the threads from evaluating expressions already under evaluation(locking) and� how to keep track of and ensure data transfer to threads that need the resultof an ongoing computation (waiting list).These three issues describe the interaction between parallel threads and the conceptu-ally shared heap. Another issue that is discussed in this section is the synchronisationmechanism between the parallel threads. In particular the following models can beused:� a noti�cation model,� a fork-and-join model,� and an evaluate-and-die model.



2.4. Runtime-System Issues 35Sparking: The most commonly used mechanism for generating threads in the graphreduction model is a sparking mechanism (Clack & Peyton Jones 1986). This mecha-nism assumes that all parallelism has been exposed on the abstract machine languagelevel. This can be achieved via annotations either in the source code or at some stagein the intermediate or abstract machine code. When such a parallelism annotation isencountered in the code, a spark, usually a pointer to a thunk, is created (see Page 24for a discussion of the parallelism annotations).There are at least two ways to interpret these sparks. They can be either ignorable,in which case they represent potential parallelism but the runtime-system is freeto discard sparks, e.g. when the load of the machine is too high; or they may bemandatory, in which case a thread has to be created for this spark eventually. Thelatter variant is more sensitive towards �ne-grained parallelism whereas a model ofignorable sparks yields a high 
exibility in the amount of parallelism that is created,by dynamically combining threads. These bene�ts of ignorable sparks come for theprice of increased overhead in maintaining a pool of available sparks. Ignorable sparksare used in many designs such as GRIP (Peyton Jones et al. 1987), GUM (Trinder,Hammond, Mattson Jr., Partridge & Peyton Jones 1996), h�;Gi-machine (Augustsson& Johnsson 1989), PABC machine (N�ocker, Plasmeijer & Smetsers 1991). Somemachines like the HDG machine (Kingdon et al. 1991), and the ��STG-machine(Hwang & Rushall 1992) use both versions of sparks.Another way of exposing parallelism during the execution of the program is basedon the idea of just seeding enough information in the runtime stack to allow theextraction of parallelism later on. The motivation of this approach is to further reducethe overhead of managing parallelism in the case of sequential execution. The pricethat has to be paid is additional overhead for extracting parallelism out of the seededstack. Rushall (1995) presents an implementation of this idea on top of the SpinelessG-machine, implemented on a KSR1 multi-processor. Goldstein et al. (1996) haveimplemented a similar scheme in the context of the TAM machine, which is basedon data
ow inspired compilation. He reports signi�cant runtime improvements forrather large programs on a CM-5. A more detailed discussion of these mechanisms isgiven in Section 5.7.1.Locking: The standard way to implement synchronisation between threads thattry to evaluate the same thunk is via locking the node as soon as evaluation starts. If



36 Chapter 2. The Parallel Implementation of Functional Languagesa thread encounters a locked node it joins a waiting list attached to the locked node.When the node is updated with the result of the evaluation, all threads in the waitinglist have to be reawakened. This is the basic mechanism used inGUM(Trinder, Ham-mond, Mattson Jr., Partridge & Peyton Jones 1996), the h�;Gi-machine (Augustsson& Johnsson 1989), the PABC machine (N�ocker, Plasmeijer & Smetsers 1991), GAML(Maranget 1991), EQUALS (Kaser et al. 1997), in fact in most parallel graph reduc-tion machines.It is critical for the performance of the parallel machine to have e�cient locking ofnodes as well as enqueuing and awakening of threads, because evaluating a node andupdating it with its result are very common operations in a graph reduction system.Therefore, many optimisations to this basic scheme have been studied.For example, locking a node may be a rather expensive operation requiring atomicity.To reduce these costs the GAML system distinguishes on language level betweenapplication nodes that might be shared and those that are known not to be shared.No locking is required for the latter. In general a sharing analysis, e.g. (Jones &Le M�etayer 1989), would be useful to determine whether a node may be shared. Ifthe intermediate language uses a special letpar construct for binding expressionsthat may be evaluated in parallel, locking is only necessary for such letpar-boundvariables (Hogen & Loogen 1994). However, it is unclear whether this optimisationis desirable in all cases. For example the STG-machine uses a locking mechanism,\black holing", even in a sequential setup. This has two important advantages: acycle in the program can be easily detected because the enter code of a black holeproduces an error message, and by overwriting the thunk with a black hole heapspace for the arguments can be freed before the thunk is updated, which helps toavoid space leaks. Giving up these advantages is probably only reasonable for anoptimising compilation.In order to implement locking e�ciently, some machines like the h�;Gi-machine, theHDG machine, the EQUALS, and the GAML system use a bit in the node to markit as being under evaluation. Other machines like the GUM or the PABC machine,which are based on a tagless design, change the code pointer of the node such thatentering the node causes the thread to be suspended and added to the waiting list.This approach saves a test operation on entering a node.



2.4. Runtime-System Issues 37Waiting List: In order to record, which threads are waiting for the result of acomputation, waiting lists are usually used. In the graph reduction model, where theresult overwrites the original node, the waiting list is usually attached to the lockednode. This mechanism makes use of the fact that the descriptors for threads areheap allocated and can be referred to by closures without any modi�cation to theevaluation model.All stages from locking, enqueuing a competing thread into the waiting list, updating,and reawakening the thread are depicted in Figure 2.3. In this case thread A startsevaluating the depicted graph structure and locks the root closure upon entry. Whenthread B tries to access the root it �nds the closure locked and B is added to the, sofar empty, waiting list of the root closure. Finally, A �nishes evaluating the graph andupdates the root closure with the result. Upon updating the waiting list, containingB, is reawakened and B can continue with its evaluation.In order to minimise the heap usage of the program many abstract machines reuseparts of the node for the root of the waiting list: GUM uses the �rst two words ofthe closure, the h�;Gi-machine uses the back-link in the graph structure. The keyobservation, which allows such reuse of parts of a node, is that a waiting list will onlyexist when the node is locked. In this case, only two operations can be performed onthe node: adding a thread to the waiting list and updating the node with the result.In both cases, no direct access to the data stored in the closure is necessary.The PABC machine reserves space for the root of a waiting list in every node. Thisreduces the overhead of locking a node but increases the heap usage. However, theoptimisation of the PABC machine described in Kesseler's transputer implementation(Kesseler 1996) also stores the root of the waiting list in the argument �elds of thelocked node.An simpler alternative to using a waiting list is polling : a thread that reaches anode under evaluation is not removed from the list of runnable threads and it testswhether the node has been overwritten to normal form whenever it is rescheduled.This eliminates the waiting list overhead but imposes a high load in the presence of�ne-grained parallelism. A polling mechanism has been implemented and assessedin the Concurrent Clean system (van Groningen 1992). The results show that evenwith optimisations to this basic mechanism it is more expensive than a waiting listmechanism if the program is �ne-grained.
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AFigure 2.3 Locking of closures and generation of waiting listsThe pure data
ow model achieves synchronisation between processes by passing to-kens. However, on conventional hardware such an approach has proven to be tooine�cient. Instead, I-structures (Arvind et al. 1989) are commonly used as the cen-tral means of synchronisation between threads. The behaviour of I-structures is verysimilar to those of waiting lists. Initially, these single-assignment variables are emptyand a read access is deferred. Since all memory access operations are split-phase op-erations, a deferred read causes an implicit suspension of the reading thread. A list ofdeferred read requests has to be maintained for each I-structure cell. When a value iswritten into the I-structure the read requests can be satis�ed by sending messages tothe requesting processes. An arrival of such a message will reawaken the suspendedprocess. This mechanism of synchronisation is used in the Monsoon (Papadopoulos& Culler 1990) and *T architectures (Chiou et al. 1995), in the TAM machine (Culleret al. 1993) and in the pHluid system (Flanagan & Nikhil 1996).The evaluation model of Alfalfa (Goldberg 1988b) is one of heterogeneous graphreduction. In general, this is realised via standard locking of nodes and enqueuing oftasks as described above, but all sparks are mandatory. However, in order to optimisethe execution of sequential components within the program, a stack-based executionmodel is provided, too. The stack-based model does not have to deal with parallelismissues because each thread performs sequential execution without being interrupted.



2.4. Runtime-System Issues 39A distinction between such sequential threads and general parallel threads is madein the intermediate language. This uses information automatically inferred by thecompiler.
The Noti�cation ModelIn the noti�cation model every child thread is required to notify its parent threadupon �nishing its computation. The parent thread is blocked until all of its childrenhave �nished. Usually, this is implemented via a pending counter and an associatedpending list, the same as a waiting list, of all threads that need the result of thisevaluation.One of the �rst machines that used such a kind of synchronisation mechanism was AL-ICE (Darlington & Reeve 1981), which in
uenced the design of many later machinessuch as Flagship (Keane 1994), which uses a data-driven rather than a demand-drivenmodel, PAM (Loogen et al. 1989), the HDG machine (Kingdon et al. 1991) etc. Thesemore recent machines use compiled rather than interpreted graph reduction, therebygaining far higher sequential performance.The larger-grain graph reduction model (LAGER) (Watson 1988) uses a noti�cationmodel of synchronisation between parallel threads. However, this model uses seedingrather than sparking in order to expose parallelism. By default, the code is executedin a sequential manner, in order to use optimised sequential code most of the time.At statically determined points, code for generating parallel threads is planted.The evaluation model in the data
ow-oriented TAM machine (Culler et al. 1993) alsouses explicit synchronisation counters, similar to pending counters, for synchronisa-tion across threads. In TAM a thread is a linear sequence of instructions withoutbranching or creating parallelism, somewhat similar to a basic block. A hierarchyof control
ow units is de�ned, from �ne-grained, cheap operations, e.g. inlets forhandling messages, to coarse-grained operations with a comparatively expensive syn-chronisation mechanism. An important di�erence to the noti�cation model is thefact that synchronisation is performed via data-structures, as in the evaluate-and-diemodel (see Section 2.4.1), rather than directly between threads.



40 Chapter 2. The Parallel Implementation of Functional LanguagesThe Fork-and-Join ModelThe fork-and-join model is a special version of the noti�cation model, which impliessymmetric parallelism. A thread that creates other threads becomes a parent processwaiting for the results of the children. Thus, synchronisation is performed directly be-tween threads. The fork-and-join model generates a strict hierarchy of threads wherea parent can only continue after all children have completed. This restriction allowsto use e�cient mechanisms for load balancing. However, a fundamental problem ofthis model is that the usually small computation in the join phase tends to form aparallelism bottleneck.The Dutch Parallel Reduction Machine (DPRM) (Barendregt et al. 1987) uses sucha fork-and-join model. A special \sandwich" annotation has to be used to generatechild threads. This annotation has been designed for divide-and-conquer parallelism:it speci�es a list of sub-computations that should be done in parallel, and a com-bination function. The characteristic feature of this annotation is the reduction ofall arguments of the sub-computations to normal form before generating parallelism.This avoids bottlenecks of sharing data structures between di�erent threads becausedata in normal form can be safely copied. It is up to the programmer to use thisannotation on expressions of appropriate size in order to generate coarse granularity.However, special mechanisms are necessary to improve the granularity in particularto avoid harmful thread migration in the join phase (Hofman et al. 1992).The Evaluate-and-Die ModelIn contrast to the previous models, the evaluate-and-die model (Peyton Jones et al.1987) generates asymmetric parallelism. A thread that creates (potential) parallelismdoes not have to synchronise with the generated child thread, i.e. it forgets about allgenerated work. The only means of synchronisation is via the graph structure thethreads are working on. In particular, if a thread requires the result of a potentiallyparallel sub-expression, it will start to evaluate that expression itself, thereby sub-suming the computation of another spark. In contrast, the noti�cation model wouldcause the thread to block on the thread evaluating the sub-expression. In the case ofa high load, i.e. many runnable threads, such subsumption of sparks automatically in-creases the granularity of the threads and reduces the number of parallel threads thatare generated. However, this mechanism only works for certain, hierarchic structures



2.4. Runtime-System Issues 41of computation such as divide-and-conquer. In his thesis Roe (1991)[Section 6.5]shows that evaluate-and-die cannot improve the granularity for some data-parallelprograms, which typically exhibit a 
at structure of sparks.GUM(Trinder, Hammond, Mattson Jr., Partridge & Peyton Jones 1996) uses anevaluate-and-die model with ignorable sparks and waiting lists. The h�;Gi-machine(Augustsson & Johnsson 1989) uses similar techniques, however, it has been designedfor shared memory systems and therefore it splits the heap in chunks to be more
exible in managing the heap sizes of the individual processors. The HDG machine(Kingdon et al. 1991) uses an evaluate-and-die model with tags in each closure indi-cating whether a task for evaluating this closure has been created and whether theevaluation of the expression has already begun. It uses both ignorable and mandatorysparks assigning them di�erent priorities in a transputer based implementation.2.4.2 Storage Management ModelsIn a general model of distributed memory an important question is:How is the heap distributed between processors?One possibility to model the distributed nature of the heap in a parallel system is toadd a new type of closure: a FetchMe, or global indirection, closure. It points to agraph structure on a remote processor. When a thread tries to evaluate a FetchMeclosure, a fetch request for this graph structure is sent to the remote processor. Thethread gets blocked on the FetchMe closure and will be reawakened upon arrival of thegraph structure. The same mechanism as for blocking on a closure under evaluationcan be used in this scheme. If the remote graph structure is itself under evaluationthe fetch request will block on the locked closure. The reply will be sent only afterhaving evaluated the graph structure. This means that the perceived latency in thesystem is unbounded as it depends on the computations being performed on otherprocessors. It is therefore important to provide latency hiding mechanisms that allowto overlap the communication with useful computation.The unbounded perceived latency also underlines the importance of data locality inorder to avoid communication. By data locality we mean the distance between datastructures required within one thread of computation, where the unit of distance is



42 Chapter 2. The Parallel Implementation of Functional Languagesone processor. The goal is to keep all required data on the same processor, avoid-ing communication and thereby improving parallel performance. In sequential im-plementations a stack ensures data-locality and the e�cient use of storage. Theimportance of using a stack-oriented evaluation in order to maintain data-localityhas already been shown in the implementation of heterogeneous graph reduction(Goldberg 1988a, Goldberg 1988b) for lazy functional languages. In Goldberg's modela stack-based model is used in the sequential parts of the computation in order toachieve high sequential performance and only for the parallel components a packetbased model of graph reduction is used.In a parallel system conceptually each thread needs its own stack. Because the cre-ation structure of threads is a tree the stack becomes a cactus stack, with threadcreation causing a new branch in this stack. The portion of the stack generated be-fore thread creation is shared between child and parent thread. In subsequent sectionsthe following possible implementations of a cactus stack are discussed:1. a linked list of packets;2. a linked list of stack segments;3. a contiguous stack that is reallocated when needed; or4. a meshed stack.An area related to the storage management model in a parallel system is parallel,or more general distributed, garbage collection. However, it is not directly relevantto the issues studied in this thesis and will not be discussed in detail. Plainfoss�e &Shapiro (1995) give an excellent survey of distributed garbage collection techniques.Packet-based ModelsThe �rst designs of parallel graph reduction machines, such as ALICE (Darlington& Reeve 1981, Harrison & Reeve 1986), used a packet-based reduction method: con-ceptually variable size packets are used to hold the arguments to the code as well aslocal variables needed during the execution of the code. These packets, or frames, arelinked together during runtime thereby creating a cactus stack structure with eachpacket playing the role of an activation frame. Such a packet-based model does not



2.4. Runtime-System Issues 43have an runtime allocation overhead because the allocation is done at compile timewhen generating the closure. However, it uses much more heap space and the dangerof space leaks is much higher because if a closure is still live so are all local variables inits frame. In essence, some of the allocation overhead has been moved to the garbagecollector.The HDGmachine (Kingdon et al. 1991) uses such a packet-oriented approach. It usesa special \stacklessness analysis" (Lester 1989) to determine the size of the activationrecord needed to evaluate a node. With this information it is possible to allocate allthe required stack space in the node itself. No explicit checks for stack over
ow arerequired at runtime. In contrast, the h�;Gi-machine (Augustsson & Johnsson 1989)and the PAM machine (Loogen et al. 1989) may have to extend the space allocatedfor one packet if a generic function application, which does not contain informationabout the arity of the function, is used.Segmented Stack ModelIn this model the stack is allocated in the heap but separated from closures in thegraph. By splitting the stack into segments this model can e�ciently handle smallthreads without wasting space on a large stack. For large threads it must be possiblefor the stack to grow by allocating new segments. In contrast to the packet-basedmodel, these segments are separate from activation frames and changing the size ofthe stack segments can be a useful tool in the performance tuning stage of parallelprogram development.Of course, the increased 
exibility imposes some runtime overhead when allocatingnew stack segments. However, in practice segment sizes are chosen high enough toavoid the creation of long lists of stack segments even if this leads to some wastein heap space. One particular danger of this model is \stack thrashing": if thestack grows and shrinks rapidly across segment boundaries many segments have tobe allocated. Additionally, to increasing the runtime overhead this creates a lot ofgarbage stack segments, which increases the garbage collection rate, unless garbagestack segments are kept on a special list for further reuse. Therefore, it might bebetter to leave some headroom in each stack segment that can be used upon returningfrom a discarded stack segment. The GRIP (Peyton Jones et al. 1987) and GUM(Trinder, Hammond, Mattson Jr., Partridge & Peyton Jones 1996) machines use



44 Chapter 2. The Parallel Implementation of Functional Languagessuch a segmented stack model.Contiguous Stack ModelIn this model each thread uses a monolithic block of heap space as its own stack. Thisachieves good data locality, similar to the sequential evaluation. If the stack runs outof space it has to be enlarged using standard re-allocation. However, this is a ratherexpensive operation and should be avoided whenever possible. Therefore, in practicerather big stacks are used.The main disadvantage of this scheme is the huge waste of heap space if many threadsdo not require a lot of stack. This model is far less suited to dealing with threads ofdi�erent sizes compared to the previous two approaches. The PABC machine (N�ocker,Plasmeijer & Smetsers 1991) uses this kind of stack model.Meshed Stack ModelsThe meshed stack technique eliminates a parallelism overhead in case of sequentialcomputation by interleaving all local stacks into a single stack. This avoids thenecessity of allocating the stack in the heap. This concept was �rst introduced underthe name of spaghetti stack by Bobrow & Wegbreit (1973). The main idea is to markactivation frames that are not on top of the stack as garbage and to run a specialcompacting garbage collector on the meshed stack if it runs out of space.This mechanism drastically reduces the overhead when sequential execution is per-formed because there is no need for allocating new stack segments. It also achievesvery good data locality because data is not attached to closures in the heap. However,since the single meshed stack is a centralised resource, it is very hard to implementthread migration on top of this stack model. The meshed stack model has been in-troduced for the PASTEL machine (Hogen & Loogen 1994) and was inspired by thehandling of backtracking in the Warren Abstract Machine (WAM) for implementinglogic languages (Warren 1983). Measurements comparing this model with a packet-based model using an interpreter on a transputer system show that the amount ofheap allocations is reduced up to a factor of two and the runtime improves by about20% (Hogen & Loogen 1995).



2.4. Runtime-System Issues 452.4.3 Communication ModelsThis section tackles the following question:How is data exchanged between processors?One of the main sources of overhead in a parallel system is communication. Inmost parallel architectures communication is much more expensive than computa-tion. Therefore, it is very important to provide good data locality in order to avoidcommunication.To this end, it is useful to distinguish several aspects of the communication model:1. Data placement: Is data moved to a thread or vice versa?2. Latency hiding: Can the communication be overlapped with useful computa-tion?3. Packing: How much data should be sent in one packet?An important issue for hiding communication costs is multi-threading, i.e. a schedul-ing method that allows the interleaved execution of several threads of computation.In particular, it is possible to deschedule a thread waiting for data and to sched-ule another thread, which can perform computation in the meantime. This sectiondiscusses details of this method.Data PlacementOne important issue for the data locality in the system is data placement, whichdescribes how to handle the distribution of data during the execution of the program.Whenever the result of a remote thunk is required by a local thread there are twopossibilities of communication:� Send the thunk to the demanding process, evaluate it locally by this process andreplace it with a global indirection on the remote processor (local evaluation).



46 Chapter 2. The Parallel Implementation of Functional Languages� Start a thread on the remote processor to evaluate the thunk and then send theresult to the demanding process (remote evaluation).The advantage of the local evaluation scheme is that it minimises the delay in ob-taining the result. Furthermore, parallelism is only created via picking a spark froma spark pool, not as a side e�ect from receiving a message. This simpli�es loadmanagement. The local evaluation model is used in Flagship (Keane 1994), GRIP(Peyton Jones et al. 1987), and GUM (Trinder, Hammond, Mattson Jr., Partridge& Peyton Jones 1996). The remote evaluation scheme, however, might increase datalocality by avoiding a distribution of subgraph structures. Because of the poten-tially high hidden latency imposed by performing the evaluation on the remote pro-cessor, an e�ective latency hiding mechanism is required. There is a higher dan-ger of a severe load imbalance attached to this scheme if no thread migration isprovided because some processors may become hot-spots of computation. The re-mote evaluation scheme is used for example in the PABC machine (N�ocker, Plasmei-jer & Smetsers 1991, Kesseler 1996), in the proposed ��STG-machine (Hwang &Rushall 1992), in PAM (Loogen et al. 1989), and in the related PASTEL (Hogen &Loogen 1994) machine. Alfalfa combines the remote evaluation scheme with an activework distribution scheme which sends available work to idle processors, rather thanhave idle processors ask for work.Latency HidingThe latency in a parallel machine is the time required to send one piece of databetween two processors. In practice, latency often varies between pairs of processorsand also depends on the network tra�c. One way of reducing the impact of thecommunication costs on the performance of the system is latency hiding. The ideaof this scheme is to overlap the communication with some useful computation on thelocal processor. In general, when a thread requests remote data the processor caneither:� block while waiting for the data (synchronous communication) or� execute another thread (asynchronous communication).The second option imposes some overhead on the runtime-system because it hasto support multi-threaded scheduling on each processor. However, as a result it is



2.4. Runtime-System Issues 47possible to hide the latency in the system if at every point when data is requestedenough parallelism is available to perform useful computation.In a model of synchronous communication a processor is blocked if a thread requestsremote data. This kind of communication only makes sense if the ratio of latency tothe time needed for scheduling is very small. In such a case it is more e�cient for theprocessor to block on a thread that is waiting for remote data, rather than descheduleit and look for another thread to run.In contrast, asynchronous communication, allows other threads to run while onethread waits for the arrival of remote data. This behaviour allows the overlappingof communication and computation and is essential for latency hiding. It is worthnoting, that machines based on the data
ow model, which usually generate a hugenumber of �ne-grained threads, put a speci�c emphasis on latency hiding, e.g. TAM(Culler et al. 1993), *T (Chiou et al. 1995), pHluid (Flanagan & Nikhil 1996). In thesemodels certain instructions like accessing an I-structure or writing to it, cause an au-tomatic descheduling of the current thread. Therefore, these split-phase instructionsimplicitly de�ne the length of one sequential thread of computation.PackingFinally, the aspect of packing has to be considered. The question here is how muchdata to pack into one packet when transferring data. By developing a pre-fetchingpacking scheme a graph reduction system can realise a caching scheme that exploitsthe structural information of the program, which is encoded in the graph. The goal ofsuch a scheme is to reduce the total communication cost by increasing the granularityof the communication. However, if the packing scheme also pre-fetches thunks, whichrepresent work, it may lead to a very uneven load balance and even deteriorate datalocality.In the context of the PABC machine (Kesseler 1996) examines di�erent \copyingstrategies" for the Concurrent Clean system on a transputer network. Finally, hedevelops a lazy normal formal copying strategy, which copies normal form closuresand only those non normal form closures that are specially annotated in the program.We have implemented several \packing schemes" in the GranSim simulator. In mea-surements of these schemes, a scheme that packs a full-subgraph generally performedbest. However, for some communication-intensive programs a scheme that only packs



48 Chapter 2. The Parallel Implementation of Functional Languagesnormal forms performed better. These packing schemes are discussed in detail inSection 3.3.1.2.4.4 Load DistributionThe question that is examined in this section is dual to the question how the heap isdistributed over all processors:How is work distributed and balanced between processors?From a global point of view it is useful to distinguish two approaches toward loaddistribution:� Passive load distribution where idle processors have to explicitly ask for work,and� active load distribution where new threads are sent to remote processors.Passive load distribution, which is sometimes called work stealing, tries to minimisethe overhead during periods in which all processors are busy anyway. However, thismay yield an uneven load distribution if few threads are creating a lot of parallelism.In contrast, active load distribution sends, by default, a new thread to a remoteprocessor for execution. Although this gives a more even load distribution it mayyield a deterioration in the data locality of the system. In both cases, however, it isdesirable to have load information about other processors available. Obtaining suchinformation may require signi�cant communication and therefore all machines haveto �nd a compromise between the competing goals of an even load distribution and aminimal amount of communication. As a result, many implementations use a randomallocation mechanism, e.g. ALICE (Harrison & Reeve 1986).For example, GUM (Trinder, Hammond, Mattson Jr., Partridge & Peyton Jones1996), a system of passive load distribution, uses a \�shing" mechanism, where re-quests are sent to random processors. Some delay is added to avoid 
ooding thesystem with work requests, a problem observed on ALICE (Harrison & Reeve 1986),and allowing just one outstanding �sh per processor. Because GUM packs more thanone thunk into a packet, some pre-fetching of work is performed. The HDG machine



2.4. Runtime-System Issues 49(Kingdon et al. 1991) sends requests only to neighbouring processors. They returnwork if they have at least two tasks where one of them has not been started, yet.This is similar to the strategy used in ZAPP (McBurney & Sleep 1987). On ZAPPand GRIP experiments have been performed with pre-fetching work, i.e. asking forwork when the local pool of work falls below a certain threshold. However, this didnot in general yield better performance. The PAM (Loogen et al. 1989) system reg-ularly exchanges information about the workload of neighbouring processors in orderto improve the load balance. It uses passive load distribution and exploits the loadinformation in order to decide which processor to ask for work.In contrast, the Alfalfa machine is based on active load distribution. Extensive studiesof various di�erent load balancing schemes (Goldberg 1988b) have been performed onthis distributed memory architecture. As a result, di�usion scheduling with a simpleload balancing heuristic performed best. The idea of di�usion scheduling is to sendwork only to neighbouring processors and to pick the least loaded processor. Thus,only load informations from the neighbours is required. However, this method mayreact rather slowly to rapidly changing load situation and to hot-spots in the system.On Alfalfa it showed satisfying results, even though no task migration is supportedin this implementation.Issues closely related to load balancing are load bounding and throttling, which aimat avoiding an excessive amount of parallelism in the system. It is important not toprohibit a large amount of parallelism by design because this would diminish its scal-ability. However, typically functional languages exhibit an abundance of parallelism,which requires some techniques aiming at limiting the total number of generatedthreads. Problems with load bounding have been observed on ALICE (Harrison &Reeve 1986), ZAPP (McBurney & Sleep 1987), on PAM (Loogen et al. 1989), andon many data
ow machines. This problem is related to the �ne granularity of thethreads that are normally created.A simple but quite e�ective mechanism for load bounding has been developed onZAPP (McBurney & Sleep 1987): when the load of the machine is low the runnablequeue is treated as a FIFO queue, favouring threads near the root of the divide-and-conquer tree. However, when the load drops below a certain threshold a LIFO mech-anism is used. A similar mechanism has been adapted on the Manchester Data
owmachine (Gurd et al. 1985), where a hardware throttle examines the length of the to-ken queue to decide whether a new thread should be generated or whether it should



50 Chapter 2. The Parallel Implementation of Functional Languagesbe suspended. In the latter cases it may be reactivated at some later time whenthe load drops below the threshold (Ruggiero & Sargeant 1987). Similar techniqueshave been used in the LAGER model (Watson 1988), in the STAR:DUST machine(Ostheimer 1991), and in the �-red+-machine (B�ulck et al. 1994) via a limited supplyof tickets.2.5 Our ModelThis section locates the model ofGranSim and GUM in the design space outlined inthe previous sections. The detailed discussion of GranSim in the following chapterwill show that both models are almost identical.In short, the characteristics of the GranSim/GUMmodel can be speci�ed as follows:� Implementation model: parallel graph reduction� Evaluation model: evaluate-and-die� Thread placement: local evaluation� Communication: message passing� Storage management: segmented stack� Load distribution: passive� Scheduling: multi-threading, unfairThe choice of this particular model has been motivated by experiences from parallelfunctional programming on the GRIP machine (Hammond & Peyton Jones 1992,Hammond et al. 1994), which uses parallel graph reduction, an evaluate-and-die modelof computation and passive load distribution. In order to support general parallelarchitectures message-passing is used for communication. In order to support higherlatency systems multi-threading has been added as a means of hiding latency.



2.5. Our Model 51Implementation model: The implementation model is an extension of the Spine-less Tagless G-machine (Peyton Jones 1992). In the parallel system new types of clo-sures such as FetchMe closures (see Section 2.4.2) and waiting lists (see Section 2.4.1)have to be added. Furthermore, the notion of a global address has to be introducedto uniquely identify closures on di�erent processors. Threads and stacks are modelledas special closures.Evaluation model: Our model uses an evaluate-and-die model as described inSection 2.4.1. This model was very successful on GRIP. One of its most importantfeatures is the possibility to dynamically increase the granularity of threads. Anexplicit, distributed spark pool is used for maintaining sparks. One di�erence betweenGUM and GranSim is that the latter can use an in�nite spark pool.Data placement: In our model we use local evaluation of data that is needed bya thread. In this approach the delay in obtaining a result does not dependent on theload of a remote processor. Therefore, the perceived latency is reduced. In general,however, it is not clear whether local or remote evaluation will yield better results.It is an interesting topic for future work.Communication: The communication is modelled via message passing betweendi�erent processors. This yields a very portable implementation. By using packingroutines that are tailored to graph reduction it is possible to exploit the informationcontained in the structure of a graph to be sent.Storage management: Our model uses a segmented stack storage managementmodel. This minimises the waste due to too large stacks, and increases the data local-ity compared to packet based approaches. GUM uses a weighted reference countingmechanism for performing distributed garbage collection (Bevan 1987). However, wewill not explore issues related to garbage collection in more detail here.Load distribution: GUM uses a passive model of work distribution by imple-menting a work stealing mechanism. This mechanism tries to minimise the numberof messages required for load distribution, but may produce a rather uneven load



52 Chapter 2. The Parallel Implementation of Functional Languagesbalance. GranSim simulates this model but o�ers more 
exibility, for example al-lowing several steal requests per processor at the same time. No load information isexchanged between the processors.Scheduling: Our model uses multi-threaded scheduling, which is essential to hidelatency. In GRIP (Peyton Jones et al. 1987) synchronous communication was usedand therefore multi-threading was not necessary.2.6 SummaryThis chapter has shown that parallel graph reduction is a very natural model forexpressing parallel execution. In common parallel machines its rather high level de-scription of computation requires an e�cient mapping of basic operations like lockingclosures and handling waiting lists onto standard hardware. This is a similar situationas in the data
ow community where the current trend is to depart signi�cantly fromthe core model, using a few selected standard synchronisation constructs to imple-ment a functional language. One main source of cross-fertilisation in this area hasbeen in adopting an aggressive multi-threading approach within a graph reductionframework.Two aspects of the dynamic behaviour in a parallel graph reduction system requirespecial attention: data locality and granularity. The former is crucial to avoid unnec-essary communication, the latter is essential for minimising the overhead for parallelcomputation. Chapter 5 will focus on mechanisms for improving granularity. How-ever, before focusing on the issue of granularity the following chapter will describe theunderlying parallel machine and its simulator, GranSim, in more detail. In doingso, variants in implementing crucial runtime-system operations, as outlined in thischapter, will be discussed.



Chapter 3
GranSim| A Simulator forParallel Haskell

CapsuleThe main motivation for simulating the parallel execution of a functionalprogram is to abstract from machine speci�c details and from the often non-deterministic behaviour of a complex parallel system. Such an abstractionenables the programmer to focus on the parallelism inherent in an algorithm,taking an algorithm-oriented view of parallel execution. In order to supportsuch a view a very simple simulator is su�cient. For example, communicationcosts are often ignored in order to expose the maximal amount of parallelismin the program. The GranSim-Light setup of the simulator presented in thischapter supports this view by modelling an idealised machine with zero com-munication costs and an in�nite number of processors.For the subsequent studies on granularity, however, such an approach is notsu�cient. For studies on this level of detail, involving aspects of the underly-ing runtime-system, a more detailed system-oriented view of parallel executionis taken. For this approach it is crucial to accurately model a wide range ofparallel machines that di�er in the implementation of basic operations like inter-processor communication. Therefore, 
exibility and accuracy are two equallyimportant, though competing, aspects in the design of GranSim. For the over-all accuracy of the simulation it is important to achieve a balance between theaccuracy of the compilation (to avoid naive generation of ine�cient sequentialcode), of the computation, and of the communication during the simulation.In order to meet these requirements of 
exibility and accuracy GranSim hasthe following crucial features: 53



54 Chapter 3. GranSim| A Simulator for Parallel Haskell� It o�ers di�erent variants for many basic runtime-system operations likecommunication.� It uses a state-of-the-art optimising compiler (GHC) for generating graphreduction code.� It measures computation time in machine cycles rather than reductionsteps.� It accurately models the communication in a parallel system.� It o�ers granularity improvement mechanisms to improve the performanceof parallel programs.GranSim has been used in the parallelisation of several large programs. Inthis process, it has proven to be robust and to be an important component ofthe parallel engineering environment. This is being underlined by its currentuse at several universities worldwide.3.1 IntroductionIn the parallel functional programming community simulators are very popular, e.g.(Runciman & Wakeling 1993, Roe 1991, Deschner 1989, Joy & Axford 1992). They al-low the programmer to take a very abstract view of parallelism, matching the ratherabstract view of computation that is supported especially by lazy functional lan-guages, where de�nition is cleanly separated from control. However, when runningthe program on a real machine low-level details of the execution can no longer beignored. These details may very well be the reason for not obtaining the parallelismthat is present on a more abstract level. At this stage the development of a parallelalgorithm or the parallelisation of an existing algorithm turns into the performancetuning for a speci�c parallel machine. Although simulators for exactly modellingsuch machine details exist (Bennett 1993, Hofman 1994, van Groningen 1992, Keller& Lin 1984, Morais 1986, Watson 1989), they usually lack the ability to model a widerange of parallel architectures.GranSim, a simulator for the parallel execution of Glasgow Parallel Haskell (GpH)(see Section 2.2.3), helps the programmer in both stages. Di�erent setups of thesimulator re
ect di�erent views of the parallel execution: an algorithm-oriented viewis supported by the GranSim-Light setup, whereas a less abstract system-oriented



3.1. Introduction 55view is supported by the standard setup of GranSim. In the latter setup GranSimcan simulate most MIMD machines by tuning the available parameters specifying thecharacteristics of the parallel machine. The limits of such a simulation are discussedin Section 3.5.GranSim uses a parallel graph reduction model of computation as discussed in Sec-tion 2.3.1. The particular implementation is based on the Spineless Tagless G-machine(STGM) (Peyton Jones 1992), with the parallelism annotations par and seq, whichhave been discussed in Section 2.2.3. The STGM has been chosen as the underly-ing abstract machine, because it is used in the Glasgow Haskell Compiler (GHC).Therefore, GranSim can make use of GHC for performing the compilation. TheGUM system, a portable parallel runtime-system for Haskell (Trinder, Hammond,Mattson Jr., Partridge & Peyton Jones 1996), uses the same abstract machine anda subset of the same annotations as GranSim. For realising the communication be-tween the processors, GUM uses the PVM communication harness. Thereby, GUMachieves a high level of portability and it has been used on shared-memory machines,distributed-memory machines and workstation networks already. The development ofGranSim and GUM was independent, but in several cases in
uential. As a result ofusing the same abstract machine, GranSim can be parameterised to closely resem-ble the GUM system. However, as will become clear from this chapter, GranSim ismuch more 
exible than just simulating the GUM system.The two main topics studied in this thesis are large-scale parallel programming andgranularity. The �rst topic requires an algorithm-oriented view in developing andtuning a parallel program. A more detailed system-oriented view is needed in orderto run it on a particular parallel machine. The study of granularity also requires asystem-oriented view in order to model and study di�erent runtime-system features.In particular for the latter view the 
exibility and the accuracy of the simulator areof special interest. These issues will be emphasised in the following discussion.The core system of GranSim has been developed jointly with Dr. Kevin Hammondand Dr. Andrew Partridge. This initial version includes the basic design of the dis-tributed heap, of spark pools, and of thread pools. This design was based on theruntime-system of GRIP for PVM (Hammond 1993) and GRAPH for PVM (Loidl &Hammond 1994), two versions of a port of the GRIP runtime system using PVM toperform communication. The latter added multi-threading and asynchronous commu-nication to the original GRIP runtime-system. Part of the support for multi-threading



56 Chapter 3. GranSim| A Simulator for Parallel Haskellin GranSim is based on the existing implementation of the GHC runtime-system forConcurrent Haskell (Peyton Jones et al. 1996). The extensions developed in thisthesis on top of the core version of GranSim include the design and extension ofthe communications system with asynchronous communication, several variants ofrescheduling, bulk fetching with several variants of packing graph structures (seeSection 3.3.1). An extension of the work request mechanism, several granularity im-provement mechanisms, and the idealised GranSim-Light setup (see Section 3.4)have been implemented. These extensions are necessary to study a variety of ar-chitectures and to speci�cally focus on granularity aspects of the parallel execution.Finally, GranSim has been integrated into GHC and is now publicly available fromthe GHC web page (GranSim 1998) for both Haskell 1.2 and 1.4.The structure of this chapter is as follows. Section 3.2 presents the global structureof the simulator. Section 3.3 discusses its main characteristics, distinguishing it fromother simulators. Section 3.4 focuses on the GranSim-Light setup. Section 3.5addresses shortcomings of the current version of the simulator. Section 3.6 validatesthe results obtained from GranSim by comparing them with results from HBCPP,GRIP and GUM. Finally, Section 3.7 summarises.3.2 Structure of GranSimFigure 3.1 shows the global structure of GranSim. In the standard setup GranSimsimulates a �nite number of processors. The GranSim-Light setup drops this re-striction in order to provide an algorithm-oriented view of computation that exposesthe total amount of parallelism available in a program. GranSim-Light is discussedin more detail in Section 3.4.Each of the simulated processors has its own spark pool and thread pool as wellas its own clock. Clock synchronisation is performed via accessing the global eventqueue, which is sorted by the time stamps of the entries in this queue. The sparkand thread pools are physically distributed but logically shared. Explicit messagesbetween processors have to be simulated in order to transfer sparks and threadsbetween processors.The simulation is event driven with events representing actions related to the par-allel nature of the program execution like thread creation, communication etc. The
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Proc 2Proc 1Figure 3.1 Global structure of GranSimevents in the global event queue contain information about the type of the event, atime-stamp, the processor where it is happening and a link to the thread state object(TSO), a descriptor of the thread a�ected by the event. The statistics bu�er accu-mulates important information such as the runtime, fetchtime, blocktime, amount ofheap allocations etc.From the presentation of the principles of parallel graph reduction in Section 2.3.1it should be clear that the management of the spark and thread pools is fundamen-tal for the behaviour of a parallel graph reducer such as GranSim. Therefore, weconcentrate on the discussion of these two issues.Spark Management: The spark pool holds sparks generated by threads on thisprocessor as well as those obtained from other processors. By default it is managed asa �rst-in �rst-out (FIFO) queue. This means that older sparks appear earlier in thespark queue. Although this mechanism is likely to pick larger pieces of work �rst ifthe program has a divide-and-conquer structure, this is not necessarily the best wayto manage the spark pool. Alternatives will be discussed in Section 5.5. In contrastto recent work on lazy threads (Goldstein et al. 1996), which tries to eliminate a



58 Chapter 3. GranSim| A Simulator for Parallel Haskellseparate spark pool altogether (see Section 5.7.1), such an explicit spark pool givesthe runtime-system a handle to control the behaviour of the parallel program on arather low-level, e.g. by attaching granularity information to individual sparks.From the user's point of view two aspects of sparks deserve special attention. Firstof all, GranSim uses an evaluate-and-die model of computation, as discussed inSection 2.4.1. This means that one parallel thread may perform a reduction, forwhich another spark has been created. In short, sparks may be subsumed (PeytonJones et al. 1987). This mechanism improves the granularity of the program to somedegree. This issue is studied in greater depth in Chapter 5. Another importantaspect of sparks is the fact that they may be discarded by the runtime-system. Thisis done for example when the closure, which should be evaluated, is already in weakhead normal form (WHNF). It might also happen during garbage collection. Forthe programmer this means that he cannot rely on all sparks actually being turnedinto threads. This might be a problem if a spark is discarded although it drives theparallelism by generating many more sparks.
Thread Management: Each processor maintains a pool of runnable threads. Likethe spark pool, the thread pool is implemented as a FIFO queue. The default schedul-ing algorithm for the threads is unfair: the currently running thread will only bedescheduled if it demands a closure that is under evaluation by another thread or if ithas to fetch remote data and asynchronous communication is enabled. If synchronouscommunication is turned on, the whole processor will be blocked while the data isfetched. In a previous version of GranSim a fair round robin scheduling mechanismwas implemented. However, comparing simulations with these two variants of thescheduling mechanism showed only minor di�erences in the overall behaviour whilstincreasing the simulation time signi�cantly. The same unfair scheduling algorithm isalso used in GUM.A potential problem with unfair scheduling is that a single thread may exhaust allsystem resources. However, so far only the largest of our example programs, Lolita,causes such resource problems. Even in this case simulation time is a more seriouslimiting factor than resource exhaustion.



3.3. Characteristics of GranSim 593.3 Characteristics of GranSimThis section discusses the main characteristics of GranSim, showing that the levelof detail presented by the simulation supports a system-oriented view of parallelcomputation. In particular, the 
exibility and the accuracy of the simulation willbe discussed. Furthermore, a set of visualisation tools that have been implementedwhile developingGranSim proved to be crucial for a detailed analysis of the dynamicbehaviour of the parallel programs.The main characteristics of GranSim are1. Support for di�erent levels of abstraction;2. Flexibility in simulating di�erent parallel machines and di�erent features of theruntime-system;3. Accuracy of the simulation;4. Visualisation of the dynamic behaviour and of the granularity of the program;5. E�ciency of the simulation;6. Integration of GranSim into a state-of-the-art optimising compiler (GHC);7. Robustness of GranSim;8. Using Granularity Information in the runtime-system.Di�erent levels of abstraction are provided by supporting both a GranSim-Lightand a standard GranSim setup. In the latter con�guration it is possible to abstractfrom certain aspects of the parallel execution, such as the communication latency, bysetting the corresponding parameter to zero. This will become clear when discussingthe simulation parameters in the following section. The GranSim User's Guide (Loidl1996) contains a complete presentation of these parameters. A detailed discussion ofthe granularity improvement mechanisms in particular is given in Chapter 5.



60 Chapter 3. GranSim| A Simulator for Parallel Haskell3.3.1 FlexibilityGranSim enables the programmer to model a wide range of parallel architectures.This is possible by tuning many of the low-level characteristics of the parallel machine.For example the communication behaviour of a machine can be modelled by specifyingseveral parameters like communication costs such as latency, message pack time etc,and the strategy that is used for packing a graph, such as incremental packing or bulkpacking. The overhead imposed by the simulated runtime-system can be speci�ed bysetting costs for thread creation, context switch, etc. The speci�cs of the underlyingprocessor can be changed, too (see Section 3.3.2).Crucial for the 
exibility of the simulator is its ability to simulate several di�erentvariants of important operations of the runtime-system. Variants of the most impor-tant operations in GranSim are:� Bulk fetching versus incremental fetching: di�erent packing schemes specify howmuch of a graph to pack into one packet.� Synchronous versus asynchronous communication: di�erent rescheduling schemesspecify what to do while waiting for remote data.� Migration: is a toggle indicating whether a runnable, but not running, threadmay be moved (\migrated") to another processor. Experiments on GRIP haveshown that migration, although very expensive, is essential for the performanceof some programs (Hammond & Peyton Jones 1990). Migration is not imple-mented in GUM.� Some of the more experimental features implemented in GranSim are: throt-tling communication by bounding the number of outstanding fetch requests,prefer stealing of threads over sparks, and prefer sparks of local closures overremote closures, to improve data locality.The simulator is based on experiences from real parallel systems (GRIP, GUM) andtherefore accurate in modelling aspects of the runtime-system. In fact, to a largeextent GranSim shares the same code with GUM.This close relationship betweenGranSim andGUM encourages the prototype imple-mentation of runtime-system features not yet available inGUM. The author has used



3.3. Characteristics of GranSim 61this possibility in implementing and measuring various packing schemes and variousrescheduling schemes in GranSim (Loidl & Hammond 1996b), which are discussedin the following sections.Packing SchemesA packing scheme prescribes how much of the graph to transfer to a processor thatsends a fetch request for one closure. For example, an incremental fetching schemeonly sends the closure that is immediately requested. This scheme aims to minimisethe total number of closures that are sent during the execution of the program. Thisis achieved by fetching closures lazily when they are known to be required. However,this means that the requesting thread has to block for every remote closure, involvingsome delay determined by the latency of the machine. Such an incremental schemehas been used in the low-latency GRIP system.In contrast, a bulk fetching scheme transfers a group of related closures in a singlepacket. The per-packet overhead is higher because packet construction and decon-struction are much more complicated. The gain is in reduced perceived latency perclosure, because many nodes will be transferred in a single packet, and so will notneed to be transferred individually if they are needed. As a re�nement of this mech-anism GranSim o�ers the possibility to specify a bound on the packet size or onthe number of thunks that can be packed into a single packet. If neither limit isspeci�ed, all the graph that is reachable from the requested node will be packed intothe packet. Note that packing multiple thunks into one packet essentially amountsto eager work distribution. The GUM implementation currently uses a full-subgraphpacking scheme but imposes a limit on the packet size.Figure 3.2 depicts the bulk fetching mechanism in action on a simple graph thatinvolves sharing. The left hand side shows the graph before packing takes place,the right hand side shows the graph as it has been updated following packing. Thecentre of the diagram shows the packet that is constructed to transmit the graph.Shading is used to depict thunks, normal form closures are left unshaded. The packingalgorithm traverses the graph structure in a breadth-�rst fashion. Each closure isgiven a global address which is used to preserve sharing both across the system andwithin the packet. When packing a thunk the original closure is overwritten with aFetchMe closure (lightly shaded), which acts as a global indirection to remote data
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Figure 3.2 The bulk fetching mechanism (with 3 thunks per packet)(see Section 2.4.2). In contrast, normal form closures are duplicated by copying theminto the communication packet.The example in Figure 3.2 shows a packing scheme that packs a maximum of 3thunks into a packet. Therefore one thunk is left behind on the original processorand is referenced by a FetchMe closure in the packet. A particularly useful versionof this scheme is a normal-form-only packing scheme, which does not pack a thunkexcept for the root of the graph but it includes all normal forms before the �rst thunkbecause they can copied without duplicating work. The GUM system currently packsa full subgraph until one communication packet is �lled.Rescheduling SchemesA rescheduling scheme prescribes what the processor should do after having senta fetch request to another processor. Two basic rescheduling schemes realise syn-chronous communication, where the processor waits for the remote data, and asyn-chronous communication, where another piece of computation is done in the interim.The latter amounts to latency hiding, since useful work can be performed until therequested data arrives.



3.3. Characteristics of GranSim 63Four di�erent levels of rescheduling schemes specify how aggressive a processor willbe in trying to obtain work:1. only execute another runnable thread;2. turn a spark into a thread if no runnable threads are available;3. try to acquire a remote spark if the processor has no local sparks;4. try to migrate another runnable thread if no remote sparks can be found.These schemes are cumulative, so that thread migration will only be attempted ifthe three previous schemes have failed, etc. Note that the third and fourth `global'rescheduling schemes will involve communication in order to obtain new work. Inparticular, the fourth scheme may introduce gratuitous thread migration towardsthe end of the computation, when the system load is low. The GRIP system usessynchronous communication and the GUM system currently tries to obtain remotesparks if no local work is available, corresponding to the third scheme in the listabove.An Evaluation of Packing and Rescheduling Schemes
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Figure 3.3 A comparison of packing and rescheduling schemesFigure 3.3 shows two of the measurements presented in Loidl & Hammond (1996b).The test program is the LinSolv algorithm discussed in Section 4.6. The left hand



64 Chapter 3. GranSim| A Simulator for Parallel Haskellgraph compares di�erent packing schemes in combination with synchronous and asyn-chronous communication. The graph shows relative runtimes (in percent) with an in-cremental synchronous fetching scheme as the baseline. The best results are achievedwhen using a bulk fetching scheme with asynchronous communication. We observea reduction of the total runtime of 17% and 28% for latencies between 1,000 and50,000 cycles and a reduction of 50% at a latency of 260,000 cycles. The relativeimprovement in runtime increases for higher latencies. The graph also shows thatbulk fetching should not be combined with synchronous communication because thiswould prevent the processor from performing useful work while waiting for the data.The right hand graph of Figure 3.3 compares di�erent rescheduling schemes withvarying latencies. The baseline in this case is Scheme 3, which is used in GUM. Thisgraph demonstrates that the best choice of a rescheduling scheme depends on thelatency of the machine. For low latencies the more aggressive global schemes performbest since there is little cost associated with fetching work from remote processors.The improved load distribution outweighs the increased communication caused by adeteriorated data locality. However, for high latencies the dominant cost becomesthat of moving data between processors. In this case, data locality is more importantthan an even load distribution. Therefore, the local rescheduling schemes usuallyperform better than the more aggressive schemes.More detailed measurements with all di�erent variants are presented and assessed inLoidl & Hammond (1996b). Several medium-scale programs have been used to testdi�erent packing and rescheduling schemes in setups with varying latencies. Fromthese measurements the following conclusions can be drawn:� Rescheduling schemes: For low latencies, where an even load distribution ismore important than high data locality, aggressive rescheduling schemes delivergood work distribution and therefore good performance. For high latencies,however, the improved load distribution does not compensate for reduced datalocality. The crossover point usually lies between 15,000 and 30,000 cycles, i.e.loosely-coupled multiprocessors.� Packing schemes: In general, full-subgraph packing proves to be the best pack-ing scheme. In practice, there is little danger that such a packing scheme willcause a disastrously uneven load distribution.



3.3. Characteristics of GranSim 65� Thunk stealing: Occasionally the full-subgraph packing scheme causes thunkstealing : the gratuitous o�oading of thunks that will be needed later. Thisincreases communication costs and hence reduces performance. We believe thatthunk stealing is the reason for full-subgraph packing sometimes being worsethan those schemes that pack a limited number of thunks per packet. This doesnot happen very frequently, however.� Bulk versus incremental fetching: For low latencies (up to about 100 cycles)there is no di�erence in the performance of bulk and incremental fetching. Es-pecially for very high latencies (more than about 50,000 cycles) bulk fetchingachieves signi�cant runtime improvements compared to incremental fetchingeven when using asynchronous communication for latency hiding.� Bounded packet size: The average packet size is in general very small, even forfull-subgraph packing (usually smaller than 15 closures). Therefore, changingthe packet size, as has been previously suggested for improving communicationperformance, has hardly any e�ect on the runtime of the program.As a result of the measurements in Loidl & Hammond (1996b) the following concretesuggestions for improving the GUM runtime-system can be made:� For programs with a high degree of communication a normal-form-only pack-ing scheme should be used in order to minimise a gratuitous transfer of worktogether with data (\thunk stealing"), which has been observed in GranSimmeasurements. It is probably not worthwhile implementing a more generalscheme that allows the user to specify the number of thunks per packet becausegood values for such a parameter are very hard to predict.� When running on a high-latency system of more than about 15,000 cycles a lessaggressive rescheduling scheme should be used in order to maintain good datalocality.� In contrast to previous suggestions (Trinder, Hammond, Mattson Jr., Partridge& Peyton Jones 1996), we found that choosing a small packet size is not ane�ective means of tuning the granularity of the communication. This is due tothe small average number of closures per packet in most programs.



66 Chapter 3. GranSim| A Simulator for Parallel Haskell3.3.2 AccuracyTo evaluate the accuracy of the simulation it is necessary to examine the accuracy ofseveral key steps in the compilation and execution of a program. GranSim managesto achieve a balance in the accuracy of the following key steps:� the compilation of the program;� the simulation of the computation;� the simulation of the communication.Compilation: A prerequisite for achieving a high accuracy of the simulation is acompilation of the functional program, which avoids ine�ciencies of a naive imple-mentation of graph reduction. A naive compilation would distort every simulationbecause the compiled code, which is the input to the simulator, would di�er signi�-cantly to code produced by an optimising compiler. Therefore the results even of anidealised simulation would have only a very limited relevance. GranSim is built ontop of, and therefore makes use of, a state-of-the-art optimising compiler for Haskell(GHC). As a result the generated code is almost identical to the code used for se-quential execution. The only di�erence is an instrumentation of the generated codeon basic block level.Computation: In order to assign computation costs to the basic blocks in the pro-gram an instruction count function is applied in an intermediate representation of theoptimised program. This intermediate code bears a strong resemblance to low-levelC without loops. At this level the operations in the program closely correspond tomachine operations, which permits an exact modelling of the cost of computation.The instruction count function has been carefully tuned by analysing the assemblercode generated by GHC and the results have been compared with the number of in-structions executed in real Haskell programs. These comparisons have shown that theinstruction count of the simulation lies within 10% for arithmetic operations, within2% for load, store operations, within 20% for branch instructions and within 14%for 
oating point instructions of the real values (Hammond et al. 1995). Overall, ithas to be emphasised that GranSim does not measure the computation in reduction



3.3. Characteristics of GranSim 67steps, as it is often done in idealised simulators, but in machine cycles for a speci�cprocessor.To permit di�erent kinds of architectures to be modelled the instructions have beensplit into �ve classes, with di�erent weights. The default weights in the followinglist model a SPARC processor and have been veri�ed with Haskell programs in thesequential NoFib suite (Partain 1992), which is used to tune the Glasgow HaskellCompiler and which is publicly available (NoFib 1998). These weights are tunable inorder to simulate other kinds of processors:� arithmetic operations (default: 1 cycle),� 
oating point operations (default: 1 cycle),� load operations (default: 4 cycles),� store operations (default: 4 cycles) and� branch instructions (default: 2 cycles).Communication: The basic communication parameters of a parallel machine suchas latency, message creation costs, etc are parameters to the runtime-system. In total,GranSim o�ers 6 di�erent parameters to describe the communication behaviour ofa machine thus giving the user a high degree of 
exibility in describing the character-istics of the machine being modelled. The accuracy of the modelled communicationdepends on the accuracy of the parameters provided by the user. One aspect of thecommunication that is not covered by GranSim is the topology of the parallel ma-chine: in GranSim the latency between any two processors is the same. The latencyalso does not change with increasing network tra�c. These shortcomings will bediscussed in more detail in Section 3.5.3.3.3 VisualisationTogether with the GranSim simulator a set of visualisation tools has been developed.Two kinds of pro�les are generated: activity pro�les and granularity pro�les. Thissection discusses both kinds of pro�les. These visualisation tools have proven indis-pensable in the parallelisation and optimisation of programs such as a linear system



68 Chapter 3. GranSim| A Simulator for Parallel Haskellsolver. Based on the group's experience from implementing several large programs(see Chapter 4), such tools are essential when working with a lazy language, in whichthe order of evaluation is not at all obvious from the program source.All visualisation tools take a GranSim or a GUM pro�le, a log-�le of the programexecution, as input and generate a PostScript �le as output. The format of this log-�leis discussed in the GranSim User's Guide (Loidl 1996). Producing individual graphscan be seen as a form of static visualisation. Other packages such as the VISTApackage (Halstead Jr. 1995) allow the user to step through the parallel executionbased on the information available in the provided log �le. This dynamic visualisationobviously can expose more information about the exact behaviour of the program.However, our experiences show that already static activity pro�les with di�erent levelsof detail provide valuable information in order to tune the performance even of largeparallel programs.A promising direction of ongoing work is the use of cost centres, as developed forsequential pro�ling of Haskell (Sansom & Peyton Jones 1995), to connect points inthe activity pro�les with expressions in the source code. A prototype of combiningGranSim with cost centre pro�ling, GranCC, to whose development the authorhas contributed, is already available (Hammond et al. 1997). Several projects forimproving parallel pro�ling are aiming at increasing the information contained inthese pro�les, developing a self-describing log-�le format that can be used for bothsequential and parallel pro�ling, and developing graphical user-interfaces that providea dynamic visualisation of the program behaviour. Research groups at the Universitiesof Glasgow, St. Andrews, York, the Open University and the Parallel ApplicationCentre of the University of Oxford are collaborating in this e�ort.Activity Pro�lesThe aim of the activity pro�les is to summarise the activity of the machine duringthe computation in one graph. In order to give the programmer the possibility ofexamining the program execution in more detail, three di�erent levels of detail aresupported. Furthermore, it is possible to focus only on parts of the execution, likeexamining only one processor, by �rst applying a �lter on the generated GranSimpro�le.The activity pro�les show the activity of the machine in three levels of detail:



3.3. Characteristics of GranSim 69� Overall activity of the whole machine;� Per-processor activity of the individual processors;� Per-thread activity of the individual threads.The following subsections discuss each of these pro�les and give examples.Overall activity: The idea of the overall activity pro�le is to present a globalpicture of the computation. In particular, it should show the utilisation of the machineat each point. A drop in utilisation might re
ect a performance bottleneck in thealgorithm. This pro�le can be regarded as an \algorithm focusing" pro�le and isparticularly important for an algorithm-oriented view of parallelism. The overallactivity pro�le separates the threads into �ve di�erent classes:� running threads, i.e. threads that are currently performing a reduction, whichare shown as a green area in the graph,� runnable threads, i.e. threads that could be executed but that have not foundan idle processor, which are shown as an amber area in the graph,� blocked threads, i.e. threads that wait for a result that is being computed byanother thread, which are shown as a red area in the graph,� fetching threads, i.e. threads that are currently fetching data from a remoteprocessor, which are shown as a light blue area in the graph,� migrating threads, i.e. threads that are currently being transferred from a busyprocessor to an idle processor, which are shown as a dark blue area in the graph.The overall activity pro�le in Figure 3.4 shows the number of threads in each classfor each point in time. The example program in this case is a word search program,described originally in the FLARE book (Runciman & Wakeling 1995). It has abottleneck at about 110k cycles. In the given setup, asynchronous communicationwith incremental fetching and a latency of 400 cycles, this results in a drop down toonly one running thread for some time. As thread migration is enabled we observeseveral runnable threads being transfered to another processor immediately beforethat point. Overall this program su�ers from a lack of parallelism, which can be
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Figure 3.4 Overall activity pro�le (original in colour)seen from the low number of runnable threads although the machine rarely is fullyutilised. The sequential tail of the program is due to the collection and the printing ofthe result. GranSim measures the costs of all Haskell input/output routines, whichare written in a monadic style (Peyton Jones & Wadler 1993).Per-processor activity: The idea of the per-processor activity pro�le is to showthe most important pieces of information about each processor in one graph. There-fore it is easy to compare the behaviour of the di�erent processors and to spot imbal-ances in the computation. This pro�le is often used to study runtime-system issueslike the load balance in the system and is therefore most useful in a system-orientedview of parallelism. This pro�le can be regarded as a \load focusing" pro�le.The per-processor activity pro�le shows one strip for each of the simulated processors.Each of these strips encodes three pieces of information:� Is the processor active at a certain point? If it is active the strip appears in



3.3. Characteristics of GranSim 71some shade of green (gray in the monochrome version). If it is idle it appearsin red (white in the monochrome version).� How high is the load of the processor? The load is measured by the number ofrunnable threads on this processor. A high load is shown by a dark shade ofgreen (or grey).� How many blocked threads are on the processor? This information is shown bythe thickness of a blue (black) bar at the bottom of each strip. This bar maycover up to 80% of the strip. Thus, the load information is always visible \inthe background".
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ected by a ratherlarge red area. The distribution of work at the beginning of the computation startswith low-numbered processors. Therefore, these processors have bigger pieces of work.



72 Chapter 3. GranSim| A Simulator for Parallel HaskellThe distribution of work is quite even, which is represented as the same shade of greenon all processors. The number of blocked threads is very small in general. Threadmigration causes the main thread to be moved to processor 25, which is the processorthat collects the �nal result.Apart from showing the load of the processors, this kind of graph can also be usedto show two additional pieces of information:� Migration: This variant of the graph, a \migration" graph, shows arrows be-tween processors indicating the migration of a thread from one processor toanother. Load and blocking information are suppressed in this variant.� Sparking: This variant of the graph, a \spark" graph, shows information aboutthe number of sparks on a processor in the same way as the number of runnablethreads, i.e. by shading. This graph is useful to highlight hotspots of sparkcreation.Per-thread activity: The idea of the per-thread activity pro�le is to show theactivity of all generated threads. For each thread a horizontal line is shown. Theline starts when the thread is created and ends when it is terminated. The thicknessof the line indicates the state of the thread. The possible states correspond to thegroups shown in the overall activity pro�le. This pro�le can be regarded as a \threadfocusing" pro�le.The states of the threads are encoded in the following way:� A running thread is shown as a thick green (gray) line.� A runnable thread is shown as a medium red (black) line.� A fetching or migrating thread is shown as a thin blue (black) line.� A blocked thread is shown as a gap in the line.This pro�le gives the most accurate kind of information. Although it is a static pro�lethe information is so detailed that it is possible to \step through" the computationby relating events on di�erent processors with each other. For example the typicalpattern at the beginning of the computation is a running period for starting the thread
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Figure 3.6 Per-thread activity pro�lefollowed by fetching remote data. After that the thread may become runnable, ratherthan running, if another thread has been started on that processor in the meantime.The per-thread activity pro�le in Figure 3.6 only shows the threads that were executedon processor 0. As it is often done in practice, a �lter has been used in order to obtainthis kind of partial information. Usually this kind of pro�le is only used for focusingon a speci�c part of the execution or for a program with a rather small number ofthreads. The pro�le in Figure 3.6 shows the main thread, which is running most ofthe time. Occasionally it has to fetch data, shown as a thin line, or it is suspendedbecause another thread is running on the processor, shown as a medium line.Granularity Pro�lesThe tools for generating granularity pro�les aim at showing the total execution timesof the generated threads. Of particular interest is the number of tiny threads, forwhich the overhead of thread creation is relatively high.



74 Chapter 3. GranSim| A Simulator for Parallel HaskellIn order to show granularity information, i.e. information about the runtime ofthreads, two basic kinds of graphs can be generated:� A bucket statistics, which collects threads with similar runtime in the same\bucket" and shows the number of threads in each bucket.� A cumulative statistics, which shows how many threads have a runtime belowa certain value. This graph gives more detailed information but is usuallynot necessary. Examples of using these graphs can be found in (Hammondet al. 1995).Bucket Statistics: A bucket statistics partitions the x-axis, which represents threadexecution times, into intervals and records the number of threads whose executiontime lies in a speci�c interval. Thus, this statistics transforms continuous informa-tion, the runtime of a thread, into discrete information, the number of threads in abucket. Standard methods for representing and processing of discrete data can beused on this data. For example, the number of threads in each interval is shown as ahistogram. In order to show a wide range of possible values the y-axis is often shownin a log scale.
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Figure 3.7 Bucket statistics of thread runtime and heap allocationsUsually such a bucket statistics is used to analyse the distribution of the executiontimes of threads, giving a granularity pro�le. However, as can be seen in Figure 3.7



3.3. Characteristics of GranSim 75the same kind of statistics can be used in order to analyse di�erent aspects of theexecution such as the total amount of heap allocated by a thread. The similar pro�lesfor both kinds of statistics in Figure 3.7 is typical for a range of programs we havestudied. This reveals a non-obvious close relationship between the execution time andthe number of closures allocated by a thread. Because the graph reduction model iscentred around operations on the heap, it rarely happens that a time consumingthread performs very little allocation, even if the generated code has been optimised.As a matter of fact, our studies in (Hammond et al. 1995) show a more than 90%correlation between these two aspects for several example programs. The exampleprogram used in Figure 3.7 is again the word search algorithm.Cumulative Statistics: One problem with the bucket statistics is that the result-ing pro�le depends to some degree on the choice of the intervals. With an unluckychoice di�erent results may show a similar pro�le. To avoid this problem, the visu-alisation tools can also generate cumulative statistics. In a cumulative granularitystatistic a point (x; y) in a graph indicates that y threads have a runtime of at mostx cycles. Thus, the graph cumulates the number of threads and will show the to-tal number of threads generated at the right end of the x-axis. This graph can beproduced with either the absolute number of threads or the percentage of threads onthe y-axis. Again the same kind of graph can be used to show aspects other thanexecution time.3.3.4 E�ciencyThe two most important features of GranSim for supporting a system-oriented viewof the computation are its 
exibility and accuracy (see Section 3.6 for a compari-son with results from GUM). However, a high degree of accuracy also imposes ahigh bookkeeping overhead on the simulation. The three main factors governing thee�ciency of the simulation are:� the degree of communication in the program;� the number of threads that are created; and� the frequency of blocking a thread on a closure that is under evaluation.



76 Chapter 3. GranSim| A Simulator for Parallel HaskellThe exact modelling of communication inGranSim is rather expensive, because eachsimulated communication causes a rather expensive context switch in the simulator.Such a context switch requires the current state of the simulator to be saved andrestored. Furthermore, a \runtime-system call" has to be performed, interruptingthe normal reduction process. This slows down the simulation especially of machineswith low latency where much communication is performed.Switching to another thread is also rather expensive. As a consequence, the totalnumber of threads that are created a�ects the e�ciency of the simulation in a crucialway. The in
uence of the number of threads on the performance of the simulation canbe reduced by increasing the time slice given to each thread. This will result in a fasterbut less accurate simulation, because a thread may run ahead in the computation,ignoring communication events.Another problem caused by a large number of threads is their heap consumption.With 30 words per thread, plus the size of the initial stack object, the heap useddirectly by the thread is not critical. However, because each thread holds on to apiece of graph, the total amount of live data can increase drastically. This causes morefrequent garbage collections, which in turn increases the runtime of the simulationcompared with an optimised sequential version. This point currently poses a problemfor using the GranSim-Light setup in very large programs like Lolita.In order to get an idea of the simulation costs Table 3.1 shows the simulation times,i.e. the time needed to run the simulation, of several programs run on GranSim andGranSim-Light with that on HBCPP (Runciman & Wakeling 1993), an idealisedsimulator for the same source language. As example programs a set of non-trivialprograms from the emerging parallel NoFib suite has been used: a ray tracer, Ray,the same word search program, Soda, that has been used as an example for thevisualisation tools, a linear system solver, LinSolv, discussed in detail in Section 4.6, adeterminant computation, Determinant, used as a part of the linear system solver, anda matrix multiplication, MatMult. Two values are given for the GranSim simulationtimes: the �rst value uses the default time slice given to every thread; the value inparentheses uses a very small time slice for a more accurate but slower simulation.The di�erence from the �rst value gives an idea how much the simulation time canbe tuned by choosing a di�erent time-slice.In three cases, Ray, LinSolv, and MatMult the GranSim-Light setup shows a signif-icant higher runtime compared to the standard GranSim setup. This is mainly due



3.3. Characteristics of GranSim 77Table 3.1 Simulation times (in seconds) of GranSim and HBCPPProgram GranSim GranSim- HBCPP optimiseddefault short Light GHCtime slice time sliceRay 70.7 198.9 141.3 73.2 11.1Soda 2.4 5.5 1.5 0.8 0.1LinSolv 75.9 96.8 334.0 | 0.1Determinant 7.9 8.4 4.3 4.1 1.7MatMult 22.3 26.9 65.9 26.9 0.4
to the large number of threads that are created in the idealised simulation, causing alarge number of context switches. This aspect is elaborated further in Section 3.4. Itshould be noted that faster simulation time is not the main goal of GranSim-Light.Often it generates a faster simulation but the main purpose is to simulate an idealisedmachine, re
ecting an algorithm-oriented view of parallelism.Usually, GranSim is between 1.5 and 2.5 slower than HBCPP, the factor wouldprobably be larger for linsolv but this program did not compile successfully underHBCPP. Considering the additional information produced in the standardGranSimsetup this can be regarded as an acceptable factor. In the case of MatMult andfor some very small example programs it occasionally even manages to outperformHBCPP. One reason for the reduced simulation time might be the improved codegeneration. Because GranSim is integrated in GHC we can pro�t from the ongoingtuning of the compiler itself (see the following section for details).Compared to an optimised sequential version the simulation shows a slow-down of afactor of 4.6 to 759. Again the worst case is generated by linsolv with an abundanceof parallel threads and a lot of communication in the program. Most of the simulationsexhibit a slow-down of 10 to 15. Considering that GHC produces the fastest code ofall available Haskell compilers (Hartel 1995), these factors still render the simulatoruseful for large programs and this has been proven for programs such as LinSolv(Section 4.6) and Lolita (Section 4.5).



78 Chapter 3. GranSim| A Simulator for Parallel Haskell3.3.5 Integration into GHCGranSim is built on top of the Glasgow Haskell Compiler (GHC), a state-of-the-artoptimising compiler for Haskell. This means that the execution of sequential code inthe simulator is realistic. In fact, the code generated by GranSim is almost identicalto the sequential code generated by GHC. The only di�erence are macros that checkfor the existence of a closure on a processor, at the beginning of every basic block,and another macro for adding the execution time of the basic block to the local clock,at the end of this basic block.It is possible to use all the features of a normal GHC compilation in GranSim, too.For example, the ccall mechanism can be used to call C functions in a parallel pro-gram. This feature is essential for the parallelisation of Lolita(see Section 4.5). Withthis mechanism optimised sequential, possibly even imperative, code in libraries canbe called from a parallel lazy functional program. This feature has been exploited inan experimental implementation of a parallel resultant algorithm using basic polyno-mial operations of a sequential computer algebra library.One of the main features of GHC is the use of many program transformations inorder to optimise the sequential code. This covers well-established optimisationssuch as inlining and the use of strictness information as well as rather new optimi-sations such as let-
oating and deforestation. The in
uence of these new sequentialoptimisations on the parallel execution of a program is an interesting but largelyunstudied area. For example deforestation might eliminate intermediate lists thatare crucial for the parallel execution of the program. Indeed Santos reports that inone example program (Fast Fourier Transformation) the full laziness transformationcreates a sequential bottleneck, which slows down the computation by a factor of 6to 10 (Santos 1995, Section 5.2.2). GranSim would seem to be the ideal basis forstudying these interactions in more detail.3.3.6 RobustnessThe robustness of GranSim has been proven by using it in the parallelisation andperformance tuning of a set of large Haskell programs. Some of these programs arediscussed in more detail in Chapter 4. Most of the parallelisation of the Lolita naturallanguage engineering system has been done by using GranSim. Other scientists have



3.4. GranSim-Light 79usedGranSim to parallelise substantial pieces of Haskell code such as a program thatdetermines accident blackspots based on a large database of tra�c accident reports(Wu & Harbird 1996, Trinder et al. 1998) and Naira, a parallelising compiler for asubset of Haskell (Junaidu 1998).Without a simulator it would be much more di�cult to parallelise such large programsbecause of system issues, e.g. integrating foreign language calls, and \external" aspectsof the execution, e.g. system load, cannot be easily eliminated. The separation intoGranSim and GranSim-Light con�gurations encourages the parallel program tobe developed in two stages: �rst the parallel algorithm is developed in a machineindependent setting; then it is optimised for a speci�c machine. In particular, theparallelisation of Lolita showed the importance of having a simulator that is integratedin a state-of-the-art-compiler with all its tools: it was crucial to have a pro�ler for thesequential version of the program. Based on these experiences of using bothGranSimand GUM in the parallelisation of several programs the parallel programming groupat Glasgow has developed a parallelisation methodology, with GranSim as one of itsmajor components (see Section 4.8).3.4 GranSim-LightOne main purpose of GranSim is to provide a testbed for variations of the runtime-system. This requires a very accurate simulation that is 
exible enough to modeldi�erent kinds of parallel architectures. However, in early stages of the developmentof a parallel algorithm a more abstract view of parallel computation is advantageous.This di�erent attitude requires slightly di�erent characteristics of the simulator.The GranSim-Light setup has been designed to satisfy such an algorithm-orientedview of parallelism. Therefore, GranSim-Light models an idealised machine with� an in�nite number of processors and� zero communication costs.This di�erence in modelling the parallel execution of a program requires changes inthe structure of the simulator. Most importantly, the spark and thread pools are not
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Figure 3.8 Global structure of GranSim-Lightdistributed in this setup. Figure 3.8 shows the global structure of theGranSim-Lightsetup.This setup exposes all parallelism in the algorithm and allows the programmer totune the performance of the algorithm before studying its dynamic behaviour on aspeci�c parallel machine. Although such a simulation gives a less accurate picture ofthe parallel behaviour on a concrete machine, it has proven to be an important stepin the methodology for parallelising large lazy functional programs (see Section 4.8).The GranSim-Light setup is very close to the HBCPP simulator (Runciman &Wakeling 1993). In Section 3.6 we compare the results of some simulations underboth simulators. Table 3.1 has already shown that the simulation time in GranSimis comparable to that in HBCPP. GranSim-Light sometimes manages to be as fastas HBCPP and is within a factor of 2.5 for the remaining programs.One problem with GranSim-Light, however, is the fact that its performance de-pends very much on the number of generated threads. The idealised simulation ofGranSim-Light usually creates a much larger number of threads than the standardsimulation because in the latter case the evaluate-and-die mechanism manages to sub-



3.5. Shortcomings of GranSim 81sume potential parallel threads. Clearly, the evaluate-and-die mechanism cannot bee�ective in a setup where every spark is immediately turned into a thread. We haveseen this behaviour when comparing simulation times in Table 3.1. For some exam-ple programs in these measurements the GranSim-Light simulation is signi�cantlyslower than the standard setup of GranSim. The main reason for this slow-downis the large number of context switches necessary to simulate the graph reduction ofand the interaction between so many threads.
3.5 Shortcomings of GranSimDespite the high degree of parameterisation of GranSim, there are certain aspectsof a parallel machine that are not modelled. This section comments on these short-comings and their impact on the development of parallel algorithms.Computation: GranSim models an execution on a homogeneous MIMD multi-processor. This model does not include the concept of clusters of processors, withcheap local communication. Nor does this model encompass SIMD machines, whichoperate with only a single instruction stream. However, this model corresponds tothe underlying computation model of GUM.Communication: Two of the most important aspects of a parallel machine thatare not covered by GranSim relate to the communication behaviour of the machine:the bandwidth of the communication and the topology of the underlying machine.GranSim assumes that the latency between two processors is independent of thecommunication tra�c. In reality, however, \contention" will occur at some point,drastically degrading the performance of the communication. However, this usuallyonly happens with an excessive amount of communication and should therefore be noproblem for normal executions. Another simplifying assumption is that the distancebetween any two processors in the system is the same. This �xes the simulation to onespecial topology, a fully-connected graph. However, experiences with modern parallelmachines show that the topology has a rather small in
uence on the communicationspeed.



82 Chapter 3. GranSim| A Simulator for Parallel HaskellMemory Management: One important aspect in the execution of a parallel pro-gram is the data locality. In the computation model used by GranSim as well asGUM there is only very limited support for studying this aspect. An experimentalfeature in GranSim allows absolute placement of a process on a speci�c processor,but the data will always travel to the thread never vice versa. A useful extension ofGranSim would be the implementation of \sticky closures" that have to be evaluatedon the processor on which they have been created. The idea of such an implementa-tion would be to automatically create a spark for a sticky closure when it is demanded.The usual runtime-system mechanisms can then be used to turn the closure into athread and to evaluate it. This evaluation must be on the speci�ed processor but theruntime-system still has the choice to discard the spark.GranSim does not provide any modelling of garbage collection in the parallel system.The main motivation for this design decision is that the choice of one particularmechanism would likely have global e�ects in the execution, e.g. reference countinggarbage collection introduces an overhead when copying any closure in the system.Thus, all results would be biased towards the chosen form of garbage collection.
Extensions of GranSim: One important shortcoming is the lack of a parallelpro�ling mechanism. When parallelising big programs it would be very important tomark certain threads that are of special interest and to focus on these threads withthe visualisation tools. So far, only a rudimentary thread marking mechanism hasbeen implemented. It propagates a thread name to all children and makes it possibleto change the name during execution. In order to use this information special �lterprograms have to be applied to the GranSim pro�le. In the meantime, a parallelpro�ler, GranCC, has been constructed by merging GranSim with sequential costcentre pro�ling (Hammond et al. 1997). Initial results of this research e�ort, to whichthe author is contributing, show valuable additional information. An alternativeapproach is to dynamically mark evaluation strategies (see Section 4.3) in the codeto provide information about which threads have been generated by which strategy.This approach is currently pursued by a research group at The Open University.



3.6. Validation of Simulation Results 833.6 Validation of Simulation ResultsThis section gives a validation of some simulation results by comparing pro�les ob-tained from GranSim with those from HBCPP, GRIP, and GUM. This compari-son shows that GranSim yields a realistic picture of a program's parallel behaviour,provided that the GranSim parameters are set to model the underlying hardwarearchitecture.3.6.1 GranSim versus HBCPP
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running blockedFigure 3.9 Activity pro�les from GranSim and HBCPPFigure 3.9 compares the overall activity pro�les for the queens program generated byGranSim and HBCPP. The activity pro�le produced by the GranSim executionis signi�cantly more detailed, which results in a more �ne-grained picture. It alsomanages to exhibit stages of blocking that are too short to be detected in HBCPP.Most importantly, the overall pattern of the computation is the same.3.6.2 GranSim versus GRIPSection 4.6 discusses three variants of a symbolic algorithm for solving a system oflinear equations, LinSolv. Starting with a rather ine�cient algorithm the perfor-



84 Chapter 3. GranSim| A Simulator for Parallel Haskellmance of this algorithm is tuned and sequential bottlenecks are eliminated. The�nal algorithm has also been executed on the GRIP multi-processor. Figure 3.10presents a comparison of the activity pro�les generated by GranSim and GRIP.The GranSim version uses a setup with 16 processors and a latency of 400 cycles,matching the GRIP con�guration. In the GRIP pro�le no runnable threads areshown because this kind of information is not collected. The shape of both pro�les isvery similar. Both pro�les show a small peak of parallelism at the end of the compu-tation. Comparing the raw numbers we observe an average parallelism of 15 underGranSim, whereas the average parallelism on GRIP is 14.5. The speedup obtainedunder GranSim, 11.92, is slightly below the speedup on GRIP, 13.58.The most pronounced di�erence is the larger number of blocked threads inGranSim.This is probably due to the use of local sparking in GRIP, which is not simulated inGranSim. Local sparking distinguishes between local spark pools for each processorand one shared global spark pool. In order to improve data locality local sparks arepreferred. Only in the case of a global shortage of sparks are the local sparks movedinto the global spark pool. In this example the GranSim graph shows that there arerunnable threads through most of the computation. Therefore, theGRIP version willrarely have to move sparks into the global spark pool, where they can be picked upby other idle processors. In total this leads to a smaller number of generated threads.
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3.6. Validation of Simulation Results 85One of our example programs that shows a very interesting granularity pro�le is aparallel ray tracer. This program has been developed by Kelly in his thesis (Kelly1989).Hammond et al. (1994) study the granularity of this algorithm on the GRIP multi-processor, deriving granularity pro�les for each of the programs. The author used thesame code of the ray tracer under GranSim to analyse the granularity of the gener-ated threads. Figure 3.11 compares these pro�les in a bucket statistics. In both casesa log scale is used to show even small buckets. GranSim measures time in machinecycles, whereas in the GRIP measurements the granularity is measured in terms ofthe number of heap allocations. The previously mentioned high correlation betweenexecution time and heap allocations justi�es this approximation of execution time.This program shows two main clusters of threads with respect to their runtimes: twoclusters of short threads and a cluster of large threads. The short threads representprocesses that \drive the parallelism" in the program, generating many sub-threads.The large threads are performing the actual computation. Because of the di�erentmeasure of execution time, concrete x-values cannot be directly compared. However,the granularity pro�le in both cases is the same.
3.6.3 GranSim versus GUMFigure 3.12 gives a comparison of a parallel determinant computation executed underGranSim, left hand side, and on a Sun SPARCserver shared memory machine withfour processors under GUM, right hand side. The overall shape of both pro�lesexhibits a very similar overall behaviour of the program. The GranSim versionunderestimates the number of blocked threads and especially the number of fetchingthreads. The latter is a general trend, which can also be observed in the Lolita system(see Section 4.5). Although the overhead for creating a communication packet hasbeen increased in this simulation it does not model all of the software overhead inPVM, which is in part data dependent. The regular, short drops in the utilisation ofthe GUM pro�le may in part be caused by operating system interference, becausethe 4 processor machine used in this experiment has a signi�cant load of users.
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Figure 3.11 GranSim (top) andGRIP (bottom) granularity pro�les of a ray tracer3.7 SummaryA simulator for the parallel execution of functional programs may be of use for eitherthe programmer, who wants to study the parallel behaviour of a certain algorithm,or the compiler designer, who wants to study the e�ectiveness of certain mechanismsin the runtime-system. This chapter has shown that GranSim is a useful tool forboth groups by supporting a high-level algorithm-oriented view as well as a low-level system-oriented view. In the latter view the focus might be on an extremelyaccurate simulation of a speci�c machine or on a 
exible simulation of a wide rangeof parallel architectures. GranSim supports the approach of a 
exible simulation bybeing highly parameterised without losing accuracy on the compilation level. Onlycertain very low-level machine characteristics are not captured in the simulation.Taking such a system-oriented view, GranSim measurements with implementations
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Figure 3.12 GranSim and GUM activity pro�les of a determinant computationof alternative packing and rescheduling schemes have led to concrete suggestions forimproving theGUM runtime-system for speci�c architectures, e.g. by packing smallergraph structures in highly-communicating programs or by using a less aggressiverescheduling scheme in high-latency systems.In the following chapter GranSim will be used in the parallelisation and performancetuning of a set of large functional programs. This will demonstrate its practicalusefulness beyond its original design as a testbed for implementing variants in theparallel runtime-system. The integration of GranSim into a parallel engineeringenvironment together with the GUM parallel runtime-system, and the availabilityof visualisation tools in both systems are crucial in the development of large parallelprograms.
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Chapter 4
Large-Scale Parallel FunctionalProgramming

CapsuleThe superior computational power of parallel machines is most likely to beused in time consuming programs. Such programs are typically large. Duringthe performance tuning of the parallel code it is often necessary to restructureparts of the code. For these reasons, a modular design is even more importantfor parallel programs than for sequential programs. Lazy functional languageso�er a high level of modularity via higher-order functions and a non-strictsemantics. This chapter focuses on the question how to specify parallelism ina lazy functional language without sacri�cing modularity.Previous experiences with writing medium-scale parallel programs haveshown that the undisciplined use of par and seq annotations in the programcan yield opaque code. This observation has led to the development of evalua-tion strategies based on laziness, overloading, polymorphism, and higher-orderfunctions. This chapter presents evaluation strategies, which have been devel-oped in a group e�ort, and contributes to the design of strategies by augmentingthe core module with a construct for strategic function application. The re-sulting module has been used in parallelising several large programs includingLinSolv, a linear system solver, an Alpha-Beta search algorithm, and Lolita,a natural language engineering system consisting of more than 47,000 lines ofHaskell. These programs show that with only a few localised changes in thecode good parallel performance can be achieved in programs that have notnecessarily been written with parallel execution in mind. The laziness of the89



90 Chapter 4. Large-Scale Parallel Functional Programminglanguage favours a data-oriented style of parallel programming, where the par-allelism is de�ned on intermediate data structures rather than within speci�cmodules of the program. This facilitates top-level parallelisation and restrictsthe contextual knowledge the programmer has to have about the program.4.1 IntroductionAlthough the advantages of the high level of abstraction in functional languagesmainly show up in big programs there is a daunting shortage of such programs. In thecontext of parallel processing this is even more critical since realistic time-consumingprograms, which should be executed in parallel, are often large. Obtaining a parallelversion that exhibits a reasonable parallel performance without spending a lot ofe�ort in modifying the code is therefore of utmost importance.This thesis focuses on symbolic computation as main application area. By and large,programs in this area use the major advantages of functional languages such as higher-order functions and algebraic data-types much more heavily than numerical compu-tation programs. Thus they are a natural application for functional languages. Forprograms with these characteristics it is possible to make use of parallel computationwithout a vast e�ort in recoding the program, even if that results in the loss of someparallelism. Again this is in contrast to the approach towards parallel computationusually taken for numerical applications, where it is feasible to invest a lot of time inparallelising one particular program. In contrast, the parallelisation of the programsin this chapter takes an approach of \acceptable gain for low pain".In order to cope with large programs the parallel programming group at Glasgow hasdeveloped evaluation strategies, a new programming technique based on lazy evalu-ation, overloading, polymorphism, and higher-order functions. Evaluation strategiesallow a clean separation of algorithmic code from an operational description of theparallel program behaviour. This chapter discusses the author's contribution to thedevelopment of strategies and his parallelisation and performance tuning of severallarge functional programs. This presentation shows that the parallel program devel-opment is much easier when using strategies, in particular because of better supportfor modularity, and that most of the complexity of parallel program development forimperative languages is absent in this model, because synchronisation and communi-cation are managed entirely by the runtime-system.



4.1. Introduction 91The parallel programming group at Glasgow has studied about 8 medium to largeparallel functional programs. This chapter describes the following three programs:� LinSolv, a program for �nding an exact solution of a system of linear equations.It is interesting for its use of an approach typical to many algorithms in computeralgebra.� Alpha-Beta search, a program for performing a heuristic search in a tree struc-ture, usually used in game programming. It is a typical program for AI appli-cations.� Lolita, a large natural language engineering system. It is a very general systemand can be used for extracting semantics from newspaper articles, translate textbetween languages, or for interactive language tutoring.The contributions of this thesis to the work described here are as follows. The au-thor's experience with parallelising LinSolv has initiated the development of evalua-tion strategies in a group e�ort led by Dr. Phil Trinder. The author's main indepen-dent contribution to the design of strategies is the development of strategic functionapplication as a convenient way to express pipeline parallelism and to combine itwith other forms of parallelism via function composition. The modi�ed strategiesmodule has been used in the author's parallelisation of LinSolv, strategy version, andof Alpha-Beta search, based on the sequential algorithm by Hughes (1989). Theseexperiences have led to changes in the core design of evaluation strategies. Theparallelisation of Lolita has been done in collaboration with the Natural LanguageEngineering Group at the University of Durham. Sections 4.2, 4.3, and 4.9.1, describ-ing evaluation strategies, are revised versions of material published in Trinder et al.(1998). Sections 4.4 and 4.5 cover material published in Loidl & Trinder (1997) andLoidl et al. (1997), respectively. Section 4.6 is a revised version of material submittedfor publication in Loidl (1997).The structure of this chapter is as follows. Section 4.2 discusses problems when us-ing annotations in order to describe parallel program behaviour for large programs.Section 4.3 introduces evaluation strategies and presents simple generic strategiesdemonstrating the 
exibility of this approach. The following three sections presentcase studies of using strategies on several large programs: an Alpha-Beta search algo-rithm in Section 4.4, Lolita, a natural language engineering system in Section 4.5, and



92 Chapter 4. Large-Scale Parallel Functional ProgrammingLinSolv, a linear equation solver in Section 4.6. Section 4.7 compares the style of par-allel programming in a lazy functional with a strict imperative language. Section 4.8outlines a methodology for parallelising large lazy programs based on the acquiredexperiences with parallelising several large applications. Finally, Section 4.10 con-cludes.4.2 Problems with Parallel Programming in-the-largeThe big advantage of functional programming languages is the fact that they avoidoverspeci�cation by only de�ning the result without specifying an exact order ofevaluation steps. More informally, they specify what to compute without �xing howto compute it. However, when writing an explicitly parallel program it is necessaryto specify some aspects of the dynamic behaviour of the program. In the model usedin this thesis this means exposing parallelism by marking expressions that might beevaluated in parallel. Since the basic execution model is a lazy one, the programmermay also want to specify the evaluation degree in the program in order to guarantee acertain amount of evaluation without relying on the quality of the strictness analyser.This approach abstracts from details about thread creation, thread placement, syn-chronisation, data transfer, and many other aspects that often have to be explicitlyhandled in a parallel language by the programmer. However, even just describingpotential parallelism together with evaluation degree may lead to a program that iscluttered with behavioural code. The undisciplined use of annotations in the paral-lelisation of several programs, such as a linear system solver, has generated opaqueparallel code. The comparison of a straightforward parallelisation of LinSolv witha version using strategies in Section 4.6 shows the practical advantages of a morestructured approach towards exposing parallelism.4.2.1 A Simple ExampleAs a simple example demonstrating the problem mentioned above, let us considerparallel quicksort. A naive version of a parallel function might be written as follows.
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quicksortN :: (Ord a) => [a] -> [a]        
quicksortN []     = []
quicksortN [x]    = [x]
quicksortN (x:xs) = losort ‘par‘ 
                    hisort ‘par‘ 
                    losort ++ (x:hisort)
                    where    
                      losort = quicksortN [y|y <- xs, y < x] 
                      hisort = quicksortN [y|y <- xs, y >= x]The intention is that two threads are created to sort the lower and higher halves ofthe list in parallel with combining the results. Unfortunately quicksortN has almostno parallelism because threads in GpH terminate when the sparked expression is inweak head normal form (WHNF). In consequence, all of the threads that are sparkedto construct losort and hisort do very little useful work, terminating after creatingthe �rst cons cell. To make the threads perform useful work a \forcing" function,such as forceList below, can be used. The resulting program has the desired parallelbehaviour, yielding a parallel divide-and-conquer structure. However, the de�nitionof quicksortF is cluttered with behavioural code, namely the forcing functions.
forceList :: [a] -> ()
forceList [] = ()
forceList (x:xs) = x ‘seq‘ forceList xs

quicksortF []      = []
quicksortF [x]     = [x]
quicksortF (x:xs)  = (forceList losort) ‘par‘
                     (forceList hisort) ‘par‘
                     losort ++ (x:hisort)
                     where
                       losort = quicksortF [y|y <- xs, y < x] 
                       hisort = quicksortF [y|y <- xs, y >= x]

4.2.2 Data-Oriented ParallelismQuicksort is an example of (divide-and-conquer) control-oriented parallelism wheresubexpressions of a function are identi�ed for parallel evaluation. Data-oriented par-allelism is an alternative approach where elements of a data structure are evaluated inparallel. A parallel map is a useful example of data-oriented parallelism; for examplethe parMap function de�ned below applies its function argument to every element ofa list in parallel.
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parMap :: (a -> b) -> [a] -> [b]
parMap f [] = []
parMap f (x:xs) = fx ‘par‘ fxs ‘seq‘ (fx:fxs)
                  where
                    fx = f x
                    fxs = parMap f xsThe de�nition above works as follows: fx is sparked, before recursing down the list(fxs), only returning the �rst constructor of the result list after every element hasbeen sparked. Note that if the function argument supplied to parMap constructs adata structure, it must be composed with a forcing function in order to ensure thatthe data structure is constructed in parallel.4.2.3 Dynamic BehaviourAs the examples above show, a parallel function must describe not only the algorithm,but also some important aspects of how the parallel machine should organise thecomputation, i.e. the function's dynamic behaviour. InGpH, there are several aspectsof dynamic behaviour:� Parallelism control, which speci�es what threads should be created, and in whatorder, using par and seq.� Evaluation degree, which speci�es how much evaluation each thread should per-form. In the examples above, forcing functions were used to describe the eval-uation degree.� Thread granularity: it is important to spark only those expressions where thecost of evaluation greatly exceeds the thread creation overheads.� Locality: part of the cost of evaluating a thread is the time required to com-municate its result and the data it requires, and in consequence it may onlybe worth creating a thread if its data is local. Because GpH does not containexplicit placement information, locality has to be controlled indirectly, e.g. byconstructing data structures that contain all data that should be kept local.Evaluation degree is closely related to strictness and de�ned over the same partiallyordered, lifted domain of values. If the evaluation degree of a value in a function is



4.3. Evaluation Strategies 95less than the program's strictness in that value, i.e. its value in the semantic domainis smaller than that de�ned by its strictness property, then the parallelism is con-servative, i.e. no expression is reduced in the parallel program that is not reduced inits lazy counterpart. In several programs we have found it useful to evaluate somevalues speculatively, i.e. the evaluation-degree may usefully be more strict than thelazy function. Although this runs the risk of performing unnecessary computation itallows the programmer to specify parallelism that is useful most of the time.4.3 Evaluation Strategies4.3.1 Evaluation StrategiesIn the examples above, the code describing the algorithm and dynamic behaviourare intertwined, and as a consequence both have become rather opaque. In largerprograms, and with carefully-tuned parallelism, the problem is far worse. This sectiondescribes evaluation strategies, a solution to this dilemma. The driving philosophybehind evaluation strategies is that it should be possible to understand the semanticsof a function without considering its dynamic behaviour.An evaluation strategy is a function that speci�es the dynamic behaviour requiredwhen computing a value of a given type. A strategy makes no contribution towards thevalue being computed by the algorithmic component of the function: it is evaluatedpurely for e�ect, and hence it returns just the nullary tuple ().
type Strategy a = a -> ()

4.3.2 Strategies Controlling Evaluation DegreeThe simplest strategies introduce no parallelism: they specify only the evaluationdegree. The simplest strategy is termed r0 and performs no reduction at all. Perhapssurprisingly, this strategy proves very useful, e.g. when evaluating a pair we may wantto evaluate only the �rst element but not the second.
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r0 :: Strategy a 
r0 _ = ()Because reduction to WHNF is the default evaluation degree in GpH, a strategy toreduce a value of any type to WHNF is easily de�ned:
rwhnf :: Strategy a 
rwhnf x = x ‘seq‘ ()Many expressions can also be reduced to normal form (NF), i.e. a form that containsno redexes, by the rnf strategy. The rnf strategy can be de�ned over built-in ordatatypes, but not over function types or any type incorporating a function type asfew reduction engines support the reduction of inner redexes within functions. Ratherthan de�ning a new rnfX strategy for each data type X, it is better to have a singleoverloaded rnf strategy that works on any data type. The obvious solution is to usea Haskell type class, NFData, to overload the rnf operation. Because NF and WHNFcoincide for built-in types such as integers and booleans, the default method for rnfis rwhnf.
class NFData a where
  rnf :: Strategy a
  rnf = rwhnfFor each data type an instance of NFData must be declared that speci�es how toreduce a value of that type to normal form. Such an instance relies on its elementtypes, if any, being in class NFData. Consider lists and pairs for example.
instance NFData a => NFData [a] where
  rnf [] = ()
  rnf (x:xs) = rnf x ‘seq‘ rnf xs

instance (NFData a, NFData b) => NFData (a,b) where
  rnf (x,y) = rnf x ‘seq‘ rnf y 

4.3.3 Combining StrategiesBecause evaluation strategies are just normal higher-order functions, they can be com-bined using the full power of the language, e.g. passed as parameters or composed



4.3. Evaluation Strategies 97using the function composition operator. Elements of a strategy are combined by se-quential or parallel composition (seq or par). Many useful strategies are higher-order,for example, seqList below is a strategy that sequentially applies a strategy to everyelement of a list, in essence mapping a strategy and then folding the seq combinatorover the list. For example, the strategy seqList r0 evaluates just the spine of a list,and seqList rwhnf evaluates every element of a list to WHNF. There are analo-gous functions for every datatype, indeed in Haskell 1.3 and later versions (Petersonet al. 1996) constructor classes can be de�ned that work on arbitrary datatypes.The strategic examples in this thesis are presented in Haskell 1.2 for pragmatic rea-sons: they are extracted from programs run on our e�cient parallel implementationof Haskell 1.2 (Trinder, Hammond, Mattson Jr., Partridge & Peyton Jones 1996).However, the current version of the strategies module does support Haskell 1.4, too.
seqList :: Strategy a -> Strategy [a]
seqList strat []     = ()
seqList strat (x:xs) = strat x ‘seq‘ (seqList strat xs)4.3.4 Data-Oriented ParallelismA strategy can specify parallelism and sequencing as well as evaluation degree. Strate-gies specifying data-oriented parallelism describe the dynamic behaviour in terms ofsome data structure. For example parList is similar to seqList, except that itapplies the strategy to every element of a list in parallel.
parList :: Strategy a -> Strategy [a]
parList strat []     = ()
parList strat (x:xs) = strat x ‘par‘ (parList strat xs)Data-oriented strategies are applied by the using function which applies the strategyto the data structure x before returning it. The expression x `using` s is a projectionon x, i.e. it is both a retraction (x `using` s is less de�ned than x) and idempotent((x `using` s) `using` s = x `using` s). The using function is de�ned to havea lower precedence than any other operator because it acts as a separator betweenalgorithmic and behavioural code.
using :: a -> Strategy a -> a
using x s = s x ‘seq‘ x



98 Chapter 4. Large-Scale Parallel Functional ProgrammingA strategic version of the parallel map encountered in Section 4.2.2 can be writtenas follows. Note how the algorithmic code map f xs is cleanly separated from thestrategy. The strat parameter determines the dynamic behaviour of each element ofthe result list, and hence parMap is parametric in some of its dynamic behaviour.
parMap :: Strategy b -> (a -> b) -> [a] -> [b]
parMap strat f xs = map f xs ‘using‘ parList strat

4.3.5 Control-Oriented ParallelismControl-oriented parallelism is typically expressed by a sequence of strategy applica-tions composed with par and seq that speci�es which subexpressions of a functionare to be evaluated in parallel, and in what order. The sequence is loosely termeda strategy, and is invoked by either the demanding or the sparking function. TheHaskell flip function simply reorders a binary function's parameters.
demanding, sparking :: a -> () -> a

demanding = flip seq
sparking  = flip parThe control-oriented parallelism of pfib can be expressed as follows using demanding.The LinSolv and Lolita programs in Sections 4.6 and 4.5 contain more elaborateexamples of using sparking.
pfib n 
  | n <= 1    = 1
  | otherwise = (n1+n2+1) ‘demanding‘ strategy
    where
      n1 = pfib (n-1)
      n2 = pfib (n-2)
      strategy = rnf n1 ‘par‘ rnf n2 The control-oriented parallelism of quicksort can be expressed with the followingstrategy, selecting losort and hisort for parallel evaluation.
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quicksortS (x:xs) = losort ++ (x:hisort) ‘using‘ strategy 
                    where
                      losort = quicksortS [y|y <- xs, y < x] 
                      hisort = quicksortS [y|y <- xs, y >= x]
                      strategy result = rnf losort ‘par‘
                                        rnf hisort ‘par‘ 
                                        rnf result

4.3.6 Additional Dynamic Behaviour
Strategies can control other aspects of dynamic behaviour, thereby avoiding clutteringthe algorithmic code with them. A particularly important example for the scope ofthis thesis is a thresholding mechanism that controls thread granularity. In pfib forexample, granularity is improved for many machines if threads are not created whenthe argument is small. The use of thresholding in Lolita is discussed in Section 4.5.
pfibT n 
  | n <= 1    = 1
  | otherwise = (n1+n2+1) ‘demanding‘ strategy
    where
      n1 = pfibT (n-1)
      n2 = pfibT (n-2)
      strategy = if n > 10 
                   then rnf n1 ‘par‘ rnf n2 
                   else ()

Another example of a generic strategy that a�ects granularity, i.e. the computationcosts of potentially parallel threads, is the parGranList strategy below. This strategyuses a granularity estimate function and creates the parallelism in an order of decreas-ing granularity. This strategy has been developed by the author during the perfor-mance tuning of a very coarse-grained parallel bowing algorithm (Hall et al. 1997).
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parGranList :: Strategy a -> (a -> Int) -> [a] -> Strategy [a]
parGranList s gran_estim l_in = \ l_out ->
 parListByIdx s l_out $
 sortedIdx gran_list (sortLe ( \ (i,_) (j,_) -> i>j) gran_list)
 where 
  -- spark list elems of l in the order specified by  (i:idxs)
  parListByIdx s l [] = ()
  parListByIdx s l (i:idxs) = parListByIdx s l idxs ‘sparking‘ s (l!!i)
  -- get the index of y in the list
  idx y [] = error "idx: x not in l"
  idx y ((x,_):xs) | y==x      = 0
                   | otherwise = (idx y xs)+1
  -- the ‘schedule’ for sparking: list of indices of sorted input list
  sortedIdx l idxs = [ idx x l | (x,_) <- idxs ]
  -- add granularity info to elems of the input list
  gran_list = map (\ l -> (gran_estim l, l)) l_in  The purpose of the parGranList strategy is to spark all elements in the list l outin an order of decreasing granularity. The function gran estim provides an estimateof the granularity. Note that this estimate has to be applied to the input list l indetermining the order of the sparks in the output list. Thus, this strategy abstractsover the concrete de�nition of how to compute the results in the output list. Thestrategy proceeds in four steps:1. First granularity estimates are added to each list element yielding gran list.The construct \ l -> ... represents a lambda expression in Haskell, i.e. ananonymous function with the argument l and the body ...2. Then the resulting list is sorted by these estimates using the library functionsortLe, which takes a predicate, the less-than-or-equal function to be used forsorting, as the �rst argument.3. In order to obtain a \schedule" for the order in which the list elements shouldbe sparked, a list of indices of the sorted list is computed using sortedIdx.4. Finally, the index-list is used as the schedule for the parListByIdx strategy,which introduces parallelism via a sparking clause. The l!!i construct is usedto extract the i-th element from the list l.For clarity, the current version separates the sorting of the list from obtaining the listof indices, yielding a quadratic algorithm. This could be improved further by mergingboth steps.



4.3. Evaluation Strategies 101Clearly, this strategy encodes a deeper insight into the parallel behaviour of the pro-gram than previous strategies. The original motivation for designing this strategycame from the observation that in a coarse-grained program, with largely varyingcomputation times, it is crucial to generate the largest thread �rst in order to min-imise a sequential tail with only the largest thread executing. In a typical process ofdeveloping a parallel algorithm the programmer starts with examining the types onthe most important data structures and uses pre-de�ned parallel strategies on thesetypes, e.g. parList over list structures. Then, in the performance tuning stage, theprogrammer might try to improve the behaviour by encoding a particular parallelbehaviour in the algorithm as it has been done with the parGranList strategy above.The discussion of the LinSolv algorithm in Section 4.6 elaborates this tuning processfurther.4.3.7 Strategic Function ApplicationThis section discusses one of the author's contributions to the latest version of eval-uation strategies as part of his parallelisation of Lolita. The initial version of parallelLolita was written with using-based pipelines. Introducing the notion of strategicfunction application and rewriting the code in this style simpli�ed the overall struc-ture signi�cantly.In pipelined parallelism a sequence of stream-processing functions are composed to-gether, each consuming the stream of values constructed by the previous stage andproducing a new stream. This kind of parallelism is easily expressed in a non-strictlanguage by function composition. The non-strict semantics ensures that no barriersynchronisation is required between the di�erent stages.When using strategies to describe this kind of parallelism a function composition isneeded, which applies a strategy to the intermediate value. Based on this observationstrategic function application and strategic function composition are introduced. Thenew operators correspond to function application $ and function composition . de-�ned in the Haskell prelude. The strategic function application takes one additionalargument, a strategy s, which is applied to the argument. The parallel version of theoperator, $||, applies the strategy and the function in parallel, thereby overlappingtwo stages in the pipeline. The sequential version of this operator, $|, �rst appliesthe strategy and then the function to the argument. This introduces a synchroni-



102 Chapter 4. Large-Scale Parallel Functional Programmingsation barrier and may be used to de�ne evaluation order. However, the strategymay itself de�ne parallelism, e.g. over the structure of the argument. The .|| and.| operators de�ne the same behaviour for function compositions. The de�nition ofthese operators in GpH is given below.
infixl 6 $|, $||      -- strategic function application
infixl 9 .|, .||      -- strategic function composition

($|), ($||) :: (a -> b) -> Strategy a -> a -> b
(.|), (.||) :: (b -> c) -> Strategy b -> (a -> b) -> (a -> c)

($|) f s x  = f x ‘demanding‘ s x 
($||) f s x = f x ‘sparking‘  s x 

(.|) f s g = \ x -> let  gx = g x 
                    in   f gx ‘demanding‘ s gx
(.||) f s g = \ x -> let  gx = g x 
                     in   f gx ‘sparking‘ s gxAn often used example of the modularity of functional languages is the de�nition ofthe sum-of-squares function for computing the sum of the �rst n integer values via thecomposition of three separate functions. With the new construct of strategic functionapplication we can de�ne a parallel behaviour of the same de�nition in a very naturalway without obscuring the original algorithmic code:
sum_of_squares :: Int -> Int
sum_of_squares n = sum             $|| parList rnf $  -- [Int]
                   map (^2)        $|| rnf $          -- [Int]
                   enumFromTo 1 nThe functions are applied via the parallel $|| operator to obtain a parallel pipelinestructure. Furthermore, the types of the intermediate lists, [Int], already suggesta strategy for exposing additional data parallelism in the code: parList rnf. How-ever, in this case we have chosen not to use the parallelism over the list generatedby the enumFromTo library function, because it contains too little computation foreach of the list elements. As a result, this function de�nes a pipeline strategy withdata parallelism over one of the two intermediate list structures (see Figure 4.1). It iseasy to experiment with the parallelism in the code, e.g. by merging pipeline stages,which amounts to replacing $|| with a $| operator. The data parallelism over theintermediate data structures can be simply modi�ed by choosing di�erent strategiesas arguments to the $|| operator. Because none of these changes require to exam-ine the code for the function sum, map, and enumFromTo, this example shows howthe modularity, obtained in functional languages via non-strict data structures and
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enumFromTo 1 sumn map (^2)Figure 4.1 Structure of sum-of-squares

function composition, carries over to the de�nition of the parallel behaviour of thecode.As a comparison of two versions of a more sophisticated strategy we now discuss theback end in the Lolita system, which interprets semantic information obtained in aprevious analysis in the system. This comparison illustrates that keeping intermediatevalues anonymous increases the readability of the program signi�cantly. A using-based version of the back end in Lolita can be written as follows. Details of the codewill be discussed in Section 4.5.
back_end inp opts 
 = r8 ‘demanding‘ strat
   where
     r1 = unpackTrees inp
     r2 = unifySameEvents opts r1
     r3 = storeCategoriseInformation r2
     r4 = unifyBySurfaceString r3
     r5 = addTitleTextrefs r4
     r6 = traceSemWhole r5 
     r7 = optQueryResponse opts r6
     r8 = mkWholeTextAnalysis r7
     strat = (parPair rwhnf (parList rwhnf)) inp                 ‘seq‘
             (parPair rwhnf (parList (parPair rwhnf rwhnf))) r1  ‘seq‘
             rnf r2                                              ‘par‘   
             rnf r3                                              ‘par‘   
             rnf r4                                              ‘par‘
             rnf r5                                              ‘par‘
             rnf r6                                              ‘par‘
             (parTriple rwhnf (parList rwhnf) rwhnf) r7          ‘seq‘   
             () By using strategic function application the same code can be written more succinctlyas follows. The separation of algorithmic and behavioural code is maintained byallowing strategies only as arguments to the strategic function application.
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back_end inp opts =
 mkWholeTextAnalysis   $|  parTriple rwhnf (parList rwhnf) rwhnf $
 optQueryResponse opts $|| rnf $
 traceSemWhole         $|| rnf $
 addTitleTextrefs      $|| rnf $
 unifyBySurfaceString  $|| rnf $
 storeCategoriseInf    $|| rnf $
 unifySameEvents opts  $|  parPair rwhnf (parList (parPair rwhnf rwhnf)) $
 unpackTrees           $|  parPair rwhnf (parList rwhnf)  $
 inpStrategic function application has proven useful in particular for the parallelisation ofLolita (see Section 4.5.3). The Alpha-Beta search algorithm described in Section 4.4has a top-level pipeline structure. However, in this case there is far less potentialparallelism in the pipeline structure.The importance of strategic function application and composition for parallel pro-gramming is underlined by the fact that function composition is considered the basicbuilding block for constructing large programs from independent modules (Hughes1989). The software engineering advantages, such as improved modularity, for sequen-tial program development are well known. In the parallel setting strategic functioncomposition also facilitates a data-oriented approach to parallelisation, making useof the modularity provided by lazy languages.4.4 Alpha-Beta SearchThe �rst example program is the Alpha-Beta search algorithm, typical of arti�cialintelligence applications. It is mainly used for game-playing programs to �nd the bestnext move by generating all possible moves up to a certain depth, applying a staticevaluation function to each of the leaves in this search tree, and combining the resultby picking the best move for the player assuming that the opponent picks the worstmove for the player. In a more general setting this algorithm can be used for heuristicsearch. The idea of the heuristics is that the quality of the result depends on the staticevaluation function as well as on the search depth. If the latter is su�ciently high avery simple static evaluation function can be used.This section discusses two versions of the Alpha-Beta search algorithm: a simple ver-sion, and a pruning version. Both versions are based on the Miranda1 code presented1Miranda is a trademark of Research Software Ltd.



4.4. Alpha-Beta Search 105by Hughes (1989) in order to demonstrate the strengths of lazy functional languages.Based on the generic Alpha-Beta search algorithm two simple games (tic-tac-toe andescape) have been implemented. An interesting aspect of this algorithm is the factthat the pruning version relies on laziness to prune the search tree based on interme-diate results of the computation. This behaviour is crucial for the e�ciency of thesequential algorithm, and has to be preserved in the parallel algorithm.This section presents both parallel versions and studies their parallel runtime be-haviours. The parallel algorithms show how the use of strategies allows the program-mer to develop an e�cient parallel algorithm without sacri�cing the advantages of theoriginal lazy algorithm, namely its modularity and e�ciency. A description of bothalgorithms and a comparison of the parallelisation with that of other applications isgiven in Loidl & Trinder (1997).4.4.1 Simple AlgorithmIn the simple algorithm each possible next move is evaluated independently yieldinga divide-and-conquer structure of the algorithm. The result is either the maximum,player's move, or the minimum, opponent's move, of the evaluations of these positions.As discussed by Hughes (1989) this algorithm can be very naturally derived as asequence of function compositions (see Figure 4.2). The stages in the pipeline performthe following tasks:1. Construct a tree with positions as nodes and all possible next moves as subtrees.This is done by repeatedly applying a newPosition function to the nodes inthe tree, alternating between the functions for the two players, repTree.2. Prune the tree, which might be in�nite at this stage, to a �xed depth to boundthe search via prune. The search depth is an argument to the algorithm.3. Map a static evaluation function over all nodes of the tree via mapTree.4. Crop o� subtrees from winning or losing positions via cropTree. If such aposition is found it is not necessary to search deeper in a subtree.5. Finally, pick the maximum, or minimum, of the resulting evaluations in orderto determine the value of the current position via mise f g. The functions f
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bestMove :: Int -> Piece -> Player -> Player -> Board -> Evaluation
bestMove depth p f g = (mise f g) . 
                       cropTree . 
                       (mapTree (static p)) . 
                       (prune depth) .
                       repTree (newPositions p) 
                               (newPositions (opposite p))Figure 4.2 Top level structure of choosing the best next moveand g represent the combination functions for the two players, maximum orminimum respectively, and alternate when traversing the tree.
Dynamic BehaviourThe fact that the results in all subtrees can be computed independently makes par-allelisation rather easy. For both versions of the algorithm the following four sourcesof parallelism can be used.Top Level Pipeline. An obvious approach to parallelise this algorithm is to usepipeline parallelism between the stages of the pipeline. However, it is crucial not toforce the intermediate values too far. In particular, the result of the repTree stagemight be an in�nite tree.Parallel Static Evaluation Function. The idea of a parallel static evaluationfunction is to reduce the costs of the function, which will be mapped over the leavesof the pruned search tree. This only makes sense for a rather time consuming staticevaluation function, otherwise it creates a lot of �ne-grained parallelism. However, anunderlying assumption of the Alpha-Beta search algorithm is that the static evalua-tion function can be very simple when using a tree search structure to determine thebest value. In the example implementations, the static evaluation function computesthe distance of the current position to a set of known winning positions. The parallelversion computes all distances in parallel.



4.4. Alpha-Beta Search 107Parallel Higher-Order Functions over Trees. Parallelising the de�nitions ofsome higher-order functions is a bottom-up approach. It can be used for the par-allelisation of many functional programs. In this case a parallel version of a mapfunction over search trees, mapTree, is used. However, the measurements in Table 4.1show, that without any knowledge about the context in which these higher-orderfunctions are used a lot of redundant work may be generated resulting in extremelypoor parallelism.Data Parallelism over all Possible Next Moves. In a data parallel approachthe goal is to evaluate all possible next moves in parallel. It is a top-down approachand turns out to be the best source of parallelism in particular for an algorithmwith nodependencies between the evaluations of the subtrees. A simple parMap rnf strategycan be used to capture the dynamic behaviour of this function. The only necessarychange in the algorithm a�ects the mise function in Stage 5 of the algorithm, shownin Figure 4.3. This function takes the two combination functions, either the binarymax or min function, and a tree of static evaluations of positions in the game, asarguments. It then recursively maps the mise function over all subtrees, switchingthe functions f and g to record the switch of turns. Finally, the combination functionat the current level, f, is folded to obtain the score of the current position.
-- This does simple minimaxing without pruning subtrees based on 
-- intermediate evaluations (i.e. purely compositional)
mise :: Player -> Player -> (Tree Evaluation) -> Evaluation
mise f g (Branch a []) = a
mise f g (Branch _ l) = foldr f (g OWin XWin) (parMap rnf (mise g f) l)Figure 4.3 Data parallel combination function in the simple Alpha-Beta searchalgorithm
Performance MeasurementsThe measurements of both versions of the algorithm under the GranSim simulatorare summarised in Table 4.1. The setup used in these measurements models a sharedmemory machine with 32 processors, a latency of 64 machine cycles, and bulk fetching.The �rst four data columns of this table show the results of the simple algorithm



108 Chapter 4. Large-Scale Parallel Functional ProgrammingTable 4.1 Measurements of the simple and the pruning Alpha-Beta search algorithmSimple Algorithm Pruning AlgorithmRuntime Avg Total Runtime Avg Total(kcycles) Par Work SpdUp (kcycles) Par Work SpdUpPosition I (standard)Sequential 60,297 34,363 (1.75)Par Pipeline 60,297 1.0 100% 1.00 34,370 1.0 100% 0.99Par Static Eval 21,091 3.1 108% 2.85 12,099 3.1 109% 2.84Data Par 3,503 26.4 153% 17.21 2,265 23.7 156% 15.17Par h.o. fcts 4,954 20.9 172% 12.16 4,248 24.2 299% 8.08Par Static Eval &Data Par 3,507 28.5 166% 17.19 2,156 27.6 173% 15.93Par h.o. fcts &Data Par 3,701 28.2 173% 16.29 3,683 28.3 303% 9.32Position II (early solution)Sequential 4,427 4,703 (0.94)Par Pipeline 4,427 1.0 100% 1.00 4,706 1.0 100% 0.99Par Static Eval 1,772 2.9 116% 2.49 1,898 2.9 117% 2.47Data Par 1,152 13.9 362% 3.84 1,075 13.1 299% 4.37Par h.o. fcts 759 9.6 165% 5.83 811 9.0 155% 5.79Par Static Eval &Data Par 775 23.2 406% 5.71 779 20.4 338% 6.03Par h.o. fcts &Data Par 919 20.4 424% 4.81 1,001 18.9 403% 4.69Position III (large search tree)Sequential 145,720 90,377 (1.61)Par Pipeline 145,720 1.0 100% 1.00 90,385 1.0 100% 0.99Par Static Eval 48,808 3.3 111% 2.98 29,891 3.3 109% 3.02Data Par 6,621 29.1 132% 22.00 7,699 16.2 138% 11.73Par h.o. fcts 9,345 21.4 137% 15.59 8,093 24.6 220% 11.16Par Static Eval &Data Par 7,083 29.3 142% 20.57 5,210 25.7 148% 17.34Par h.o. fcts &Data Par 6,882 29.3 138% 21.17 6,802 29.6 223% 13.28when using the di�erent sources of parallelism. All runtimes are given in machine-independent kilocycles. The total work column measures the total work comparedto a sequential run and is therefore a measure of the redundant work, in particularof speculative parallelism. The three horizontal sections in the table represent threedi�erent positions that have been analysed: a standard opening position (I) witha sequential runtime of 60,297 kilocycles; a winning position (II) with a sequential



4.4. Alpha-Beta Search 109runtime of 4,427 kilocycles; and a position generating a large search tree (III) with asequential runtime of 145,720 kilocycles.
The parallel pipeline version creates hardly any parallelism at all. This is due to thefact that it is not possible to force the search tree before pruning it without generatinga huge amount of redundant work. This result di�ers signi�cantly from the resultswith programs like Lolita, where the top-level structure of the whole algorithm is aparallel pipeline. The parallel static evaluation function generates conservative par-allelism shown by the small amount of total work performed. However, the degreeof parallelism is rather small: in this example program the distance of the currentposition to a small set of winning positions is computed in a data parallel fashion.Another disadvantage is the �ne-grained nature of the parallelism, i.e. each of thegenerated threads performs very little computation. The data parallelism over allnext positions proves to be the best source of parallelism. The simple algorithm willonly cut-o� subtrees if it �nds a winning position in one of the subtrees. Therefore,this data parallelism is conservative except for the case where a winning position isfound as in Position II. Note that in the latter case the simple sequential algorithmperforms even better than the pruning algorithm indicated by the algorithm speedupof 0.94, in brackets, in the last column. Finally, the higher-order functions approachgenerates the largest amount of redundant work shown by the high total work per-centage. Here a parallel tree map of the static evaluation function is used. However,this also maps the evaluation function on nodes that are actually pruned in the se-quential algorithm. Combining data parallelism with parallel static evaluation doesnot improve the performance in general. Although the average parallelism increases,the speedup actually drops for Positions I and III because the additional parallelismis very �ne-grained.
For the simple Alpha-Beta algorithm using only data parallelism gives an almostperfect utilisation of the machine, provided that the search space is large enough. Ifa solution is found early on then the speedup will naturally drop (see Position II inTable 4.1). However, for more realistic games than tic-tac-toe the search space shouldeasily be large enough because of the exponential growth of the search tree.
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Figure 4.4 Pruning subtrees in the optimised Alpha-Beta search algorithm4.4.2 Pruning AlgorithmThe simple algorithm described in the previous section lacks one crucial optimisationof the Alpha-Beta search: the pruning of subtrees based on intermediate results. Thepruning algorithm returns an increasing list (player's move) of approximations withthe exact value as last list element rather than a single value. The main pruningfunction, minleq, has to test whether the opponent's move from a subtree can beignored (see Figure 4.4). This is the case if the worst result of the decreasing listl, i.e. its minimum, is no better, i.e. less than or equal to, the intermediate resultx. Or more formally: minimum l � x ,: minleq l x. Since minleq works ondecreasing lists it can stop examining the list as soon as it �nds a value less than x.Thus, laziness is used to ignore parts of the list of approximations, which amountsto pruning subtrees in the search tree. A complete description of this lazy functionalpruning algorithm can be found in Hughes (1989).In the sequential code in Figure 4.5 the prelude functions min and max from the simplealgorithm are replaced with functions min' and max', respectively. The new functionsoperate over lists of approximations. In implementing the behaviour described in theprevious paragraph the betterthan function will stop examining list elements ofnext when it is clear that the �nal result will not be better than the value a found sofar. Figure 4.4 illustrates this behaviour. After having determined the value of theleft subtree and the value 0 in the right subtree it is not necessary to examine the
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-- A pruning version of alpha-beta search
mise :: Player -> Player -> (Tree Evaluation) -> [Evaluation]
mise f g (Branch a []) = [a]
mise f g (Branch _ l) = f (map (mise g f) l)

betterthan :: (Evaluation -> [Evaluation] -> Bool) -> -- maxleq or minleq 
              ([Evaluation] -> Evaluation) ->         -- max’ or min’
              Evaluation ->                           -- Score to compare
              [[Evaluation]] ->                       -- list of approxs 
              [Evaluation]
betterthan _ _ _ [] = []
betterthan better_than_worst worst a (next:rest)
 | a ‘better_than_worst‘ next = betterthan better_than_worst worst a rest
 | otherwise              = m : betterthan better_than_worst worst m rest
                                where m = worst next

-- minleq y l <=> minimum l <= y
minleq :: Evaluation -> [Evaluation] -> Bool
minleq y []      = False
minleq y (x:xs)  
  | x <= y    = True       -- throws away the rest of the list!
  | otherwise = minleq y xs

-- used as argument to mise
max’ :: [[Evaluation]] -> [Evaluation]
max’ (first:rest) = m : betterthan minleq minimum m rest
                    where m = minimum first  -- strict in firstFigure 4.5 Pruning version of the Alpha-Beta searchrightmost leaf. The overall maximum is guaranteed to be at least 1.Dynamic BehaviourUnfortunately, the pruning version seriously complicates the parallelisation of thealgorithm. We have already seen in the simple algorithm that the most promisingsource of parallelism is the parallel evaluation of all next positions. However, usinga simple parList rnf strategy over all next positions is no longer advisable, sincethis might result in a lot of redundant work, if many subtrees can be pruned. Themeasurements of the data parallel strategy on the pruning algorithm in Table 4.1show a rather high degree of redundant work. In fact, in the data parallel strategyon Position III the parallel simple version is even faster than the highly speculativeparallel pruning version of the algorithm!A better approach for parallelisation is to force only an initial segment in the list of
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-- Parallel version of the pruning version
mise :: Player -> Player -> (Tree Evaluation) -> [Evaluation]
mise f g (Branch a []) = [a]
mise f g (Branch _ l) = 
  f 
    -- force the first n elements of the result list
    ((map (mise g f) l) 
     ‘using‘ \ xs -> if force_len==-1  -- infinity 
                       then parList rnf xs ‘par‘ ()
                       else parList rnf (take force_len xs)   ‘par‘
                            parList rwhnf (drop force_len xs) ‘par‘ 
                                                              () 
    )Figure 4.6 Strategy for a parallel pruning version with a static force lengthpossible next positions. We call the length of this segment the \force length". Wehave experimented with static force lengths as well as dynamic force lengths thatdepend on the level in the search tree. To date the best results have been obtainedfrom using a static force length as shown in the parallel code for mise in Figure 4.6.The algorithmic code for mise is unchanged compared to the sequential version. Thestrategy uses a global constant force len to determine how much of the list xs shouldbe evaluated. Because strategies are simply Haskell functions, the prelude functionstake and drop can be used for that purpose. Note that the force length represents atrade-o� between increasing the degree of parallelism and reducing the total amountof work being done.Performance MeasurementsFigure 4.7 compares the speedups of the pruning version of Alpha-Beta search un-der GranSim, using the same setup as in the previous measurements. The x-axisshows the static force length, the y-axis the speedup. The left hand graph uses aprogram implementing tic-tac-toe, the right hand graph uses an implementation of asimilar game, escape, with a search space of comparable size but asymmetric winningconditions.The left hand graph shows for the data parallel strategy a large improvement whenincreasing the force length, in particular for Position III. A purely conservative dataparallel strategy (i.e. the force length is 0) achieves a speedup of only 8.58 because theamount of available parallelism drops early on in the computation (see Figure 4.8).
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Figure 4.7 Speedup with varying force length (GranSim)
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Figure 4.8 Data parallel versions with static force lengths of 0 and 4In contrast, with a force length of 4 the speedup is 15.71. After that the percentageof redundant work done in the parallel algorithm increases too much to achieve afurther improvement. For Position II, which �nds a winning position early on in thesearch, parallelism can achieve hardly any improvement because almost all potentialparallelism in the algorithm is pruned. The versions additionally using a parallelstatic evaluation function usually outperform the versions with data parallelism alone,because the small amount of conservative parallelism in the static evaluation can makeuse of idle time on the machine. This is in contrast to the simple algorithm, where thedata parallel evaluation function generates enough parallelism to keep the machinebusy. This can be seen in Table 4.1, comparing the speedups of the lines for dataparallelism and data parallelism together with a parallel static evaluation function.



114 Chapter 4. Large-Scale Parallel Functional Programming4.5 Lolita4.5.1 AlgorithmThe Lolita natural language engineering system (Morgan et al. 1994) has been de-veloped at the University of Durham over several years. It has not originally beenwritten with a parallel execution of the code in mind. The team's interest in paral-lelism is partly as a means of reducing runtime, and partly also as a means to increasefunctionality within an acceptable response-time. The overall structure of the pro-gram bears some resemblance to that of a compiler, being formed from the followinglarge stages:� Morphology (combining symbols into tokens; similar to lexical analysis);� Syntactic Parsing (similar to parsing in a compiler);� Normalisation (to bring sentences into some kind of normal form);� Semantic Analysis (compositional analysis of meaning);� Pragmatic Analysis (using contextual information from previous sentences).These stages form the core of Lolita. Depending on how Lolita is to be used, a �naladditional stage may perform a discourse analysis, the generation of text (e.g. in atranslation system), or it may perform inference on the text to answer queries. Thisdesign of the system yields a very 
exible and modular structure. A more detaileddiscussion of the Lolita system and of its parallelisation is given in Loidl et al. (1997).The parallelisation has been done as joint work with the group at the University ofDurham.Central to Lolita's 
exibility is the semantic network, a graph based knowledge rep-resentation used in the core of Lolita. In the semantic network concepts and relation-ships are represented by nodes and arcs respectively, with knowledge being extractedby graph traversal. The task of the analysis stages is to transform the possiblyambiguous input into a sub-graph of the semantic network. Application-dependentbackend stages can then extract pieces of the semantic network and present it in therequired form.



4.5. Lolita 1154.5.2 Sequential Pro�lingAs a preparation for parallelising such a large program the author has performedsequential pro�ling of the code. This did not reveal a particular hotspot in theprogram although the syntactic parsing stage is the biggest component in the top-level structure with about 20% of the execution time. However, this stage makesheavy use of C-functions, called from within Haskell, to optimise the time consumingparsing process. This complicates a parallelisation of the parsing stage. The Haskellpart of the parsing, however, can be parallelised without major recoding.4.5.3 Top Level PipelineWithout a clear hotspot in the sequential execution of the program a pipeline ap-proach is a promising way to achieve enough parallelism for a four processor shared-memory machine such as a Sun SPARCserver. The structure of a pipeline parallelversion is shown in Figure 4.9. Each stage listed above is executed by a separatethread, which are linked to form a pipeline. Note that in order to make use of themulti-threaded runtime-system, which overlaps computation and communication, theparallel algorithm should contain more threads than there are processors available.The key step in parallelising the system is to de�ne strategies on the complex in-termediate data structures, e.g. parse trees, that are used to communicate betweenthese stages. This data-oriented approach simpli�es the top-down parallelisation ofthis very large system, since it is possible to de�ne the parallelism over parts of a datastructure without considering the algorithms that produce that data structure. Thisapproach hides unnecessary information about the generation of the data structureand is in the spirit of functional programming, which tries to achieve modularity bycomposing 
exible, possibly higher-order, functions.
Synt. ParsingMorpholgy Semantic An.Normalisation Pragmatic An. Back EndFigure 4.9 Overall pipeline structure of LolitaThe code of the top-level function wholeTextAnalysis in Figure 4.10 uses strategicfunction application as the basic operator to introduce parallelism (see Section 4.3.7).



116 Chapter 4. Large-Scale Parallel Functional ProgrammingThe algorithm is separated from the dynamic behaviour in each stage by using the$|| operator. In a �rst parallel version the same separation has been achieved withan explicit pipeline strategy. However, this required to name every intermediate valuein the pipeline. As a result many additional variables had to be added to the code,obscuring the algorithmic part of the code. This experience was the main motivationfor developing the strategic function application operator.Note that this code uses a parList strategy in the de�nition of rawParseForestin the parsing stage to describe data parallelism over the whole input by processingsentences in the input text in parallel. In the current version of the system it is notpossible to use this source of parallelism because the C code in this stage is not re-entrant. Changing the C code to exploit this form of parallelism is ongoing work. Thestrategies in the individual stages of Figure 4.10 will be discussed in the subsequentsections.The semantic and pragmatic analysis stages are wrapped into a timeout function inorder to guarantee a worst case response time of the system. This indicates thatthese stages can be very computationally intensive. Therefore, both analyses arekept rather simple in the sequential system. By providing the strategy evalScores,in parse2prag, speculative parallelism is de�ned, which allows the system to performa more sophisticated analysis by examining several possible parse trees. The goal ofthis strategy is therefore to improve the quality of the result. Section 4.5.5 discussesthis issue in more detail. In general, it would be very desirable to improve the qualityof semantic and pragmatic analysis in the system. Parallelism inside these stagescould be used to maintain good performance despite the increased complexity of thesystem.4.5.4 Parallel ParsingOne major source of parallelism in the time consuming syntactic parsing stage is themerging of possible parse trees in order to build a parse tree for a whole sentence.One complication in the parsing of natural languages is their ambiguity. Because ofthis ambiguity the parsing stage produces not just one but a list of possible parsetrees. Internally, however, the result is represented as a single tree, which at somepoints contains alternatives (\or-nodes") representing di�erent possible parses of thesubtrees. A lazy function is used to convert this single tree into a list of possible parse
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wholeTextAnalysis opts inp global =
  result
  where
    -- (1) Morphology
    (g2, sgml) = prepareSGML inp global
    sentences  = selectEntitiesToAnalyse global sgml

    -- (2) Parsing
    rawParseForest = map (heuristic_parse global) sentences 
                     ‘using‘ parList rnf

    -- (3)-(5) Analysis
    anlys = stateMap_TimeOut (parse2prag opts) rawParseForest global2

    -- (6) Back End
    result = back_end anlys opts

-- Pick the parse tree with the best score from the results of
-- the semantic and pragmatic analysis.  This is done speculatively!

parse2prag opts parse_forest global =
 pickBestAnalysis global  $|| evalScores  $
 take (getParsesToAnalyse global)         $
 map analyse parse_forest
 where
   analyse pt =   mergePragSentences opts $ evalAnalysis
   evalAnalysis = stateMap_TimeOut analyseSemPrag pt global
   evalScores =   parList (parPair rwhnf (parTriple rnf rwhnf rwhnf))

-- Pipeline the semantic and pragmatic analyses
analyseSemPrag parse global =
 prag_transform             $|| rnf   $
 pragm                      $|| rnf   $
 sem_transform              $|| rnf   $
 sem (g,[])                 $|| rnf   $
 addTextrefs global         $|  rwhnf $ 
 subtrTrace global parse

back_end inp opts =
 mkWholeTextAnalysis   $|  parTriple rwhnf (parList rwhnf) rwhnf $
 optQueryResponse opts $|| rnf $
 traceSemWhole         $|| rnf $
 addTitleTextrefs      $|| rnf $
 unifyBySurfaceString  $|| rnf $
 storeCategoriseInf    $|| rnf $
 unifySameEvents opts  $|  parPair rwhnf (parList (parPair rwhnf rwhnf)) $
 unpackTrees           $|  parPair rwhnf (parList rwhnf)  $
 inp Figure 4.10 The top level function of Lolita
trees. In each or-node the parser, which returns a list of parse trees, must merge thelists of parse trees produced by the recursive calls. In merging these lists the possibleparse trees have to be sorted based on some simple syntactic criteria representing thelikelihood of a parse, and the laziness of Haskell is crucial. In order to produce oneparse tree in an or-node it is only necessary to evaluate the �rst element in the lists
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mergeStrategy :: (NFData a, NFData b) =>
                 (ParseForest,FeatureForests) -> Span -> MergeStrategy a b

mergeStrategy (pf,ff) span
 | totalSpan == 0             = MStrat serialMerge
 | percentSpanned >= minSpan  = MStrat parallelMerge
 | otherwise                  = MStrat serialMerge
   where
     percentSpanned = (span * 100) ‘div‘ totalSpan
     totalSpan = forestSpan pf
     minSpan = getParsingParPercent (forestGlobal pf)

     parallelMerge :: (NFData a, NFData b) =>
                      [(a,b)]  -> [(a,b)] -> Strategy [(a,b)]
     parallelMerge as bs _
      = fstPairFstList bs ‘par‘
        fstPairFstList as ‘seq‘
        ()

     fstPairFstList :: (NFData a, NFData b) => Strategy [(a,b)] 
     fstPairFstList = seqListN 1 (seqPair rwhnf r0)

     serialMerge :: (NFData a, NFData b) =>
                    [(a,b)]  -> [(a,b)] -> Strategy [(a,b)]
     serialMerge as bs
      = r0Figure 4.11 A granularity control strategy used in the parsing stageproduced by all alternatives.From a parallelism point of view this behaviour explains why it is not possible toforce the evaluation of parts of the parse forest without risking to introduce a highdegree of redundant work. Within the parsing process the merging of lists triggers theevaluation of sublists, in particular the evaluation of the quality of possible parses.Although the merging itself is very cheap it triggers work that can be usefully donein parallel.In order to improve the granularity of the threads produced by the parallel treetraversal in the parsing stage, we apply a thresholding strategy, shown in Figure 4.11,to the \span" in the tree. The span value, which is attached to each node in the tree,speci�es the number of leaves in the current subtree. The threshold for generatinga parallel process in order to merge all possible subtrees is speci�ed as a percentageof leaves that can be reached from the current node, and this percentage is partof the global system environment. Checking the threshold is very cheap because itonly involves the comparison of the span argument, as a percentage, with a system



4.5. Lolita 119parameter assigned to minSpan.The two parallel calls to fstPairFstList in parallelMerge de�ne parallelism inthis stage. Only the �rst element of the pair is evaluated because it contains thevalue determining the quality of the resulting parse tree. Thus, the fstPairFstListstrategy speci�es an evaluation degree that is su�cient to select the tree to return asthe result of the syntactic parsing stage but without evaluating the tree itself morethan necessary.One strength of strategies is their reusability for di�erent algorithmic code that has thesame dynamic behaviour. We were able to exploit this feature with mergeStrategyin Figure 4.11 by applying the same polymorphic thresholding strategy to two lists ofdi�erent types within the syntactic parsing stage. This reuse is highlighted by the pa-rameterisation of the MergeStrategy datatype over the two possible types in the list.Both instances of applying mergeStrategy are in sub-functions of heuristic parsein Figure 4.10.The measurements discussed in this section have been performed with GranSim ina setup that models the four processor shared-memory Sun SPARCServer availableat Durham. The goal of these measurements is to determine the best value for thespan in the mergeStrategy. Figure 4.12 shows the activity pro�les for Lolita usinga span threshold of 50%, left hand graph, and 90%, right hand graph. Both pro�lesshow a good utilisation of the system during the syntactic parsing stage. However,in the left hand graph almost 100 blocked threads and a high number of runnablethreads are generated, too. These impose signi�cant runtime overhead in the system.The granularity pro�le at the left hand side of Figure 4.13 reveals that most of thethreads are very �ne-grained: 3,422 of the 5,122 threads (67%) are shorter than 2,000cycles. This leads to a bad ratio of computation versus parallelism overhead.In comparison, when increasing the span threshold to 90% the number of blockedand runnable threads is reduced signi�cantly (at most 36), and the number of smallthreads drops drastically, as shown in the right hand graph of Figure 4.12 (note thedi�erent scaling in both graphs). Now, only 67 of the 165 threads are shorter than2,000 cycles (40%). Corresponding to this drop in the total number of threads, espe-cially �ne-grained threads, the runtime drops from 754,687 kilocycles in the previousversion to 526,842 kilocycles in this version. As a result of these measurements andconsidering the low amount of parallelism that is required to fully utilise the fourprocessor shared-memory machine, span thresholds around 90% are used for GUM
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Figure 4.12 Activity pro�les of Lolita with span thresholds of 50% and 90%
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Granularity (pure exec. time)Figure 4.13 Granularity pro�les of Lolita with span thresholds of 50% and 90%executions of Lolita.4.5.5 Parallel Semantic AnalysisAnother source of parallelism can be used to improve the quality of the analysis byapplying the semantic and pragmatic analyses in a data-parallel fashion on di�erentpossible parse trees for the same sentence. Because of the complexity of these analyses,the sequential system always picks the �rst parse tree, which may cause the analysis



4.5. Lolita 121to fail, although it would succeed for a di�erent parse tree. In this case the systemcannot produce a result for the current sentence in a sequential setup. Therefore,parallelism in this stage would not reduce the runtime of the system, but mightimprove the quality of the result.This additional data parallelism is de�ned by the strategy evalScores in the functionparse2prag (see Figure 4.10). The parse forest rawParseForest contains all possibleparses of a sentence. The semantic and pragmatic analyses are then applied to aprede�ned number, speci�ed in global, of these parses. The data parallel strategyevalScores is applied to the list of these results and demands only the score of eachanalysis, the �rst element in the triple, in order to avoid unnecessary computation atthis stage. This score is used in pickBestAnalysis to decide which of the parses tochoose as the result of the whole text analysis.The improvements in the quality of the result by analysing several possible parse treeshave not been systematically measured, yet. However, considering that about 70%of all sentences that are analysed have several possible parse trees, the possibilityto analyse several of them without large additional costs is very attractive from anatural language engineering point of view.4.5.6 Overall Parallel StructureFigure 4.14 summarises the overall parallel structure arising when all of the sources ofparallelism described above are used. The possible data parallelism over the input isdepicted by analysing three sentences in parallel in this picture. Note that the numberof possible parse trees for the input sentences varies. The syntactic parsing stageis internally parallelised using the granularity control strategy shown in Figure 4.11.Note that the analyses may add nodes to the semantic net. This creates an additionaldependence between di�erent instances of the analysis, which is indicated as verticalarcs. Lazy evaluation ensures that this does not completely sequentialise the analyses,however.It should be emphasised that specifying the strategies that describe this parallelbehaviour entailed understanding and modifying only two of about three hundredmodules in Lolita and three of the thirty six functions in that module. Apart fromthe top level function, the only sub-module that has been parallelised is the syn-tactic parsing stage. If it proves necessary to expose more parallelism it would be
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Figure 4.14 Detailed structure of Lolitapossible to parallelise other sub-algorithms such as the graph algorithms operatingon the semantic net. In fact, the most tedious part of the code changes was addinginstances of NFData for intermediate data structures, which are spread over severaldozen modules. However, in the meantime this process has been partially automated(Winstanley 1997).4.5.7 Sun SPARCserver ImplementationThis section discusses early performance measurements of Lolita on the Sun SPARC-Server. A realistic simulation showed an average parallelism between 2.5 and 3.1,using just the pipeline parallelism and parallel parsing. The actual speedup, how-ever, does not exceed 2.4. Measurements with varying span values indicate that thisis partly caused by �ne-grained parallelism in the parsing stage. One obvious bottle-neck in the computation is the sequential front end of about 10{15% caused by theC part of the syntactic parsing stage.However, the wall-clock speedups obtained to date do not quite match the simulationresults. As shown in Figure 4.15 a two processor execution on small inputs achievesan average parallelism of 1.4. A high span value is used to bound the amount of
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lolita.exec +RTS -N2 -q -H48M -I48M  
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Figure 4.15 Activity pro�le of Lolita run under GUM with 2 processorsparallelism in the parsing phase. This also bounds the total heap residency in thesystem, which proves to be very important. With more processors the availablephysical memory is insu�cient and heavy swapping causes a drastic degradationin performance. The reason for this behaviour is that GUM, which is designedto support distributed-memory architectures uniformly, loads a copy of the entirecode, and a separate local heap, onto each processor. Lolita is a very large program,incorporating large static data segments (totalling 16Mb), and requires 100Mb ofvirtual memory in total in its sequential incarnation.One di�erence of the GUM activity pro�le in Figure 4.15 to the GranSim resultsis a larger degree of fetching in the former. This is probably caused by the ratherexpensive but generic communication routines used by PVM, on which GUM isbased. In contrast, GranSim measures mainly the hardware costs for performingcommunication. Together with the �ne granularity of the generated threads thisincreased overhead leads to a signi�cantly smaller utilisation in the parsing stage.However, the later pipeline stages in the computation are still an e�ective source ofparallelism.



124 Chapter 4. Large-Scale Parallel Functional Programming4.6 LinSolvThe linear system solver discussed in this section uses an approach that is very com-mon in the area of computer algebra: a multiple homomorphic images approach(Lauer 1982). This approach consists of the following three stages:1. map the input data into several homomorphic images,2. compute the solution in each of these images, and3. combine the results of all images to a result in the original domain.Since computer algebra algorithms aim at �nding exact solutions to mathematicalproblems, unbounded data types like arbitrary precision integers are frequently used.In algorithms operating on arbitrary precision integers the original domain is typicallyZ, the set of all integer values, and the homomorphic images are Z modulo p, writtenZp, with p being a prime number. The advantage of this approach becomes clearwhen the input numbers are very big and each prime number is small enough to �tinto one machine word. In this case the basic arithmetic in the homomorphic imagesis ordinary �xed precision arithmetic with the results never exceeding one machineword. No additional cost for handling arbitrary precision integers has to be paid.Only in the combination phase will the big numbers appear again. In the case of Z asoriginal domain the well-studied Chinese Remainder Algorithm (CRA) can be usedin the combine step (Lipson 1971).The linear system solver (LinSolv) discussed in this section uses such a multiple ho-momorphic images approach. Thus, it must be emphasised that this algorithm is notmeant to represent a highly-tuned numerical algorithm for �nding just an approxi-mation of a solution, but a typical symbolic algorithm for �nding an exact solution,which represents a wide class of computer algebra algorithms. Other algorithms withthe same basic structure will be discussed in Section 4.7.It is obvious that this approach lends itself to parallel processing: all solutions inthe homomorphic images can be computed independently. An obvious bottleneckis the �nal combination stage. The following sections �rst discuss the structure ofthe sequential algorithm. Then a straightforward, parallel version is developed andimproved by eliminating the two main sequential bottlenecks.



4.6. LinSolv 1254.6.1 The Sequential Algorithm

.. .

.. .

CRA

Zp1

Zp1

Zp1 pk
Zpk

pk

pk
p1 pk

ba

s
t

s
t

x

Forward Mapping

Cramer’s Rule

Lifting

s
t

Z

Zpk

Z

p1

Z

Z

p1

Figure 4.16 Structure of the LinSolv algorithmThis section describes the basic structure of the sequential LinSolv algorithm. For agiven matrix a and vector b, both ranging over integers, this algorithm �nds a solutionx to the equation ax = b. More formally, this problem can be speci�ed as follows:Input: a; b where a 2 Zn�n; det a 6= 0; b 2 ZnOutput: s; t; x where a( stx) = b;s; t 2 Z; x 2 Zngcd(s; t) = 1; gcdi=1;:::;n xi = 1where Z denotes the set of all integers; for a domain D and an integer n, D n denotesthe set of all vectors of length n with components from D ; and D n�n denotes the setof all 2-dimensional square matrices of size n over D . For an integer n, Zn denotesthe set of integers f0; : : : ; n � 1g (the homomorphic image of Z with base n). Note



126 Chapter 4. Large-Scale Parallel Functional Programmingthat we are computing a vector x of integer values and factor out the rational part ofthe solution into st . This is convenient when using the result in a bigger applicationbecause later stages can avoid most of the expensive rational number arithmetic onthe result vector.A particularly important aspect of the algorithm we are designing is that it hasto compute an exact solution over integers of arbitrary size. Therefore, the mainquestions to be considered for the e�ciency of the sequential algorithm are:1. How big are the intermediate values in the computation?2. How high is the overhead associated with using rationals instead of integers?3. Are there inherently sequential parts in the algorithm?The �rst question is directly addressed by using a multiple homomorphic imagesapproach, which bounds every value by the base of the image. The next two questionsare crucial in picking a concrete algorithm for the solution phase. The followingparagraphs discuss the individual stages of the algorithm with the paragraph on thesolution phase discussing the advantages and disadvantages of three alternatives withrespect to the questions raised above. Figure 4.16 summarises the overall structureof the algorithm.Forward mapping: This stage is trivial: for a given prime number p the function`mod` p is mapped over all elements of a and b. This stage is easily parallelised.Homomorphic solutions: We have investigated several candidates for computingthe homomorphic solutions, which have the following characteristics:� Gaussian Elimination: This is a very e�cient algorithm often used for solv-ing linear systems of equations. However, since it works over rational numbersthe basic arithmetic operations are much more expensive than those over �xedprecision integers. An alternative to the classical algorithm would be to intro-duce rational numbers only in the back-substitution phase by using for exampleBareiss' variant of the algorithm. However, this variant requires O(n3) addi-tional integer divisions, so it is not clear whether it gives an improved perfor-mance in practice.



4.6. LinSolv 127� LU-Decomposition: The LU-Decomposition method has very strong data depen-dencies and yields an inherently sequential algorithm. An initial parallelisationof LU-Decompostion achieved only a speedup of 3.8 on an idealised machine.Some signi�cant restructuring would be necessary to obtain an e�cient parallelalgorithm.� Cramer's Rule: Although this algorithm is less e�cient in the sequential case, itis very attractive because of its high potential of parallelism. In this algorithmthe result is computed by evaluating n+1 independent determinants. The mainstructure of this algorithm is described below.Iterative algorithms often used in numerical applications have not been consideredbecause the goal here is to �nd an exact solution. Furthermore, LinSolv shoulduse a parallel algorithm for computing a homomorphic solution in order to maintainscalability of the overall algorithm for cases where the number of available processorsis higher than the number of homomorphic images used by the algorithm. Usingan e�cient sequential algorithm might achieve better results for small number ofprocessors but is inherently limited in its parallelism.The method used in LinSolv is based on Cramer's rule. This rule states that thesolution of the equation ax = b can be computed as a vector, with ratios of twodeterminants as components. In each component the denominator is the determinantof the original matrix a. The numerator of the j-th component is the determinantof the matrix obtained from a by replacing the j-th column with the vector b. Moreformally, let api , bpi be the homomorphic images of a and b w.r.t. the prime numberpi. Then the solution xpi = [xpi1 ; : : : ; xpin ] can be computed by:xpij = det a0pijdet apiwhere a0pij is api with the j-th column replaced with bpi.When applying the above formula in a homomorphic domain Zpi, the determinantdet api might become 0. Obviously, no solution can be computed in such a domain.Prime numbers pi which result in det api being 0 are termed unlucky and must be�ltered from the list of prime numbers which are used as bases for the homomorphicdomains.



128 Chapter 4. Large-Scale Parallel Functional ProgrammingCombination: The �nal stage of the algorithm consist of combining the homomor-phic solutions to a solution in the original domain Z (`lifting'). This combinationcan be done by using the Chinese Remainder Algorithm (CRA) (Lipson 1971). Thisalgorithm �nds the \original" of two images i.e. a value r, which maps to the givenvalues r1; r2 in the images generated by the prime numbers p1; p2, respectively. Moreformally the algorithm can be speci�ed as follows:Input: r1; r2; p1; p2 where p1; p2 prime; r1 2 Zp1; r2 2 Zp2Output: r where r 2 Zp1p2; r1 = r mod p1; r2 = r mod p2Although the CRA operation is associative, for two lists it is most e�cient to usea left associative fold operation over the binary version above (Garner's algorithm(Knuth 1981, p.274)). The reason for this is that all computations in the binary CRAoperate in the domain Zp2, which can be chosen to be a �xed precision domain ineach stage. Hence, the large accumulated input values p1 and r1 in the folding processare mapped to small numbers, making the binary CRA almost equally cheap in everystep of the folding. Unfortunately, this is also an obvious sequential bottleneck.Figure 4.17 shows the top level of the algorithm based on Cramer's rule. Notethat xList is an in�nite list of solutions in homomorphic images corresponding toprime numbers in the in�nite list primes. The CRA computation itself is hidden inlist cra, which basically performs a left associative fold operation, accumulating theproduct of all prime numbers met so far until this product becomes larger than snn!(n is the size of the matrix a and s is the maximal element in a and b). The gen xListfunction has to check whether the modular determinant is 0 in order to avoid pick-ing unlucky prime numbers. The strategy strat in the body of the let constructdescribes the dynamic behaviour of the code separately from the algorithmic code.For the sequential version the default strategy rwhnf can be used. Figures 4.19, 4.21,and 4.23, which are discussed in the subsequent sections, give di�erent de�nitions ofstrat for parallel execution without changing the code in Figure 4.17 at all.4.6.2 Naive Parallel AlgorithmFigure 4.18 shows a naive parallel version of LinSolv, written without strategies byparallelising gen xList, which implements the forward mapping and solution phases.The idea of this code is to create a single parallel thread to evaluate both the forward
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linSolv a b = 
  let 
    {- forward mapping and solution via Cramer’s rule -}
    ...
    xList :: [[Integer]]  -- infinite list of solutions in hom images
    xList = gen_xList primes

    gen_xList (p:ps) = 
       let 
          modDet = toHom p (determinant (toHom p a))
          pmx = [ toHom p (determinant (replaceColumn j (toHom p a) 
                                                        (toHom p b) ))
                | j <- [jLo..jHi] ]
          ((iLo,jLo),(iHi,jHi)) = bounds a
       in
       if modDet /= 0
         then (p : modDet : pmx)  : gen_xList ps
         else gen_xList ps

   {- combination via CRA -}
    ...   
    detList = projection 1 xList

    det = list_cra pBound primes detList detList
    x_i i = list_cra pBound primes x_i_List detList
            where x_i_List = projection (i+2) xList   

    x = map x_i [0..n-1]
  in
  x ‘using‘ strat
  Figure 4.17 Top level code of the sequential LinSolv algorithmmapping (via toHom) and the determinant computations for each prime pi. To achievethis behaviour a parmap function is used in the de�nition of a homomorphic solutionpmx, and a par combinator is used in the body of the let construct to evaluate everyhomomorphic image in parallel. However, the actual dynamic behaviour is quite dif-ferent: the thread sparked for homsol will only evaluate the top-level cons cell, whichdoes not trigger the computation of the actual homomorphic solution (pmx) at all.Only when the result is required in the combination stage the parmap will be trig-gered, creating parallelism within a homomorphic image but sequentialising all stages.The combination stage is basically a fold operation. This causes a sequentialisationof the homomorphic images.The resulting activity pro�le at the left hand side of Figure 4.20 reveals two stages



130 Chapter 4. Large-Scale Parallel Functional Programming
linSolv a b = 
  let 
    {- forward mapping and solution via Cramer’s rule -}
    ...
    xList :: [[Integer]]  -- infinite list of solutions in hom images
    xList = gen_xList primes

    gen_xList (p:ps) =
     let
       ...
       homSol = (p : modDet : pmx)
       pmx = parmap ( \ j ->        -- parallelism within each hom im
                      let   a1 = replaceColumn j a0 b0
                      in    modHom p (determinant a1) )
                    [jLo..jHi] 
       ((iLo,jLo),(iHi,jHi)) = matBounds a

       restList = gen_xList ps 
     in
     if modDet == 0 
       then gen_xList ps 
       else par homSol (homSol : restList) -- par between hom ims

   {- combination via CRA -}
    ...   
    detList = projection 1 xList

    det = list_cra pBound primes detList detList
    x_i i = list_cra pBound primes x_i_List detList
            where x_i_List = projection (i+2) xList   

    x = map x_i [0..n-1]
  in
  x Figure 4.18 Naive parallel pre-strategy codein the computation:� In the �rst stage, up to approximately one third of the total execution time, theoverall determinant det a is computed using the same structure as for the overallcomputation. This causes a sequence of computations in the homomorphicdomains, which is visualised as a sequence of small peaks.� In the second stage, the solution is computed in each homomorphic image. Allcomponents of the solution are evaluated in parallel using a parallel determinantcomputation in each case. This yields a higher degree of parallelism within each
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rnf det                             ‘seq‘
seqListAccum 1 seq_sol_strat xList  ‘par‘
parList rnf x
where
  seqListAccum :: Integer -> Strategy [Integer] -> Strategy [[Integer]]
  seqListAccum accum s = 
    \ (xs:xss) -> if accum>pBound
                    then ()
                    else s xs ‘seq‘ 
                         seqListAccum (accum*(head xs)) s xss

  seq_sol_strat :: Strategy [Integer]
  seq_sol_strat = \ (p:modDet:pmx) -> rnf modDet ‘seq‘ 
                                      if modDet /= 0
                                        then seqList rnf pmx 
                                        else ()Figure 4.19 Strategy version of a naive parallel LinSolv algorithmstage.Note that the number of parallel peaks in both stages is determined by the numberof homomorphic images necessary to construct the result in the original domain (13in this case).The dynamic behaviour of this code becomes much clearer when reformulating thecode with strategies. Figure 4.19 shows the de�nition of strat in the body of thelinSolv function in Figure 4.17. Note that in contrast to the pre-strategy versionthe algorithmic code is unchanged. In the strategic version of the code it becomesclear that two nested strategies are used:� the outer strategy, seqListAccum in this case, traverses the in�nite list of solu-tions (xList), and� the inner strategy, seq sol strat in this case, traverses the homomorphic so-lutions (pmx).Each of these strategies can be done either sequentially or in parallel. From the abovedescription of the dynamic behaviour of the naive parallel code it should be clear thatboth dimensions are done sequentially. The outer seqListAccum strategy encodesthe dynamic behaviour of the algorithm when traversing xList: it accumulates the
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LinSolv (straightforward):  32 Processors;  400 Cycle Latency 
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Figure 4.20 Activity pro�le of pre-strategy and strategic naive LinSolvproduct of all prime numbers in order to decide how many homomorphic solutions togenerate. The explicit use of seq in seqListAccum re
ects the evaluation order, whichis implicit in the pre-strategy code. The inner seq sol strat strategy describes adependency between the modDet component of the homomorphic solution and therest. Although the parmap construct in Figure 4.18 speci�es parallelism over theelements of the homomorphic solution, it is hidden by the �rst two elements of theresult list in sol, which are demanded �rst when computing the overall determinantdet. Figure 4.20 shows that the dynamic behaviours of the pre-strategy and thestrategic version are almost identical.4.6.3 Improved VersionRe
ecting the performance tuning in the pre-strategy version of the code the strategyin Figure 4.21 shows two changes compared to the previous strategy: it does not forcethe computation of the determinant as a �rst step and it computes all components ofthe homomorphic solution in parallel using the par sol strat strategy. This avoidsthe delay in generating parallel processes for performing the most time consumingcomputations in the solution phase.The activity pro�les in Figure 4.22 show that the �rst stage of peaks has been mergedwith the second stage. The data dependency between the overall CRA and the ho-momorphic solutions has disappeared. However, by using the seqListAccum strategyover xList the combination stage is still sequential leading to regular drops in utili-
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seqListAccum 1 par_sol_strat xList        ‘par‘
parList rnf xs
where
  seqListAccum :: Integer -> Strategy [Integer] -> Strategy [[Integer]]
  seqListAccum accum s = 
    \ (xs:xss) -> if accum>pBound
                    then ()
                    else s xs ‘seq‘ 
                         seqListAccum (accum*(head xs)) s xss

  par_sol_strat :: Strategy [Integer]
  par_sol_strat = \ (p:modDet:pmx) -> rnf modDet ‘seq‘ 
                                      if modDet /= 0
                                        then parList rnf pmx 
                                        else ()Figure 4.21 Strategy version of an improved parallel LinSolv algorithm

LinSolv (improved):  32 Processors;  400 Cycle Latency 
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Figure 4.22 Activity pro�les of pre-strategy and strategic improved LinSolvsation. In the pre-strategy code this corresponds to the dynamic behaviour generatedby the list CRA function.4.6.4 Parallelism over the Homomorphic ImagesThe strategy in Figure 4.23 eliminates the sequential traversal of xList by guessingthe number of primes needed to compute the overall result and using a parListNstrategy to generate data parallelism over that segment of xList. Using parListinside the par sol strat strategy causes each component of the result to be evaluated
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rnf noOfPrimes                               ‘seq‘
parListN noOfPrimes par_sol_strat xList      ‘par‘
parList rnf xs
where
  par_sol_strat :: Strategy [Integer]
  par_sol_strat = \ (p:modDet:pmx) -> rnf modDet ‘seq‘ 
                                      if modDet /= 0
                                        then parList rnf pmx 
                                        else ()Figure 4.23 Strategy of the �nal parallel LinSolv algorithm

LinSolv (final):  32 Processors;  400 Cycle Latency 
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Figure 4.24 Activity pro�les of pre-strategy and strategic �nal LinSolvin parallel. However, we still need the check for zero in order to avoid redundantcomputation. In order to minimise data dependencies in the algorithm we do notalready check for unlucky prime numbers when computing noOfPrimes. If some primenumbers turn out to be unlucky the list cra will evaluate more results by demandinga so far unevaluated list element. The �nal strategy application parList rnf xspeci�es that all elements of the result should be combined in parallel. Without thiscomponent there would be a sequence of combination steps at the end of the execution,one for each element in the result vector. In the activity pro�les of Figure 4.24 theindividual peaks have been merged into a period of consistently high utilisation.This �nal version of LinSolv exhibits the highest average parallelism and lowest run-time of all strategic versions, re
ecting the improved dynamic behaviour. Comparingthe pre-strategy with the strategic versions in the activity pro�les of Figures 4.20, 4.22,and 4.24, however, shows a slightly reduced average parallelism. This is due to small



4.6. LinSolv 135di�erences in the dynamic behaviour of both versions, in particular at the beginningand the end of the computation. More importantly, the main part of the computationshows the same dynamic behaviour in both versions. Based on previous measurementsin assessing the overhead related to the use of evaluation strategies, it is unlikely thatthe lower average parallelism in the strategy version is due to this overhead.4.6.5 SummaryHistorically, the development and performance tuning of LinSolv predated the devel-opment of evaluation strategies. In hindsight the lack of separation between algo-rithmic and behavioural code severely complicated the program development. Themost striking example is the tree CRA algorithm we used in the pre-strategy versionin order to guarantee parallelism between the homomorphic images. In order to han-dle an in�nite list of solutions based on a guess how many solutions are needed, thetree CRA algorithm keeps track of the number of unlucky primes and uses a \failhandler" in order to compute more results if necessary. This leads to the rathercomplicated algorithm in Figure 4.25, which combines the computation of the resultwith a speci�c dynamic behaviour suitable for parallelism. In contrast, the strategicversion uses a much simpler sequential code, which is basically a fold operation whichalso tests for unlucky primes and accumulates the product of all lucky prime numbers.To add parallelism it is su�cient to change the seqListAccum in Figure 4.19 into aparListN in Figure 4.23. Again the di�erent dynamic behaviour can be described bythe top-level strategy.It turns out that the additional parallelism of the combinations in tree CRA does notimprove the performance at all because combining two large values (in the nodes ofthe tree) is far less e�cient than combining a large with a small value, which is donein each step of the list CRA. Thus, although the tree CRA generates parallelism atthe end of the computation the total runtime actually increases. This can be seenin Table 4.2 where adding a tree CRA to the basic version of the algorithm, witha parallel determinant computation, does not further improve the e�ciency of thealgorithm. It only increases the total amount of work compared to a sequential versionthat uses a list CRA. This behaviour of LinSolv corresponds to our experience witha parallel resultant algorithm using a similar multiple homomorphic images structure(see Section 4.7.2). However, this example shows that the use of strategies allows the
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-- n ... guess on how many hom sols needed
-- ms ... infinite list of modules
-- as ... infinite list of values
-- ds ... infinite list of homomorphic determinants
tree_CRA :: Integer -> [Integer] -> [Integer] -> [Integer] -> 
            (Integer, Integer)
tree_CRA n ms as ds =    
 let
  res@(m, a, fails) = tree_CRA’ ms’ as’ ds’
                      where ms’ = take n ms 
                            as’ = take n as 
                            ds’ = take n ds
  handle_fails :: Integer -> Integer -> Integer -> 
                  [Integer] -> [Integer] -> [Integer] -> (Integer, Integer)
  handle_fails n m a (m1:ms) (a1:as) (d1:ds) 
   | n == 0    = (m, a)
   | d1 == 0   = handle_fails n m a ms as ds
   | otherwise = handle_fails (n-1) m’ a’ ms as ds
                 where
                   m’  = m * m1
                   a’  = par_binCRA m m1 inv a a1  -- NB: parallel version 
                   inv = modInv m1 m
 in
  handle_fails fails m a ms as ds

-- here all lists are finite
tree_CRA’ :: [Integer] -> [Integer] -> [Integer] -> 
             (Integer, Integer, Integer)
tree_CRA’ [p] [a] [0] = (1, 1, 1)  -- unlucky prime
tree_CRA’ [p] [a] [_] = (p, a, 0)  -- normal case
tree_CRA’ ps as ds =
  let 
    n = length ps

    (left_ps, right_ps) = splitAt (n ‘div‘ 2) ps
    (left_as, right_as) = splitAt (n ‘div‘ 2) as
    (left_ds, right_ds) = splitAt (n ‘div‘ 2) ds

    left@(left_P, left_CRA, left_fails)  = 
          tree_CRA’ left_ps left_as left_ds

    right@(right_P, right_CRA, right_fails)  = 
          tree_CRA’ right_ps right_as right_ds

    inv = modInv right_P left_P
    cra = par_binCRA left_P right_P 
                     inv left_CRA right_CRA
  in
    left  ‘par‘ right ‘par‘ inv ‘par‘ (
    cra   ‘seq‘           -- force computation of cra first
            (left_P * right_P, 
             cra,
             left_fails + right_fails) )Figure 4.25 A tree CRA used in the pre-strategy version



4.6. LinSolv 137programmer to explore di�erent variants of the parallel code without performing amajor restructuring of the algorithm.Table 4.2 compares the runtimes (in kilocycles), average parallelism, total amountof work (as percentage compared to the work in the sequential setup), and speedupsfor the three versions discussed above with di�erent setup variants. Although thistable only records the results from the strategic versions, it re
ects the pre-strategyversions as well, because they show corresponding runtime behaviour as demonstratedin Figures 4.20, 4.22 and 4.24. Overall the three stages of the parallelisation, froma naive to the �nal version, show an increasing average parallelism and speedup.The percentage of total work is roughly unchanged, indicating that no speculativeparallelism is added during the performance tuning. In each of the three stagesthe best results are obtained from a setup using a parallel determinant computationin the solution stage. However, the parallel determinant computation performs someredundant work shown by the constantly high percentage of total work. This is mainlydue to repeated traversals of data structures when constructing the sub-matricesde�ned in Cramer's Rule.Table 4.2 Measurements of all versions of LinSolvRuntime Average TotalSetup (kilocycles) Parallelism Work SpeedupNaive parallel algorithmSequential 78,651Par Determinant (default) 4,948 20.6 130% 15.9Par Determinant & Tree CRA 5,509 20.6 144% 14.3Improved algorithmSequential 78,651Par Determinant (default) 4,488 22.6 129% 17.5Par Determinant & Tree CRA 5,675 20.0 144% 13.9Parallelism over homomorphic imagesSequential 78,651Par Determinant (default) 4,323 25.6 141% 18.2Par Determinant & Tree CRA 5,130 22.1 144% 15.3As further work it would be interesting to compare this LinSolv version with oneusing a Gaussian elimination algorithm in the solution phase. Such an implementa-tion would use rational arithmetic rather than integer arithmetic. The tighter datadependencies would probably reduce the parallelism inside the solution stage. How-
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Figure 4.26 Activity pro�le of LinSolv in a 3 processor GUM setup
ever, the overall structure of the parallelism generated by the multiple homomorphicimages approach should be unchanged. Therefore, the �nal strategy developed in thissection can be re-used.Additionally to the these measurements under GranSim, the �nal version of LinSolvhas been run under GUM on a 4 processor SUN shared-memory machine. Becauseof competing processes on that machine, only up to 3 processors have been used inthe timings. As a result we obtained relative speedups, i.e. speedups of the parallelexecution compared to a 1 processor GUM execution, of 1.67 on 2 processors and2.10 on 3 processors. For this program the single processor e�ciency is 78%, i.e. theoptimised sequential version �nished within 78% of the runtime for the 1 processorGUM version. This matches with previous experiences that report an e�ciencyof around 80% for most GUM programs. The absolute speedups for LinSolv, i.e.the speedups of the parallel execution compared to an optimised single processorexecution, are 1.30 on 2 processors and 1.66 on 3 processors. Figure 4.26 showsan activity pro�le of running LinSolv in a 3 processor setup on the shared-memorymachine.



4.7. Comparison with Parallel Imperative Programming 1394.7 Comparison with Parallel Imperative Program-mingThis section gives a comparison of the programming style in parallel imperative pro-gramming with a style of strategic parallelism as elaborated in this chapter. All ofthe algorithms in this section are computer algebra algorithms implemented in thePaclib system. This system combines a kernel for handling light-weight threadswith a runtime system for garbage collected memory management and a library forbasic computer algebra operations (Hong et al. 1992), all written in C. It has beenimplemented on a Sequent Symmetry shared memory system based on Intel i386processors. All of the measurements have been performed on 16 processors.4.7.1 LinSolvBefore attempting a functional solution to LinSolv, the author has previously im-plemented both sequential and parallel imperative solutions in C (Loidl 1993). Theparallel version required signi�cant restructuring, in order to eliminate sequentialcontrol dependencies. As an example, Figure 4.27 shows the code for managingthe parallelism in the forward mapping and solution stages of LinSolv. The primi-tives pacStart and pacWaitListRm are used for starting and synchronising threads,respectively. The function Solve computes a homomorphic solution. Note the de-structive use of the list-processing functions COMP (cons), ADV (tail) etc, to createa list of tasks, which must be explicitly manipulated by the programmer. Resultsare extracted non-deterministically from this list and combined in later stages of thealgorithm.Using GpH and GranSim, the code in Figure 4.27 could be written much moresimply as:(xList, pList) = unzip (parMap rnf (solve a b detA n) primeList)The strategic code avoids explicitly specifying when to create threads and when tosynchronise them. These decisions are made by the runtime-system. Of course, thisstraightforward translation of the imperative code does not enforce the sophisticatedorder of evaluation produced by the strategy in Figure 4.23. However, the same order



140 Chapter 4. Large-Scale Parallel Functional ProgrammingStep2:/* Forward mapping and solution in homomorphic images */taskList = NIL;while (!ISNIL(primeList)) {/* Extract the next prime from primeList */ADV(primeList,&p,&primeList);/* Create a task to solve each p in parallel */t = pacStart(Solve,5,A,B,detA,n,p);taskList = COMP(t,taskList);}/* Collect the results */X = NIL; pList = NIL; xList = NIL;while (!ISNIL(taskList)) {/* Wait for the first task to complete */r = pacWaitListRm(&taskList);/* Deconstruct the result tuple */p = FIRST(r); X = SECOND(r);/* xList is the list of result vectors */xList = COMP( X, xList );/* pList is the list of primes which were used */pList = COMP( p, pList );}Figure 4.27 PACLIB code of generating and synchronising processes in LinSolvof evaluation has to be coded into the imperative algorithm, in the function Solve,too.Important di�erences in the parallel structure of the Haskell and the C versions of thecode are caused by the di�erent semantics of both languages and by the level of detailthat has to be speci�ed for describing a parallel algorithm. The C version requiredmore restructuring in order to avoid synchronisation barriers between the stages ofthe algorithm. In the C version several variants of the parallel CRA have beenimplemented. In particular, these changes were much simpler in the functional code.This observation suggests to use strategies and a functional language to prototype
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Figure 4.28 Per-thread activity pro�les for imperative LinSolv and parallel p-adiccomputationparallel algorithms, which might then the translated back into an imperative languageif necessary. We have taken this approach of parallel prototyping for example in Hallet al. (1997).Figure 4.28 shows, on the left hand side, the per-thread activity pro�le for the imper-ative version of LinSolv on a 16-processor Sequent Symmetry. These should not beseen as direct comparisons with the graphs in Section 4.6 since they are based on anaive implementation. Furthermore, the C version has a much coarser, hand-tuned,granularity than the functional code discussed in Section 4.6. However, it is inter-esting to observe the barrier between the bulk of the parallel computation and the�ne-grained back-end of the computation. In contrast, the Haskell version achievessome pipeline parallelism between these stages for free, i.e. without restructuring ofthe code.4.7.2 Parallel Resultant ComputationIn Hong & Loidl (1994) the author has contributed to the implementation and mea-surement of �ve versions of a parallel resultant algorithm. A resultant of two r variatepolynomials is the determinant of a special matrix constructed out of the coe�cients



142 Chapter 4. Large-Scale Parallel Functional Programmingof these polynomials, a so-called \Sylvester matrix". The entries in the matrix arer � 1 variate polynomials and so will be the overall determinant.The algorithm itself has a multiple homomorphic images structure, but in contrast toLinSolv it works over multivariate polynomials. In this case, each r-variate polynomialis mapped into an r�1 variate polynomial by evaluating the main variable at a givenpoint, which acts as the basis for the homomorphic image. In the combination phase,an interpolation algorithm with a structure similar to the CRA algorithm has to beused.The di�erent variants of the parallel resultant algorithm show typical characteristicsof algorithms with a multiple homomorphic images structure:1. In Variant 1 a tree-based interpolation gives poor results, compared to a list-based version, because of the additional complexity of this operation.2. In Variant 2 a di�erent computation structure has been used, involving a verytime consuming matrix inversion. In this version a global synchronisation onthe strict data structure is necessary before the list-structured interpolation cancommence. This causes a sequential barrier in the evaluation.3. In Variant 3 an explicit threshold is used in the parallel list-structured interpo-lation algorithm in order to avoid the generation of too �ne-grained threads inthe combination stage.As a result of our performance measurements the rather �ne-grained Variant 3, withan experimentally tuned threshold value proved to be the most e�cient version.4.7.3 Parallel P-Adic Computation on Rational NumbersThe goal of p-adic computation is to speed-up basic arithmetic on e.g. rational num-bers by using an alternate representation of these numbers, namely a \Hensel code",and by de�ning the basic arithmetic over Hensel codes. A Hensel code is a truncatedpower series with a prime number p as base and a �xed length r. The ExtendedEuclidean Algorithm (EEA) can be used for the forward mapping stage. A p-adiccomputation then uses the multiple homomorphic images approach by choosing sev-eral Hensel codes with varying prime numbers p, using the rede�ned basic arithmetic



4.8. A Methodology for Parallel Non-Strict Functional Programming143in each image to compute a solution, and by combining Hensel codes into a rationalnumber again by using the CRA and a translation algorithm from Hensel codes intorational numbers.In joint work the author has implemented translations of rational numbers to andfrom Hensel codes, and basic arithmetic operations over Hensel codes. In Limongelli& Loidl (1993) we have measured the e�ciency of basic operations over rationalnumbers using this p-adic approach. Two versions of the combination step have beentested: SCA, which applies the CRA to every digit of the resulting Hensel codes,yielding a Hensel code representing the result which is then translated into a rationalnumber; and PCA, which �rst translates the Hensel codes into rational numbers andthen applies the CRA to these rational numbers. Note, that the structure of SCA isthe same as the combination stage of LinSolv in Figure 4.17, where a list-structuredCRA is applied to projections onto the list of result vectors.The measurements with these algorithms have shown that PCA, which only requiresglobal synchronisation once at the end of the CRA is more e�cient than SCA, whichrequires a global synchronisation for every digit of the Hensel code. Again, this isin part due to the strict data structures used in the computation, which prohibit astraightforward pipelining of these stages. The right hand side of Figure 4.28 showsa per-thread activity pro�le of PCA.4.8 A Methodology for Parallel Non-Strict Func-tional ProgrammingBased on the experiences in parallelising the programs discussed in this chapter andmore programs discussed in Trinder et al. (1998) and Hall et al. (1997), an emergingmethodology for parallelising large non-strict functional programs is outlined below.In the meantime, this methodology has also been used by other researchers for ex-ample in the parallelisation of the parallelising compiler Naira (Junaidu 1998). Theapproach is top-down, starting with the top-level pipeline, and then parallelising suc-cessive components of the program. The �rst �ve stages are machine-independent.This approach uses several ancillary tools, including time pro�ling (Sansom & PeytonJones 1995) and the GranSim simulator (Hammond et al. 1995). Several stages useGranSim, which is fully integrated with the GUM parallel runtime system (Trinder,



144 Chapter 4. Large-Scale Parallel Functional ProgrammingHammond, Mattson Jr., Partridge & Peyton Jones 1996). A crucial property ofGranSim is that it can be parameterised to simulate both real architectures and anidealised machine with, for example, zero-cost communication and an in�nite numberof processors.The stages in this methodology, whose overall structure is similar to others used forlarge-scale parallel functional programming (Hartel et al. 1995), are as follows.1. Sequential implementation. Start with a correct implementation of aninherently-parallel algorithm or algorithms.2. Parallelise Top-Level Pipeline. Most non-trivial programs have a numberof stages, e.g. lex, parse and typecheck in a compiler. Pipelining the output ofeach stage into the next is very easy to specify, and often gains some parallelismfor minimal change.3. Time Pro�le the sequential application to discover the \big eaters", i.e. thecomputationally intensive pipeline stages.4. Parallelise Big Eaters using evaluation strategies. It is sometimes possible tointroduce adequate parallelism without changing the algorithm; otherwise thealgorithm may need to be revised to introduce an appropriate form of paral-lelism, e.g. divide-and-conquer or data-parallelism.5. Idealised Simulation. Simulate the parallel execution of the program onan idealised execution model, i.e. with an in�nite number of processors, nocommunication latency, no thread-creation costs etc. This is a \proving" step:if the program is not parallel on an idealised machine it will not be on a realmachine. We now use GranSim, but have previously used HBCPP. A simulatoris often easier to use, more heavily instrumented, and can be run in a moreconvenient environment, e.g. a workstation.6. Realistic Simulation. GranSim can be parameterised to closely resemble theGUM runtime system for a particular machine, forming a bridge between theidealised and real machines. A major concern at this stage is to improve threadgranularity so as to o�set communication and thread-creation costs.



4.9. Related Work 1457. Real Machine. The GUM runtime system supports some of the GranSimperformance visualisation tools. This seamless integration helps understandreal parallel performance.
4.9 Related Work4.9.1 Evaluation StrategiesThis section discusses the relationship of evaluation strategies to similar programmingtechniques proposed in the literature.
Algorithmic SkeletonsA skeleton (Cole 1989) is a higher-order function that is parameterised with sequentialsub-programs and that speci�es a certain commonly encountered parallel structure.The most commonly encountered skeletons are pipelines and variants of the commonlist-processing functions such as map, scan and fold. A general treatment has beenprovided by Rabhi, who has related algorithmic skeletons to a number of parallelparadigms (Rabhi 1995).Since a skeleton is simply a parallel higher-order function, it is straightforward towrite skeletons using strategies. For example the parMap function in Section 4.3.4is a skeleton. A more elaborate divide-and-conquer skeleton, based on a ConcurrentClean function (N�ocker, Smetsers, van Eekelen & Plasmeijer 1991) can be writtenas follows. It should be noted that all of these strategic skeletons are much higher-level than the skeletons used in practice, which have a careful implementation givinggood data distribution, communication and synchronisation. As mentioned before,the aspect of data distribution is currently not directly controlled by strategies. Theexplicit function application operator $, although not absolutely necessary, is used tomake the application of a strategy explicit in the code.
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divConq :: (a -> b) -> a -> (a -> Bool) -> 
           (b -> b -> b) -> (a -> Bool) -> (a -> (a,a)) -> b
divConq f arg threshold conquer divisible divide 
  | not (divisible arg) = f arg  
  | otherwise     = conquer left right ‘demanding‘ strategy 
    where
      (lt,rt)  = divide arg
      left     = divConq f lt threshold conquer divisible divide
      right    = divConq f rt threshold conquer divisible divide
      strategy = if threshold arg 
                   then (seqPair rwhnf rwhnf) $ (left,right)
                   else (parPair rwhnf rwhnf) $ (left,right)Many strategic functions take the opposite approach to skeletons: a skeleton param-eterises the control function over the algorithm, i.e., it takes sequential sub-programsas arguments. However, a strategic function may instead specify the algorithm andparameterise the control information, i.e. take a strategy as a parameter.It is also possible to combine skeletons with imperative approaches. For example, theSkil (Botorog & Kuchen 1996) compiler integrates algorithmic skeletons into a subsetof C (C-). The performance of the resulting program is close to that of a hand-craftedC- application.Coordination LanguagesCoordination languages build parallel programs from two components: the computa-tion model and the coordination model (Gelernter & Carriero 1992). Like evaluationstrategies, programs have both an algorithmic and a behavioural aspect. It is notnecessary for the two computation models to be the same paradigm, and in fact thecomputation model is often imperative, while the coordination language may be moredeclarative in nature. It is sometimes useful to distinguish two kinds of coordinationlanguages. Embedded coordination languages, such as Linda, perform coordination viacalling certain coordination primitives from within the computational code. In con-trast, embedding coordination languages specify a parallel framework of the programexecution with sequential sub-algorithms. As the development of the algorithms inthis chapter shows, strategies can be used in both styles but they suggest a top-downparallelisation corresponding to the use of an embedding coordination language. Theoriginal model of directly using seq and par in GpH is, in contrast, closer to anembedded language, with constructs for parallelism scattered throughout the code.PCN (Foster & Taylor 1994) composes tasks by connecting pairs of communication



4.9. Related Work 147ports, using three primitive composition operators: sequential composition, parallelcomposition and choice composition. It is possible to construct more sophisticatedparallel structures such as divide-and-conquer, and these can be combined into li-braries of reusable templates. This approach is much more explicit than evaluationstrategies, and, similarly to the other systems described here, it is possible to intro-duce deadlock.Linda (Gelernter & Carriero 1992) is built on a logically shared-memory structure.Objects (or tuples) are held in a shared area: the Linda tuple space. Linda processesmanipulate these objects, passing values to the sequential computation language. Inthe most common Linda binding, C-Linda, this is C. Sequential evaluation is thereforeperformed using normal C functions.Darlington et al. (1995) integrate the coordination language approach with the skele-ton approach, providing a system for composing skeletons, SCL. SCL is basically adata-parallel language, with distributed arrays used to capture not only the initialdata distribution, but also subsequent dynamic redistributions. SCL introduces threekinds of skeleton: con�guration, elementary and computational skeletons. Con�gura-tion skeletons specify data distribution characteristics, elementary skeletons capturethe basic data parallel operations as the familiar higher-order functions map, fold,scan etc. Finally, computational skeletons add control parallel structures such asfarms, SPMD and iteration. It is possible to write higher-order operations to trans-form con�gurations as well as manipulate computational structures etc.Based on the same concept, P3L (Pelagatti 1993) de�nes a set of parallel constructs,each of which abstracts a speci�c form of commonly used parallelism. P3L integratesthe concept of skeletons and the PCN model. The latter is used for describing detailsof the parallel execution of the skeletons.Parallel Language ExtensionsRather than providing completely separate languages for coordination and computa-tion, several researchers have instead extended a functional language with a small,but distinct, process control language. This can be simply a set of annotations asit is used by Burton (1984), in Hope+ (Kewley & Glynn 1989) and in ConcurrentClean (N�ocker, Smetsers, van Eekelen & Plasmeijer 1991). Most closely related to



148 Chapter 4. Large-Scale Parallel Functional Programmingstrategies, and therefore discussed in more detail here, are Caliban (Kelly 1989) and�rst-class schedules (Mirani & Hudak 1995).Caliban. The Caliban system developed by Kelly (1989) bears a strong resemblanceto evaluation strategies in its separation of algorithm and parallelism. Correspondingto the using construct in strategies, Caliban introduces a moreover construct to de-scribe the parallel control component of a program. Frequently higher-order functionsare used to structure the process network, corresponding to higher-order strategiessuch as parList.One fundamental di�erence to strategies is that constructs in the moreover clauserepresent a separate language to the computation language. In particular, all valuesin such a clause must be resolved at compile time, thus representing a static descrip-tion of the parallel structure. The values in a moreover clause are explicit processnames. In a strategy, however, variable names, representing thunks in the programexecution, can be used to avoid introducing additional names that are not necessaryfor understanding the structure of the program. Similarly to PCN, Caliban gives ex-plicit description of the connections between the processes. Thereby, it can constructcomplex networks of processes but it may also introduce deadlock.For example, the following function de�nes a pipeline. The � syntax is used to createan anonymous process which simply applies the function it labels to some argument.The arc constructs indicates a wiring connection between two processes. The chainconstruct creates a chain of wiring connections between elements of a list. The resultof the pipeline function for a concrete list of functions and some argument is thus thecomposition of all the functions in turn to the initial value. Moreover, each functionapplication is created as a separate process.pipeline fs x = resultwhere result = (foldr (.) id fs) xmoreover (chain arc (map (�) fs))/\ (arc �(last fs) x)/\ (arc �(head fs) result)Para-Functional Programming. Para-functional programming (Hudak 1986) isan extension to the functional programming paradigm that allows to express oper-ational details like scheduling or mapping by annotating program expressions with



4.9. Related Work 149constructs of a separate process control language. The latter speci�es the schedulingand the mapping of parallel processes. One important advantage of this approachis that it can be used with any functional language. The following description usesHudak's syntax for para-functional programming in Haskell (Hudak 1991).With the annotations provided by a para-functional programming system it is possibleto specify� an evaluation order of the program and� a mapping of a program to a machine.Controlling Evaluation Order. The default evaluation order is lazy evaluation. How-ever, this can be changed for any expression in the program by using a scheduledexpression of the following form:exp sched sched-expwhere exp is a program expression and sched-exp is a schedule. Note that a subex-pression in exp can be labelled by using a labelled expression of the form lab@exp.A schedule de�nes the evaluation order and the parallelism obtained when evaluatingthe expression. To this end, three kinds of primitive schedules are de�ned for alabelled expression:� The demand for the evaluation of exp, denoted by Dlab,� the start of the evaluation of exp, denoted by ^lab,� the end of the evaluation of exp, denoted by lab^.Note that a value can be demanded several times, but it can only be evaluated once.The following operations can be used to combine schedules:� s1.s2 denotes the concatenation of the schedules s1 and s2 (sequential compo-sition);� s1|s2 denotes the concurrence of the schedules s1 and s2 (parallel composi-tion).



150 Chapter 4. Large-Scale Parallel Functional ProgrammingThe following examples of scheduled expressions describe their operational behaviourin more detail:� (e0 m@e1 n@e2) sched Dm|Dn. This expression speci�es a parallel demand forthe evaluations of the expressions e1 and e2. Because it is not guaranteedthat these values will be needed in the evaluation of e0, this schedule denotesspeculative parallelism.� o@(l@e0 m@e1 n@e2) sched l.m.n.o. This expression speci�es a left-to-rightcall-by-value semantics. Note that in this expression the schedule lab is the ab-breviation for Dlab.lab^. However, this schedule does not prohibit parallelisminside e0, e1 or e2.Mapping an Expression to a Machine. In order to specify a mapping of the evaluationof expressions to processors mapped expressions of the following form is used:exp on pidwhere exp is a program expression and pid is the identi�er of the processor on whichthe expression will be evaluated.Such an expression can be used for example to evaluate the two components of anaddition on two di�erent processors:(f x on 0) + (g y on 1)With this expression the function call f x will be evaluated on processor 0 and thefunction call g y will be evaluated on processor 1. Note, that since + is a strict oper-ation, both function calls will be evaluated in parallel due to the default evaluationstrategy of lazy evaluation.It is also possible to use functions in computing the processor identi�er. Thereby, amapping that is relative to the current processor can be realised. For that purposethe prede�ned identi�er self always contains the identi�er of the current processor.



4.9. Related Work 151First-Class Schedules. First-Class schedules (Mirani & Hudak 1995) combinepara-functional programming with a monadic approach. Where para-functional sched-ules and mapped expressions are separate language constructs, �rst-class schedulesare fully integrated into Haskell. This integration allows schedules to be manipulatedas normal Haskell monadic values.The primitive schedule constructs and combining forms are similar to those providedby para-functional programming. The schedule d exp demands the value of expressionexp, returning immediately, while r exp suspends the current schedule until exp hasbeen evaluated. Both these constructs have type a -> OS Sched. Similarly, both thesequential and parallel composition operations have type OS Sched -> OS Sched ->OS Sched. The monadic type OS is used to indicate that schedules may interact in aside-e�ecting way with the operating system.Rather than using a language construct to attach schedules to expressions, Mirani andHudak instead provide a function sched, whose type is sched :: a -> OS Sched ->a, and which is equivalent to the using function in evaluation strategies. The schedfunction takes an expression exp and a schedule sched, and executes the schedule. Ifthe schedule terminates, then the value of exp is returned, otherwise the value of thesched application is ?. There are also constructs to deal with task placement anddynamic load information which have no equivalent strategic formulation.In evaluation strategy terms, both the d and r schedules can be replaced by calls torwhnf without a�ecting the semantics of those para-functional programs that termi-nate. Unlike evaluation strategies, however, with �rst-class schedules it is also possi-ble to suspend on a value without ever evaluating it. Thus, para-functional schedulescan give rise to deadlock in situations which cannot be expressed with evaluationstrategies. A trivial example might be:f x y = (x,y) `sched` r x . d y | r y . d xCompared with evaluation strategies, it is not possible to take as much direct ad-vantage of the type system: all schedules have type OS Sched rather than beingparameterised on the type of the value(s) they are scheduling.There can also be a loss of referential transparency when using schedules, since ex-pressions involving sched may sometimes evaluate to ?, and other times to a non-?



152 Chapter 4. Large-Scale Parallel Functional Programmingvalue. This can happen both through careless use of demand and wait, as in thedeadlock-inducing example above, and conceivably if dynamic load information isused to demand an otherwise unneeded value. If the program terminates (yields anon-? value), however, it will always yield the same value.4.9.2 Large-Scale Parallel Functional ProgrammingNon-Strict LanguagesPrevious experience with parallelising large non-strict functional programs using anannotation based approach has shown that e�cient parallel execution without ex-plicit control of parallelism is possible. In particular the FLARE project (Runciman& Wakeling 1995) studied several large parallel applications. For example the par-allelisation of a computational 
uid dynamics simulation (Grant et al. 1995) demon-strated the ease of parallelisation compared to an imperative version of the program.The necessary changes were localised in a few functions. However, these functionsdid not appear in top-level modules, but were part of crucial sub-modules. There-fore, a deeper understanding of the code and its dynamic behaviour was necessary.This case study also emphasised the importance of a sophisticated parallel engineer-ing environment. In the meantime the development of GranSim, GUM, and a setof visualisation tools has signi�cantly improved this environment. Corresponding toother experiences with parallelising large programs in non-strict languages the heapconsumption turned out to be one of the biggest problems for the e�ciency of theprogram.The toolkit for parallel functional programming discussed in Hartel et al. (1995) isvery similar to our parallel programming methodology (see Section 4.8). It uses bothan interpreter and a compiler for sequential debugging. A simulator supports parallelsimulation in three levels of detail. A compiler produces platform independent parallelcode. However, our system di�ers in the following aspects. The compilation of GpHprograms is performed by GHC, a state-of-the-art optimising compiler rather than aprototype compiler with limited support for code optimisation. Furthermore, GHCprovides the innovative cost-centre technology of pro�ling sequential lazy code, whichhas proven to be essential to understand the performance of the sequential program.Rather than using an annotation based approach, strategies support a top-down par-allelisation of the code and since strategies are Haskell functions they can use the full



4.9. Related Work 153power of the language, such as higher-order functions and polymorphism. Finally, theuse of a sandwich annotation in Hartel et al. (1995), which fully evaluates two argu-ments in parallel before they are combined, favours divide-and-conquer parallelism.Pipeline parallelism, which naturally arises in a lazy language, has to be transformedvia a set of semi-automatic transformations. As an example of parallelising a largeprogram, Hartel et al. (1995) discuss a tidal prediction program. This program isan application from the area of numerical scienti�c computation. In the parallelisa-tion of the program a new \communication lifting" transformation is used in orderto exploit wavefront parallelism in a grid performing computational 
uid dynamicsoperations (solving partial di�erential equations). Thus, the overall parallel structureis a pipeline of iteration steps with massive data parallelism within each step.Shaw et al. (1996) discuss the performance tuning of a global ocean circulation modelimplemented in Id. In contrast to the previously discussed languages, Id uses paralleleager computation to exploit parallelism. In practice this approach exposes moreparallelism and reduces the heap consumption of the program. However, it oftencreates speculative computation, which might waste a signi�cant amount of resources.This program, which has originally been written in FORTRAN and executed on aCM-5, has a regular control structure but an irregular data structure. This is incontrast to our applications, which come from the symbolic computation area andtypically have a less regular control structure. The performance tuning process of thisalgorithm uses explicit compiler pragmas to force loop unrolling. In order to modifythe granularity of the generated parallelism k-bounded loops are used. However, withthis construct it is necessary to consider all k-bounds in the program in order toobtain a good parallel behaviour. Clearly, this behaviour poses problems for modularparallel program development.Sur & B�ohm (1994a) show that the non-strict semantics of Id allows a very naturalformulation of producer-consumer parallelism in two central stages of the Dongarra-Sorensen Eigensolver. In previous papers, this kind of parallelism has been reporteddi�cult to achieve for imperative languages. This re
ects our observation that non-strict languages suggest the use of pipeline parallelism, because of the lack of a barriersynchronisation between the pipeline stages.Several case studies for parallelising non-strict functional programs reported problemswith excessive heap consumption. Sometimes running the parallel program on thefull input was not possible (Blelloch & Narlikar 1997). In several cases impure fea-



154 Chapter 4. Large-Scale Parallel Functional Programmingtures have been used to reduce the heap consumption e.g. Sur & B�ohm (1994b) andHammes et al. (1995). We have observed similar problems of resource consumption,in particular heap consumption, in the parallelisation of Lolita (see Section 4.5).Strict LanguagesMichaelson & Scaife (1995) describe the implementation of several components ina parallel vision system to recognise 3D objects in a 2D scene from intensity data.The parallel algorithms, which are �nally executed as Occam2 programs on a Meikomulti-processor, are prototyped in SML. Special emphasis is put on combining severalcomponents into a large-scale system and analysing the resulting performance out ofthis combination. The parallelisation uses skeletons in particular a farm skeleton torealise a parallel map. The main data structure in this case is a nested list, and data-oriented parallelism is used. In the SML prototype some form of pre-loading dataonto a processor is achieved by using partial applications consisting of the functionto be computed and the data to be pre-loaded. No explicit locality information hasto be added. An interesting observation made in Michaelson & Scaife (1995) is thatif computation dominates communication the load balance becomes more important.This directly corresponds to our experience with rescheduling schemes discussed inSection 3.3.1: for low-latency systems, where the communication is rather cheapand the computation comparatively expensive, the load balance is more importantthan the data locality in the system. The overall parallel structure of the parallelvision system is a pipeline with processor farms, representing data parallelism, ineach component.Skeleton-based approaches (Darlington et al. 1995) often su�er from problems of com-positionality similar to the k-bounded loops approach discussed above: it is hard toconstruct an e�cient parallel program out of e�cient parallel components. The rootof the problem is that although individual skeletons represent optimised parallel code,the composition of several skeletons it not necessarily optimal, due to the reorder-ing of data, which might be necessary. As a result composition languages such asSCL and P3L have been developed. These languages provide not only computationskeletons but also con�guration skeletons specifying a particular data distribution.As part of the NESL project a number of irregular algorithms have been implementedand their performance has been evaluated on machines such as a Cray-90 and a



4.10. Discussion 155CM-5. The largest of these algorithms are three versions of the n-body problem(Blelloch & Narlikar 1997), including the classical Barnes-Hut and the more recentGreengard algorithm, and a new parallel preconditioned conjugate gradient methodfor solving sparse linear systems of equations (Gremban et al. 1994). A set of parallelgraph algorithms has been studied by Greiner (1994). All these examples use onlydata parallelism, which is supported in NESL via constructs similar to Haskell listcomprehensions.The Impala suite (Shaw 1998) is a collection of parallel programs mostly written inId and SISAL. It is one of few publicly available packages of large parallel functionalprograms. Some performance results of the execution on parallel architectures suchas Monsoon are included in the documentation of these programs.4.10 DiscussionThis chapter discussed an approach towards large-scale parallel lazy functional pro-gramming, which is based on a separation between algorithmic and behavioural codevia evaluation strategies. With this technique Trinder et al. (1998) have gained wall-clock speedups for realistic programs over the most e�cient sequential version of theprogram. Furthermore, the case studies in this chapter have demonstrated that theparallelisation and the performance tuning of a parallel program can often be doneon top level, only changing the strategic part of the code and without the need toexamine sub-modules in the code.Evaluation strategies make heavy use of higher-order functions, polymorphism, lazi-ness, and overloading. These features are very useful for achieving a high degree ofmodularity in sequential programs. They are of particular importance in the per-formance tuning of a parallel program where the evaluation degree may be speci�edin more detail in order to obtain good parallel performance. The examples in thischapter show that such tuning can be done in a data-oriented fashion, de�ning paral-lelism on intermediate data structures rather than in the modules and functions thatcreate these data structures. This approach avoids breaking the abstraction providedby modules and functions and therefore enhances the modularity of the parallel pro-gram. This is demonstrated by the parallelisation of Lolita, which required changesin only two out of about three hundred modules to achieve a moderate amount of



156 Chapter 4. Large-Scale Parallel Functional Programmingparallelism. The comparison of a pre-strategy version with a strategic version of Lin-Solv shows that the performance tuning of the parallel program is greatly facilitatedby the modularity in the strategic parallel code. These examples show that lazy eval-uation and parallel computation do not necessarily represent competing evaluationmechanisms but can be combined by explicitly de�ning parallelism, evaluation order,and evaluation degree on crucial data-structures in the program.The comparison of the parallel functional programs with three parallel imperativeprograms, written in C, in Section 4.7 highlighted several important di�erences. Inthe imperative programs the lack of any separation between algorithmic and be-havioural code required signi�cant restructuring of the parallel algorithms to achievegood parallel performance. The lack of higher-order constructs did not allow the pro-grammer to abstract commonly occurring patterns of computation in the same wayas in functional languages. In particular, the parallelisation of LinSolv has shown theimportance of parameterising strategies on complex data structures with strategiesthat should be applied to components of this data structure. Finally, the lack ofalgebraic data types in these languages resulted in rather clumsy code in processingthe data and in handling the parallelism.The performance tuning of the parallel programs discussed in this chapter emphasisedthe importance of several aspects of the dynamic behaviour of parallel programs. Oneof these aspects is the granularity of the program. The tuning of the Lolita system hasshown that it can be useful to restrict the total amount of parallelism in the systemin order avoid excessive use of resources. This has been done by using strategies tocontrol the behaviour of the parallel program. The following chapters will discussthe aspect of granularity in more detail. This discussion aims at the development ofruntime-system mechanisms that improve parallel performance by using granularityinformation.



Chapter 5
Granularity in Parallel FunctionalPrograms

CapsuleThe model of computation that is used in this thesis is explicit in exposingparallelism but implicit in controlling parallelism. A parallel program thereforedescribes what expressions may be evaluated in parallel and delegates decisionsabout how to coordinate the parallelism to the runtime-system. This can beseen as an intermediate step towards achieving fully implicit parallelism.In controlling the parallelism in a parallel program many aspects have to beaddressed: the synchronisation mechanism, the communication mechanism, thedata locality during the computation, and the granularity of the computation.Intuitively granularity represents the amount of work that is available for eachthread. Historically, many declarative languages that perform a naive implicitparallelisation, su�er from an extremely �ne granularity. This increases totalbookkeeping overheads such as thread creation time. The aim of a granularitycontrol mechanism must therefore be to create only as many threads as arenecessary to keep the machine utilised throughout the whole computation.This chapter �rst discusses the problem of granularity in declarative lan-guages in general. Then it proposes three concrete granularity improvementmechanisms. These mechanisms have been implemented in GranSim and anevaluation of their e�ectiveness is given. The chapter concludes by giving acomparison of these methods with other approaches for granularity improve-ment suggested in the literature. 157



158 Chapter 5. Granularity in Parallel Functional Programs5.1 Introduction
Extracting parallelism from a functional program is easy. In fact, it is so easy thateven a compiler can do it. For example, strict arguments to a function can always beexecuted in parallel without changing the semantics of the program. Only the datadependencies in the program limit the degree of parallelism. However, this naiveapproach of parallelising a program is likely to achieve poor speedups because of thesmall number of computations in each parallel thread compared to a �xed overheadfor starting the thread. The author's initial motivation for studying granularity camefrom experiences with an automatically parallelising compiler for a simple higher-order functional language, based on the data
ow model of computation (Loidl 1992).In this model every primitive operation is performed independently, imposing a hugesynchronisation and thread creation overhead.Over the years several approaches for improving the granularity in parallel func-tional languages have been proposed (Section 5.7 gives a detailed survey of theseapproaches). Most of these approaches are purely runtime-system based withoutany additional information about the program. Only rarely have concrete implemen-tations with state-of-the-art optimising compilation used more than rather simpleheuristics to achieve this goal. The approach advocated in this thesis is to combinea compile-time granularity analysis with runtime methods that use granularity infor-mation provided by the analysis to improve performance. This chapter concentrateson the runtime component of this system.The structure of this chapter is as follows. Section 5.1 gives a general introduction andmotivates the study of granularity. Section 5.2 discusses the control of parallelism inthe runtime-system. Section 5.3 surveys the literature for studies on the importanceof granularity. Section 5.4 analyses the impact of granularity on the performance ofparallel programs in the eager-thread-creation and the evaluate-and-die model of eval-uation. Section 5.5 proposes three granularity improvement mechanism. Section 5.6presents measurements on parallel programs when using the granularity improvementmechanisms. Section 5.7 discusses related work and Section 5.8 summarises.



5.2. Dynamic Control of Parallelism 1595.2 Dynamic Control of ParallelismThe art of constructing an e�cient parallel program requires skills on many di�erentlevels. From a very abstract point of view one can distinguish between two di�erentstages:� exposing parallelism; and� controlling parallelism.In a parallel program written in GpH the potential parallelism is exposed via theplacement of parallelism constructs by the programmer or by a system of automaticparallelisation. The previous chapter has shown how the parallelism can be explicitlycontrolled to some degree by using evaluation strategies. Typically, this more detaileddescription of the parallel program behaviour is added during the performance tuningof a parallel algorithm.This chapter concentrates on runtime-system techniques for controlling parallelism.These techniques have the advantage of hiding low-level details of the parallel programbehaviour from the programmer. In an idealised setting the runtime-system couldmake all low-level decisions. However, this requires a very 
exible runtime-system,which can adapt to the characteristics of many di�erent structures of parallelism.The studies in this chapter lead to the development of mechanisms that improve the
exibility of the runtime-system.The classi�cation of systems for parallel computation proposed by Sarkar (1989) dis-tinguishes between the following major aspects of the language and the runtime-system:1. exposing parallelism;2. partitioning the program into threads, i.e. specifying sequential units of com-putation;3. scheduling the threads on processors, i.e. specifying the mapping of parallelcomputations onto processors; and4. communicating data.



160 Chapter 5. Granularity in Parallel Functional ProgramsIn this classi�cation, the model used in this thesis is one of explicit parallelism,implicit partitioning, implicit scheduling, and shared-memory communication. The�rst aspect of exposing parallelism has been discussed in detail in the previous chapter.Aspects 3 and 4 in this list are related to the notion of locality of threads and of data,which is hidden in the runtime-system. These issues of locality are important foran e�cient parallel execution, but they are not the main topic of this thesis. Thischapter focuses on the second aspect of the parallel execution, the partitioning of theprogram. In the model that is used in this thesis the partitioning of the programis performed dynamically. This chapter will study the e�ects of di�erent evaluationmodels, eager-thread-creation and evaluate-and-die, on the dynamic partitioning ofthe parallel program. Based on these observations several mechanisms for reducingthe overhead imposed by the parallel evaluation will be discussed. Finally, severalmeasurements will assess the e�ectiveness of these mechanisms.This notion of partitioning the program leads to the following notion of the granularityof the program.De�nition 6 (granularity) The granularity of a parallel program is the averagecomputation cost of a sequential unit of computation in the program.By this de�nition of granularity a parallel program is called �ne-grained, if it consistsof threads with only small pieces of computation compared to the total amount ofcomputation. More informally the computation cost of a thread is sometimes calledthe \size" of the thread. Note that this de�nition based on computation cost excludesthe overhead that is speci�c to the runtime system.The creation and the management of parallel threads impose further costs on theexecution of a program. For example, the creation of a thread requires operations likethe allocation of a stack. In order to minimise this overhead it would be necessary tocreate only one thread | the program is executed sequentially. However, in order toachieve a good parallel performance a certain level of parallelism has to be maintainedthroughout the computation in order to make use of all available processors and toprovide the possibility of overlapping computation and communication.This tension between reducing parallelism overhead and maintaining a high degree ofparallelism is illustrated by the graphs in Figure 5.1. The graph on the left hand sideshows the total runtime of the program. The graph on the right hand side shows theparallelism overhead when executing the program. In both cases the x-axis represents
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Figure 5.1 Runtime and parallelism overhead with varying thread granularityan increasing granularity of the program. In particular for a high latency setting theruntime drops together with a reduction in the parallelism overhead caused by acoarser granularity of the program. However, with increasing granularity the numberof threads drops, too. The increase in runtime for coarse granularity is thereforecaused by a lack of parallelism at some points during the computation (\starvation").For decreasing latency the pro�les of the runtime graph come closer to the idealisedcase where the shortest runtimes are achieved for extremely �ne-grained programsconsisting of a large number of threads.Rather than showing the predicted behaviour of a parallel execution the graphs in Fig-ure 5.1 have been obtained by running a parallel version of nfib under the GranSimsimulator. Since nfib generates two threads in each recursive call it is a good, simpletest case for studying the performance problems caused by massive parallelism withvery small pieces of useful computation. Thus, runtime and latency are both mea-sured in machine cycles. These measurements use a realistic setting for parallelismoverhead and communication costs as it is imposed by the GUM system. The vary-ing latency in the graphs represents a range of parallel machines from shared-memorymachines, with low latency, to networks of workstations, with very high latency. Theincrease in granularity is obtained via a thresholding mechanism as it will be describedin Section 5.5.1.Concentrating on critical aspects of any parallel execution model it is possible todistinguish the following sources of parallelism overhead:



162 Chapter 5. Granularity in Parallel Functional Programs� Thread creation: this includes overhead for creating a thread descriptor and astack for the thread;� Synchronisation: in a shared-memory model this requires a check whether aclosure has already been evaluated;� Scheduling: thread descriptors have to be moved from the runnable queue toblocking queues and vice versa;� Thread termination: usually old stacks are recycled, which bears some overheadbut reduces thread creation overhead;� Thread placement: if a thread is migrated to another processor the threaddescriptor and the stack, or a part thereof, have to be sent to the new processor;� Data placement: ideally, logically related pieces of data, such as the elementsof a list, should be stored close to each other to avoid communication and makebetter use of the processor's cache.One of the most important sources of parallelism overhead is the cost related to thecreation of a new task. This requires the generation of a structure, a thread descrip-tor, that can hold the information about the current state of a task (in particular,the current register values) as well as the initialisation of a stack. One immediateconsequence of this overhead is that the total time spent evaluating an expressionshould not be smaller than the cost of creating a thread because the latter is theminimum overhead attached to evaluating an expression in parallel.5.3 Importance of GranularityIn the literature on runtime-systems for parallel functional programming several au-thors have examined the importance of granularity. This section gives a short survey,focusing on closely related work based on parallel graph reduction. A more detaileddiscussion, covering alternative approaches such as pro�ling and programmer anno-tations, can be found in Section 5.7.Hammond et al. (1994) examine in detail the impact of di�erent sparking strategieson the granularity and the runtime of a ray-tracer on the GRIP multi-processor.



5.3. Importance of Granularity 163Although, the emphasis is on data locality by avoiding to export a spark unless theglobal spark pool is low on work, the conclusions also highlight the importance ofgranularity in general. Among the three parallel versions that are studied the onewith the coarsest granularity clearly performs best: in a 16 processor setup it is 8times faster than a setup producing only small threads.In his PhD thesis Goldberg (1988a) studies the e�ciency of di�erent strategies forcreating parallel threads for arguments in a function application. He mainly consid-ers the overhead for task creation, communication, on both ends, and cleaning upcompleted threads. He gives the outline of an exact, but infeasible, analysis of com-putation costs. Based on this analysis he develops a simple heuristics for estimatingthe computation costs of non-recursive program expressions. This information is usedto partition a program into serial combinators. The program contains explicit con-structs for creating and synchronising the execution of tasks. The body of each serialcombinator is executed sequentially. Thus, the granularity of the program is directlyexpressed via the size of the serial combinators.Goldberg observes that the optimal granularity depends on the architecture of themachine, especially its latency. In particular for high latency machines his resultsshow that a coarse-grained computation performs better. His measurements alsoshow that for shared memory machines the granularity of the threads is not very im-portant. However, for distributed memory machines it is important, but the heuristicshe gives are not generally strong enough to yield big improvements in performance.In particular, assigning in�nite costs to all recursive functions loses too much infor-mation.Maheshwari (1995) shows in the framework of the LAGER project (LArger GrainGraph Reduction) (Watson 1988) how the results of an asymptotic complexity anal-ysis, although notoriously inaccurate, can still be used to improve the performanceof a strict functional parallel program. Including the communication costs into theperformance prediction proves to be an important issue. The main improvement inthis work comes from determining an optimal schedule for generating parallel sub-processes based on user supplied cost information. The runtime-system methods usedin this work rely on relative cost information in the form of priorities, which is some-what similar to our priority mechanisms (see Section 5.5.2). However, in contrast tothe work presented in this thesis, the LAGER project does not use an evaluate-and-die model of computation which dynamically increases granularity. This work does



164 Chapter 5. Granularity in Parallel Functional Programsnot address the question how to derive the cost information.In summary, these methods emphasise the runtime aspect of improving the granularityof a parallel program. Heuristics for estimating computation costs have proven usefulin increasing the granularity of parallel functional programs on real parallel machines.However, these methods are limited because they cannot derive the costs of recursivefunctions. The approach taken in this thesis, however, aims at a balance between astatic granularity analysis that derives information automatically and runtime-systemmechanisms that make use of this information.5.4 The Relationship between Granularity and theEvaluation ModelThe granularity of the program is of di�erent importance for the di�erent evaluationmodels discussed in Section 2.4.1. This section presents measurements that assess theimportance of granularity in an eager-thread-creation model and an evaluate-and-diemodel.5.4.1 Granularity with eager-thread-creationIn an eager-thread-creation model each potentially parallel expression is immediatelyturned into a thread. This simplest form of generating parallelism commits a threadto the evaluation of every expression that is annotated with a par construct. Bymaking this choice very early no overhead for maintaining a spark pool is generated.However, this variant lacks the 
exibility of dynamically increasing the granularityof a thread as it can be done in the evaluate-and-die mechanism. For this reasonit is particularly important to avoid the generation of small threads in a model ofeager-thread-creation.Figure 5.2 illustrates the impact of the thread granularity on the speedup and the totalnumber of threads for the parfact program. This simple divide-and-conquer programcomputes the sum of all integer values in a given interval by bisecting the intervalin each stage. It is a very �ne-grained program and is therefore a good test case forstudying possible performance improvements with increasing granularity. In these
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Figure 5.2 Speedups and number of threads of parfact with eager-thread-creationmeasurements the size of a thread is represented by the recursion depth in which it isgenerated. The root of the divide-and-conquer tree has level 100, the highest value,and this value is decremented in every recursive call. A granularity of e.g. 90 in thegraphs in Figure 5.2 means that all sparks generated after more than 10 recursive callsare eliminated. This approximation of granularity aims at de�ning a simple relativeordering on the sizes of the generated threads, rather than representing an exact modelof the computation costs for each of the threads. The measurements in this sectionhave been obtained via GranSim using a realistic modelling of communication on a64 processor machine.The three graphs in Figure 5.2 represent a low, medium and high latency system.Even for very low latencies of 400 cycles a signi�cant improvement in speedup withincreasing granularity can be observed. In this case the speedup increases from 24.3to 43.8, a factor of 1.8. For high latencies the absolute speedup is naturally smaller.The relative improvement in speedup, however, shows an even higher factor than forlow latencies: from 3.3 to 9.3, a factor of 2.8.The graph on the right hand side of Figure 5.2 shows the reduction in the numberof threads with increasing granularity. Note that due to the use of a logarithmicscale this reduction is actually exponential. The small number of threads for veryhigh granularities explains the drop in the speedup. For granularities higher than 95,which means that only the �rst 5 levels of recursion are used to generate parallelism,the total number of threads is smaller than the total number of processors in this
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Figure 5.3 Speedups and number of threads of parfact with evaluate-and-diesetup and starvation occurs.5.4.2 Granularity with evaluate-and-dieIn contrast to the eager-thread-creation mechanism in the previous section the evaluate-and-die mechanism dynamically increases the granularity in the system, similar tolazy task creation (Mohr et al. 1990). As discussed in Section 2.4.1 the evaluate-and-die model can subsume potential parallelism by allowing a thread to performcomputations for which a spark has been created already. This requires the explicitmanagement of a spark pool. In particular, in a divide-and-conquer structure it ispossible that threads subsume sparks which represent child nodes in the computationtree.Figure 5.3 shows the graphs for the same measurements as in Figure 5.2, this timeusing an evaluate-and-die evaluation mechanism. The direct comparison shows thatthe evaluate-and-die mechanism performs much better for small granularities: the�nest-grained setup shows a speedup of 35.8 compared to 24.3 in the previous graph.This directly corresponds to a smaller number of threads generated with the evaluate-and-die mechanism: whereas the eager-thread-creation mechanism generates up to8,245 threads, the evaluate-and-die mechanism does not create more than 310 threads.The overhead for managing these threads drops accordingly.As a result of this better behaviour the performance improvement due to increased
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Figure 5.4 Speedup of parfact (under GUM) on a workstation network and ashared-memory machinegranularity is far less pronounced for the evaluate-and-die mechanism. For a latencyof 400 cycles the speedup increases from 35.8 to 43.1, a factor of 1.2. For a highlatency of 32,768 cycles the speedup increases from 4.3 to 9.4, a factor of 2.2. It isinteresting to note, however, that the speedup of the eager-thread-creation mecha-nism with optimal granularity is slightly higher than the best speedup obtained froman execution with an evaluate-and-die mechanism. This indicates that an eager-thread-creation mechanism can still outperform the evaluate-and-die mechanism, ifit provides accurate granularity information to the runtime-system.In order to relate these simulation results to the behaviour of parfact on a realparallel machine we have usedGUM to run it on two parallel machines: a workstationnetwork of 8 Suns 4/25 connected via ethernet with a rather high latency of circa4 milliseconds for sending a packet of minimal size; and on a four processor SUNshared-memory machine. Figure 5.4 shows the speedups for 3 di�erent experiments,with the workstation network results in the left hand graph and the shared-memoryresults in the right hand graph. Due to competing processes and general networktra�c, these experiments show signi�cant variations. However, the overall trendre
ects the behaviour shown in the GranSim measurements. The improvementswith increasing cut-o� values are higher for the workstation network, in the best casethe speedup increases from 3.64 to 6.26, a factor of 1.7. In comparison the shared-memory setup shows rather small and inconsistent improvements, in the best case the



168 Chapter 5. Granularity in Parallel Functional Programsspeedup increases from 2.53 to 3.20, a factor of 1.26. Overall, these results correspondto the GranSim results for a high latency and a low latency setup, respectively.5.5 Granularity Improvement MechanismsThis section discusses granularity improvement mechanisms (GIMs) that have beenimplemented in GranSim. Measurements for each of these mechanisms are givenin the following section showing they can indeed improve the performance of someparallel programs.In GranSim three granularity improvement mechanisms are available:1. Explicit threshold: No spark whose priority is smaller than a given thresholdwill be turned into a thread. For this mechanism the user has to provide anexplicit threshold value.2. Priority sparking: The spark pool is treated as a priority queue with granularityinformation representing the priorities. This guarantees that the highest priorityspark is turned into a thread. Priorities are not maintained for threads.3. Priority scheduling: The thread pool is is treated as a priority queue with gran-ularity information representing the priorities. This guarantees that the biggestavailable thread is scheduled next. This imposes a higher runtime overhead.The motivation for investigating a threshold mechanism comes from the observationthat such a mechanism is often used explicitly in the parallel code in order to increasethe granularity of the generated threads. For example the mergeStrategy in Lolita(see Figure 4.11) encodes such a mechanism. Priority mechanisms, on the other hand,have proven useful in many applications in the area of operating systems. Theyprovide a cheap way of accessing the best of a set of possible elements. By usingsuch a generic data structure it is possible to pro�t from the research performed onoptimising the operations on this data structure.5.5.1 Explicit ThresholdThe idea of this mechanism is to cut-o� all sparks below a certain threshold. If thegranularity information provided via the parGlobal or parLocal annotation is below



5.5. Granularity Improvement Mechanisms 169a user supplied threshold level the spark will not be created at all. This represents thesame kind of mechanism that is often used on a program level to control granularity.A typical idiom isif arg < thresholdthen sequential codeelse parallel codeThis style of programming has several drawbacks. The most important of these is thecode duplication necessary to avoid repeated checks for the threshold. In contrast tothe style advocated by evaluation strategies in Section 4.3, this code combines thealgorithmic with the behavioural code. Therefore, the code becomes cluttered withconditionals that do not contribute to the de�nition of a value.The explicit threshold mechanism provides runtime support for this style of pro-gramming. This means that the programmer does not have to plant a conditionalstatement into the code. Instead he can use the following piece of code:parGlobal <name> <gran info> <size> <parallelism>parallel codecontinuationThe granularity information in this code is encoded via an integer value to minimisethe overhead attached to it. It is used to provide information about the amountof computation required to evaluate the parallel code. This can be measured inevaluation steps or more abstractly by using this �eld as a priority. It is up to theprogrammer to take care that the computational complexity of evaluating the <graninfo> �eld does not dominate the overall computation, which might outweigh thegain from avoiding the creation of many �ne-grained threads.The actual threshold value has to be provided as a parameter to the runtime-system.All potential sparks with a granularity information smaller than this value will not becreated. This mechanism has been used in the measurements in the previous sectionto increase the granularity of the program.



170 Chapter 5. Granularity in Parallel Functional Programs5.5.2 Priority SparkingWhen using a priority sparking mechanism the spark pool is treated as a priorityqueue with granularity information as priorities. This guarantees that the highestpriority spark, i.e. the spark representing the largest piece of available work, is turnedinto a thread. Because small sparks remain in the spark pool for a long time, manyof these sparks will be subsumed by other threads, increasing the total granularityof the program. In contrast to a priority scheduling mechanism priorities are notmaintained for threads.Priority queues are a fundamental data type with many applications in the areas ofoperating systems and parallel computation. The primary goal of this data structureis to provide cheap access to the \best" of a set of elements. To this end, the setis organised as a sorted sequence of elements. The key, by which the sequence issorted, is called the priority. Typically, the following four operations are supportedon priority queues:� �ndMin, �nding the minimum element of the queue;� insert, inserting an element to the queue;� deleteMin, discard the minimum element of the queue;� meld, merging two priority queues;For the GranSim runtime-system only the �rst three operations are needed. Theimplementation of priority queues exploits recent results of Brodal (1996) and Brodal& Okasaki (1996), which describe how to implement �ndMin, insert and meld inO(1) and deleteMin in O(logn) time. The former algorithm is imperative, the latteris purely functional. These complexity functions are used in GranSim to simulatethe costs of maintaining the priority queue.One aspect speci�c to the use of queues in the GranSim runtime-system is the factthat sparks may be pruned. As soon as a closure has been evaluated, all sparks thathave been generated for this closure may be pruned. In practice the pruning is notcombined with an update because this would increase the costs in a common casein order to reduce costs for parallelism. However, sparks are pruned during garbagecollection because the list of sparks has to be treated as a list of roots for the garbagecollector and therefore has to be traversed anyway.



5.6. Using Granularity Improvement Mechanisms 1715.5.3 Priority SchedulingWhen using a priority scheduling mechanism the thread pool is treated as a priorityqueue with granularity information as priorities. This guarantees that the biggestavailable thread is scheduled next. Maintaining granularity information on threadlevel imposes a higher runtime overhead. However, it allows the runtime-systemto make better use of the available information. It also o�ers the possibility todynamically adjust the priority of a thread based on other aspects of the dynamicbehaviour. For example, in order to make use of good data locality, the priority ofthreads that rarely perform communication might be increased during the execution.Although, we have not studied mechanisms that dynamically change the priority ofthreads, it is an interesting possibility for extending this mechanism beyond the useof granularity information alone.The handling of the priority queue for threads is the same as for sparks. In particularthe same complexity functions for determining the costs of basic operations on thepriority queue are used.The e�ectiveness of any priority mechanism clearly depends on the number of ele-ments from which the best element is chosen. Therefore, it should be noted that incombination with an evaluate-and-die model of computation the thread pools will bemuch smaller than the spark pools, because sparks are only turned into threads ifthere are no other runnable threads available on the current processor. On the otherhand, the thread pool is updated very frequently, with every scheduling or deschedul-ing of a thread. Therefore, compared to a priority sparking mechanism, a priorityscheduling mechanism will more frequently choose from a smaller set of elements.The following measurements will assess whether the improved scheduling is worththe additional overhead imposed by this mechanism.5.6 Using Granularity Improvement MechanismsThis section focuses on possible improvements of the runtime when using the gran-ularity improvement mechanisms discussed in the previous section. In general thepriority mechanisms are more 
exible than a simple thresholding mechanism becausethey retain granularity information rather than using it only to decide whether aspark should be generated or not. However, they also add additional overhead to the
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Figure 5.5 Unbalanced divide-and-conquer tree generated by unbalruntime-system as discussed in Section 5.5. All measurements in this section use anevaluate-and-die mechanism.5.6.1 Divide-and-Conquer ProgramsThe unbal function shown below is a simple divide-and-conquer program that servesas an example of a computation where explicit granularity information can be usedto improve the behaviour even with an evaluate-and-die mechanism. The functionparmap in this code is a pre-strategy version of parMap rnf. Additionally, parmaptakes as a �rst argument a cost function that computes a granularity estimate ofapplying the second function to a list element. In this case, the cost function returnsthe value 3 for all inputs resulting in a cheap computation. Otherwise the cost functionreturns the length of list as an approximation of the granularity.The dynamic behaviour of this program can be represented as an unbalanced compu-tation tree with decreasing sizes of computation. This structure is shown in Figure 5.5.Since the evaluate-and-die model only allows to subsume sparks generated for sub-trees in such a structure, it cannot subsume all tiny threads in the tree, which mightoccur already as leaves close to the root of the tree.unbal 0 = 1unbal n| one_of_many n = n -- leaf case| one_of_few n = maximum list -- node casewhere list = parmap costfn unbal [0..n-1]
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Figure 5.6 Speedup of unbal with varying cut-o� valuescostfn i = if one_of_many i then 3 else ione_of_few x = x `rem` diverge_every == 0one_of_many = not . one_of_fewdiverge_every = 5Figure 5.6 shows the speedup improvements when using a thresholding mechanism.The cut-o� values are multiples of 5 because only every �fth node in the tree gen-erates a large piece of computation (speci�ed by diverge every in the code above).Because of the unbalanced nature of the tree, which limits the e�ectiveness of sparksubsumption, the improvements are much higher than the improvements shown inSection 5.4.2 for a balanced divide-and-conquer program.The measurements in Figure 5.7 compare the relative runtimes and the absolutespeedups of the program when using a priority sparking mechanism and a priorityscheduling mechanism. The left hand graph graph shows the runtime relative tothe runtime in a setup with no granularity improvement mechanisms (in percent).The priority mechanisms show a clear improvement for all latencies. However, the
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Figure 5.7 Relative runtimes and speedups of unbal with priority sparking andschedulingpriority scheduling mechanism does not improve the runtime more than the prioritysparking mechanism does. The main improvement comes from avoiding to generatetiny threads in the �rst place.A more detailed assessment of the priority sparking and scheduling mechanisms forvarious divide-and-conquer programs is given in Loidl & Hammond (1995). In thispaper it is shown that the improvement in runtime caused by these mechanismsdirectly corresponds to the average spark and thread queue lengths. For the priorityqueue mechanisms to be e�ective the dynamic behaviour of the program has to besuch that these queues contain many elements to choose from. For example in thecase of the unbal program with the measurements in Figure 5.7 the average sparkqueue length is 28 for latencies up to 256 cycles at the point of the best speedup. Forprograms with shorter average spark queue length the improvements in speedup arefar less pronounced.As a more realistic example program Figure 5.8 uses queens. This program �nds allpossibilities of placing 8 queens on a chess board without putting one of the queensin check. For most latencies the priority mechanisms yield a signi�cant reduction inruntime. However, in a few cases the total runtime actually increases. This is to beexpected, though, because the granularity information provided to the runtime systemis not perfect. In this case the size of the board is used as a rough approximation tothe granularity of the thread. With more accurate information generated by a static
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Figure 5.8 Relative runtimes and speedups of queens with priority sparking andschedulinganalysis this information could be signi�cantly improved. A more general problemis the lack of any information about the degree of parallelism in a thread. Withoutthis information it may happen that a small thread that generates a lot of parallelismremains at the end of a long queue causing periods of low machine utilisation.5.6.2 Larger Parallel ProgramsFigure 5.9 studies the granularity of the parallel determinant computation with vary-ing latencies using the priority queue mechanisms. For most latencies both a prioritysparking and a priority scheduling mechanism manage to reduce the runtime com-pared to an ordinary parallel execution. The inverse priority sparking mechanismshown in the left hand graph represents the worst case scenario where the granularityinformation provided to the runtime-system is exactly inverse to the real computa-tion costs. As a result the runtime may increase signi�cantly in this setup. Thisbehaviour indicates the danger of consistently providing wrong granularity informa-tion. Although the scheduling is hardly a�ected by occasional errors of the granularityinformation, consistent errors may lead to a serious degradation of the performance.The right hand side of this �gure shows a clear reduction in parallelism overheadcaused by thread creation and blocking threads when increasing the cut-o� value ina thresholding mechanism.
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Figure 5.9 Relative runtimes with variants of priority sparking and schedulingThe measurements in this chapter show that granularity improvement mechanismscan improve the e�ciency of small parallel programs. This, of course, does not giveclear evidence about possible improvements for large programs. However, in the per-formance tuning of the programs discussed in Chapter 4 it has been demonstratedthat improving the granularity for large programs can be an important step in in-creasing the parallel performance. In particular, the �nal version of Lolita used anexplicit thresholding strategy, discussed in Section 4.5. Similarly, we have used ageneric granularity improvement strategy parGranList, discussed in Section 4.3.6, inthe tuning of the bowing algorithm discussed in Hall et al. (1997). The main reasonfor not using the granularity improvement mechanisms developed in this chapter isthe fact that they are currently only available in GranSim not in GUM. It would benatural to use a thresholding mechanism in the case of Lolita, and a priority sparkingmechanism in the case of the bowing algorithm.
5.7 Related WorkDue to the importance of granularity for the e�cient execution of parallel declarativelanguages, many attempts have been made to improve the granularity of the generatedthreads. This section gives a survey of the methods that focus on runtime control.Compile-time approaches for granularity improvement are discussed in Chapter 6.



5.7. Related Work 177Described on a more theoretical level than the work below, the controlled granularityalgorithm of Aharoni et al. (1992) assumes that no knowledge of the size of a threadis available when deciding whether to create it. The main idea of this algorithmis that every thread performs an amount of work equal to the costs for creating athread before itself creating another thread. This guarantees that in the worst casethe parallel algorithm takes twice as long as a sequential algorithm. In contrast, thework presented in this chapter aims at improving the parallel runtime for di�erentkinds of parallel programs rather than guaranteeing a certain worst case performance.5.7.1 Runtime MethodsThis section surveys runtime methods for increasing the granularity of functionalprograms. Additionally to the work that is discussed here in more detail severalgeneral systems have been designed to deal with �ne-grained threads in an e�cientway, e.g. the Cilk runtime system (Blumofe et al. 1995), the Cid system (Nikhil 1994,Nikhil 1995), StackThreads (Taura et al. 1994), and the �laments system (Lowenthalet al. 1996). Relationships to these approaches are outlined where appropriate.Load Based InliningOne of the simplest methods for avoiding an abundance of parallel tasks is load-based inlining. In this approach the load of the machine is tested in order to decidewhether a potentially parallel thread should be created or inlined, i.e. executed bythe current task. The compiler has to generate two versions of the code: one forsequential and one for parallel execution. Load based inlining is used for examplein the LAGER (Watson 1990) model, in the EQUALS system (Kaser et al. 1992),in GAML (Maranget 1991), in the Flagship machine (Keane 1994), and in the Cid(Nikhil 1994) parallel runtime system for symbolic computation. Although this modellimits the total amount of parallelism, it has several severe problems:� It is not possible to adapt to rapidly changing workload. Once a decision ofcreating or ignoring a spark has been made it cannot be rescinded even if theworkload has changed in the meantime. This highlights the importance ofdelaying the decision whether to create or ignore a spark as long as possible.This fact has been observed by Sargeant (1991).



178 Chapter 5. Granularity in Parallel Functional Programs� If a child task is inlined and then blocks parallelism may be lost because theparent task is not necessarily blocked (\parent-child welding"). As Mohr et al.(1990) show for a simple prime number generator, inlining can even cause dead-lock if one task blocks on another task that has been inlined by the sameprocessor.� Load-based inlining gives poor results for unbalanced computation trees andis ine�ective for �ne-grained linear recursions. However, Kranz et al. (1989)report good results for balanced trees.� It is non-trivial to give a good threshold value for the workload of the machinethat determines whether a task should be inlined.Lazy Task CreationOne of the most successful runtime approaches for improving granularity in a parallelsystem is lazy task creation (Mohr et al. 1990). The main idea in this approach isto create tasks only retroactively as processing resources become available. Thus, bydefault every task is inlined provisionally, but enough information is kept to selectively\un-inline" tasks. The programmer has to expose the parallelism in the program,e.g. with a future in Mul-T (Kranz et al. 1989). Overall the lazy task creationmechanism limits the total amount of parallelism that is generated. Starting fromthis idea, several variants of the basic mechanism have been studied:Continuation stealing. This method was the �rst one used by Mohr et al. (1990)with lazy task creation. The basic idea is to distribute work by stealing continuationsfrom the stack. To make this possible a \future queue" of pointers is maintained.Each entry in this queue points to a continuation in the stack. When stealing workthe queue is traversed in a FIFO manner and, if available, a piece of work is stolen bycopying the lower portion of the stack starting with that continuation, which will beturned into a parallel task. This method is almost identical to the sparking mechanismused in this thesis together with an evaluate-and-die model of computation. Themain di�erence is that sparks are pointers to closures into the heap whereas thefuture queue contains pointers to the stack. The latter approach has slightly lessbookkeeping overhead but the presence of an explicit spark pool makes it easier toattach additional information, such as granularity information, to a spark.



5.7. Related Work 179The main disadvantage of this approach is the runtime overhead that has to be paid:� An explicit future queue has to be maintained. This has to be done even for apurely sequential execution to enable parallelism in later stages.� When stealing work an unbounded portion of the stack has to be copied. Thismay cause a high amount of communication and the loss of data locality in theprogram.Lazy Threads. In his thesis Rushall (1995) develops a new variant of lazy-taskcreation aiming at eliminating any bookkeeping overhead that is required during se-quential execution to expose parallelism in later stages. The basic idea is to traversethe stack when stealing work and to make use of the continuation information avail-able on the stack. This traversal of the stack is similar to the one required by astop-and-copy garbage collector. It is very expensive but has to be done only whennew work is needed, which means the overall system load is rather low.In summary, Rushall's version of lazy-task creation, which is implemented on topof the G-machine using Haskell Core as the programming language, retrospectivelytransforms codecase (f x) of v1 -> case (g v1) of v2 -> ...intolet z = g v1 in case (f x) of v1 -> case z of v2 -> ...which means that a parallel thread can be generated for z. Note that in HaskellCore, a desugared version of Haskell that is used in GHC, the case expression forcesthe evaluation of the head expression. Therefore, nested case expressions enforce aspeci�c evaluation order.The stack is traversed in a FIFO order in the hope that older pieces of code representlarger evaluations. This is usually the case in balanced divide-and-conquer algorithms.Therefore, this model is particularly suited for this kind of algorithms. However, in thegeneral case it cannot make use of granularity information because this informationis not present any more when the parallelism is exposed. It would be possible toextend the model by inserting this kind of information on the stack, but this would



180 Chapter 5. Granularity in Parallel Functional Programsadd overhead in the common case and defeat the main advantage of this variant oflazy task creation.Experiments with this form of lazy-task creation, implemented on a virtual shared-memory KSR1 machine, show that it is superior to sparking, as it used in this thesis,for very simple programs like nfib, where no closure has to be created in the sequentialevaluation model but one is needed in order to create a spark. For bigger exampleprograms, however, the di�erence is rather small. Lazy-task creation usually out-performs load-based inlining, although not consistently. In one example program,iqueens+, the sparking model gives better results because the lazy-task creation losestoo much parallelism. In summary, for \well-behaved" divide-and-conquer programsthe new lazy-task creation variant usually performs better than load-based inlining,but it is not a clear winner. For real applications the gap between the sparking modeland the lazy-task creation model is rather small.A similar approach is taken by Goldstein et al. (1996) in their work on lazy threads.They de�ne a control hierarchy with varying overheads (sequential call, fork, andremote fork) and a storage hierarchy (stack, stacklet, and heap). This enables thecompiler to pick the least expensive form of a function call and stack representationfor a particular function call. An implementation of lazy threads in the Id90 compilerfor the TAM machine achieves speedups of up to two over previous approaches ofthread creation (Goldstein et al. 1996). It successfully uses �ne-grained parallelismon a CM-5 distributed memory machine.In his thesis Goldstein (1997) investigates the e�ciency of di�erent points in thecontrol and storage hierarchies as well as di�erent possibilities of thread representationand disconnection. The goal is to reduce the costs for thread creation and terminationto little more than the costs of a sequential call and return. Disconnection decouplesa lazy thread (spark) that has been turned into an independent thread from itsparent thread. An eager disconnect scheme allows the parent to invoke children onits stack in exactly the same way as before, but bears a rather high overhead bycopying a portion of the stack. In contrast, in a lazy disconnect scheme the childsteals the stack from the parent and forces the parent to allocate new children on anew stack. This version avoids copying an activation frame even if a stack storagemodel is used. Two representations of potential parallelism, both planted in thestack, are investigated: continuations, as discussed above, and thread seeds. Threadseeds are basically pointers to code segments. They can be planted into the stack



5.7. Related Work 181when a parallel ready sequential call is performed (implicit queueing), or the may bemanaged as an explicit queue similar to the future queue mentioned before.The results of comparing di�erent versions of thread representation (continuationsand thread seeds) together with eager and lazy disconnection show that thread seedswith lazy disconnection perform best. Implicit queueing proves to be too expensivein creating a new parallel thread (a stack traversal is required). As a compromise alazy queue is used, which starts as an implicit queue in the stack but is made explicitafter the �rst steal request arrives. Goldstein concludes that \the performance is bestin implementations that strike a balance between preparation before the potentiallyparallel call and extra work when parallelism is actually needed".Other Runtime MethodsIn the framework of the Dutch Parallel Machine project (Barendregt et al. 1987), Hof-man (1994) has developed runtime-system mechanisms for improving the granularityin the fork-and-join model of computation. In this project, a \sandwich" annotationis used to express parallelism: two phases of sequential strict evaluation 
ank onephase of parallel lazy evaluation. One problem in such a model of symmetric paral-lelism is potential gratuitous thread migration at the end of the computation, aftermerging the two parallel branches. The mechanisms developed by Hofman preventthreads to be moved to other processors after the join phase. This is based on theassumption that the amount of work after the join operation is rather small. Thisapproach to parallelism is fundamentally di�erent from the asymmetric parallelismobtained via the evaluate-and-die model: no synchronisation between child and par-ent task is enforced if the child �nishes before the parent requires its result. Thereforethe problem of a bottleneck at the end of the computation is less severe.In the ZAPP project Burton & Sleep (1981) have developed an adaptive mechanismfor throttling the parallelism in the system. Near the root of the computation tree aFIFO strategy (breadth �rst traversal) is used to create a high amount of parallelism.If the machine is su�ciently loaded a LIFO strategy (depth �rst traversal) is usedto avoid excessive space consumption as well as creation of parallelism. This modelhas also been used as means of throttling the parallelism in the Manchester Data
owmachine (Ruggiero & Sargeant 1987).k-bounded loops (Arvind & Nikhil 1990) in Id are used to limit the number of parallel



182 Chapter 5. Granularity in Parallel Functional Programsthreads, but the size of the threads is not automatically increased. The idea is to limitthe number of loop bodies that may be executed in parallel to k. The main purposeis to reduce storage requirements. It has been shown that choosing the right k valuefor k-bounded loops can improve performance dramatically (Culler 1990). However,so far no compiler controlled mechanism for �nding good k values has been developedand �nding such values has proven to be quite hard in big applications such as anocean modelling program (Shaw et al. 1996).Rabhi & Manson (1990) present a hybrid method for improving task granularity ina parallel functional programming system. At compile time the parallel and the se-quential complexity of a function are analysed. This information is used at run timeto decide whether a computation is coarse-grained enough to be performed by a par-allel task. In this paper especially divide-and-conquer programs are examined. Thisfollows the approach of trying to detect common patterns in (recursive) cost expres-sions of function bodies in order to infer closed cost expressions. Some experimentalresults of that approach, mainly for divide-and-conquer programs, are presented in(Rabhi 1992).5.7.2 Programmer Annotation ApproachesThe most prominent work using this approach is Hudak's para-functional program-ming approach (Hudak 1986, Hudak 1991). This approach de�nes a set of annotationsthat control the creation and location of parallel tasks. The language issues have al-ready been discussed in Section 4.9.1. The following discussion focuses on granularityissues.The para-functional programming approach allows the programmer to have more orless direct control over the runtime system and thereby a�ect the granularity of theparallel tasks. For example the basic constructs in this approach make it possible tode�ne serial combinators (Hudak & Goldberg 1985), which perform purely sequentialcomputation without the need to synchronise. Therefore, the size of these combinatorsdetermines the granularity of the program and can be manipulated by the compiler.The most recent work in this area uses monads for obtaining system information,such as machine load, in a referentially transparent way (Mirani & Hudak 1995). Theresulting language for scheduling and mapping computations is very 
exible and closeto evaluation strategies (Trinder et al. 1998) as discussed in Section 4.3. In particular



5.7. Related Work 183functions can be parameterised with schedules describing their dynamic behaviour.This makes good use of the abstraction and the overloading mechanism in Haskell.Furthermore, stateful computation via monads is used to extract system informationand to specify operational aspects used in the schedule for a parallel program. Thissystem has been implemented on a Silicon Graphics 16 processor machine.The Concurrent Clean system (N�ocker, Smetsers, van Eekelen & Plasmeijer 1991) alsouses this approach. It de�nes a rich set of annotations that allows the programmer tochange the reduction strategy of the system (van Eekelen & Plasmeijer 1993). By de-fault it uses a lazy evaluation scheme. Two kinds of annotations are available: strictannotations, that locally force the use of eager evaluation, and process annotations,that determine the creation and placement of parallel tasks. The latter set of anno-tations is used for choosing the right level of granularity. Additionally, annotationsfor specifying graph sharing and copying are provided (Achten 1991).Another parallel functional programming system that provides a rich set of annota-tions is the Hope+ system for programming the Flagship parallel machine (Kewley& Glynn 1989). The strictness annotations enable the programmer to choose speci�cevaluators for expressions in the program. Dependency annotations control the eval-uation order by describing how far a parameter in an expression has to be evaluatedbefore starting the evaluation of the expression itself.5.7.3 Pro�ling MethodsAn alternative approach for extracting information about the granularity of gener-ated tasks out of a program is to execute the program with some sample input and togenerate pro�ling information. This information is then fed back into the compilationprocess and can be used to generate better (often coarser-grained) code. Sargeantobtained promising results using this approach on a virtually shared memory ma-chine (Sargeant 1993). Sodan & Bock (1995) used this approach to obtain usefulinformation speci�cally for granularity control on large programs. However, the mainproblem with this approach is the dependence on the choice of the initial, small inputset. If the runtime behaviour of the program does not vary much between di�erentinputs, then this approach will provide very good results without a large compile-timeoverhead. In general, however, the choice of good sample input is critical in this ap-proach and it is not obvious, which metric to use to assess the quality of some input



184 Chapter 5. Granularity in Parallel Functional Programsin this context.
This strategy can be very e�ective in combination with a skeleton-based approach toexpress parallelism. Algorithmic skeletons (Cole 1989) de�ne the parallel behaviourof a set of higher-order functions, representing commonly occurring patterns of com-putation. By using a �xed set of well-studied functions it is easier to make statementsabout the dependence of the runtime behaviour on slightly di�erent inputs. Busvine(1993) uses this approach in his implementation of the PUFF compiler. In a �rststep a the compiler exposes all parallelism down to the level of function calls via theinsertion of par annotations. Then the program is run on one or more sets of data,collecting statistics about computation costs and execution frequencies. This infor-mation is used to transform the program into a parallel version that has increasedgranularity. A wide range of parallel programs generated with the PUFF compilerachieved good speedups on a distributed memory machine. In his PhD thesis Bratvold(1994) gives an overview of using skeletons for parallel programming. His results ofcombining a skeletons approach with pro�ling to gain information on granularity showgood results on a distributed memory architecture. In particular he reports that theerrors of pro�ling based performance prediction rarely exceed 20%. In contrast toBratvold's system, which is speci�c to one parallel machine, Michaelson et al. (1997)present the design of an architecture-independent parallelising compiler for SML. Ituses the same approach of structural operational semantics based instrumentation ofthe code in order to obtain granularity information via pro�ling. However, these costsare parameterised over machine speci�c parameters. Instantiating these parametersand combining the pro�ling information with expressions derived from the underlyingcost model for skeletons should give accurate granularity information.
Darlington et al. (1995) have designed a structured coordination language SCL basedon skeletons. In combination with Fortran as a computation language they reportspeedups of up to 70 on 100 processors on a distributed memory machine for a parallelmatrix multiplication. A general treatment of the skeletons based approach has beenprovided by Rabhi (1995), who has related algorithmic skeletons to a number ofparallel paradigms in designing a paradigm-oriented approach towards parallelism.



5.8. Discussion 1855.8 DiscussionThis chapter has introduced the notion of granularity in parallel programs and moti-vated the importance of studying this particular aspect of parallel program behaviour.It has been demonstrated that granularity is more important for the performanceof programs using an eager-thread-creation model. For a simple test program thespeedup could be increased by a factor of 1.8 for low latency machines and by a fac-tor of 2.8 for high latency machines. However, even for divide-and-conquer programswith an evaluate-and-die model it is possible to achieve performance improvements ofa factor of 2.2 on high latency parallel machines. This has been shown via GranSimand GUM measurements. For unbalanced divide-and-conquer programs the possibleperformance improvement is even higher because the evaluate-and-die model is notable to subsume the same amount of gratuitous parallelism.This chapter has presented three granularity improvement mechanisms:� an explicit threshold mechanism,� a priority sparking mechanism, and� a priority scheduling mechanism.In the measurements presented in this chapter the best results have been obtainedwith an explicit threshold mechanism. However, this mechanism assumes absolutegranularity information. Such information is in general more expensive to producethan relative granularity information i.e. information that only allows to compare thegranularities of two expressions in the program. Such relative granularity informationis su�cient for the priority mechanisms. On the other hand, the priority mechanismsgenerate additional runtime overhead via the management of priority queues. Sincethe optimal cut-o� value, which has to be provided explicitly to the runtime-system,is in general machine dependent it is not clear which mechanism will perform best forlarger applications. However, having several such mechanisms available as part of theruntime-system gives the programmer additional 
exibility in the performance tuningof a parallel program. Furthermore, the choice of the runtime-system mechanism forgranularity improvement will in the end depend on the amount of information thatcan be automatically derived from the program. The next chapter will discuss thisquestion by presenting a static granularity analysis for determining upper bounds ofcomputation costs.
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Chapter 6
Granularity Analysis

CapsuleSeveral examples in Chapter 5 have shown that information about the gran-ularity of program expressions can be used by the parallel runtime-system toimprove the performance of the program. This chapter discusses a granularityanalysis for inferring an upper bound of the computational costs of an expres-sion at compile-time. This analysis is a combination of two existing analyses,one for size and one for cost information. The granularity analysis is speci�edas an inference system for a strict higher-order language L.The inference system can only derive costs for non-recursive expressions.However, an extended cost reconstruction algorithm for this inference systemis presented, which exposes recurrences over cost expressions in order to han-dle recursive functions. Thereby, the analysis can be combined with a libraryof recurrence relations and their known closed forms in order to generate acost expression in closed form that depends only on the size of its input argu-ments. The chapter outlines an algorithm for a granularity analysis handlinguser de�ned recursion, based on the reconstruction algorithm presented here.One of the major advantages of the chosen formulation of the granularityanalysis as a type inference process over alternatives like abstract interpretationis its modularity. All relevant cost and size information of a function is attachedto its type. Since all interface information required by the analysis is containedin the type, separate compilation and separate inference are possible. Finally,this chapter presents experimental results obtained from executing a programwith attached granularity information. The cost inference has been done byhand in this case. The measurements show an improvement in speedup of morethan 25% for eager-thread-creation and approximately 6% for evaluate-and-die.187



188 Chapter 6. Granularity Analysis6.1 IntroductionThis chapter describes a granularity analysis for the simple strict higher-order func-tional language L. The purpose of this analysis is to statically derive informationabout computation costs that can be used by the parallel runtime-system to improveperformance, as discussed in Chapter 5.The granularity analysis is presented as a type inference system. It derives informationabout the upper bounds of the size of data structures and the computation costs ofexpressions, provided the evaluation of the expression terminates. This analysis canbe either seen as a part of a system for automatic parallelisation or as an o�-line toolfor the programmer to obtain additional information about the program's dynamicbehaviour. However, the particular e�ciency constraints of an on-line analysis andthe details of its integration into the compiler are not discussed in detail here. Theemphasis of this chapter lies on outlining an algorithm for performing the inferencerather than proving its correctness.The sized time system presented in this chapter is a combination of the inferencesystem developed by Reistad & Gi�ord (1994) and sized types developed by Hugheset al. (1996). In particular, it also uses latent costs, which are attached to functiontypes, in order to propagate cost information from function de�nitions to functionapplications in a higher-order language. Whereas the cost reconstruction algorithmby Reistad & Gi�ord (1994) only handles non-recursive expressions, our algorithmexposes cost and size recurrences from user de�ned recursive functions. This makesit possible to use a library of recurrences together with their closed forms in order toobtain cost information for some recursive functions. Such an approach has alreadybeen successfully used by Rosendahl (1986). The exact design of the library and theconcrete formulation of the matching algorithm are further work.The structure of this chapter is as follows. Section 6.2 discusses the main require-ments for the analysis and the intended use of the derived information. Section 6.3de�nes a small strict higher-order language L. Section 6.4 presents the analysis asa sized time system. Section 6.5 describes the inference process including a size andcost reconstruction algorithm. This section also discusses how user-de�ned recursivefunctions are handled. Section 6.6 gives an example of an inference. A comparison ofthe presented approach with related work is given in Section 6.7. Finally, Section 6.8summarises.



6.2. Design Philosophy 1896.2 Design PhilosophyBefore selecting a certain approach for performing a granularity analysis several designdecisions have to be made. In particular, we have to address the following questions.How detailed does the cost information need to be? This question has to be answeredwith respect to the runtime-system and its ability to use cost information. The mea-surements in Chapter 5 show that by using a thresholding mechanism, eliminating allsmall threads, signi�cant performance improvements can be achieved. However, thismechanism requires absolute cost information. As an alternative to a thresholdingmechanism a priority mechanism can be used. This requires only a relative orderingof threads, i.e. relative cost information. In order to make the usage of all granular-ity improvement mechanisms possible the presented analysis generates absolute costinformation.How accurate does the information need to be? An important observation about agranularity analysis is that the information can be wrong without causing error incomputation. It is only used for optimisation without changing the semantics of theprogram. It can, however, cause an increase in runtime if wrong decisions are madevery frequently. This has been shown by one of the measurements in Section 5.6.2.Note the di�erence to strictness analysis in which case wrong information can causethe program to fail where it should succeed.Should the analysis produce a lower or upper bound? Lacking perfect informationabout runtime data, the analysis has to give an approximation of the real costs.Two possible choices are to infer a lower or an upper bound. Since the runtime-system uses granularity information to eliminate small threads, a lower bound seemsto be the natural choice. However, this leads to inaccuracy when handling recursivefunctions since the lower bound would normally re
ect only the base case. Previousmeasurements, however, have shown that treating all recursive functions equally doesnot yield satisfactory information (Goldberg 1988a). In order to avoid inaccuracy inthe important case of recursive functions, the analysis presented here yields upperbounds. Furthermore, since the pure computation costs of evaluating an expressionlazily are less than or equal to an evaluation in a strict language, the results of theanalysis can also be used as an upper bound for the analysis of a lazy language. Analternative to this choice might be to devise a separate analysis that tries to inferinformation about the values in the head of a conditional. This could be used for



190 Chapter 6. Granularity Analysiscommon patterns of recursive functions, e.g. in testing whether the length of a list iszero.What kind of analysis technique should be used for the static analysis? The mainalternatives are abstract interpretation (Cousot & Cousot 1977) and type inference(Kuo & Mishra 1989). Abstract interpretation is well-studied and o�ers optimisationsto make it more e�cient. However, it has severe e�ciency problems for higher-orderfunctions. Thus, the motivation for choosing an inference based approach over anabstract interpretation based approach can be summarised as follows:� Using type inference achieves modularity by attaching all relevant informationof the analysis to the type of an expression. This �ts naturally with separatecompilation. In contrast, abstract interpretation always assumes a global viewof the entire program, which clearly is problematic for large applications.� It is hard to argue about the quality of a result obtained via abstract interpreta-tion (Aiken et al. 1994). Choosing a more intuitive representation of terms overthe abstract domain and using term rewriting to compute results may alleviatethis problem (Seward 1995).� By using a library of recurrences for eliminating derived recurrences in the do-main equations it is possible to tune the accuracy of the results. Since granular-ity information is mainly of interest for optimisation and wrong information willnever invalidate the semantics of the program, this is a very desirable featurein practice.� Type inference, in contrast to abstract interpretation, does not require the ab-stract domain to be of �nite height. Therefore it is possible to use positiveinteger values for costs and sizes.Is the information gained from the analysis of a strict language useful for a lazylanguage? Clearly, the cost of evaluating an expression in a lazy language dependsheavily on the demand on that expression. Therefore, a granularity analysis of a strictlanguage will yield an upper bound for the cost of evaluating the same expression in alazy language. Note that we only consider computation costs, but not the bookkeepingoverhead related to eager or lazy evaluation. However, granularity information ismainly useful for rather small threads in an automatically parallelising system. Such



6.3. Syntax of L 191a system needs strictness information in order to automatically expose parallelismover strict arguments. Therefore, the analysis would be only used on provably strictexpressions, which justi�es the design of an analysis for a strict language.6.3 Syntax of LThe language L is a very simple functional language, intended solely as a vehicle toexplore static analysis for parallelism. L is strict, polymorphic, and higher-order withlists as its only compound data type.The abstract syntax of L is given below. To simplify the presentation it is assumedthat variables (v 2 Var) and constants (k 2 Const) are disjoint and that variablenames in the program are unique. This avoids complications in the treatment of theassumption sets in the sized time system.e ::= v j k j �v : e j e1 e2 j cons e1 e2 j null e j hd e j tl e jletrec v = e1 in e2 j if e1 then e2 else e3Overall, the structure of L expressions is similar to that of Lisp in that it focuses onlists as the only compound datatype. Local bindings via letrec are recursive. Sincethe entire L program is an L expression, nested letrec expressions have to be usedto de�ne auxiliary functions.L uses sized types (Hughes et al. 1996): each type, except for the function type, has acomponent specifying an upper bound for its size. The type Int contains only positiveinteger numbers. Another extension to a conventional Hindley-Milner type systemis the use of a cost expression in the function type, the latent cost, to propagatecost information from the function de�nition to its usage. The second annotationin the function type, f , represents a symbolic size function and is only needed foranalysing recursive functions (see Figure 6.8). Finally, the construct �c, a size pattern,represents a sized type with an upper bound of c, whose type component is unknown.Again, this construct is needed in the inference process to derive explicit recurrencesfor user de�ned recursive functions. In the following syntax of type expressions, �represents a sized type variable.� ::= � j Intc j Bool j List c � j �1 c;f! �2 j �c



192 Chapter 6. Granularity AnalysisBoth cost and size expressions are speci�ed by c-expressions. Therefore, cost expres-sions can contain variables representing the size of a data structure. It is importantto note that c-expressions are linear, i.e. there can be no expression of the formv1 � v2 where v1; v2 are variables. This property plays an important role in theimplementation outlined in Section 6.5.c ::= l j ! j n j c1 + c2 j c1 � c2 j n � c j max c1 c2 j f c1 : : : cn j sizeOf �In these c-expressions n is an integer constant and l is a c-variable. The ! symbolis used to express an unbounded cost/size. For sizes less than ! the operators +, �,� and max behave as usual over integer values. When one of the operands is ! theresult is !, too, with the exception of x�! which is 0 for x 6= ! and ! otherwise. The� relation, which will be introduced later, is de�ned as over integer values with x � !for all x. In order to handle recursive programs symbolic cost functions f have to beintroduced. The arguments c1 : : : cn represent the sizes of the argument expressionsin the program. The sizeOf construct is an auxiliary construct used to strip the sizeinformation from a sized type. Again, this is only necessary when deriving explicitrecurrences describing cost and size for recursive functions (see Section 6.5.2).Polymorphism is achieved in the usual way by quantifying over free variables of aletrec-bound expression. The use of sized types requires quanti�cation over size aswell as type variables. In the following x is used to represent either a type or sizevariable. The general structure of type schemes is therefore:� ::= 8x:� j �Note that sizes constitute parts of types in L. This gives a convenient way to describethe size of sub-components of a data structure as well as the size of the structure itself,e.g. List5 Int10denotes a list whose length is at most 5 with integer numbers no larger than 10 aselements. As an example of a type scheme, the type of the builtin constant nil is8�:List0 �



6.4. A Static Cost Semantics for L 1936.4 A Static Cost Semantics for LThis section develops a static cost semantics for L. In order to statically estimatean upper bound for the cost of evaluating an expression, information about the sizeof values in the program is required. Therefore, a size analysis will be developed aswell as a cost analysis. Both analyses are interwoven with a standard polymorphictype system to give a sized time system for L. Because the size analysis and thecost analysis are presented in the same formal framework, this combination yields aconcise description of the inference without repeating the same structure. However,it should be emphasised that this does not force an implementation of the analysesto use the same interwoven structure. The details of a possible implementation arediscussed in Section 6.5.6.4.1 A Sized Time System for LThe inference rules of the sized time system in this section represent an extensionto the standard type inference rules for L, additionally inferring size and cost infor-mation. These extensions capture size and cost in a slightly di�erent way. The sizeinformation represents a static property of a L expression and is therefore attachedto its type. The cost information, however, represents a dynamic property of a Lexpression. It is therefore not attached to the type but inferred together with the sizeinformation. Cost inference uses size information but not vice versa.The costs of higher-order functions are modelled by attaching latent costs (Reistad& Gi�ord 1994) to function types. These latent costs usually contain free variablesrepresenting the size of the arguments. This is illustrated by the following example.In order to derive the type for the expression � f . � x . f (x+1) assume that thefunction f has type � c;f! �. Here c represents the latent costs of evaluating f. Theannotation f in the type can be ignored for this example. Then the type of the wholeexpression will be(Intn+1 c;f! �) 0;f 0! Intn c+2;f 00! �Thus, the cost of evaluating this abstraction is 2 steps plus the cost of evaluatingthe function f. In the system presented here costs are counted as steps. In order toimprove the accuracy of the resulting cost expression it would be easy to use constants



194 Chapter 6. Granularity Analysisfor basic operations like function expressions. However, we avoid such constants tomake the structure of the inference clearer. In the above example, the costs arecounted as one step for the + operation and one step for the function application.In general, the derived cost expression will depend on size variables in the argumenttypes such as n. As a more detailed example, Section 6.4.2 gives the type of thefunction length.Choosing step counts as computation costs also has the advantage of being high-levelenough to abstract over the concrete computation model used in the implementationof the language. Thus, the analysis developed in this chapter is not tied to graphreduction. In order to tune the analysis to a speci�c model it would be necessaryto assign basic costs for machine operations such as updating a closure in a graphreduction model or binding a value to a variable in an environment based model.Figure 6.1 shows the extended type system. The c-expression in the superscript of atype is an upper bound for the size of the object. A judgement � ` e : � z $ c readsas follows: \Under the type assumptions � the expression e has type � (with size z)and a cost bound of c". The expression after $ in a judgement is a c-expression thatrepresents the cost for performing the corresponding computation. The assumptionset � contains bindings of variables, of constants, and of primitive operations to typeschemes (of the form x : �). Since all variable names are unique, assumption sets canbe combined by using set union. The construct � [x0=x] is used to denote a substitutionof all free occurrences of x in � by x0. It extends to vectors, written as �yi, by performingall substitutions simultaneously. The overall structure of the system uses inferencerules resembling a Plotkin style structural operational semantics (Plotkin 1981) in asimilar way to Tofte (1988).The (Var) rule performs an instantiation of the abstracted size and type variablesxi by substituting all free occurrences with fresh variables yi in the body of thetype � . The FV function computes the set of free variables in a type expressionor an assumption set. For the inference of a program it is assumed that the initialenvironment contains mappings of variables representing basic operations like +; � totheir sized types. This avoids the necessity for an explicit rule on primitive operations.The (Weak) rule allows to weaken, i.e. to relax, upper bounds for size and cost. Itmakes use of the subtyping relation E de�ned in Figure 6.2. Note that with thisde�nition of E, the relation �1 E �2 alone does not imply that Listc1 �1 E Listc2 �2,i.e. the subtype system is not structural. Because no subtype relations are de�ned



6.4. A Static Cost Semantics for L 195(Int) � ` n : Intn $ 0 (Bool) � ` b : Bool $ 0(V ar) � [ fv : 8 �xi:�g ` v : � 0 $ 0 � 0 = � [ �yi= �xi]yi 62 FV (�) [ FV (�)(Weak) � ` e : � 0 $ c0 � 0 E � c0 � c� ` e : � $ c(Abstr) � [ fv : �1g ` e : �2 $ c� ` �v : e : �1 c;f! �2 $ 0(App) � ` e1 : �1 c;f! �2 $ c1 � ` e2 : �1 $ c2� ` e1 e2 : �2 $ 1 + c1 + c2 + c(Cons) � ` e1 : � $ c1 � ` e2 : Listc0 � $ c2� ` cons e1 e2 : Listc0+1 � $ 1 + c1 + c2(Null) � ` e : Listc0 � $ c� ` null e : Bool $ 1 + c(Hd) � ` e : Listc0 � $ c� ` hd e : � $ 1 + c c0 � 1 (T l) � ` e : Listc0 � $ c� ` tl e : Listc0�1 � $ 1 + c c0 � 1(Cond) � ` e1 : Bool $ c1 � ` e2 : � $ c2 � ` e3 : � $ c3� ` if e1 then e2 else e3 : � $ 1 + c1 + (max c2 c3)(Letrec) � [ fv : �1g ` e1 : �1 $ c1 � [ fv : 8 �xi:�1g ` e2 : �2 $ c2� ` letrec v = e1 in e2 : �2 $ c1 + c2 �xi = FV (�1)nFV (�)Figure 6.1 A sized time system for Lbetween basic types, this relation de�nes a set of inequalities over c-expressions alone.The (Abstr) rule infers the cost of evaluating the body of a lambda-abstraction, andattaches this cost to the type of the lambda-abstraction as a latent cost. The latentcost usually contains a free variable for the size of the argument x. The symbolic sizefunction f , which is attached to the function type, is only needed when a recursivefunction is de�ned. The handling of recursive functions is discussed in the reconstruc-tion algorithm in Section 6.5.2. It is currently not re
ected in the sized time system



196 Chapter 6. Granularity Analysisitself.In the (App) rule the type of the function's domain must exactly match the type ofthe argument. Since types can be weakened by relaxing their size bounds this meansthat the size bound of the argument must be no greater than the size given in thetype of the function's domain. The function application itself is counted as one step.Note that the latent cost c of the function is added to the cost of the whole expression.In the case of a recursive function call, however, c will be unde�ned at this point.Because the unde�ned c will depend on the size of the argument e2, an explicit namef is needed for the size function of e1. At the end of the inference, the cost expressionfor the recursive function will contain an application of the size function f to the sizeof e2. Figure 6.8 shows the inference of the recursive function length as an example.The rules for (Cons), (Null), (Hd), (Tl) show how size bounds are derived for list con-structors and selectors. This system models a step counting semantics and thereforethe application of a constructor to all of its arguments counts as one step. To increaseaccuracy it would be possible to add constants for the cost of these operations.In general both branches of a conditional will have di�erent sizes. The example belowillustrates how the (Weak) rule is used to ensure that the types of both branches matchas is required by the (Cond) rule. The cost bound of the conditional is the maximumof the costs of both branches plus the cost of the head of the conditional plus onestep for performing the branch. In Section 6.5 we suggest some practical techniquesfor improving this cost bound.The (Letrec) rule realises letrec-polymorphism as in the Hindley-Milner type sys-tem (Milner 1978). In the inference of a type for e2 the variable v is bound to a typescheme, which abstracts over type and size variables. Note that in the environmentfor typing e1 we do not use a type scheme for v, as in the Milner-Mycroft type sys-tem (Mycroft 1984), because this would make even plain type inference without sizesor costs undecidable, as shown by Henglein (1993). An instantiation of type schemesis performed as part of the (Var) rule. It is worth noting that the (Letrec) rule usedby Hughes et al. (1996) is signi�cantly more complicated because it has to propagatesize information for algebraic data types from one recursion level to the next. In Lthis size propagation is encoded in the rules operating on lists. An extension of L toalgebraic data types would have to add a size variable as an explicit iteration variable.The re
exive and transitive subtyping relation in Figure 6.2 formalises the idea that
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� E � �1 E �2 �2 E �3�1 E �3c1 � c2Intc1 E Intc2 c1 � c2 �1 E �2Listc1 �1 E Listc2 �2 �1 E � 01 � 02 E �2 c0 � c� 01 c0;f! � 02 E �1 c;f! �2Figure 6.2 Subtyping relation for Lthe size component in a sized type speci�es an upper bound. Therefore, it shouldalways be possible to weaken this size bound. Similarly, the latent cost in a functiontype is an upper bound for the cost of evaluating the function. The need for such asubtyping relation can be motivated by an analysis of the following expression.if (null xs) then 1 else 2In this expression the then branch has a sized type of Int1 but the else branchhas the type Int2. Only because of the subtyping relationship between these typesInt1 E Int2 is the above expression type correct. In the inference of this expressionthe (Weak) rule has to be applied to the then branch. The need for weakening latentcosts can be motivated by observing that both sides of the conditional may yield afunction type.6.4.2 From Cost-Expressions to Cost-FunctionsThe sized time system in Figure 6.1 is a high-level description of how to infer costsand sizes of an expression. When deriving the cost of a function application the costexpression representing the latent cost for the function has to be used. However, if thefunction is recursive this approach will fail to yield a cost expressions in closed formbecause it has to refer to its own cost. Therefore, explicit names for unknown costfunctions, symbolic cost functions, are needed. One symbolic cost function is neededfor each recursive function in the program. In general the result of performing costinference will be a set of recurrences that has to be solved separately. Section 6.5.4discusses how this can be done.The (Letrec) rule in the sized time system shows that the type schemes for letrec-bound functions in general contain universally quanti�ed size variables. These vari-



198 Chapter 6. Granularity Analysisables are arguments to the cost function described by the inferred cost expression. Ingeneral we de�ne for every function de�nitionf x1 ... xm = ea cost functionfC l1 : : : ln = cand a size functionfZ l1 : : : ln = zwhere c is the cost and z is the size expression derived from e, the body of thefunction. The variables l1 : : : ln represent the size variables in the argument typesof f. Note that n depends on the type of the arguments to f because an argumentof e.g. type Listk Intl will be translated into two size arguments k and l. The costreconstruction algorithm in Section 6.5.2 applies the function sizeOf on top-level inorder to strip the size expressions from the resulting type.One characteristic of the cost reconstruction algorithm discussed in Section 6.5.2 isthe use of curried function application. This results in the introduction of separatecost functions in each function application. In order to obtain one cost function for theuser de�ned function, as outlined above, it is necessary to merge these intermediatecost functions. This should be done in a separate simpli�cation stage after costreconstruction. The example in Section 6.6 discusses this point in more detail.In summary, the sized time system assigns the following type to the polymorphiclength function (Figure 6.8 describes the main steps of the inference, which is discussedin Section 6.5.2):length : 8�: 8l:Listl � 4�l+2;f! IntlIn the following sections we use as a special notation lengthZ for describing the cor-responding size function (lengthZ l = l in this case) and lengthC for describing thecorresponding cost function (lengthC l = 4 � l + 2 in this case).



6.5. Cost Inference 1996.5 Cost InferenceThis section presents the outline of an algorithm for inferring upper bounds of sizeand cost in the presence of user de�ned recursive functions. In the case of non-recursive expression the sized time system presented in the previous section can bedirectly implemented using the same approach as Reistad & Gi�ord (1994). In orderto handle user de�ned recursive functions, recurrences over an integer domain have tobe constructed and solved. This section gives a reconstruction algorithm for exposingrecurrences and proposes a general approach for solving the recurrences via a library.An important feature of our subtype system is that all constraints range only overc-expressions rather than types in general. This can be seen from Figure 6.2, whichde�nes E by adding only inequalities over c-expressions, but not over primitive types.In other words, from �1 E �2 it follows that the Hindley-Milner types of �1 and �2 arethe same, and this might subsequently be proved. Informally this can be shown byobserving that omitting size and cost information from the sized time system yieldsthe Hindley-Milner type system with additional rules for the basic list operations.The symbol `HM is used to represent standard Hindley-Milner type inference.Conjecture 1 Let e1, e2 be L expressions and � ` e1 : �1, � ` e2 : �2,� `HM e1 : ��1, � `HM e2 : ��2. Then�1 E �2 implies ��1 = ��2It is important to note that no general subtype inference based on set inclusion isrequired, as it is done by Aiken et al. (1994) and Marlow & Wadler (1997). Instead,it su�ces to solve inequality constraints over c-expressions, which range over integervalues including in�nity. Standard software packages exist for performing this testand the outlined inference algorithm uses such a package.The structure of this section is as follows. Section 6.5.1 presents the overall struc-ture of the inference process. Section 6.5.2 presents a size and cost reconstructionalgorithm. This algorithm speci�es a proof strategy for the sized time system, deter-mining where to apply weakening and how to collect constraints. The result of thecost reconstruction algorithm is a sized type, a bound on the cost for evaluating theexpression, and a constraint set of inequalities over c-expressions. The latter has to besolved separately. Section 6.5.3 de�nes a normal form on c-expressions. Section 6.5.4



200 Chapter 6. Granularity Analysisaddresses the question how to derive explicit symbolic cost functions for user de�nedfunctions and how to resolve a set of common recurrences. Finally, Section 6.5.5addresses correctness issues of the presented inference.6.5.1 Structure of the InferenceA cost checking algorithm for the sized time system is no more complicated than theexisting size checking algorithm for sized types (Hughes et al. 1996). This algorithmuses the mandatory type declarations for all letrec-bound variables to compare thedeclared sizes with the sizes that are inferred from the body of the de�nition. Thisyields a set of inequalities over c-expressions in closed form.Hughes' algorithm performs two separate passes for performing Hindley-Milner typeinference and size inference, respectively. In maintaining this structure an additionalpass for cost inference can be added. This pass would add inequalities over costvariables to the constraint set. Since both costs and sizes are represented via c-expressions, the same algorithm for collecting all inequalities can be used.The satis�ability of the resulting constraint set can be checked by performing theOmega test (Pugh 1992). The Omega test is a state-of-the-art implementation ofa decision test for the existence of integer solutions to a�ne constraints, which area superset of the linear constraints as used in this thesis. If no solution exists theexpression is ill-typed. Recursive functions do not pose any additional complicationsince their type has to be explicitly given. Such a checking algorithm could be usedto con�rm that a cost expression provided by the user, e.g. by hand analysing afunction's complexity, is indeed an upper bound for the cost of the function.When the checking algorithm is extended to cost inference a cost and size recon-struction algorithm has to handle functions of unknown type. This requires to addsymbolic cost functions to the de�nition of c-expressions. These symbolic cost func-tions represent so far unknown cost functions applied to known size expressions. Thereconstruction algorithm presented here will therefore extend the one developed byReistad & Gi�ord (1994) by capturing the argument size of a function of unknowntype in the (App) rule.In order to solve the recurrences exposed by the reconstruction algorithm a \library"of recurrence relations with their closed form can be used. This is similar to the



6.5. Cost Inference 201approach used by Rosendahl (1986). One basic di�erence is that the latter usesa sequence of source-to-source transformations in order to translate recursive stepcounting programs into non-recursive ones. In contrast, providing a library decouplesthe main part of the analysis from the recurrence elimination. Thus, the programmerhas the possibility of adding recurrences to the library in order to improve the resultof the analysis. In contrast to an abstract interpretation approach, this approachavoids the complexity of solving the resulting set of equations iteratively.An open problem with an inference algorithm of this kind is how to �nd a minimalsolution of the constraints that are derived. Since the plain type of the inference willbe the same as the Hindley-Milner type, the plain type will be principal. However,if the \library" of recurrences contains approximations of closed forms the solutionfor costs and sizes will not be minimal. Adding such approximations has the bene�tthat unsolvable recurrences can be dealt with. Because the goal of the analysis isto derive some upper bound for the computation costs a minimal solution for thesize component is not absolutely necessary in order to extract useful information outof the analysis. This agrees with observations by Reistad & Gi�ord (1994) on thequality of statically determined cost estimates.In summary, the inference algorithm has the following global structure (see also Fig-ure 6.3):1. collect constraints, inequalities over c-expressions, while traversing the prooftree (see the cost reconstruction algorithm in Section 6.5.2);2. simplify the set of inequalities, containing symbolic functions, by reducing c-expressions to a normal form (see Section 6.5.3);3. spot common patterns of recurrences and replace them with closed forms, usinga \library" of recurrences; if no matching recurrence is found the symbolicfunction is de�ned to yield ! for every input (see Section 6.5.4);4. replace non-linear c-expressions with !; this step is needed as preparation forsolving the constraint system using the Omega test;5. eliminate trivial constraints containing !;6. solve the resulting constraint system using the Omega test (Pugh 1992);
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Figure 6.3 Overall structure of the analysis7. simplify the result further.The main source of inaccuracy for the derived cost bounds in the sized time systempresented here is the (Cond) rule. This might prove to be a problem if a costly branchis rarely executed, for example if the base case of a recursive function is much moreexpensive than the normal recursive case. Although this seems unlikely to be a majorissue, one way to alleviate this particular problem would be to add special cases tothe \library" of recurrences to avoid counting the base case several times. A variantof the max operator could then be used to indicate that the conditional is on thecritical path of a recursion.Another approach would be to extend the type system further by adding conditional



6.5. Cost Inference 203types. Such types use runtime information to specify the type of an expression. Insuch a type system it is possible to formalise a dependence between the head and thebranches of a conditional. For example, it is possible to type the expressionif (null xs)then 1else 1+length xsas (Int1?List0 �)[(Int1+n?Listn �). The conditional type constructor �1?�2 reads as\�1 if �2", incorporating runtime information into the type system without resortingto a safe approximation like the maximum of both sizes. Conditional types haveproven useful in the optimisation of Lisp programs, where the aim is to avoid runtimetype checking. Aiken et al. (1994) present a type system with union, intersection,and conditional types. A type inference algorithm has been implemented for FL andmeasurements on programs with several hundred lines of code show that typicallyno more than 10% of the compilation time is spent in the inference process. Thisshows that although conditional types require an extension to general intersectionand union types, the resulting inference algorithm can still be fast enough to beusable in practice.Another alternative for obtaining more accurate cost information for conditional ex-pressions would be to use pro�ling information as additional input to the static anal-ysis. Similarly to general pro�ling approaches discussed in Section 5.7.3, the programwould be executed on a small sample input set before the static analysis is performed.The pro�ling stage would only have to collect data on the probability of taking eachbranch in the conditionals of the program. These probabilities could then be usedin the static analysis as weights to the costs for both branches. This hybrid schemewould have the potential of combining the accuracy of a static analysis with thee�ciency and additional runtime information of a pro�ling approach.6.5.2 A Size and Cost Reconstruction AlgorithmThe �rst phase in inferring computation costs is to reconstruct cost expressions fromthe program expressions. This frees the programmer of the burden of adding explicittypes specifying size and cost bounds. Cost reconstruction requires a traversal of the



204 Chapter 6. Granularity Analysisinference tree and a bottom-up construction of costs. Since the sized time system usessubtyping the result is not only a sized type and a cost but also a set of constraintson size and cost variables.A Proof StrategyA key question in designing a type reconstruction algorithm is where to apply theweakening rule. All other rules are structural and exhaustive. One possibility (Mitchell1991) is to apply the weakening rule only at the leaves of the proof tree, i.e. immedi-ately before a (Var) or one of the constant rules, (Int) and (Bool) in our case. Thealternative, which is used by the cost reconstruction algorithm presented here, is touse the weakening rule only at the application rule (Hughes et al. 1996), in order tomatch the type of the argument with the type of the domain of the function, and atthe conditional rule, in order to �nd a supertype of both branches.Algebraic Uni�cationIn contrast to classical inference algorithms the uni�cation algorithm used in thisreconstruction algorithm returns a constraint set as well as a substitution. The syn-tactic structure of substitutions (�) and constraint sets (C) is as follows:� ::= �0 j �0� C ::= C 0 j C 0C�0 ::= �=� j c=z C 0 ::= c1 � c2 j c1 = c2Note that substitutions are performed on types and sizes, whereas constraints onlya�ect sizes (c-expressions contain only size but no type variables). The algebraicuni�cation algorithm used in the following reconstruction algorithm is shown in Fig-ure 6.4. It is inspired by the usage of algebraic uni�cation in e�ect systems (Jouvelot &Gi�ord 1991). It implicitly applies the weakening rule wherever necessary by directlyimplementing the subtyping relation in Figure 6.2. It will, however, immediately failif the shape of the two types is di�erent. Because the constraint sets do not involvetype variables this uni�cation algorithm specialises to the Robinson's uni�cation al-gorithm (Robinson 1965) if the size and type annotations are erased from all types.In this case the �rst component of the result, restricted to type expressions, is thesubstitution on plain types.



6.5. Cost Inference 205In Figure 6.4 z; z1; z2 denote c-variables, � denotes a type variable, � denotes a typepattern, which ranges over a di�erent name space than type variables, c; c1; c2 arec-expressions, and �; �1; �2 are type expressions. The cases for type variables, �,and the type Bool are trivial. In the other cases the algebraic uni�cation algorithmimplements the subtyping relation by choosing upper bounds of the size annotationsattached to the types. In the cases for Int and List the fresh size variable z is de�nedto be an upper bound of z1 and z2. These relations are captured via inequalitiesin the constraint set, and therefore the algebraic uni�cation algorithm has to returna constraint set as well as a substitution. In the case of function types an explicitsubstitution is used to guarantee that the names of the symbolic size functions arethe same. As with standard uni�cation the substitutions of nested types have to becomposed. Additionally, the union of the constraint sets from the nested types hasto be constructed, applying substitutions to propagate renamings into the constraintsets.The uni�cation on size patterns in the lower half of Figure 6.4 shows how size infor-mation is propagated even in the absence of plain type information by choosing anupper bound of the size expressions in the uni�ed type expressions. Otherwise sizepatterns behave exactly like type variables. When unifying a function type with asize pattern (last but one rule) the size information has to be propagated throughcurried function application by choosing an upper bound for the sizes of both sizepatterns. Otherwise the size pattern behaves like a type variable. This case will beexplained in more detail together with the (App) rule in Figure 6.5.The Reconstruction AlgorithmFigures 6.5 and 6.6 specify a size and cost reconstruction algorithm in the sameinference style that has been used for the cost semantics of L. For inferring theplain types the algorithm directly implements Milner's algorithm as presented inField & Harrison (1988)[Chapter 7]. The additional rules for list operations arestraightforward specialisations of the general application rule. The arguments to thealgorithm are a type environment � and the expression to be analysed. The resultof the algorithm is a tuple h�; �; c; Ci, where � is the sized type of the expression, �is a substitution, c is the cost of evaluating the expression, and C is the constraintset, i.e. a set of inequalities over c-expressions. The constraint set plays the same rolefor size and cost variables as the substitution does for type variables. In the rules of



206 Chapter 6. Granularity AnalysisU :: � ! � ! (�; C)U(�; �) = ([�=�]; fg) � 62 (FV (�)n�)U(Bool; Bool) = ([]; fg)U(Intz1 ; Intz2) = ([z=z1; z=z2];fz1 � z; z2 � zg) z freshU(Listz1 �1; Listz2 �2) = ([z=z1; z=z2]�;C [ fz1 � z; z2 � zg) z fresh(�; C) = U(�1; �2)U (�1 z1;f! �2;� 01 z01;f 0! � 02) = ([z=z1; z=z01; f=f 0]�2�1;�2C1 [ C2 [ fz1 � z; z01 � zg) z fresh(�1; C1) = U(�1; � 01)(�2; C2) = U(�1�2; �1� 02)U(�; �z) = ([�z=�]; fg)U(�1z1 ; �2z2) = ([�2=�1; z=z1; z=z2];fz1 � z; z2 � zg) z freshU(Bool; �z) = ([Bool=�]; fg)U(Intz1 ; �z2) = ([Int=�; z=z1; z=z2];fz1 � z; z2 � zg) z freshU(Listz1 �; �z2) = ([Listz �=�];fz1 � z; z2 � zg) z freshU(�1 z;f! �1z1 ; �2z2) = ([�1 z;f! �1z=�2];fz1 � z; z2 � zg) z freshU(�1 z;f! �2; �z1) = ([�1 z;f! �2=�]; fg)The symmetric cases for size patterns and size variables are omittedFigure 6.4 An algebraic uni�cation algorithm on sized typesthe reconstruction algorithm z; l denote c-variables, where l is used to represent thelength of lists. � denotes a type variable, � denotes a size pattern. fc; fz denote asymbolic cost and size functions.The proposed algorithm is based on the one developed by Reistad & Gi�ord (1994) forthe cost reconstruction of FX programs. This algorithm traverses a given programexpression and reconstructs its type, cost, substitution, and a constraint set oversize and cost variables. This is the same quadrupel the algorithm in Figures 6.5and 6.6 is using, and thus the combination of constraint sets and the composition of



6.5. Cost Inference 207(Int) � ` n : hIntz; []; 0; fz = ngi z fresh (Bool) � ` b : hBool; []; 0; fgi(V ar) � [ fv : 8 �xi:(�; C)g ` v : h�� ; []; 0; �Ci �yi fresh� = [ �yi= �xi](Abstr) � [ fv : �g ` e : h�; �; c; Ci� ` �v : e : h�� z;f! � ; �; 0; C [ fz = cgi �; f; z fresh
(App) � ` e1 : h�1; �1; c1; C1i �1� ` e2 : h�2; �2; c2; C2i(�; C) = U(�2�1; �2 fc;fz! �z)� ` e1 e2 : h ��z1 ;��2�1;�(1 + �2�z2 + �2c1 + c2);�(�2C1 [ C2 [C[fz1 = (fz z); z2 = (fc z); z = sizeOf(��2)g)i fc; fz; �;z; z1; z2freshFigure 6.5 A size and cost reconstruction algorithm for Lsubstitutions are very similar. In contrast to the sized time system, however, the typesystem for FX does not use a separate weakening rule. Instead, the subtyping relation,which corresponds to the E relation in Figure 6.2, is combined with the remainingrules. Furthermore, the cost reconstruction algorithm in Reistad & Gi�ord (1994)uses a simpler uni�cation algorithm, which only uni�es annotated types producinga substitution but no constraint set. Instead, the reconstruction algorithm for FXadds inequality constraints on costs and sizes in the leaves of the inference tree. Thealgorithm in Reistad & Gi�ord (1994) is based on reconstruction algorithms in e�ectsystems (Lucassen & Gi�ord 1988, Talpin & Jouvelot 1992, Debbabi et al. 1997),which extend type systems in order to capture information about side-e�ects in impurefunctional programs.The algorithm presented here extends the cost reconstruction algorithm for FX byexposing recurrences over c-expressions describing cost and size of user de�ned recur-sive functions. This is done by attaching symbolic size functions to the function typeand stripping the size information from an inferred type via the sizeOf function in the(App) rule. A size pattern of the form �c propagates information about the size of theargument through a function application even if the type of the result is unknown.Without this construct recursive functions would generate recurrences like z = z + 1
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(Cons) � ` e1 : h�1; �1; c1; C1i �1� ` e2 : h�2; �2; c2; C2i(�; C) = U(�2;List l �2�1)� ` cons e1 e2 : hListz ��2�1;��2�1;�(1 + �2c1 + c2);�(�2C1 [ C2) [C [ fz = �l+ 1gi z; l fresh

(Null) � ` e : h�; �; c; Ci (�0; C 0) = U(�; Listl �)� ` null e : hBool ; �0�; 1 + �0c; �0C [ C 0i �; l fresh(Hd) � ` e : h�; �; c; Ci (�0; C 0) = U(�;List l �)� ` hd e : h�0�; �0�; 1 + �0c; �0(C [ fl � 1g) [ C 0i �; l fresh(T l) � ` e : h�; �; c; Ci (�0; C 0) = U(�;List l �)� ` tl e : hListz �0�; �0�; 1 + �0c; �0(C [ fl � 1g) [C 0 [ fz = �0l � 1gi z; �; lfresh
(Cond) � ` e1 : h�1; �1; c1; C1i�1� ` e2 : h�2; �2; c2; C2i �2�1� ` e3 : h�3; �3; c3; C3i(�; C) = U(�3�2�1; Bool) (�0; C 0) = U(��3�2; ��3)� ` if e1 then e2 else e3 : h �0��3;�0��3�2�1;�0�(1 + �3�2c1 +max (�3c2) c3);�0�(�3�2C1 [ �3C2 [C3 [ C 0 [ C)i(Letrec) � [ fv : �g ` e1 : h�1; �1; c1; C1i�1� [ fv : 8 �xi:(�1; C1)g ` e2 : h�2; �2; c2; C2i� ` letrec v = e1 in e2 : h�2; �2�1; �2c1 + c2; �2C1 [ C2i � fresh�xi = (FV (�1�1)[FV (C1))nFV (�1�)Figure 6.6 A size and cost reconstruction algorithm for L (continued)over c-variables because the information about the size of the argument in a recursivecall is lost. The only solution to this equation is !, which would assign in�nite coststo all recursive expressions. In the inference of length in Figure 6.8 this can be ob-served in branch 
3 , where the size of the expressions tl xs, namely Listl�1 �0, hasto be propagated through the so far unknown type of the function length. In simpleHindley-Milner type inference no such information has to be propagated, because theHindley-Milner types of xs and tl xs are the same.As the (Int) case indicates, the algorithmmaintains the invariant that size annotationsin sized types are always variables. Thus, an explicit constraint z = n has to be added



6.5. Cost Inference 209sizeOf :: � ! [c]sizeOf(�) = [ ]sizeOf(�z) = zsizeOf(Bool) = [ ]sizeOf(Intz) = zsizeOf(Listz �) = z : sizeOf(�)sizeOf(�1 z;f! �2) = fFigure 6.7 De�nition of size strippingto the constraint set in the (Int) case rather than just using Intn as in the sized timesystem. This invariant simpli�es the algebraic uni�cation algorithm.The (Abstr) rule adds fresh variables for the cost and the size function attached tothe derived function type. The constraint set captures the costs of evaluating thebody of the function.The (App) rule shows how the size information is propagated through a functionapplication. The uni�cation of the type of e1, �1, with an explicit function typeis standard. However, rather than choosing a type variable in the codomain a sizepattern �z is used. Together with the algebraic uni�cation algorithm this guaranteesthat the size information is not lost if the plain type of the result is unknown. Notethat size patterns are only introduced in the codomain of function types. In the case ofcurried function applications, yielding size patterns, the result of the �rst applicationwill be uni�ed with another function type. The rule for unifying function types withsize patterns in Figure 6.4 ensures that the size on the �nal result is an upper boundover all collected size information. The size component in the size pattern has theform fz sizeOf(��2). The sizeOf function is used to strip size information from thesized type and to make it explicit in the application of the size function fz. Figure 6.7shows the de�nition of sizeOf, which will be applied at top-level when generating costand size functions from the generated cost and size expressions. The result of applyingsizeOf is a list of cost expressions similar to the shape vectors used by Skillicorn &Cai (1993) in their cost model for the Bird-Meertens formalism.The rules on lists, (Cons), (Null), (Hd), (Tl), all have to unify one subexpressionwith a list type, introducing fresh type and size variables. The side condition that



210 Chapter 6. Granularity Analysishd and tl can only be applied to lists with at least one element is captured in theconstraint set. Thus, our type system can detect some cases of applying hd or tlto nil, which has size 0. The propagation of size information is also encoded viaequality constraints in the constraint set.In the (Cond) rule the maximum of both branches has to be used in order to obtainan upper bound of the costs of the expression. A bound on the size of the result willbe added to the constraint set by applying the uni�cation algorithm.The (Letrec) case of the algorithm exhibits an extension of the format of type schemes.Since type schemes propagate generic type information from the letrec head intothe letrec body, they also have to propagate the constraints collected while inferringthe type of e1. Together with a generic type variable this constraint set is added tothe result type of a letrec bound variable via the (Var) rule.An ExampleFigure 6.8 presents a size and cost inference based on the above cost reconstructionalgorithm by showing the main steps in an inference of the function length:length = \ xs . if null xsthen 0else 1 + length (tl xs)The example inference for length avoids the use of intermediate variables as theywould be generated in an actual implementation. Instead we directly insert the valuesof variables for which equality constraints are generated, e.g. Int1 is used instead ofIntx with fx = 1g. The inference is therefore best read from the leaves of the tree.The sized type and the cost are also directly inserted in every step, although thealgorithm synthesises them in a bottom-up fashion when traversing the tree.The most important parts in the inference are summarised as follows. The (Null) rulein branch 
1 uni�es the type of xs in the assumption set �0 , �0, with a polymorphiclist of unknown size, Listl 
. The (App) rule in branch
3 uses fresh symbolic size andcost functions, f and f 0, to describe size and cost of the result. These are attached tothe type of length via the uni�cation of � with the function type Listl�1 
 f;f 0! �z.�z is a fresh size pattern, which propagates the size of the argument, tl xs, through



6.5. Cost Inference 211l; 
 fresh (V ar)�0 ` xs : Listl 
 $ 0(Null)�0 ` null xs : Bool $ 1
1
(Int)�0 ` 0 : Int0 $ 0
2�0 ` xs : Listl 
 $ 0(V ar) (T l)�0 ` length : � $ 0 �0 ` tl xs : Listl�1 
 $ 1 (App)�0 ` length (tl xs) : �f sizeOf (Listl�1 
) $ f 0 sizeOf (Listl�1 
) + 2(App)�0 ` 1+ length (tl xs) : Int1+f (l�1) $ f 0 (l � 1) + 3
3
1 
2 
3 �0 = � [ flength : �; xs : �0g �; �0 fresh(Cond)�0 ` if null xs ::: : Int1+f (l�1) $ 2 + max 0 (f 0 (l � 1) + 4) (Abstr)� [ flength : �g ` �xs::: : Listl 
 2+max 0 (f 0 (l�1)+4);f�! Intmax 0 1+f (l�1) $ 0Figure 6.8 Inference for lengththe function application. Therefore, z is of the form sizeOf (Listl�1 
). In thisinference we apply the sizeOf function as early as possible to improve readability. Inthe inference algorithm this step would be performed at the root of the inference tree.Via the (Cond) rule the maximum over the costs of both branches in the conditionalis constructed. In the size component of the result type the constraint set capturesthe fact that the size of the result is an upper bound for the size of both branches. Asthis information is captured via inequalities in the constraint set, the exact expressiondepends on the solution of the constraint set. Here we assume that it will yield amax expression. Finally, the (Abstr) rule builds the function type for the body oflength, attaching the derived costs, 2 + max 0 (f 0 (l � 1) + 4), to this type. Thus,the reconstruction algorithm has exposed the recurrence for specifying the costs ofcomputing this function with the size variables occurring in the argument types as



212 Chapter 6. Granularity Analysisfree variables in the cost expression.In order to obtain a closed form for the cost function of length, the cost expressionhas to be simpli�ed and then matched against a library of recurrences. The details ofthese steps in general are discussed in the following two sections. In this case we haveto use the fact that 0 is the neutral element for max and then use the �rst recurrencein Figure 6.12 to obtain the following closed form:lengthc l = 4 � l + 26.5.3 Simplifying ConstraintsIn order to de�ne the simpli�cation of constraints a normal form has to be de�ned on c-expressions. One natural choice would be to choose a sum-of-products representationas normal form. Assuming an ordering on size variables, an ordering on c-expressionscan be de�ned by de�ning cost functions to be smaller and max expressions to belarger than cost expressions of a di�erent shape. A simpli�cation function would haveto use rules like distributivity as well as basic arithmetic rules to bring c-expressionsinto normal form. This is a standard exercise in term rewriting and therefore notdiscussed in more detail.From the presentation of the algebraic uni�cation algorithm in Figure 6.4 it canbe seen that many constraints will be added to the constraint set while traversingthe inference tree. For a practical implementation it will therefore be importantto simplify the constraint set when adding new constraints in order to avoid thegeneration of huge constraint sets. This also opens up the possibility to report typeerrors early if the check, when adding a constraint to the set, yields an error.One important task of the simpli�cation algorithm is to merge intermediate symboliccost and size functions that are generated via the (App) rule. For symbolic costfunctions this means generating one function which is the sum of all intermediatefunctions. In the case of symbolic size functions this means combining the upperbounds of the intermediate functions, which are present in the constraint set, intoone symbolic size functions. The example in Section 6.6 discusses this aspect in moredetail.



6.5. Cost Inference 2136.5.4 Solving Recurrence RelationsRecurrence relations are solved by matching the simpli�ed c-expressions obtainedfrom the cost reconstruction algorithm with a library of recurrence relations. If thismatch is successful the recurrence can be replaced with the known closed form. If itfails the cost expression has to be replaced with !.This approach has the advantage of being tunable by adding more recurrence rela-tions to the library. Thereby, it is possible to trade accuracy for speed in the analysis.Another important aspect is that the library only has to contain upper bounds ratherthan exact solutions to the recurrences. Thereby unsolvable recurrences can be dealtwith, by choosing an approximation, possibly using a table hypergeometric functions,which is a standard technique in combinatorics. Keeping the recurrence solver sepa-rate from the derivation of the constraint set adds 
exibility to the system.A �rst version of a matching procedure is given in Figure 6.9. This version showsthat in principle the matching procedure corresponds to a uni�cation of c-expressions.All constants have to match exactly. C-expressions are substituted for c-variables.In compound expressions the result is the composition of all substitutions resultingfrom unifying the components. If this algorithm succeeds in unifying the derived c-expression with the body of a function in the library, then the resulting substitutionhas to be applied to the recorded closed form for this recurrence in order to eliminatethe recurrence in the derived cost expression.The correspondence of the matching algorithm to a uni�cation algorithm also indi-cates that the cost for �nding a closed form should not dominate the analysis. In totalthis cost will depend on the number of entries in the library. However, by sharingcommon structures in the representation of the recurrences it should be possible todevise a matching algorithm whose cost does not increase linearly with the numberof entries. Re�nements of fast string matching algorithms should be applicable here.An alternative approach for eliminating recurrences at this stage would be to use ageneral recurrence solver over integer values. Such algorithms are available in com-puter algebra systems such as Maple (Char et al. 1991) and Mathematica (Wolfram1988). This would extend the approach of using the Omega test for checking sat-is�ability of a constraint set to using more powerful, but more expensive, computeralgebra algorithms for �nding a solution for a system of recurrences. However, withthe current state-of-the-art it is only possible to �nd closed forms for linear recur-



214 Chapter 6. Granularity AnalysisUc :: c! c! �Uc n n = []Uc ! ! = []Uc l c = [c=l]Uc c l = [c=l]Uc (c1 + c2) (c01 + c02) = �0� � = Uc c1 c01�0 = Uc �c2 �c02Uc (c1 � c2) (c01 � c02) = �0� � = Uc c1 c01�0 = Uc �c2 �c02Uc (n � c) (n � c0) = Uc c c0Uc (max c1 c2) (max c01 c02) = ��0 � = Uc c1 c01�0 = Uc �c2 �c02Uc (f c1 : : : cn) (f 0 c01 : : : c0n) = [f=f 0]�n � � � �1 �1 = Uc c1 c01...�n = Uc (�1 � � � �n�1cn)(�1 � � � �n�1c0n)Figure 6.9 Matching of cost expressionsrences with polynomial coe�cients, certain non-linear �rst-order recurrences, andcertain divide-and-conquer recurrences (Petkov�sek 1990). A good starting point forsuch an implementation would be the algorithm by Petkov�sek & Salvy (1993) for�nding all hypergeometric solutions of linear recurrences. Hypergeometric sequencesare such that the quotient of two successive terms is a �xed rational function of theindex.6.5.5 Correctness IssuesThis section presents a list of conjectures characterising some crucial correctness issuesof the cost reconstruction algorithm. Proving these conjectures would lead most ofthe way towards proving the correctness of the algorithm. No formal correctness proofwill be given here. However, because the algorithm is based on the reconstructionalgorithm by Reistad & Gi�ord (1994), and similar reconstruction algorithms fore�ect systems such as Talpin & Jouvelot (1992), most rules follow from their system.The main di�erence is the (App) rule, which propagates size information.



6.5. Cost Inference 215In order to formalise the notion of solving a set of constraints the notion of a modelhas to be introduced. In this de�nition we assume the standard de�nitions of = and� on integer values with x � ! for all integer values x.De�nition 7 (solution, model) A mapping  from c-variables to c-expressions isa solution of a constraint set C (written  j= C) i� for all elements c1 R c2 of C, c1 R  c2 where R 2 f=;�g.Based on this de�nition several conjectures over models for composed constraint setssuch as the following can be formalised.Conjecture 2 Let C1; C2 be constraint sets. Then j= C1 [ C2 implies  j= C1 and  j= C2This formalises the intuition that a solution of a composed constraint set must be asolution of every component.The soundness of the cost reconstruction algorithm with respect to the inferencesystem can be formalised as follows. The symbol ` is used to represent the sized timeinference system in Figure 6.1 and `alg is used to represent the cost reconstructionalgorithm in Figures 6.5 and 6.6.Conjecture 3 (soundness of cost reconstruction) Let e be a L expression and� the initial assumption set for type inference. Then� `alg e : h�; �; c; Ci and  j= C implies  �� ` e :  �� $  �c0where  �c0 �  �c.The inequality in this conjecture is caused by the possibility of deriving �nite upperbounds for recursive functions if  contains �nite solutions to the symbolic costfunctions in C. If  maps all symbolic cost functions to ! or if e is a non-recursiveexpression this inequality can be tightened to an equality. Currently, this is notexpressed in the sized time system.The structure of the proof has to be as follows. The proof performs a case analysis overthe L expressions and, in each branch of the case analysis, a structural induction ofthe inference/algorithm tree. The induction assumption is the soundness conjecture
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pay_price = \ price coins .
 if (price==0) then 1
 else 
  letrec  coin_values = nub (dropWhile (\ x . x>price) coins)
  in 
   par coin_values 
       (sum (map (choose price coins) coin_values))

choose = \ price coins c .
  letrec   new_coins’ = dropWhile (\ x . x>c) coins
           new_coins  = del new_coins’ c
  in 
   par new_coins
       (pay_price (price-c) new_coins)Figure 6.10 L code for coinsfor all subexpressions. It uses several conjectures on substitutions and models statedabove. The structure of the proof is similar to a proof for the soundness of e�ectsystem as given in Talpin & Jouvelot (1992). The main di�erence to this system isthe use of algebraic uni�cation in the system presented here.6.6 ExampleThis section gives an abridged size and cost inference, performed by hand, for onefunction in the simple but non-trivial L program, coins. The inference shows howto infer size and cost information by using the sized time system. Since the goal is togenerate information that can be used in the runtime-system to improve performance,this inference focuses on the size and cost bounds that can be derived without givingall details of the inference process and how the constraints are collected. Finally, thissection concludes with giving performance measurements of the program annotatedwith the derived cost information.The coins program takes a price and a list representing a set of coins, and determineshow many di�erent combinations of coins could be used to pay for an object at thegiven price. The full code of the program is given in Figure 6.10. The code exposesparallelism via the par annotation. The goal of the granularity analysis is to infer costand size expression, which can then be added to the par annotations. Figure 6.13 willpresent the annotated version of the code that makes use of the derived information.
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(V ar) (V ar)�00 ` del : � $ 0 �0 ` zs : Listl�1 
 $ 0 (App) (V ar)�00 ` del zs : �1fz sizeOf (Listl�1 
) $ 1 + fc sizeOf (Listl�1 
) �00 ` x : 
 $ 0(App)�00 ` del zs x : �2z0 $ 2 + fc (l � 1) + f 0c (Cons)�00 ` cons z (del zs x) : List1+z0 
 $ 2 + fc (l � 1) + f 0c (Cond)�00 ` if ::: : List1+z0 
 $ 2 + max 0 (2 + fc (l � 1) + f 0c)
4 �00 = fz : 
; zs : Listl�1 
; xs : Listl 
; del : �gFigure 6.11 A part of the inference of delIn order to focus the presentation, this section will only discuss the inference of onesub-function, del. This function takes a list and a value and deletes the value fromthe list. If the value is not in the list an error value is returned. The de�nition of delin L is as follows.

del =  \ xs x . if (null xs) then error
                else letrec  z = hd xs
                             zs = tl xs
                     in
                      if (z==x) then zs else cons z (del zs x)     The del function deletes the �rst instance of x from xs. The special value error(of the polymorphic type 8�:��1) is used to indicate that x did not occur in xs (anerror). Its size has to be smaller than any list size.6.6.1 Cost and Size AnalysisThis section highlights the main points in each of the steps for performing the costand size inference as presented in Section 6.5.1. This example will also discuss limitsof this inference and requirements for the simpli�cation algorithm that has to be usedafter performing cost and size reconstruction.



218 Chapter 6. Granularity AnalysisInference and Simpli�cation. In this step the inference tree is generated andtraversed. During the tree traversal constraints on c-expressions are collected. Themost important part in this traversal is the inference of the inner conditional. Thispart of the inference tree is shown as branch 
4 in Figure 6.11. Before reachingbranch 
4 the analysis of null xs in the head of the outer conditional adds thefollowing binding to the assumption set: xs : Listl 
. Furthermore, in the analysisof the letrec construct zs is de�ned to be tl xs and therefore its type is Listl�1 
.Similarly, the type of z is 
. In branch 
4 the head of the inner conditional uni�esthe type 
 with the type of x. In the two application rules the size information ofthe concrete arguments is added to the size pattern representing the result type. Theresult of applying the sizeOf function represents the change in size for the argumentsof the recursive function call:sizeOf(Listl�1 
) = [l � 1]sizeOf(
) = []The information from the �rst application is propagated to the second applicationvia unifying the size pattern with a function type containing fresh symbolic size andcost functions, f 0z, f 0c:U(�1fz sizeOf (Listl�1 
); 
 f 0c;f 0z! �2f 0z sizeOf 
)In this case, the uni�cation algorithm will choose an upper bound for the size in bothsize patterns, z0, and use it as the size of the result. The constraint set will thereforecontain the following inequalitiesffz (l � 1) � z0; f 0z � z0gand the result type of del zs x is the size pattern �2z0 . This example shows that thereconstruction algorithm adds fresh size functions in each curried function application.In order to obtain just one size function over all size arguments these functions haveto be merged. This should be done by the simpli�cation algorithm when generatinga size function from the size expression for the body of the function de�nition. Thesame merging has to be done for cost functions. However, in this case all symboliccost functions, fc and f 0c in this case, occur explicitly in the resulting sum.The (Cons) rule uni�es the size pattern to the list type List1+z0 . Then the (Cond)rule constructs the maximum of the size of both branches, with �1 as the size for



6.6. Example 219the then branch. Collecting all size and cost information in the inference tree thefollowing two recurrences are exposed on top-level:delZ l = max (�1) (1 + delZ (l � 1))delC l = 2 +max 0 (4 + max 0 (2 + delC (l � 1)))In these cost expressions the occurrences of max re
ect the two nested conditionalsin the code. In this case the base case for the recurrence can be obtained by reinter-preting the max operator as a minimum and choosing the minimum size as argument.In the general case, however, this would require a more sophisticated analysis of thehead of conditionals. In particular, the semantics of null should be used togetherwith the available size information. One promising approach to achieve this wouldbe the use of conditional types as outlined in Section 6.5.1.After simpli�cation, this stage of the inference yields the following recurrences:delZ 0 = �1delZ l = 1 + delZ (l � 1)delC 0 = 2delC l = 8 + delC (l � 1)Resolving Recurrences. The goal of this step is to bring all symbolic cost func-tions (like delC) into closed form in order to substitute the functions with the expres-sions in the constraint set. This will eliminate all symbolic cost functions introducedby the reconstruction algorithm. By using a library of known recurrences the recursivesize and cost functions above can be replaced by the following closed forms:delZ l = l � 1delC l = 8 � l + 2It is important to note that all recurrences in the analysis of these functions arelinear, �rst-order recurrences since the functions iterate over lists. Figure 6.12 showsthe entire library of closed forms for recurrences that has been used in the analysisof coins and its subfunctions.Solving the Constraint Set. The �nal step has to check whether a solution forthe constraint set exists. In this case the program is well typed and for each function



220 Chapter 6. Granularity Analysisf 0 = af n = b+ f(n� 1) ) f n = a + b � nf 0 = af n = b+ c � n + f(n� 1) ) f n = a+ b � n+ c�n�(n+1)2Figure 6.12 Recurrences and their closed formsa corresponding size and cost function has been inferred. Since the constraint setdoes not contain symbolic cost functions any more at this stage the Omega test canbe used for performing this check. An analysis of the expressions in coins that areannotated with par and should be evaluated in parallel (coin values and new coins)yields the following cost expressions that are used to annotate the program:coin valuesC = 9 � n2 + 14 � n+ 5new coinsC = 16 � n+ 46.6.2 AnnotationsThe cost information derived in the previous section can be used to transform theparallel program by adding cost information to the spark sites:1. For each argument add an extra argument representing its size.2. Use the derived size functions to propagate size information.3. Add the derived cost expressions to the parGlobal annotations.This transformation applied to the input program shown in Figure 6.10 gives theannotated parallel program shown in Figure 6.13. Note that the new variables m andn represent the size of price and of coins, respectively.The �rst argument of parGlobal represents a cost or granularity measure. Theparmap function is a parallel implementation of map that takes granularity informationfor each application of the mapped function as its �rst argument. The special valueinfty represents ! as a bound on computation cost.
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pay_price = \ m n price coins .
 if (price==0) then 1
 else 
  letrec  coin_values = nub (dropWhile (\ x . x>price) coins)
  in 
   parGlobal (9*n^2+14*n+5) coin_values 
             (sum (parmap infty (choose m n price coins) coin_values))

choose = \ m n price coins c .
  letrec   new_coins’ = dropWhile (\ x . x>c) coins
           new_coins  = del new_coins’ c
  in 
   parGlobal (16*n+4) new_coins
             (pay_price m (n-1) (price-c) new_coins)Figure 6.13 Annotated L code for coins6.6.3 MeasurementsThis section presents results on running the annotated program under the GranSimsimulator in two di�erent set-ups: with eager-thread-creation and with evaluate-and-die. Figure 6.14 compares the granularities over varying cut-o� values when usinga thresholding granularity improvement mechanism. The cut-o� value is measuredas recursion depth starting with 100 at the root of the divide-and-conquer tree. Inboth cases the results for several di�erent latencies are plotted. In the case of eager-thread-creation (left hand graph) the granularity increases gradually with increasingcut-o� values. In the case of high latency (4,096 cycles) the granularity turns out tobe rather good already. The graph on the right hand side shows a similar, continuousimprovement of the granularity. Only at a few points a reduction of granularity isobserved. This corresponds to the mismatch between upper bounds of computationcosts and the real costs.The improvements in speed-up are smaller but still signi�cant. In the case of eager-thread-creation the speed-up increases from 14.3 to 18.4 for a latency of 64 cycles.For higher latencies the improvement is smaller but still measurable. In the case of anevaluate-and-die model, however, only very small improvements can be observed. Theright hand graph in Figure 6.14 already shows a high granularity for low cut-o� values.Only for a latency of 4,096 cycles there is clear improvement in speed-up from 24.7 to26.1. The main reason for this behaviour is spark subsumption in the evaluate-and-diemodel. Whereas eager-thread-creation without thresholding creates more than 10,000
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Figure 6.14 Granularity with varying cut-o� values (eager and lazy thread creation)threads, the evaluate-and-die model only creates circa 1,000 threads. These resultsof granularity being important in particular for high-latency machines, correspond tothe results of measurements on the distributed memory Alfalfa architecture reportedby Goldberg (1988a).In evaluating the performance improvement by adding granularity information it hasto be emphasised that this program contains only two main spark sites. This severelylimits the amount of runtime improvement that can be expected by adding granularityinformation. Granularity control mechanisms mainly aim at improving programs witha large number of spark sites generating tasks whose granularities vary signi�cantly(see Chapter 5). This is, for example, the case for naive methods of generatingimplicit parallelism in a functional program. Another result of these measurements isthe observation that it is possible to achieve runtime improvements for a wide rangeof latencies representing di�erent kinds of parallel architectures.6.7 Comparison with Other Work6.7.1 Complexity AnalysisPioneering work on automatic complexity analysis has been done by Wegbreit indeveloping a system METRIC for deriving closed form expressions for the time com-plexity of a �rst-order subset of Lisp (Wegbreit 1975). The structure of his analysis



6.7. Comparison with Other Work 223is somewhat similar to the proposed cost inference algorithm discussed in this thesis(see Section 6.5):1. Local cost assignment translating a program into a set of cost expressions.2. Recursion analysis determining how the parameters to a recursive functionchange from one call to another.3. Solution of di�erence equations using standard methods like direct summationand di�erentiation of generating functions.In his concluding remarks Wegbreit points out how a sophisticated algebraic ma-nipulation subsystem and an enhanced di�erence equation solver could dramaticallyimprove the quality of the results produced by the system. This would be equally truefor the granularity analysis of functional languages using a general recurrence solverbecause the di�erences to imperative languages treated by Wegbreit only complicatesthe generation but not the manipulation of cost expressions.Wegbreit's work has been extended by Hickey & Cohen (1988), who focus on the-oretical foundations of a performance compiler capable of automatically generatingfunctions describing average-case performance. The systems Complexa (Zimmermann1990) and ��
 (Flajolet et al. 1991) build on METRIC and extend it for the average-case complexity analysis of algorithms. Skillicorn & Cai (1993) as well as Rangaswami(1996) use cost models based on the Bird-Meertens calculus in order to obtain infor-mation about the runtime of parallel programs. In a similar spirit Jay et al. (1997)develop and implement a monadic cost calculus for a higher-order functional lan-guage. This language is restricted in away that makes it possible to derive the shapeof the result of an expression based on the shape of its inputs. Thus, shape infor-mation is available for all program expressions. This corresponds to our use of sizedtypes but shape information is more accurate because the size annotations in thetype system for L are only upper bounds. In Jay et al. (1997) programmer estimateson the number of unfoldings for recursive functions are required to obtain accuratecosts. It is demonstrated that with this information the implemented calculus au-tomatically derives parallel execution times for programs like matrix multiplication.One technical di�erence to the monadic cost calculus is that the sized time system,inspired by e�ect systems, uses an extended type system to propagate informationabout sizes and costs, whereas Jay et al. (1997) use a monad for this purpose. The



224 Chapter 6. Granularity Analysisclose relationship between e�ect systems and monads has been recently elaboratedby Wadler (1998).6.7.2 Cost Analysis for Strict LanguagesHuelsbergen et al. (1994) introduce the technique of a dynamic granularity estimationfor strict, list-based, higher-order languages. This technique consists of two compo-nents:� A compile-time (static) component, based on abstract interpretation to identifycomponents whose complexity depends on the size of a data structure.� A run-time (dynamic) component, for approximating sizes of the data structuresat run-time.Based on the results of the static component, the compiler inserts code for checking thesize of parameters at certain points. At runtime the result of these checks determinewhether a parallel task is created or not. The static component of this system has notbeen implemented. The dynamic component is implemented on a Sequent Symmetryon top of a parallel SML/NJ implementation. It is stated that the runtime overheadfor keeping track of approximations (one additional word per cons cell) is very low.For the quicksort example an e�ciency improvement of 23% has been reported.Dornic (1993) describes a practical time system for inferring a function's complexityusing an algorithm similar to the cost reconstruction algorithm presented in thisthesis. In Dornic's time system, however, recursive functions are assigned in�nitecosts as an upper bound for the total computation time. In part based on Dornic'swork, Reistad & Gi�ord (1994) de�ne the notion of static dependent costs for theanalysis of a strict higher-order language. These costs describe the execution timeof a function in terms of its input. The relationship of our sized time system toto the work on static dependent costs has been discussed in detail in Sections 6.4.1and 6.5.2. Runtime measurements of the system show that their cost estimates areusually within a factor of two of the real costs. Using this information for a parallelmap operation achieved a speedup of more than two compared to a naive version ofa parallel map on a four processor SGI for the game of life program.



6.7. Comparison with Other Work 225Rosendahl (1989) deals with a complexity analysis of a �rst-order subset of Lisp. Hiswork builds on a partial evaluation machinery and uses abstract interpretation inorder to derive upper bounds for the complexity of �rst-order Lisp functions. Theanalysis has three phases: constructing a step-counting version of the given program;perform abstract interpretation on the step-counting version of the program and gen-erate a time bound function; �nally, simplify the resulting time bound function. Thelatter includes a component for solving �nite-di�erence equations (Rosendahl 1986),which is similar to our approach of using a library of recurrences.In all of the above analyses user de�ned recursive functions are assigned in�nite costs,except for Rosendahl (1989) where simple recursive patterns can be eliminated. Morerecently, Hughes et al. (1996) have developed a sized type system for a simple higher-order, lazy functional language. This type system allows to infer upper bounds for thesize of algebraic data types. In the mentioned paper this is used to prove terminationand liveness of reactive system. However, this thesis demonstrates that a sized typesystem can also be used to analyse the costs of user-de�ned recursive functions.The ACE system of Le M�etayer (1988) transforms an FP program with call-by-namesemantics into a program with call-by-value semantics. The main part of the systemis the transformation of recursive complexity functions into non-recursive ones. Incontrast to the approaches mentioned above, this system performs a macro-analysis,that is, it measures the time in the number of applications of the dominant operationwhich is used in the program.6.7.3 Demand AnalysisThe purpose of a demand analysis is to determine the order in which parts of anexpression are needed and the degree to which the result has to be evaluated. Ina lazy language this information is required to determine the computation costs ofan expression. Demand analysis is similar to strictness analysis but it provides moredetailed information. In fact, strictness information can be extracted as a special casefrom the information provided by demand analysis.In the context of a cost analysis it is important to know the order-of-demand as wellas the degree of the evaluation of a complex data structure. Several approaches havebeen proposed to perform both kinds of analysis:



226 Chapter 6. Granularity AnalysisAbstractions of sets of continuations: Both Hughes (1987) and Bloss (1989)de�ne a collecting non-standard semantics of all possible continuations (or paths)in a program. An order-of-evaluation analysis is developed by de�ning an abstractinterpretation over this semantics. The main disadvantage of this approach is thatthe resulting terms in the abstract interpretation are very big, and hence algebraicsimpli�cation is necessary to derive normal forms for these terms. Exact simpli�cationis not always possible and heuristics have to be applied at certain points. In contrast,the inference based analysis presented in Draghicescu & Purushothaman (1990) doesnot try to enumerate all possible paths and is more e�cient in practice. Similar order-of-demand analyses have been developed by Park & Goldberg (1992) and Gomard &Sestoft (1991).Many-valued evaluation degrees: In the framework of Martin-L�of type theoryBjerner (1989) develops many-valued evaluation degrees, which are used to give anoperational model of contexts. This approach usually gives very accurate resultsbut it is less general than the projections approach. Many-valued evaluation degreeshave been developed speci�cally for time analysis. Because they do not contain moreinformation than absolutely necessary for a time analysis symbolic derivations areeasier.Projections: The property � v ID of a projection � can be read as � performs anevaluation of a degree less than or equal to that of reduction to normal form. Basedon this observations Wadler & Hughes (1987) developed a strictness analysis, whichuses projections to model demand. Projection transformers are used to determinethe demand on an argument in a function application, given the demand on thewhole function application. This corresponds to the way that evaluation transformers(Burn 1991a) determine the degree of evaluation in a parallel environment. Thecompilation rules developed by Burn (1990) show how the information provided byprojections can be exploited in both sequential and parallel implementations.The most promising approach is the use of projections, which have recently attracteda lot of attention for static analysis in general (Davis 1994). This is underlined byrecent work on the theoretical foundations of projections (Launchbury & Baraki 1996)as well as the use of projections in the implementation of a strictness analyser in theGlasgow Haskell Compiler (Kubiak et al. 1991). An implementation of a demand



6.7. Comparison with Other Work 227analysis could reuse a lot of this work. However, it is an open question whetherthe concrete set of projections used in this implementation is strong enough to allowsatisfactory cost information to be inferred.6.7.4 Cost Analysis of Lazy LanguagesBased on the modelling of demand via many-valued evaluation degrees in Bjerner'sPhD thesis (Bjerner 1989), Bjerner & Holmstr�om (1989) develop a cost analysis forlazy higher-order languages. A separate demand analysis is used to derive informationon the evaluation degree.In his PhD thesis Sands (1990a) uses projections in order to develop a cost calculusfor a lazy, higher-order language. He speci�es cost calculi for inferring a lower bound,necessary time, and an upper bound, su�cient time, of the cost for evaluating anexpression. This work is partly based on Wadler's use of projections for the timeanalysis of lazy programs (Wadler 1988). Being calculi rather than static analysesboth approaches assume knowledge about exact values e.g. in the head of conditionals.To date Sands' cost calculus seems to be the most promising basis for a concreteimplementation of a cost analysis for lazy languages.6.7.5 Logic LanguagesIn the area of logic programming languages some attempts have been made to com-bine a cost analysis (Debray et al. 1990, Debray et al. 1994, Tick & Zhong 1993) withruntime mechanisms for improving the granularity of the generated threads (L�opezGarc��a et al. 1994, L�opez Garc��a et al. 1995). The cost analysis of logic languages iscomplicated by the fact that a relation can have several solutions. Thus, a separatenumber-of-solutions analysis has to be developed to infer this information (Debray& Lin 1993). The structure of the program transformations using cost informationis similar to those in functional languages: add the cost functions derived at compiletime to the code; generate a parallel as well as sequential version of the code; addconditionals for deciding whether to use the sequential or the parallel code. Severaloptimisations to minimise the runtime overhead of these methods have been devel-oped. The most important optimisation is to simplify the size expressions that are



228 Chapter 6. Granularity Analysisgenerated (Hermenegildo & L�opez Garc��a 1995). However, some overhead is inherentin such a hybrid approach and there is still the danger of code explosion.6.8 DiscussionThis chapter has shown how to infer upper bounds for the size of the result and thecomputation cost of evaluating an expression in the simple strict higher-order func-tional language L. The sized time system has not yet been implemented. However,based on the results by Hughes et al. (1996) the implementation of a time checkingalgorithm should be a straightforward extension of their sized type checking algo-rithm. In order to extend this algorithm to time inference, the analysis has to solverecurrence equations over an integer domain. The cost reconstruction algorithm inSection 6.5.2 shows how to expose recurrences for recursive functions. These re-currences can then be solved by matching them with a library of known recurrencerelations and (an approximation of) their closed forms. An algorithm for combiningthe cost reconstruction algorithm with such a library has been outlined and openproblems have been discussed. The library approach makes it possible to derive costsfor many user-de�ned recursive functions, which goes beyond the analysis presentedby Reistad & Gi�ord (1994) for Lisp. A similar approach by Rosendahl (1986) showsthat many common patterns of computation can be analysed with a rather small setof recurrences. In the context of parallel computation it is important to obtain exactinformation for small functions that usually generate simple recurrences. Therefore,a small library should be su�cient to yield useful information.Several stages in the inference algorithm outlined in Section 6.5.1 need re�nement inorder to implement the full algorithm. In particular, the simpli�cation algorithm hasto merge symbolic cost and size functions, and determining the costs for the base caseof a recursion requires in general a more sophisticated analysis. These issues will bediscussed further in the context of future work in Section 7.3.Although the derived cost is only an upper bound for the real cost, the initial mea-surements indicate that it can provide enough information for the runtime-system toachieve a performance improvement of parallel programs. This is quite remarkablebecause the analysis was performed for a strict language and is therefore overesti-mating the evaluation degree in the presented measurements. This seems to give



6.8. Discussion 229evidence that at least for strict functions in a lazy language the results of a strictanalysis, such as the sized time system, can provide useful information. However,before making conclusions on this issue more measurements of analysed programs,especially large-scale programs, are required.From the measurements in Chapter 5 it is unclear whether relative cost informationbetween threads is su�cient to achieve performance improvements. Therefore, thepresented analysis yields absolute cost information. In the measurements for a handanalysed program the use of absolute cost information via a thresholding mechanismachieved the best results. The accuracy of the analysis could be improved, however, byadding constants for certain operations rather than performing step counting alone.The presented analysis is based on type inference rather than abstract interpretation,which is often used for this kind of static analysis. The main advantages o�ered by aninference-based analysis are its modularity, by propagating all relevant informationvia the type of an expression, and its tunability, in particular when using a libraryapproach in order to eliminate recurrences. Both issues are particularly importantfor the analysis of large programs. Therefore, the algorithm outlined in this chaptershould be a good basis for a practical implementation.
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Chapter 7
Conclusions
7.1 SummaryTo develop a system of implicit parallelism for lazy functional languages a sophis-ticated runtime-system has to be built. It must achieve good parallel performancewithout a detailed description of the parallel program execution from the program-mer. It must be 
exible enough to deal with programs of very di�erent structure, butshould also be able to make use of certain important characteristics of the program.This thesis focuses on one of these characteristics, the granularity of the generatedthreads in a parallel system, and it furthers this e�ort by developing and measur-ing granularity improvement mechanisms for the runtime-system, and developing astatic granularity analysis, based on sized types (Hughes et al. 1996) and a time sys-tem (Reistad & Gi�ord 1994), for inferring an upper bound of the computational costsof evaluating a program expression. This thesis also contributes to the developmentof a systematic programming technique for parallel lazy functional programming,evaluation strategies, which achieves a clean separation between algorithmic and be-havioural code. The main contribution of this thesis to this part, strategic functionapplication, has proven useful for several large application programs, in particular inthe top-level parallelisation of Lolita. The programming style used in the parallelisa-tion, data-oriented parallelism, makes use of laziness in order to specify the parallelismover a data structure independently from its de�nition and thus facilitates a top-levelapproach towards parallelisation, in which the parallelism is speci�ed at the top-levelwithout having to change individual components of the program.One of the fundamental questions addressed by this thesis is: can the parallel perfor-231



232 Chapter 7. Conclusionsmance of functional programs with sequential lazy evaluation and a parallel evaluate-and-die model of computation be improved when adding granularity information?From the discussion in Chapter 5 this seems to be true for a class of parallel pro-grams where the granularity of generated sparks does not monotonically decreaseduring the program execution. For simple divide-and-conquer examples this mono-tonicity means that the FIFO management of the spark pool is su�cient to achievegood granularity in practice. However, for unbalanced divide-and-conquer problemsan explicit thresholding mechanism or a priority based management of the spark poolcan achieve better performance. In the experiments presented here it is shown thatthe elimination of small threads via a simple thresholding mechanism achieves thebiggest improvement of about a factor of two in speedup.The presented granularity improvement mechanisms should also be useful to improvethe parallel behaviour on massively parallel systems with thousands of processors. Inthese systems it is unlikely that an evaluate-and-die mechanism can subsume manysparks, because the ratio of generated sparks to runnable threads will be much smaller.This increases the probability of a spark being picked up by an idle processor before itswork is subsumed by another thread. But it would still be advantageous to eliminatetiny threads whose creation cost is higher than their total computation. We havenot been able to investigate this aspect of scalability, however, because the system-oriented view of GranSim is currently limited to 64 processors.As a test platform for the granularity improvement mechanisms GranSim has beendeveloped. GranSim is a highly parameterised and accurate simulator for the paral-lel execution of GpH programs. It combines lazy evaluation with an evaluate-and-diemodel of parallelism. It is integrated into a state-of-the-art compiler forming an im-portant component of an engineering environment for parallel program development.It provides setups for both idealised simulation and realistic simulation with a de-tailed modelling of communication. GranSim is also highly parameterised to modela variety of parallel machine architectures and this has proven very important for theperformance tuning of parallel programs.The combination of all these features makes GranSim unique. Most existing simu-lators only count reduction steps rather than machine instructions executed by op-timised compiled code. Also the parameterised modelling of communication costs isunusual for simulators. With the availability of all GHC optimisations it is possibleto investigate the in
uence of the latest sequential optimisations on the parallelism



7.1. Summary 233in the program.A complementary step in devising a system that makes automatic use of granularityinformation is to derive this information and to make it available to the runtime-system. Several methods to do this have been suggested in the literature: pro�lingapproaches, ad-hoc heuristics etc. In this thesis a static analysis is used in order tominimise the overhead for the runtime-system. The granularity analysis that has beenpresented in Chapter 6 builds on top of existing analyses and derives an upper boundfor the computation costs measured as abstract computation steps. As a re�nementof the analysis it would be possible to model concrete costs of the computation modeland of the parallel machine via constants that can be added to the analysis. Althoughnot all parts of the inference have been rigorously speci�ed, a detailed outline of theinference algorithm has been given. The experimental results with hand-analysedprograms show that this can provide useful information for the runtime-system.One of the main limitations of a static analysis for extracting granularity informationis its inability to make use of concrete runtime data. In particular it is not possibleto make some kind of branch prediction for conditional constructs. However, thepresented analysis could be extended in several ways in order to alleviate this prob-lem. One possibility would be to extend the type system further to capture runtimeinformation via conditional types. Thereby, the type would encode the relationshipbetween the head of the conditional and the branches. An alternative would be to relyon pro�ling data in order to obtain information on the probabilities of the branches.This information could then be used as weights for the costs of the branches. Finally,the granularity analysis could be augmented with a separate analysis that tries to ex-tract boolean values out of program expressions, using the available size information.For example such an analysis could determine the value of calls to the null function,which only needs information on the size of the list. If exact size information is avail-able at compile time, the computation path through conditionals depending on nullcould be predicted.In parallelising a set of large functional programs a purely annotation based approachproved to be not entirely satisfactory. This has led to the development of evaluationstrategies, in a group e�ort, and of strategic function application, in particular. Inorder to describe the dynamic behaviour of a function call, strategic function applica-tion parameterises normal function application with a strategy specifying evaluationdegree and parallelism. The resulting data-oriented style of programming achieves



234 Chapter 7. Conclusionsa modularity of program components and a separation between algorithmic and be-havioural code not usually found in strict languages. This is mainly due to thedecoupling of the data structure's generation and the speci�cation of its parallelism,which helps to maintain the abstraction provided by modules and functions. In con-trast, strict languages tie the evaluation of an expression to the point of its de�nition.Therefore, it is much harder to separate the de�nition of a value from the parallelismin computing this value. A comparison of several versions of a parallel linear systemsolver, LinSolv, has demonstrated that a data-oriented parallel programming style issuperior to the naive use of parallelism combinators. The use of evaluation strategiesin the parallelisation of programs as large as Lolita showed that the additional codefor parallelisation can be localised to a high degree, in this case to only two out ofcirca three hundred modules.Studying large, lazy, parallel programs is rarely done but in creating a powerfulengineering environment for parallel programming it is important in order to evaluate:1. The suitability of evaluation strategies to realistic functional programs. Whileworking on the parallelisation of Lolita the repetition of some clumsy constructsin an initial version was the main motivation for introducing strategic functionapplication.2. The impact of laziness on parallel programming. Laziness favours a top-downapproach for parallelisation, in particular data-oriented parallelism. This aspectis demonstrated in the parallelisation of Lolita in Section 4.5. However, althoughit is easy to add parallelism it is often hard to predict the e�ects for complexparallel programs.3. The completeness of the existing set of visualisation tools for performance tun-ing i.e. whether the tools provide su�cient information to the programmer fortuning the performance of a parallel program. The importance of the visualisa-tion tools has been shown in the discussion of LinSolv in Section 4.6.7.2 ContributionsThis section discusses the contributions of the thesis in more detail and points outresearch that has been undertaken jointly with other researchers. The concrete con-



7.2. Contributions 235tributions of this thesis are as follows.1. Parallelisation of large lazy functional programs (Loidl & Trinder 1997): Inthe parallelisation of several large functional programs this thesis has combinedthe advantages of lazy and of parallel evaluation, achieving a modular parallelprogramming style. A set of large algorithms has been parallelised and theirperformance has been tuned. These programs typify application areas such assymbolic computation and arti�cial intelligence. In particular, this thesis hasdeveloped a parallel imperative, a parallel pre-strategy, and a parallel strategicversion of LinSolv (see Section 4.6). A comparison of both functional versionsshowed that the performance tuning process is signi�cantly simpli�ed by usingstrategies. This is supported by several other medium-sized strategy programslike a parallel Alpha-Beta search algorithm. The latter program demonstrates,for the �rst time, how strategies can express complex dynamic behaviour inprograms that crucially rely on laziness. The parallelisation of Lolita in Sec-tion 4.5, the largest existing parallel non-strict functional program, showed theadvantages of data-oriented parallelisation for large systems in order to paral-lelise code without breaking the abstraction of modules. The parallelisation ofLolita has been done in cooperation with the Computer Science Department atthe University of Durham.2. Highly parameterised, accurate simulator (GranSim) (Hammond et al. 1995):The GranSim simulator (see Chapter 3), which has been developed in jointwork by the author in this thesis, provides, unlike most other simulators, bothan idealised and an accurate modelling of a parallel machine. It is highly pa-rameterised in order to model a wide range of parallel architectures. In usingGranSim on large programs, such as Lolita, it has proven to be robust and anessential component in the parallel engineering environment built on top of theGlasgow Haskell Compiler (GHC). It closely models the features of GUM, theportable runtime-system for Haskell, which is also part of the parallel engineer-ing environment. GranSim is publicly available and currently being used atother universities worldwide for both program parallelisation and prototypingof runtime-system features.The original prototype, which has been designed and implemented in cooper-ation with Dr. Kevin Hammond and Dr. Andrew Partridge, provided the corefunctionality of simulating a distributed heap, maintaining thread and spark



236 Chapter 7. Conclusionspools, and instrumenting the code generated by GHC. The setup in this proto-type used synchronous communication and single closure fetching. The majorenhancements performed independently include the implementation of the ide-alisedGranSim-Light setup, the design and several extensions of the communi-cation system including the implementation of several variants of asynchronouscommunication, and of packing graph structures (Loidl & Hammond 1996b).The latter is based on the author's implementation of bulk fetching in GRAPHfor PVM (Loidl & Hammond 1994). A large set of visualisation tools, show-ing activity and granularity at several levels of detail, has been developed forGranSim. Furthermore, GranSim has been integrated into GHC and is nowavailable for both Haskell 1.2 and 1.4.3. Use and re�nement of evaluation strategies (Trinder et al. 1998): The author'simplementation of several lazy parallel algorithms in part motivated and guidedthe initial design of evaluation strategies. Recoding the LinSolv algorithm us-ing strategies contributed to the re�nement of strategies. Experience with pro-grams such as Lolita was very important for making basic design decisions. Theparallelisation of several medium-sized programs produced strategies that haveproven to be of general use. This thesis in particular contributed to evaluationstrategies by adding strategic function application (see Section 4.3.7) to the ini-tial version of strategies. Strategic function application parameterises functionapplication with a strategy describing the parallelism and the evaluation degreeon the function argument. The resulting programming style, data-oriented par-allelism, for the �rst time combines the main advantages of lazy evaluation, inparticular modularity, and parallel computation, reduced runtime, on a largescale. Evaluation strategies have been developed in a group e�ort with Dr. PhilTrinder, Dr. Kevin Hammond and Prof. Simon Peyton Jones.4. Static granularity analysis (Loidl & Hammond 1996a): The thesis presenteda static analysis for inferring upper bounds of computation costs of programexpressions in a simple strict functional language (see Chapter 6). This workis based on sized types (Hughes et al. 1996) and a time system for a Lisp-likelanguage (Reistad & Gi�ord 1994). However, the analysis makes it possible tohandle some user de�ned recursive functions by exposing recurrences in the costreconstruction algorithm and then matching these functions with a library ofrecurrences and their known closed forms. Although this analysis has not been



7.3. Further work 237implemented, a detailed outline of a possible implementation, in particular of acost reconstruction algorithm, is given.5. Implementation and measurement of runtime-system features to improve paral-lel performance (Loidl & Hammond 1995): This thesis discussed several gran-ularity improvement mechanisms that have been implemented and measuredin the context of both an evaluate-and-die and an eager-thread-creation modelof parallelism (see Section 5.5): priority sparking, priority scheduling and anexplicit threshold mechanism. All mechanisms make use of granularity infor-mation in the source code via program annotations. They have been measuredfor several hand-annotated programs. As a result moderate improvements inperformance have been observed especially when eliminating all small threadswith a threshold mechanism.7.3 Further workStrategiesThe results of using evaluation strategies in the parallelisation of several lazy programshave been very encouraging. It would be interesting to use the same technique for theparallelisation of strict programs. We hope to achieve a clearer program structure andhigher modularity by the clean separation between algorithmic and behavioural code.There are two possible ways for applying the same techniques to strict languages:� Use Haskell with evaluation strategies as an embedding coordination language.The top-level parallelism is speci�ed in Haskell, the sequential components arewritten in a strict language. Although one of the main advantages of evaluationstrategies over other coordination languages is the use of the same language fordescribing computation and coordination, a separation may be worthwhile forparallelising large programs written in a strict language.� Implement a strategies module in the strict language based on non-strict datastructures, which can be modelled in the strict language. These non-strictdata structures can then be used in combining the parallel components of thecode, leaving most of the code unchanged. This approach requires that allsynchronisation is performed via non-strict data structures.



238 Chapter 7. ConclusionsAlthough our visualisation tools provide important information about the parallelprogram behaviour we have noticed several shortcomings when using them on largeprograms. Most importantly it is not possible to link points in the activity pro�leto expressions or strategies in the source code. Therefore, it is sometimes hard tointerpret an activity pro�le of a complex program. This observation has recently ledto new research on parallel cost centre pro�ling (Hammond et al. 1997), to which theauthor is contributing. The idea here is to use cost centres as they have been devel-oped for sequential pro�ling (Sansom & Peyton Jones 1995) and combine them withthe GranSim simulator, yielding the GranCC parallel pro�ler. It is then possibleto distinguish between threads that are currently evaluating expressions attached todi�erent cost centres. Initial results with a �rst implementation have already pro-vided further insights into the behaviour of some of our programs like Alpha-Betasearch. Currently research is undertaken in order to augment the initial version ofGranCC with a variant that links points in the activity pro�le with points in thebehavioural rather than the algorithmic code. This would provide information aboutthe parallelism generated by a certain strategy.Runtime-systemThe granularity improvement mechanisms presented in Section 5.5 represent just afew possibilities how to exploit granularity information. More variants could be imple-mented, possibly providing di�erent alternatives as options to the programmer. Fromthe measurements presented in Section 5.6, mechanisms with a low overhead seem tobe advantageous even if they do not make optimal use of the available information.Other improvements and extensions could be made to the parallel runtime-system:� Implementations of more runtime-system methods for improving granularitywould be interesting. For example Aharoni et al. (1992) present a schedulingalgorithm that guarantees that the parallel code performs no more than twice asmany computations in total than the sequential code. This is done by enforcinga lower limit on the amount of computation that has to be performed by athread before it is allowed to create other parallel threads. Using this idea in aproduction runtime-system rather than a prototype implementation would helpto assess the practical usefulness of this algorithm.



7.3. Further work 239� Based on the experiences with parallelising Lolita it would be useful to havea dynamically growable heap when running GUM, in particular on a sharedmemory machine. In the current version the heaps on all processors have to havethe same size. This does not account for possible imbalance in heap usage. Animplementation of dynamically growable heaps could use heap chunks similarto the currently used stack chunks, which are maintained as a list. The h�;Gi-machine, which has been designed for shared memory machines, uses a similartechnique (Augustsson & Johnsson 1989).Some experiments presented in this thesis also indicate that an important area forthe e�cient execution of parallel programs is the data locality in the program. Injoint work the author has studied this issue in a comparison of various packing andrescheduling schemes in (Loidl & Hammond 1996b). However, this area clearly needsmore work. In particular it might be advantageous to have annotations for explicitdata placement or for transferring a data structure in its unevaluated form evenif it already has been evaluated. In general it is not clear whether local or remoteevaluation is better. A decision on a case by case basis, either via program annotationsor inside the runtime-system, would be worth investigating.Recent work on lazy threads (Goldstein et al. 1996) has achieved promising resultsin reducing the overhead attached to the bookkeeping of potential parallelism. Inparticular, measurements of a data
ow-based implementation on a CM-5 distributedmemory machine showed signi�cant speedups compared to a model that is closerrelated to the sparking model used in this thesis. Therefore, it would be interestingto study these techniques in the context of parallel graph reduction. The detailedmeasurements performed by Goldstein (1997) would be a good starting point for theseevaluations.AnalysisThe most immediate goal in extending the presented work should be an implementa-tion of the static granularity analysis. For a more detailed evaluation of the qualityof the analysis it would be necessary to apply it to a set of larger test programs.Starting from the detailed outline of an inference algorithm in Chapter 6, which isbased on an existing implementation of sized types, a concrete implementation of the



240 Chapter 7. Conclusionsanalysis for non-recursive expression should be straightforward. It would be close tothe cost analysis for FX programs.Several stages in the inference algorithm outlined in Section 6.5.1 need re�nementin order to implement the full algorithm. The simpli�cation algorithm has to mergesymbolic cost and size functions in order to generate just one cost and size functionfor each user de�ned recursive function. Determining the costs for the base case ofa recursive function requires in general a more sophisticated analysis of the head ofconditionals in order to distinguish the recursion branch from the base case. Sec-tion 6.5.4 has given a �rst version of an algorithm for matching c-expressions witha library of recurrences, which is based on an uni�cation approach. This algorithmmost likely has to be re�ned in a concrete implementation. The speci�cation of thelibrary itself should mainly be a matter of tuning. From experiences of hand analysingprograms and based on previous work, a small library should already capture a largeclass of recurrences. The �nal steps of the complete inference algorithm only performsyntactic checks on the structure of c-expression and de�ne an interface to the Omegatest, which is already provided by the existing implementation of type checking forsized types.The most promising direction for extending the granularity analysis to lazy languageswould be to develop a projections-based demand analysis, similar to the strictnessanalysis in Kubiak et al. (1991), and to use the derived information in order to extendthe sized time system to lazy languages. This work could build on top of the costcalculus for lazy languages developed by Sands (1990b), which also uses projections.In this approach projection transformers have to be de�ned via a backward analysisin order to propagate demand through user de�ned functions. Only if the propagatedprojection requires the evaluation of an expression is the cost for the evaluation addedto the total costs. Compared to the analysis of a strict language, the result is a weakerupper bound. Furthermore, it could be improved by having sharing informationavailable. Therefore, an integration of strictness, sharing, and granularity analysiswould be an interesting avenue of further work.Another interesting piece of future work would be to study whether the library ap-proach of Chapter 6 could be reused for other analyses. In general it should bepossible to use it for any analysis over an integer domain. In fact in the sized timesystem the same machinery is used for performing size and cost analysis. The advan-tages of this approach, such as tunability via the size of the library and no restriction



7.3. Further work 241on the height of the domain, might make this an interesting alternative to abstractinterpretation in general.Replacing the library approach with a general recurrence solver probably yields a tooexpensive on-line analysis. However, for an o�-line approach, where the granularityanalysis is not part of the compilation process but only done rarely for optimising theparallel code, this approach might be feasible. Based on existing recurrence solversin computer algebra systems it should be possible to implement an algorithm thatcovers most cases without being prohibitively expensive.This thesis only outlines the structure of a soundness proof of the size and costreconstruction algorithm. In order to assure that no wrong information is passed tothe runtime-system a rigorous proof would be necessary. Furthermore, a dynamicsemantics of L should be given in order to formalise the notion of computation stepsand to show that the inference system describes theses costs.As a simpli�ed version of the granularity analysis discussed in Chapter 6 anotheranalysis for inferring monotonicity information could be useful. The idea of suchan analysis is to infer whether the cost function associated to a user de�ned func-tion is monotonically increasing, decreasing, or neither. Based on the result and onknowledge about relative sizes of values it would be possible to infer relative costsbetween di�erent calls to the same function. Although this yields only a partial orderof costs the resulting information might be su�cient to yield some improvement inthe performance of the program.The ultimate goal of the work presented in this thesis is entirely implicit parallelismfor GpH. In order to drive further research in this direction it is necessary to combineexisting strictness, sharing and granularity analyses to obtain a system with genuineimplicit parallelism. Probably this would reveal the necessity of further improvementsin the runtime-system and of more accurate information provided by the analyses.As the experience from sequential compiler optimisations shows, an integration of allanalyses and runtime-system methods into one system is essential to study interac-tions between the di�erent improvements.
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