A Sized Time System
for a
Parallel Functional Language

Hans-Wolfgang Loidl
Department of Computing Science, University of Glasgow
Glasgow, Scotland, U K.
E-mail: hwl oi dl @Ics. gl a. ac. uk

Kevin Hammond*
Division of Computer Science, University of St. Andrews
St. Andrews, Scotland, U K.
E-mail: kh@lcs. st - and. ac. uk

Abstract

This paper describes an inference system, whose purposeis to determine the cost of evaluating expressionsin astrict
purely functional language. Upper bounds can be derived for both computation cost and the size of data structures.
We outline a static analysis based on this inference system for inferring size and cost information. The analysisis a
synthesisof the sized types of Hugheset al., and the polymorphic time systemof Dornic et al., which was extended to
static dependent costs by Reistad and Gifford.

Our maininterest in cost information is for scheduling tasksin the parallel execution of functional languages. Us-
ing the GranSim parallel simulator, we show that the information provided by our analysisis sufficient to characterise
relative task granularities for a simple functional program. Thisinformation can be used in the runtime-system of the
Glasgow Parallel Haskell compiler to improve dynamic program performance.

1 Introduction

There is a sad paradox that often arises inimplicit paralel programming: having striven hard to locate every expres-
sion that could possibly be executed in paralld, it is common to find that most of these are too small to be worth the
overheads associ ated with executing them as paralldl tasks. Fear not, however, that al that effort will bewasted. Under
the assumption that good strictness analysis or language design can determine what could be executed in paralld, this
paper focuses on the important issue of determining what should be executed in parall€l.

The sized time system which we introduce in Section 3 can be used to give an estimate of the cost of evaluating
an expression together with the size of the resulting data structure. By using source annotations, the cost information,
which represents information about the granularity of a computation, can be exploited by the dynamic paralle sched-
uler of the runtime-system in order to decide which tasks should be evaluated at any giventime.

In order to make the analysistractabl e, this paper makes some important ssmplifying assumptions. In particular, we
sidestep the thorny thoughinterestingissues of strictness and sharing anayses by analysing astrict functional language,
L (defined in Section 2). It isour ultimate intention, however, that the analysis described here should be applicable to
full parallel Haskell. We aso deal only with lists and flat data structures. Using recent results on sized typesit should
be straightforward to extend the work to arbitrary data structures, however.

*Supported by the EPSRC Parade grant.

Functional Programming, Glasgow 1996 1

A Sized Time System for a Parallel Functional L anguage

At the current stage of our work we are mainly interested in the feasibility of checking size and cost bounds and
in the possible runtime improvements when using these bounds. We do not address questions of the soundness and
completeness of theinference system in this paper. However, the close rel ationship to sized types and static dependent
costs presents a very good starting point for further investigationsinto that direction.

We demonstrate thefeasibility of our approach in Section 4 by giving aworked example. The output of theanalysis
(performed by hand) has been passed to our parallel smulator, GranSim [3]. For thisexample, thereisademonstrable
performance improvement when using our previously devel oped granularity control mechanisms. This confirms previ-
ous results, where a hand-annotated program was measured. | n [9] we showed that granularity information, if present,
can be used to achieve a significant performance improvement.

The system presented hereisclosely rel ated tothe sized typesof Hughes, Pareto and Sabry [6] and tothetimesystem
developed by Dornic, Jouvelot and Gifford [2], which has been extended to a static dependent cost system by Reistad
and Gifford [13]. However, unlikethe latter system we can a so derive cost information for some recursive functions.
Thisis possible by extending the standard subtype inference mechanism with a*“database” of known recurrences and
(an approximation of) their closed forms. Section 5 outlinesthe structure of the inference algorithm.

2 Thelanguage £

The language £ is avery simple purely functiona language, intended solely as a vehicle to explore static analysisfor
paralelism. £ isastrict polymorphic higher-order language with lists as its only compound datatype.

The abstract syntax of £ isgiven below. We assume that variables (v), constants (£) and primitive operations (p)
on basic typesare dl digoint.

e = vl]k|per ...en|Av.e|eges|conses en|nil|nulle |hde|tle]
letrecv = e; ines | if e then ey elseeg

Overdll, the structure of £ expressionsis similar to that of Lisp expressions, focusing on lists as the only compound
datatype. Let expressionsare recursive (i.e. v may occur in e1). Since theentire £ programisan £ expression, nested
let expressions have to be used to define auxiliary functions.

To simplify the presentation we assume that variable names in the program are unique. This avoids complications
in the treatment of the envionments in the sized time system.

L usessized types: each type, except thefunctiontype, hasacomponent specifying an upper boundforitssize. The
typel nt containsonly positiveinteger numbers. Thefunctiontypemapsasized typeto another sized typeand attaches
a computation cost to the function. In the following syntax of type expressions, o represents a sized type variable.

7 2= al|lnt®|Bool ®|Listr|n 5 m

Both cost and size expressions are specified by c-expressions. Therefore, cost expressions can contain variables repre-
senting the size of adatastructure. It isimportant to notethat c-expressionsare linear (i.e. there can be no expressions
of theform v, * v2 where vy, vy arevariables). Thisproperty plays an important rolein the implementation proposed
in Section 5.

¢c = l|loo|n|eitea|er —es|n*cl maxepen| fer o..en

In these c-expressions n is a positive integer constant and ! isa c-variable. The oo symbol is used to express an un-
bounded cost/size. For sizeslessthan oo the operators +, —, * and max behave as usua. When one of the operandsis
oo theresultis oo, too (with the exception of « — oo whichisoo for # o). In order to handle recursive programswe
have to introduce symbolic cost functions f. The arguments ¢; . . . ¢, represent the sizes of the argument expressions
in the program.

Polymorphismis achieved in the usua way by quantifying over free variables of alet-bound expression. Because we
areusing sized typeswe have to quantify over typeaswell as size variables. In thefollowingwewill use x to represent
either atype or sizevariable. The general structure of type schemes istherefore:

o = Yaeol|rT

Functional Programming, Glasgow 1996 2

A Sized Time System for a Parallel Functional L anguage

The dynamic semantics of this language is standard. For example the semantics of the recursive let construct is
defined by using the fixed point of the functional denoted by the local definition in the body of the let construct. We
omit the details here. For the cost model used in the next section it isimportant to notethat £ isastrict language.

An important difference to the semantic model of sized types used by Hughes et a. in[6] is the fact our semantic
domain for lists has to contain abottom el ement representing non-termination. Again thisdifferenceisdueto the strict
semantics of £. In contrast to our application of size information as input for cost information Hughes et a. aim at
proving properties on streams (infinitelists).

3 A Static Cost Semanticsfor £

This section devel ops a static cost semantics for £. In order to statically estimate an upper bound for the cost of eval-
uating an expression, we need information about the size of valuesin the program. Therefore, we will develop asize
aswell asacost anaysis. Before presenting the analyses, we first introduce the domains we use to maintain cost and
sizeinformation. Both analyses are interwoven with a standard polymorphic type system to give a sized time system®
for L.

3.1 Cost and Size Domains

In order to provide a high-level abstract model of execution cost, we use the conventional approach of step counting.
The cost of evaluating an expression is given by the number of function-, operator- and constructor-applications, plus
the number of conditionals.

The obvious domain for a step-counting analysis is the set of positive integer values, augmented by co. We also
introduce an upper bound on cost, m., and represent all costs greater than m. by co. So, the cost domain D¢ is:

De={0,1,....me00, T} With0< 1< - <me<o0o<T

for someinteger m..

Note the difference between oo and T in thisdomain: co represents a computation with costs greater than m.
whereas T represents a computation whose cost is unknown. From a pragmatic perspective, oo denotes acomputation
that is large enough to be executed in parallel, whereas T denotes a computation whose cost is unknown. For our
applicationsit is useful to map all costs beyond a certain bound to the same value. This usage of cost information
naturally gives afinitedomain (it is not arestriction to make an analysis simpler).

The size of an integer expression is the value itself (where it is known). The size of booleans has been fixed at
0. The size of alistisitslength plus one, and in general, the size of a data structure will be the number of function
applications needed to generate that constructor: hence size is modelled by the recursion depth of the data structure.

The size domain Dz isdefined as

Dz=1{0,1,...,00} With 0 <1 << o0

Note that sizes constitute parts of typesin £. Thisgives aconvenient way to describe the size of sub-componentsof a
data structure as well as the size of the structure itsdlf, e.g.

List® Int'®

denotes a list whose length is smaller than 5 with integer numbers smaller than 10 as e ements.

3.2 A Sized Time System for £

Theinference rules of the sized time system in this section represent an extension to the standard type inference rules
for £. These extensions capture the two aspects of aprogramin aslightly different way. The sizeinformation, which
represents an aspect of the value of an £ expression, is attached to itstype. The cost information, which represents an

by analogy with sized types[6] and time systems [2, 13)].

Functiona Programming, Glasgow 1996 3

A Sized Time System for a Parallel Functional L anguage

aspect of the evaluation of an £ expression, isinferred together with the size information, but it is not attached to the
type. The cost inference has to use size information but not vice versa.

The costs of higher-order functionsare modelled by attachi ng latent costs [13] to function types. These latent costs
usually contain free variables representing the size of the arguments. Section 3.3 givesthe type of the function length
as an example.

(Int) Fkn: Int"$0 (Bool) IT'Fb: Bool®$0 (Nit) I' F nil : List' 780
(Var) = rle /e, 2l 2]
Tu{v:Vay,...,zp.7} F v : 780 2f,....2, g FV(r)UFV(])
Fte:7™$d a7 ¢ <e¢ . e :718¢ -+ I'F ey : 7 $c,
(Weak) F'Fe:71%c (Prim) Fl—pel...en:Tpl'zl'“'z"$1—|—cl—|—~~~—|—cn
Tu{v:mt Fe:m$ec T'Fe 71 5 mbe I'e :mSe
Abst = A
(Abstr) P'FAv.e i = m»$0 (App) ' ejey : m$1l+cy+este
(Cons) F'Fe :7%¢ rljrlegleﬁ T8 e (Null) ' - e : List 70'$c
I'l consejer : LIt T 7S 14c1+es I' F nulle : Bool®* $1+¢
TFe:Ls r$e¢ TFe:Ls r$e
Hd '>1 (Tl 7 > 1
(Hd) ' Hhde : 7$14c¢ ¢ (i) FFtle: Lt tr$1+¢ ¢
(Cond) IL'F e : Bool’$eg P'F e : 7%¢y P'Foes:7%cs
I' - if e; theneselsees : 781+ ¢y +max csc3
(Let) P'Fe :m$e TU{v:Vay,...;2,1} F es: m$e 21, € FV(r)\FV(T)

I - letrecv=e; ine, : ™ $ci + ¢

Figure1l: A Sized Time System for £

Figure 1 shows the extended type system. The c-expression in the superscript of atypeisan upper bound for the
size of the object and therefore denotes an element of the domain P z. The expression after $ in ajudgement isa c-
expression that represents the cost for performing the corresponding computation and therefore denotes an e ement of
the domain D¢. The assumption set I' contains bindings of variablesto type schemes (of the form : o). Since we
have assumed that the names of all variables are unique, assumption sets can be combined by using set union. We use
r[«'/x] to denote a substitution of all free occurrences of = in by «'.

The (Var) rule performs an instantiation of the abstracted size and type variables ; by substituting all free occur-
rences with fresh variables «} in the body of thetype r. The F'V function computes the set of free variablesin atype
expression or an assumption set.

The (Weak) rule allowsto wesken upper boundsfor size and cost. It makes use of the subtyping relation <l defined
in Figure2.

In the (Prim) rule we use for each primitive operator p a corresponding abstract operation p’ over the size domain
in order to compute the size boundsfor integer values. Most operators are analogous to their integer counterparts, but
in order to maintain the linearity of size expressions, the multiplication operator +’ is defined to have a size bound of
oo unless one of its operandsis constant.

Functional Programming, Glasgow 1996 4

A Sized Time System for a Parallel Functional L anguage

The (Abstr) ruleinfersthe cost of evaluating the body of alambda-abstraction, and attaches this to the type of the
lambda-abstraction as alatent cost. Thelatent cost usually containsafreevariablefor the size of theargument x. When
thefunctionis applied using (App) the size bound of the corresponding argument must be no greater than the size given
in the type of the function’sdomain.

Therulesfor (Cons), (Null), (Hd), (T1) show how size boundsare derived for list constructorsand selectors. Every
application of a constructor to al of its arguments counts as one step.

In genera both branches in a conditiona will have different sizes. Two examples below illustrate how the (Weak)
ruleis used to ensure that the types of both branches match, which is required by the (Cond) rule. In order to givea
cost bound for this expression we have to choose the maximum of the costs of both branches. In Section 5 we suggest
some practical techniques for improving this cost bound.

The (Let) rule realises polymorphism over sized types. When inferring atype for e, the variable v is bound to a
type scheme, which abstracts over type and size variables. An instantiation of type schemesis performed as part of the
(Var) rule. It isworth noting that the (Let) rulein [6] is significantly more complicated because it hasto propagate size
information for algebraic data types from one recursion leve to the next. In £ thissize propagation is encoded in the
rules operating on lists.

61§62 61§62 T1§]T2 TlSIT{ T2
Intt < Int® List®® 7y < List™ m 5

Figure 2: Subtyping Relation for £

The subtyping relation in Figure 2 formalises the idea that the size component in a sized type specifies an upper
bound. Therefore, it should aways be possibleto weaken this size bound. Similarly, the latent cost in afunctiontype
isan upper bound for the cost of evaluating the function. The need for such a subtyping relation can be motivated by
an analysis of the following expression.

if (null xs) then 1 else 2

Inthisexpressionthet hen branch has asized typeof Int! but theel se branch hasthetype Int?. Only because of the
subtyping relationship between these types Int' < Int? is the above expression type correct.
A similar example shows how the cost information in a function type can be weakened:

foo xs f g=1if (null xs)
then A x . (f x) +1
else A x .(f x) + (g (hd xs))

When inferring the result type of this function we have to match function types with different latent costs. The latent
cost of the result function must be an upper bound for the latent costs of both argument functions. Therefore, atype
inference has to use the subtyping relation on function types, which weakens the upper bound for the latent cost.

3.3 From Cost-expressionsto Cost-functions

The sized time system in Figure 1 is a high-level description of how to infer costs and sizes of an expression. When
deriving the cost of a function application the cost expression representing the latent cost for the function has to be
used. However, if thefunctionisrecursivethisapproach will fail toyield acost expressionsin closed form (i.e. without
references to symbolic cost functions). Therefore, we need explicit cost functions. In general the result of performing
cost inference will be aset of recurrences that has to be solved separately.

The (Let) rulein the sized time system shows that the type schemes for | et-bound functionsin general contain uni-
versally quantified size variables. These variables can be regarded as arguments to the cost function described by the
inferred cost expression. In general we can give for every function definition

Functional Programming, Glasgow 1996 5

A Sized Time System for a Parallel Functional L anguage

f x1 ... xn = e

acost function

feli ..., =¢
and a size function
fzl4 ..., ==z

where cisthecost and = isthe size expression derived from the body of thefunctione. Thevariables!; . . .1, represent
the sizes of theargumentstof .
For example, the sized time system can assign the following type to the polymorphic length function:

length : Yor. Vi.List' Y2 It

Inthefollowing sectionswe useasaspecial notationlength- for describing the correspondingsizefunction(length- [=
[inthiscase) and length,. for describing the corresponding cost function (length, { = 4 %[+ 2 inthiscase).

The example of how to perform size and cost inference in the following section and the outline of an inference
algorithm after that describe how to derive closed forms of cost expressions from user defined recursive functions.

4 Example

In this section we study a simple non-trivial £ program, coi ns, which shows an interesting parallel behaviour. We
demonstrate how to derive size and cost information by using our sized time system. Since our goal is to improve
the parallel performance of the program, we then measure the runtime of the program annotated with cost information
when using a priority scheduling mechanism in the runtime-system.

The coi ns program takes a price and alist representing a set of coins, and determines how many different com-
binations of coins could be used to pay for an object at the given price. Previously we have studied the behaviour of
a hand-annotated version of this program on various different parallel architectures using GranSim. We managed to
improvethe overall performance by using priority scheduli ng as agranularity control mechanism. Priority scheduling
usesgranularity information as prioritiesfor thegenerat ed threadsand thereforeensures that larger threads are preferred
to smaller ones.

The coi ns program consists of two mutually recursive functionspay_pri ce and choose:

pay_price =\ price coins ->
if (price==0) then 1
else let coin_values = nub (dropWile (\ x -> x>price) coins)
in
sum (map (choose price coins) coin_val ues)

choose =\ price coins ¢ ->
et new coins’ = dropWile (\ x -> x>c) coins
new coins = del new coins’ c
in
pay_price (price-c) new_coins
Thepardle version of thisprogram hasthree main sources of paralelism: coi n_val ues,new_coi ns andthenap
expression can be evaluated in parale with the rest of the computation.

The definition of coi ns containsfive auxiliary functionsthat must be analysed: nub eiminates multiple entries
inalist,del deletesan element from alist, dr opWhi | e dropsan initial segment of alist, map appliesafunction to
every element of alist and sumcomputes the sum of al elements of alist. Asan example, we derivethe size and cost
functionsof del .

Here isthe definition of del in £:

Functional Programming, Glasgow 1996 6

A Sized Time System for a Parallel Functional L anguage

del = \ xs x ->if (null xs) then error
else let z = hd xs
zs = tl xs
in
if (z==x) then zs else cons z (del zs x)

Thedel functiondeetesthefirst instanceof x fromxs. The specia valueer r or (of the polymorphictype) isused
toindicatethat x did not occur in xs (an error).

41

Cost and Size Analysis

The structure of both the cost and the size analysisis based on the observation that recursive functionswill in genera
yield aset of recurrences that hasto be solved separately. It isworth noting that no symbolic cost functionswill appear
in the cost expressionsif no user defined recursive functionsare used. The main stepsin the cost and size anaysis are:

1.

Inference of the body of the function by traversing the proof tree and collecting constraints (inequalities) over
c-expressions. This step returns atype and a constraint set.

Simplifying the constraint set. This amounts to reducing the c-expressions in the constraint set to normal form
(we use a sum-of-products normal form).

Resolving recurrencesin theconstraint set. Thiscan bedone by usingasymbolic computation system for solving
recurrences (where thisis possible) or by using a“database” of recurrences and their closed forms.

Solving the constraint set. For this step we use the Omega Library [12].

Inference and Simplification: In this example we perform simplification of the constraints on-the-fly. We only de-
scribe the main stepsin theinference of the body of del :

1.
2.

Using the (App) rule twice adds bindingsof fresh type variablesto xs and x to the assumption set.

In the head of the outer conditional the (Null) rule assigns thetype List' o to xs, where o and [are fresh type
and size variables. The cost for thisoperationis 1 step.

. Thetypeof er r or inthe outer then branchis r (0 cost).

. Intheanalysisof thelocal definitionsof thelet-expressionthetypesa and List' = « areinferred for thevariables

z and zs, respectively. The cost for computing the expressions are 1 step each.

. The head of the inner conditional requires z and x to be of the same type. The cost for this primitive operation

is1 step.

. Theinner then branch returns zs, an object of type List' ™ o (0 cost).

. The most interesting part is the inner el se branch.

The (Cons) ruleinfersthetype List!" T o for thewhole expression, with I’ being afresh sizevariable. Unifying
thetype List' T! « of the ese branch with the type List'~! « of the then branch assignsthe valuel — 2 to .
Thus, we can infer the following recurrence for the size function of del :

delz 1l = 1+ddz (1-2)1

Based on this size information we can infer the following cost for performing the recursive call to del : 2 +
del¢ (I — 1) ! (two applications of the (App) rule). The! — 1 expression isthe inferred size of the variable zs.

Functional Programming, Glasgow 1996 7

A Sized Time System for a Parallel Functional L anguage

Combining this cost expression with the costs for the other parts of the function yieldsthe following recurrence
for the cost function of del :

delc il = 14+14+max 0(1+14+1+14+max 0(1+04+(14+0+04dee (I —1)1)))

In this cost expression the occurrences of max reflect the two nested conditionalsin the code.

Note that the standard unification mechanism is used to obtain the substitution [l — 1/1’ + 1], which yields the above
recurrence. Applying the substitution to a cost expression with free variables represents an application of the corre-
sponding cost function to a size expression.

Resolving Recurrences: The goal of this step is to bring all symbolic cost functions (like del¢) into closed form
in order to substitute the functions with the expressions in the constraint set. This will iminate all symbolic cost
functions. As aresult of traversing the proof tree we have obtained the following system of recurrences for del (the
base cases use the fact that 0 isthe smallest possible size):

delzoj = 0)
delz !l = 1+ddz (I—2)!
dec 0l = 2 X
del¢!! = 1414+max0(1+1+1+14max0(14+0+(14+04+0+ddc (! —1)1)))

= 8+dde (I 1)1
Our approach for resolving recurrences over cost functions isto use a” database” of recurrences and their closed forms.

If no matching recurrence is found the constant oo function has to be used as the weakest approximation. Solving the
above recurrences using the rulesin Figure 3 gives the following closed formsfor del z and del¢:

dedz1l = [—1

delc il = 8xl1+2
Performing a similar analysis for the other auxiliary functi ons yields the size functions shown below. Note that the
higher-order size functionsuse size functionsas arguments. Inthis case size functionsrepresent the‘size’ of afunction
type.

sumz il = 1 dropWhile; fz 11 = I

nubz I = I map; fz 11 =1
These size bounds have been confirmed by the existing implementation of sized types described by Hughes et al. [6].
However, because of the lack of an error value of size (in their language the type of the del function has a weaker
size bound:

dd : Vk.Va.List* « = o = List* o

The size analysis of sumshows that we sometimes have to weaken boundsin order to derive cost expressionsin our
constraint language. The recurrence describing the size function of sumfor an input of type List' Int' is

sumz [l = {+sumz (1 —1) [

which can be solved with the second rule of Figure 3yielding ! * [. Unfortunately, thisis not linear and therefore we
have to use o as the bound.

The cost functionsfor the other auxiliary functions can be derived in asimilar way as del¢, using cost functionsas
arguments in the case of the higher-order functions:

sume 1l = 6%l+2 dropwhile, fell = (64 fel)*1+2

nube! = 9%« +4+2x1+2 map. fc !l = B+fc)xl+2
It isimportant to note that al recurrences in the analysis of these functionsare linear, first-order recurrences since the
functionsiterate over lists. Figure 3 shows the entire “database” of closed forms for recurrences that we used in this

example.

Functional Programming, Glasgow 1996 8

A Sized Time System for a Parallel Functional L anguage

S~y
o
|

= a
fn = b+ fln=-1)

a _ cxn*(n+1
b+cxn+ f(n—1) = [n=atbrnt 2

= fn =at+bxn

Figure 3: Recurrences and their Closed Forms

Solving the Constraint Set: Thefinal step has to check whether a solution for the the constraint set exists. In this
case the program is well typed and for each function a corresponding size and cost function has been inferred. Since
the constraint set does not contain symbolic cost functions any more at this stage we can use the Omega Library for
performing this check. After that we can use the cost functionsin order to derive the costs of those constructs that
should be evaluated in paralldl. In our example we are interested in the costs for coi n_val ues and new_coi ns.
The former is the result of applying nub. The latter is the result of applying del . The sizes of the argument lists
are determined by calls to dr opWhi | e. Using the above size functions for these auxiliary functions we obtain the
following cost expressions (n isthe size of the coi ns list):

coinvaluesr = 9+ n®+14+n+5
new_coinSe = 16+xn+4

These expressions represent the information we need to improve the performance of the parallel program.

4.2 Annotations

We can now use the cost information derived in the previous section to transform the parallel program by adding cost
information to the spark sites:

o For each argument add an extraargument representing itssize.
e Usethederived size functionsto propagate size information.

o Add the derived cost expressionsto the par G obal annotations.

This transformation gives the following annotated parallel program (mrepresentsthe size of pri ce and n represents
thesize of coi ns):

pay_price =\ mn price coins ->
if (price==0) then 1
el se et coin_values = nub (dropWile (\ x -> x>price) coins)
in
par @ obal (9*n”2+14*n+5) coin_val ues
(sum (parMap infty (choose mn price coins) coin_val ues))

choose =\ mn price coins ¢ ->
| et new_coi ns’ dropWiile (\ x -> x>c) coins
new_coi ns del new coins’ ¢

in
par @ obal (16*n+4) new_coi ns
(pay_price m(n-1) (price-c) new_coins)

Functional Programming, Glasgow 1996 9

A Sized Time System for a Parallel Functional L anguage

Thepar d obal pseudo-functionisused to spark new parallel tasks. It takes three arguments: thefirst argument isa
cost or granularity measure; the second is a closure that should be sparked as aparallel task; and the final argument is
the sequentia continuationthat should be executed once the spark has been created. The par Map functionisaparallel
implementation of map that takes granularity information as itsfirst argument. The specia valuei nf t y represents
oo as abound on computation cost.

4.3 Measurements

Figure 4 compares the absol ute speedup obtained by a program without granularity information against the speedup
of a program that uses the cost estimates derived in the previous section. A priority scheduling mechanism [9] that
exploitsthe available granularity information normally performs better than the default scheduling algorithm that has
nogranularity informationavailabletoit, even thoughthelatter isknown to beagood schedul efor adivide-and-conquer
program such as this.

Coins
30 - B ; '\'Kllithout' Gr:lmlllla'ri't)'/ 'Ilnlformaiion' — _
With Granularity Information --—-<-—-
25 b
20 b
o
=
=]
[
2 151 i
2]
10 - b
5 - -
0 1 1 1
10 100 1000 10000 100000

Latency

Figure 4: Speedup with and without granularity information

The runtime improvement for rather small latencies is due to the creation of many tiny tasks before the runtime
system automatically discards these sparks as being worthless [11]. Therefore, there is more to gain by making the
“right” decision when sparking. Unexpectedly, however, at medium latencies, priority scheduling yields worse per-
formance than using no granularity information. This is probably due to an increased amount of blocking caused by
unlucky scheduling at some point during the execution, but thisrequires further investigation (we should note in pass-
ing that it isonly because GranSim allows us to study variationsin latency, that we are able to observe thisworsening
in performance — using idealised simulation or afixed machine would probably not reveal thisdiscrepancy!). For very
high latencies the cost of exporting atask and retrieving its result outweighs the cost of evaluating it locally, and we
therefore do not expect much improvement in speedup.

It has to be emphasised that this program contains only two main spark sites, which limits the amount of runtime
improvement we can expect by adding granularity information. Granularity control mechanisms mainly aim at im-
proving programs with a large number of spark sites generati ng tasks whose granularities vary significantly. Thisis,
for example, the case for naive methods of generating implicit parallelismin afunctional program. Another important

Functiona Programming, Glasgow 1996 10

A Sized Time System for a Parallel Functional L anguage

result of these measurements is the observation that we can achieve runtime improvements for awide range of laten-
cies representing different kinds of parallel architectures. Therefore, we believe that a granularity analysis based on
our sized time system would be an important component of an implicit parallelisation system.

5 Implementation Issues

We plan to combine an implementation of this cost analysis with the existing implementation of sized types. This
amounts to adding a pass that generates constraints on cost variables and solves the resulting system of inequalities
over c-expressions. These inequalities are introduced via the (Weak) rule. The structure of c-expressions has been
designed such that an efficient solution of the constraint set is possible by using the Omega Library [12].

All rules of the sized time system except for the (Weak) rule are structural. Therefore, the only open question for
developing a proof strategy is where to apply the (Weak) rule. The natura place for weakening the derived cost of a
function is the (App) rule: the latent cost recorded in the type of the function represents an upper bound for the total
cost. Furthermore, the (Cond) requires the same size bound for the then- and the else-branch. Therefore, aweakening
of the size bounds may have to be performed with that rule.

A cost checking agorithm for the sized time system is no more complicated than the existing size checking a go-
rithm for sized types. It uses the mandatory type declarationsfor all let-bound variables to compare the declared costs
with the costs that are inferred from the body of the definition. Thisyields a set of inequalities over cost expressions
in closed form. The Omega Library checks whether a solution exists. If thisis not the case the expression isill-typed.
Such a checking algorithm could be used to confirm that a cost expression provided by the user isindeed an upper
bound for the cost of the function.

When the checking algorithm is extended to a cost inference al gorithm we need to deal with unknown (symbolic)
functions in the constraint system. These functions are introduced during the analysis of recursive functions (for a
non-recursive program the derived cost expression is already in closed form). In general, acost function may involve
arbitrarily complex recurrences, but with the current state-of-the-art it is only possibleto find closed forms for thefol-
lowing classes of recurrences [10]:

o linear recurrences with constant coefficients;

o homogeneous linear recurrences with polynomial coefficients;
o certain divide-and-conquer recurrences,

o certain non-linear first order recurrences.

In particular, itisnot possibleto solve many non-linear cases that occur in c-expressions, and it isquitetime consuming
to solve even linear recurrences with polynomial coefficients.

Because of this complexity we do not plan to extend the implementation of the constraint solver with a genera
recurrence solver. Rather, we prefer to add an additional phaseimmediately before the constraint solver whose purpose
isto replace simple and common recurrences (e.g., linear ones) in the constraint set with known closed forms. At this
stageit may be necessary to replace non-linear c-expressions with oo in order to use the OmegalLibrary. However, this
only hasto be donefor cost functionsthat are used by other cost functions, which are not in closed form. Based on that
observation, the set of cost functions can be split in two classes. The usual constraint solving is then performed only
on the class of cost functionsthat isnot in closed form.

A further advantage of such an approach isthat theaccuracy of the cost analysisisto some degreetunableby varying
theaccuracy of theclosed formsin this* database” . Based on measurements performed with weak cost boundswe can
then decide whether the accuracy of the cost analysis has to be improved.

An open problem with an inference a gorithm of thiskind is how to find aminimal solution of the constraints that
are derived. When using a “database” of recurrences with approximate closed forms the solution won't be minimal.
However, as should be clear from the discussion in the previous section aminimal solution is not absol utely necessary
in order to extract useful information out of the cost analysis. This agrees with observationsin [13] on the quality of
statically determined cost estimates.

Refining the structure given in Section 4 we can give the following structure for atype and cost inference system:

Functiona Programming, Glasgow 1996 1

A Sized Time System for a Parallel Functional L anguage

1. Hindley-Milner type inference;
2. sized typeinference;
3. cost inference.
Both sized type and cost inference have the same internal structure:
1. collect constraintswhile traversing the proof tree;
2. simplify the set of inequalities (containing symbolic functions) by reducing c-expressionsto a normal form;

3. spot common patterns of recurrences and replace them with closed forms. If no matching recurrence is found
the symbolic function is defined to yield oo for every input;

. replace non-linear c-expressions with oo;
. eiminatetrivial constraints containing oo;

. solvethe resulting constraint system (using the Omega Library);

N~ o o b~

. simplify the result further.

The main source of inaccuracy for thederived cost boundsin our sized timesystemisthe (Cond) rule. Thismight prove
to beaproblemif acostly branch israrely executed, for example if the base case of arecursive functionis much more
expensive than the normal recursive case. Although this seems unlikely to be a major issue, one way to alleviate this
particular problemwoul d beto add special casestothe” database” of recurrences to avoid counting the base case severa

times. A variant of the max operator could then be used to indicate that the conditional is on the critical path of are-
cursion. A more pragmatic approach would be to alow probabilitiesto be specified for the branches of the conditional,
perhaps automatically using the profiles generated by the simulator for some sample data (“hybrid” approaches of this
kind are often encountered in the literature). We have no plans at present to implement such an automated scheme.

6 Related Work

Pioneering work on automatic complexity analysis was done by Wegbreit [17]. His METRIC system can derive the
average case complexity of awide range of programs by solving the difference equationsthat occur as an intermediate
step in the complexity analysis. However, this general approach is very expensive and therefore only possible in an
off-lineagorithm (and not in a static analysis that can be be performed by a compiler). LeMetayer [8] takes asimilar
approach based on program transformation: he usesa set of rewriterulesto derive complexity functions, simplify them
and to finally eliminate recursion. His ACE system works on FP programs.

Work on granularity analysishas a so been undertaken in both the Lisp and SML communities: for example Hudls-
bergen, Larus and Aiken have defined an abstract interpretation (“dynamic granularity estimation”) of a higher-order,
strict language for determining computation costs, which uses dynamic estimates of the size of data structures [5].
Their analysis uses the well-known trick of iteration in the abstract interpretation stops as soon as a certain bound for
the computation costs of an expression is surpassed. This prevents non-termination in the analysis.

An alternative approach combines cost information with type informationin a “time system” for a higher-order,
strict language (“ static dependent costs’) [2, 13]. The authors also show how to use thisinformation for certain paral -
lel machines. However, they do not extend the results to multiple classes of parallel machines as we have done with
GranSim. Their system isalso limited in that recursive functions can’t be analysed (they rely instead on a predefined
set of data-paralel operators).

Rosendahl [14] presents a program transformation that yiel ds a time bound program for a given first-order Lisp
program (his system deal swith recursive functionsby providingaset of transformation rulesthat eliminaterecursion).
For solvingfinitedifference equationshe usesasmall set of eight transformation rulesto find aclosed form. Thisworks
for simple programs but fails for even moderately complex programs such as bubble-sort.

Functional Programming, Glasgow 1996 12

A Sized Time System for a Parallel Functional L anguage

Most recently, Hughes, Pareto and Sabry [6] have developed a sized type system for a simple higher-order, lazy
functional language. This type system checks upper bounds for the size of algebraic data types. Hughes et al. use
thisinformation to prove termination and liveness propertiesfor reactive systems. However, aswe have shownin this
paper, sized types can a so be used to analyse the costs of user-defined recursive functions.

Only afew authors have attempted to derive cost information from alazy language in order to use it in aparalle
system. Hudak and Goldberg [4] developed heuristicsfor improving the granul arity of parallel threads based on a cost
model for alazy language. These heuristicswork only in certain cases. A cost analysisfor alazy language hasto take
the context of an expressioninto account to makeit compositional [1]. Thiscan be done by using projections, modelling
how much of a data structure is needed in a certain context [16]. The closest to a cost analysis for alazy language is
the cost calculus developed by Sands[15].

7 Conclusions

Thesized timesystemintroducedin thispaper isthebasisfor performing astatic cost analysisof expressionsinasimple
strict, polymorphic, higher-order language £. The basic structureis that of atype inference system. Augmenting the
types with size information and, in the higher-order case, with latent cost information yields a subtyping system. In
order to infer the size information we use recent results on sized types [6]. The cost analysis we outlinedin Section 5
can infer the cost of non-recursive functions (similar to [13]) and of recursive functions that yield linear first-order
recurrences. The costsof recursivefunctionsare produced by using a“ database” of known recurrences and their closed
forms. This approach is applicable for both analyses and makes it possible to tune the accuracy of the result to some
degree.

Although our results are given purely for lists, Hughes et a . have already shown how to define sized types on ar-
bitrary data structures [6]. Based on these results, it should be straightforward to extend the cost anadysisin thisway.
When extending thisanalysisto lazy |anguagesinformati on about the demand on an expressionisrequired. Thiscan be
modelled by projectionsas described in [15]. For theimplicit parallelisation of purely functional languages, for which
such a cost analysis would be mainly used, precise strictness information is required, to detect expressions that may
be evaluated in parald. The cost analysis could then use this strictnessinformation in order to decide which expres-
sionsto evaluate in parallel. Therefore, acombination of a projection based strictness analysis[7] with asize and cost
analysis would be the most promising approach for integrating our sized time system into an implicitly paralel lazy
functional language.

In this paper we have focused on the feasibility of a static cost analysis and on the quality of the resulting cost
expressions. For our application area of using cost informationin the scheduling of paralel tasksit is sufficient to have
relative cost information available. However, we have not yet studied the soundness and compl eteness of our sized
time system. In futurewe plan to provideastep counting semantics for £ and to study the correctness of our sized time
system. One important difference from the semantic model used in [6] will be the existence of abottom element in the
semantic domain we intend to use for lists, since the strict semantics of £ prohibitsthe use of infinite data structures.

Preliminary measurements of anon-trivial example program, annotated withtheresultsof asize analysis(confirmed
by type checking) and of acost analysis (done by hand) show that the annotated version has a better runtimefor awide
range of latencies. This extends results on the usability of static cost information, which has so far only been studied
for specific paralel machines.

References
[1] B. Bjerner and S. Holmstrom. A Compositiona Approach to Time Analysisof First Order Lazy Functional Pro-
grams. In FPCA 89 —Intl. Conf. on Functional Programming Languages and Computer Architecture, pp. 157—

165. ACM Press, 1989.

[2] V. Dornic, P. Jouvelot, and D.K. Gifford. Polymorphic time systems for estimating program complexity. ACM
Letters on Programming Languages and Systems, 1(1):33-45, March 1992.

Functiona Programming, Glasgow 1996 13

A Sized Time System for a Parallel Functional L anguage

[3] K.Hammond, H-W. Loidl, and A. Partridge. Visuaising Granularity in Parallel Programs. A Graphical Win-
nowing System for Haskell. In HPFC’ 95 — High Performance Functional Computing, pp. 208-221, Denver,
Colorado, April 10-12, 1995.

[4] P Hudak and B. Goldberg. Distributed Execution of Functional Programs Using Seria Combinators. |EEE Com-
puter, 34(10):881-891, October 1985.

[5] L. Huelshergen, JR. Larus, and A. Aiken. Using Run-Time List Sizes to Guide Parallel Thread Creation. In
LFP’94 — Conf. on Lisp and Functional Programming, pp. 79-90, Orlando, Florida, June 27-29, 1994. ACM
Press.

[6] R.JM. Hughes, L. Pareto, and A. Sabry. Proving the Correctness of Reactive Systems using Sized Types. In
POPL’ 96 — Symp. on Principlesof Programming Languages, St Petersburg, Florida, January 1996. ACM Press.

[7] R. Kubiak, R.JM. Hughes, and J. Launchbury. A Projection-Based Strictness Analyser for aHaskell Compiler.
Technical report, Dept. of Comp. Sci., Univ. of Glasgow, May 1992.

[8] D.LeMétayer. ACE: An Automatic Complexity Evaluator. ACM Transactions on Programming Languagesand
Systems, 10(2), April 1988.

[9] H-W. Loidl and K. Hammond. On the Granularity of Divide-and-Conquer Parallelism. In Glasgow Workshop on
Functional Programming, Ullapool, Scotland, July 8-10, 1995. Springer-Verlag.

[10] M. Petkovsek. Finding Closed-Form Solutionsof Difference Equations by Symbolic Methods. PhD thesis, School
of Computer Science, Carnegie Mellon Univ. , September 1990.

[11] S.L. PeytonJones, C. Clack, and J. Salkild. High-Performance Parallel Graph Reduction. In PARLE’ 89 — Conf.
on Paralle Architectures and Languages Europe, LNCS 365, pp. 193-206, 1989. Springer-Verlag.

[12] W. Pugh. The Omegatest: A fast and practical integer programming algorithm for dependence anaysis. Com-
munications of the ACM, 8:102-114, 1992.

[13] B.Reistadand D.K. Gifford. Static Dependent Costsfor Estimating Execution Time. In LFP’'94 — Conf. on Lisp
and Functional Programming, pp. 65-78, Orlando, Florida, June 27—29, June 1994. ACM Press.

[14] M. Rosendahl. Automatic Complexity Analysis. In FPCA' 89 — Intl. Conf. on Functional Programming Lan-
guages and Computer Architecture, pp. 144-156. ACM Press, 19809.

[15] D. Sands. Complexity Anaysisfor alLazy Higher-Order Language. In ESOP’ 90 — European Symposium on
Programming, LNCS 432. Springer-Verlag, May 1990.

[16] P. Wadler. Strictnessanaysisadstimeanalysis. In POPL’ 88 — Symp. on Principles of Programming Languages,
January 1988.

[17] B. Wegbreit. Mechanical Program Analysis. Communications of the ACM, 18(9):528-539, 1975.

Functional Programming, Glasgow 1996 14

