
The Virtual Shared Memory Performance of a Parallel Graph Reducer�
Hans-Wolfgang Loidl

Department of Computing and Electrical Engineering,
Heriot-Watt University, Edinburgh EH14 4AS, Scotland;

E-mail:hwloidl@cee.hw.ac.uk

Abstract

This paper assesses the costs of maintaining a virtual
shared heap in our parallel graph reducer (GUM), which
implements a parallel functional language. GUM performs
automatic and dynamic resource management for both work
and data. We introduce extensions to the original design
of GUM, aiming at a more flexible memory management
and communication mechanism to deal with high-latency
systems. We then present measurements of running GUM
on a Beowulf cluster, evaluating the overhead of dynamic
distributed memory management and the effectiveness of the
new memory management and communication mechanisms.
c
 IEEE; “CCGrid 2002”, Berlin, May 2002.

1. Introduction

Our parallel runtime system (GUM) implements a func-
tional language and is based on parallel graph reduction [9].
In this model a program is represented as a graph structure
and parallelism is exploited by reducing independent sub-
graphs in parallel. The most natural implementation of par-
allel graph reduction uses a shared heap for memory man-
agement. GUM implements a virtual shared heap on a dis-
tributed memory model, using PVM as generic communica-
tion library for transferring data. For efficient compilation
we use a state-of-the-art, optimising compiler, namely the
Glasgow Haskell Compiler [11].

In this paper we investigate the overhead incurred by
this virtual shared heap model. We measure key parameters
of the memory management subsystem to assess this over-
head for programs with different communication character-
istics. We present extensions to the memory management
and communication subsystems to enhance the flexibility of
the system and give detailed measurements for these exten-
sions on a Beowulf cluster.

As programming language we use GPH, a parallel di-
alect of the functional language Haskell. Its only exten-�Supported by the Austrian Academy of Sciences (APART 624).

sion to Haskell is a primitive,par , which indicates a pos-
sible parallel execution for a program expression. All dy-
namic control of the parallelism is completely implicit. This
programming model encourages the generation of massive
amounts of fine-grained parallelism and puts even higher
importance on the efficiency of its management in the run-
time system.

2. A Virtual Shared Heap in GUM

In this section we give an overview of the design of
GUM with special emphasis on memory management. For
a more detailed discussion of GUM see [13].

The key concepts in the design of GUM are an under-
lying distributed memory model, a virtual shared heap im-
plemented on top of that model and automatic, dynamic re-
source control for both work and data. Based on this design
we can identify several interrelated components:� The thread management subsystemis responsible for

generating new threads and scheduling them.� Thememory management subsystemis responsible for
controlling access to local and remote data.� Thecommunication subsystemis responsible for trans-
ferring data and work between processing elements.

2.1. The Thread Management Subsystem

Theevaluate-and-diethread management subsystem we
use in GUM has been developed for the GRIP parallel
graph reduction machine [10]. This model represents po-
tential parallelism assparks, i.e. pointers to structures in
the distributed program graph. In the program code apar
primitive is used to generate sparks, which are maintained
by the runtime system in a flat, distributed spark pool. A
“sparked” expression may be executed by an independent
thread. However, if a thread needs the value of the expres-
sion, and no other thread is evaluating it, this thread will per-
form the computation itself. This behaviour is calledthread



subsumptionbecause the potentially parallel work is inlined
by another thread, typically its parent. This idea of dynam-
ically increasing the granularity of the threads by deferring
the decision whether to generate a thread is similar to the
independently developed lazy task creation model [8].

The synchronisation between threads is implicit via ac-
cessing sharedclosures, i.e. nodes in the graph structure.
We distinguish betweennormal-form closures, which rep-
resent data, andthunks, which represent work (unevaluated
data). If a thread needs the result of a computation, repre-
sented by a graph structure, that is currently active or that
is executed on another processing element (PE), the thread
is blocked on this graph structure. As soon as the result be-
comes available the thread is awoken and can continue. To
realise this form of blocking, every thread has to lock a clo-
sure on entry, and a waiting list of all blocked threads has to
be maintained. The locking of closures is one major source
of sequential overhead.

The basic load balancing mechanism in GUM is one of
work stealing, i.e. whenever a PE runs out of work it asks
other PEs for work. If work is available it will be transferred
as a spark from the busy to the idle PE. Based on measure-
ments on a Beowulf cluster, we have recently refined the
load balancing mechanism, so as to avoid the monopolisa-
tion of parallelism by PEs on a high-latency system [6].

2.2. The Memory Management Subsystem

As an implementation of a functional language GUM
focuses on heap allocated data. It uses aflat memory hi-
erarchy, i.e. the access to any closure in one PE’s heap is
uniform. Every globally visible closure in the heap is iden-
tified via a global address (GA), a globally unique identifier.
Global indirection closures (FetchMes) always use the GA
to identify the remote object. The mapping of these GAs to
local heap addresses and vice versa is done via a hash ta-
ble, the global indirection table (GIT). This relationshipis
further elaborated in the following section and in Figure 1.

This design enables separate local garbage collection
(GC) on each PE, provided that the GIT is rebuilt after every
GC to map all live GAs to their new addresses in the heap.
Rebuilding the GIT is one major source of overhead in the
memory management subsystem. This design is based on
the assumption, verified on GRIP, that only a small frac-
tion of the heap is globally visible and that rebuilding the
GIT is cheaper than allocating and maintaining one addi-
tional word, the GA, for every closure in the system.

Note, that the mapping of global to local addresses is
needed for determining whether a copy of a newly imported
graph structure already exists on that PE. In this case, the
less evaluated version of the graph will become an indirec-
tion to the further evaluated version. This avoids duplicat-
ing data that might have been imported via different PEs.

The decision ofglobalisingboth normal forms and thunks,
i.e. generating GAs for both, reduces the total memory con-
sumption in the system. However, it increases packing costs
and the size of the packet which is sent. In Section 4.2 we
will measure different globalisation schemes.

Independent local garbage collection on each PE is
achieved in GUM by usingweighted reference countingon
GAs [1]. On creating a new reference to a globally visible
closure it receives half the weight from the original refer-
ence. When during local garbage collection a reference to a
remote closure is freed, the weight of that reference is added
to the reference maintained in the GIT. Once a GA contains
the maximal weight, there are no more remote references to
this closure and it can be garbage collected.

2.3. The Communication Subsystem

GUM was designed for a generic distributed-memory
machine. To reduce the total amount of communication and
to permit latency hiding, i.e. overlapping communication
with computation, GUM uses asynchronous, bulk commu-
nication. Thepacking scheme, or serialisation mechanism,
determines how much of the graph structure to put into a
communication packet. By default GUM uses full subgraph
packing, limited by the fixed packet size, i.e. when a graph
is larger than the packet size only its initial portion is sent.
Both work and data are represented as graph structures, and
can be transmitted using this mechanism. However, we rely
on the actual compiled code to be pre-loaded on each PE.
In Section 4.2 we will measure different packing schemes.

GA1.6
GA1.3
GA1.4
GA1.5

GA1.1
GA1.2
GA1.3
GA1.4
GA1.5

GA2.1
GA2.2

GITPE 1 PE 2GIT
HeapHeap

Packet
GA1.6
GA1.3

Thunk (computation) Fetchme (global indirection) Normal Form (data) Packed closure

Figure 1. Transfer of graph structures

Figure 1 elaborates on the allocation of GAs and the
transfer of graph structures on two PEs. This snapshot
shows the heaps on two PEs after having completed the
transfer of the five closure graph with rootGA2.1 on PE2
(originally GA1.1 on PE1). The packing algorithm tra-
verses the graph in a breadth-first fashion. For each closure
a new GA is allocated, if it does not already have one, in
this example introducingGA1.1 to GA1.5 . When pack-
ing the closure itself, thunks and normal-forms have to be



treated differently. To avoid the duplication of work, thunks
are never copied but moved between processors. Therefore,
the original thunk is replaced with a “revertible black hole”
closure. Should other threads demand the value before the
transfer is complete they will be blocked. Normal-forms on
the other hand can be freely copied.

On the receiver side, the graph is unpacked, checking
for the presence of other copies of the imported closures
to maintain sharing. For thunks new GAs are allocated,
which determine the location of the closure. In this exam-
pleGA2.1 andGA2.2 are newly allocated. Their old GAs,
GA1.1 andGA1.2 , are not needed any more and can be
garbage collected. After unpacking the whole graph a map-
ping of old to new GAs is transmitted to the sender, which
then replaces all revertible black holes with global indirec-
tions (FetchMes) to the new GAs,GA2.1 andGA2.2 , and
the old GAs become garbage.

Figure 1 also shows an ongoing transfer of a two closure
graph, that shares one closure with the first graph. Note, that
in the packetGA1.3 refers to the same (shared) closure as
the one now available on PE2, so that when unpacking the
second graph sharing of this closure is maintained on PE2.

3. Measuring the Virtual Shared Memory
Overhead in GUM

3.1. Measurement Setup

All measurements have been performed on up to 16
nodes of a 32-node Beowulf cluster [12] at Heriot-Watt
University, consisting of Linux RedHat 6.2 workstations
with a 533MHz Celeron processor, 128kB cache, 128MB
of DRAM and 5.7GB of IDE disk. The workstations are
connected through a 100Mb/s fast Ethernet switch with a
latency of 142�s, measured under PVM 3.4.2.

All runtimes represent the median of three executions
to factor out operating system interaction. Program inputs
have been chosen to result in a sequential runtime between
3 and 13 minutes. All speedups reported are relative, i.e. the
runtime on 1 PE divided by the runtime onn PEs. The se-
quential efficiency of GUM, i.e. sequential runtime divided
by a 1 PE parallel runtime, has previously been measured as
85–90% for programs likeparfib with a massive amount
of parallelism [13], and we have measured a 96% efficiency
for linsolv , which generates less parallelism.

In measuring the overhead for the three main subsystems
in GUM we investigate the following questions:� How much parallelism is generated?This characteris-

tic of thethread management subsystemhas an impor-
tant impact on the overhead of the memory manage-
ment subsystem. In particular, functional languages
tend to encourage the generation of a massive amount

of parallelism and thus the runtime system has to cope
with many fine-grained threads.� How expensive is the management of GAs?This char-
acteristic, which measures the main overhead of the
memory management subsystem, depends on the num-
ber of GAs produced during the computation. In par-
ticular the costs for rebuilding the GIT at every garbage
collection can be substantial.� How expensive is the packing/unpacking of graph
structures? This characteristic, which measures the
main overhead of thecommunication subsystem, de-
pends on the packet sizes and the communication de-
gree of the program, i.e. the number of packets sent
per second of execution time. An excessive amount
of communication is often an indicator of bad data lo-
cality, i.e. logically related pieces of data residing on
different PEs.

3.2. Benchmark Programs

Six programs are measured as indicated in Table 1.
Two are trivial divide-and-conquer programs,parfib and
stir , to test GUM’s resilience towards massive paral-
lelism. These divide-and-conquer programs (with thresh-
olding) compute Fibonacchi numbers and Stirling numbers
of the first kind, respectively. ThesumEuler program
computes the sum over the application of the Euler totient
function over an integer list. It is data parallel (with data
clustering) and has a fairly cheap combination phase involv-
ing only a small amount of communication. The next two
programs,mandelbrot andraytracer , are data paral-
lel. The former computes a Mandelbrot set in a window of
given size. The latter calculates a 2D image of a given scene
of 3D objects by tracing all rays in a given grid, or win-
dow. Both programs use data parallelism over the window
and employ data clustering, i.e. a tunable number of lines is
processed by one thread. Compared to the above three pro-
grams, significantly more communication is required, but
the structure of the parallelism is simple with largely in-
dependent computations. Thelinsolv program finds an
exact solution of a linear system of equations. In contrast to
classical iterative methods used to find an approximate solu-
tion, this symbolic algorithm uses a multiple homomorphic
images approach. The input is mapped into several homo-
morphic images, the solutions are computed in each image
independently, and finally the results are combined into a
solution in the original domain. The computational struc-
ture of the parallel algorithm is divide-and-conquer with
nested parallelism in the solution phase. Bothraytracer
andlinsolv are discussed in detail in [7].

Table 1 summarises the dynamic properties of these pro-
grams executing on a 16-processor Beowulf cluster (the



0

200

400

600

800

1000

4 8 12 16

N
um

be
r 

of
 G

A
s

Processors

Average global address (GA) residency

linsolv
raytracer

mandelbrot
sumEuler

stir
parfib

2

4

6

8

10

4 8 12 16

P
er

ce
nt

ag
e 

of
 R

un
tim

e

Processors

Cost of rebuilding the global indirection table (GIT)

linsolv
raytracer

mandelbrot
sumEuler

stir
parfib

Figure 2. Overhead of maintaining global addresses (GAs) fo r all programs

Table 1. Dynamic properties of the programs
Program No of Max Heap Alloc Comm
Name Thrds Residency Rate Degree

(kB) (MB/s) (pkts/s)
parfib 811 5.0 2.5 109.2
stir 494 4.0 59.4 44.6
sumEuler 153 85.0 29.3 7.9
mandelb. 180 1124.0 42.5 539.9
rayt. 300 929.0 2.2 336.7
linsolv 195 159.0 71.4 265.9

speedups are shown in Figure 6 and will be discussed in
Section 4.2). The second column records the total number
of threads generated. The remaining columns show aver-
ages over all processors for the maximal heap residency,
i.e. the maximum amount of heap that is alive at garbage
collection time, the allocation rate, i.e. the amount of lo-
cal memory allocated per second of execution time, and the
communication degree, i.e. the number of packets sent per
second of execution time. Theparfib program gener-
ates the largest number of threads and sends many small
messages, without allocating much heap. Thestir and
sumEuler programs consume significantly more heap and
have a lower communication rate, indicating a better com-
putation to communication ratio. Themandelbrot and
raytracer programs require a large amount of input
data, reflected in a high heap residency, but onlymandel-
brot allocates a significant amount of intermediate data,
reflected in a high allocation rate. Both of these programs
generate a lot of communication, mainly at the beginning
and the end of the computation for exchanging data. The
low allocation rate with a relatively high heap residency for
raytracer reflects its rather static nature of parallelism.
Finally, linsolv has both a high heap residency and a

high allocation rate, with the communication more evenly
spread throughout the computation, and thus is the most se-
vere test for the memory management mechanism.

3.3. Memory Management Overhead

In assessing thethread management subsystem, thread
subsumption proved to be an effective mechanism of bound-
ing the total amount of parallelism. Forparfib andstir
the amount of potential parallelism increases exponentially,
generating two and three parallel threads in each level of
recursion, respectively. The total number of threads is con-
trolled by the implicit thread subsumption mechanism. For
all other programs the total number of threads is roughly
constant for increasing numbers of PEs. Forparfib , with
input45 and11 in total234 parallel threads could be gener-
ated. However, in practice only up to811 threads are pro-
duced. Forstir only 494 out of 318 potential threads are
generated. This ensures that thread creation costs do not
radically decrease parallel performance.

A key parameter for assessing the overhead of themem-
ory management subsystemis the average GA residency, i.e.
the maximal number of live GAs measured over all garbage
collections and averaged over all processors. As shown in
Figure 2 this number (left hand graph) determines the time
required for rebuilding the GIT at the end of every garbage
collection (right hand graph), which represents the main
overhead for maintaining GAs. For the trivial test programs
such asparfib , stir andsumEuler only a very small
number of GAs is alive throughout the execution, reflecting
the small amount of data that is being transmitted. The cor-
responding overheads are very small: 0.1%, 2.2%, 1.3%,
respectively. The significantly higher numbers of GAs for
mandelbrot , raytracer andlinsolv have different
impacts on the memory management overhead. Bothman-
delbrot and raytracer exhibit a smaller allocation
rate thanlinsolv (see Table 1), which results in fewer



0

1

2

3

4

5

4 8 12 16

P
er

ce
nt

ag
e 

of
 R

un
tim

e

Processors

Cost of (un)packing graph structures

linsolv
raytracer

mandelbrot
sumEuler

stir
parfib

Figure 3. Communication overhead

GCs and thus a smaller impact of rebuilding the GIT on
the overall memory management overhead. In the case of
linsolv the high number of GAs is directly reflected by
a high overhead for maintaining the GAs: up to 8.3%.

Interestingly the average number of GAs per processor
does not radically increase with an increasing number of
processors, as might be expected (see Figure 2). This is
mainly due to the ability of the runtime system to garbage
collect older GAs once they are not needed any more in the
computation. In general, the number of live GAs is an indi-
cator of heap fragmentation, which is program specific, and
might also be of interest to the applications programmer.

The main overhead in thecommunication subsystemis
time needed for packing and unpacking graph structures. As
expected, the average packet size is very small forparfib ,
andstir . In total this yields an overhead of less than 0.1%.
For sumEuler , mandelbrot , raytracer and lin-
solv the average packet sizes are significantly larger: up
to 1692, 3384, 1520, and 548 bytes per packet. However,
even then the percentage of packing and unpacking costs,
as shown in Figure 3, is low. Theraytracer , which re-
ceives a geometric model as input, exhibits an overhead of
up to 4.8%, andmandelbrot up to 2%. All other pro-
grams have overheads smaller than 0.3%.

4. Improving the Virtual Shared Memory
Management

4.1. New Memory Management Techniques

Based on the measurements in the previous section, we
have identified the rebuilding of the GIT as the main source
of overhead for the virtual shared heap implementation and
we have investigated possibilities for reducing the memory
management and communication overhead. In particular,
we have refined the globalisation and the packing schemes

of GUM.
In the rest of the paper we compare the efficiency of two

globalisation schemes:� full globalisation, the default setting, which allocates a
GA for every closure that is packed and sent to another
processor;� thunk-only globalisation, which allocates a GA only
for thunks but not for normal-form closures.

This seemingly rather minor change has important conse-
quences for the data distribution in heap intensive appli-
cations. The former scheme maintains the sharing of both
thunks (i.e. computations) and of normal-forms (i.e. data),
whereas the latter may abandon sharing of normal-forms.
The potential advantage of this scheme is a reduced over-
head in managing GAs.

As a modification of the communication subsystem
we also investigate two different packing, or serialisation,
schemes:� full subgraph packing, the default setting, which sends

an entire subgraph, rooted at the closure originally re-
quested, to the requesting processor;� normal-form-only packing, which sends only data
items in the subgraph up to the first thunk that is en-
countered.

The former scheme performs pre-fetching of data and work,
whereas the latter only pre-fetches data, usually resulting in
a higher number of small packets.

4.2. Measurements on a High-Latency Machine

In this section we measure the impact of the refined pack-
ing and globalisation schemes on the memory management
overhead and ultimately on the speedup. We present run-
time results for all programs in Table 2. We focus on the
discussion oflinsolv in Figure 5 because it is memory
intensive and exhibits irregular parallelism (we use sparse
matrices), and thus represents a class of programs for which
our programming model is most useful.

Comparing Globalisation Schemes: Figure 4 shows re-
sults from executinglinsolv using all four combinations
of globalisation and packing schemes. The left hand graph
shows the total number of GAs and the right hand graph
shows the overhead for maintaining the GAs. Except for a
2 processor setup, the number of GAs generated by thunk-
only globalisation is significantly smaller than for full glob-
alisation, resulting in a drop of GA maintenance overhead
from 8.6% to 3.5% on 16 PEs (from 5.5% to 3.8% with full-
subgraph packing). With an increasing number of proces-
sors this overhead decreases because the larger amount of



0

100

200

300

400

500

600

700

4 8 12 16

N
um

be
r 

of
 G

A
s

Processors

Average global address (GA) residency

full glob; full-subgraph pack
full glob; nf-only pack

thunk-only glob; full-subgraph pack
thunk-only glob; nf-only pack

5

10

15

20

25

30

4 8 12 16

P
er

ce
nt

ag
e 

of
 R

un
tim

e

Processors

Cost of rebuilding the global indirection table (GIT)

full glob; full-subgraph pack
full glob; nf-only pack

thunk-only glob; full-subgraph pack
thunk-only glob; nf-only pack

Figure 4. Overhead of maintaining global addresses (GAs) in linsolv

total memory leads to fewer GCs in total. An examination
of the GA load, i.e. the number of live GAs on each proces-
sor at any point during the execution, reveals a much higher,
more even load with full globalisation, whereas thunk-only
globalisation produces only short peaks of such high GA
load, particularly on the main PE. Longer periods of high
GA load, which would have a significant impact on the run-
time, are rare with thunk-only globalisation.

Comparing Packing Schemes: The influence of the
packing scheme on the number of GAs is less obvious. In
general, normal-form-only packing reduces the granular-
ity of the communication. By avoiding unnecessary pre-
fetching of work it can reduce the number of GAs that are
allocated and improve data-locality. However, this advan-
tage might be off-set by the increased number of packets
in total. Forlinsolv the maximal number of packets in-
creases from 4300 to 5600 on 16 PEs, which in turn leads to
a higher number of GAs when combining normal-form only
packing with full globalisation. However, with thunk-only
globalisation, which generates far fewer GAs per packet,
the total number of GAs drops.

Speedups: Figure 5 compares the speedups for all four
combinations of globalisation and packing schemes. In gen-
eral, thunk-only globalisation combined with normal-form
only packing shows the best absolute performance with the
best speedup of 13.8 on 16 PEs. Although thunk-only glob-
alisation improves performance in most cases, we observe
drops in performance when combined with normal-form-
only packing for example at 10 PEs. This behaviour is due
to an increased amount of communication that exceeds, at
this point, the system’s ability of latency hiding and thus
introduces idle time in the execution.

2

4

6

8

10

12

14

16

4 8 12 16

S
pe

ed
up

Processors

Speedups with all combinations of globalisation and packing

full glob; full-subgraph pack
full glob; nf-only pack

thunk-only glob; full-subgraph pack
thunk-only glob; nf-only pack

Figure 5. Speedups for linsolv

Other Programs: Table 2 summarises the reduction in
runtime on 16 PEs relative to an execution in the default
setting of full globalisation and full-subgraph packing. The
first two lines specify the globalisation and the packing
scheme, respectively. As expected,parfib and stir
show little variation. As discussed,linsolv shows con-
sistent improvements for all processors, with a reduction in

Table 2. Reduction in runtime (in %)
Program thunk-only thunk-only full
Name nf-only full-subgraph nf-only
parfib +1.0 -2.9 +2.1
stir -0.5 -2.3 -4.8
sumEuler -9.2 -12.2 +9.2
mandelb. -45.8 -48.7 -2.0
rayt. -16.8 -35.5 +23.1
linsolv -11.6 -18.7 -11.5



runtime of 18.7% in the best case. The data parallel pro-
grams,mandelbrot and raytracer , show improve-
ments far exceeding the overhead for maintaining GAs.
This is due to different sequences of interactions between
the PEs caused by the different costs for the globalisation
and packing schemes and by the independent local GCs.
In particular, a change in the interactions between the PEs
affects the dynamic distribution of work. The resulting dif-
ference in the load distribution can have a high impact on
the total runtime. To some degree this dynamic behaviour
is program specific: data parallel programs that distribute
large data structures at the beginning will suffer from in-
creased overhead due to full globalisation, and a too small
degree of parallelism bears the danger of drastic load im-
balances at the end of the computation. However, in factor-
ing out the effects of dynamic load distribution, we observe
a significant drop in the costs for maintaining GAs alone:
from 6.5% to 1.8% formandelbrot and from 4.8% to
0.3% forraytracer .

When comparing different packing schemes the differ-
ence in runtime is less pronounced and mixed. Forlin-
solv normal-form-only packing achieves an improvement
of 11.5%. However,raytracer and mandelbrot ,
which both transfer large data structures, perform better
with full-subgraph packing. Overall we cannot clearly iden-
tify a winner for the packing scheme alone.

2

4

6

8

10

12

14

16

4 8 12 16

S
pe

ed
up

Processors

Speedups of all programs

linsolv
raytracer

mandelbrot
sumEuler

stir
parfib

Figure 6. Speedups with thunk-only globali-
sation and full-subgraph packing

Finally, Figure 6 summarises the speedups obtained
from all example programs when using a combination of
thunk-only globalisation and full-subgraph packing, which
achieves the best results as shown in Table 2. The com-
paratively low communication degrees ofparfib , stir
andsumEuler ensure good speedups for these simple pro-
grams. The data parallel programs,mandelbrot and
raytracer , profit from fewer GCs initially but show

comparatively poor speedups for 16 PEs. This is mainly
due to a sequential bottleneck at the end when collecting
the generated data from many PEs, contrasting a high utili-
sation in early stages of the execution.

5. Related work

Most closely related to our work are Kesseler’s studies
on graph copying costs in a distributed implementation of
the functional language Concurrent Clean [5]. However,
rather than adjusting the generic graph packing algorithm,
which is similar to our normal-form-only packing, he fo-
cuses on using arrays as representation of data that has to
be transported.

Another virtual shared heap implementation of a parallel
functional language is pHluid [2]. In this implementation
the heap is partitioned into pages, being owned by a spe-
cific processor. A cache coherence protocol decides when
an entire page has to be sent to another processor, resulting
in very coarse-grained communication without the flexibil-
ity of a special treatment based on the type of the closure,
which we have in GUM.

Goldstein [3] presents a thorough analysis of the perfor-
mance of different thread management and memory man-
agement subsystems in the context of the dataflow-inspired
TAM machine. His focus, however, is on the efficiency of
a work stealing scheduler with the transfer of stack seg-
ments (for different stack representations) rather than ar-
bitrary heap objects. In contrast, our work makes use of
the highly structured representation of both work and data
to improve distributed memory management, but does not
investigate the overhead of different thread representations.

6. Conclusions

In analysing the virtual shared memory overhead in-
curred in our parallel graph reduction machine GUM on a
high-latency Beowulf cluster we have tackled the following
questions in Section 3:� How much parallelism is generated?GUM’s thread

subsumption mechanism can effectively limit the to-
tal amount of parallelism generated by divide-and-
conquer programs:parfib produces only 811 out
of 234 potential threads;stir produces 494 out of318 threads. This confirms earlier results on the low-
latency GRIP graph reducer [4].� How expensive is the management of global ad-
dresses?For the memory intensive programs,man-
delbrot , raytracer andlinsolv , maintaining
the global addresses can amount to as much as 8% of
the total execution time (linsolv ). Typical values



lie between 4 and 6% for these memory intensive pro-
grams and below 2% for the remaining programs.� How expensive is the (un)packing of graphs struc-
tures? Only for the two data parallel programs that
require large data structures as input,mandelbrot
andraytracer , does this overhead exceed 1%. Typ-
ical values lie between between 1% and 2% for these
programs and below 0.3% for the remaining programs.

To reduce the overhead of maintaining global addresses,
which represents the highest overhead of the virtual shared
heap, we have implemented alternative runtime system
techniques for key operations in memory management and
communication: globalisation and packing schemes.

A globalisation schemeoffers a choice betweenopti-
mising for speed or for space. By avoiding to allocate
global addresses for data the memory management over-
head is reduced, but sharing of data might be lost. All pro-
grams, exceptstir , run fastest when avoiding to globalise
data. However, the effectiveness of the refined globalisation
scheme depends on the dynamic properties of the program.
The data parallel programs show the largest improvements,
but they are in part due to altered processor interactions
and load distribution. Thelinsolv program with its high
memory consumption and irregular parallelism gains about
18.7% in performance with thunk-only globalisation.

A packing schemeallows to tune the granularity of the
communicationvia pre-fetching either both data and work
or only data. In combination with the best globalisation
scheme, full subgraph packing delivered the best perfor-
mance. Forlinsolv this is the best combination across
the entire range of PEs. For the other programs the choice
of the best packing scheme depends on the communication
characteristics of the program. Deriving such information
either via profiling or program analysis would be required
to choose the best packing scheme in general.

As future work we plan to investigate the possibility of
generating lifetime profiles for global addresses to mea-
sure heap fragmentation. To further reduce memory man-
agement overhead the currently flat global indirection table
could be partitioned into generations, matching the struc-
ture of a generational garbage collector. A longer term goal
is to develop a more sophisticated environment, that can de-
duce system parameters and choose the appropriate runtime
system scheme, e.g. for packing or globalisation, automati-
cally based on these parameters. Such a self-adjusting run-
time system would be far more flexible in providing high
architecture-independent performance.

Acknowledgements

The author would like to thank André Rauber Du Bois,
Greg Michaelson, and Phil Trinder for commenting on

drafts of the paper and the Austrian Academy of Sciences
for funding this work under APART fellowship 624.

References

[1] D. Bevan. Distributed Garbage Collection Using Reference
Counting. InPARLE’87 — Parallel Architectures and Lan-
guages Europe, LNCS 259, pages 176–187, Eindhoven, The
Netherlands, June 12–16, 1987. Springer-Verlag.

[2] C. Flanagan and R. Nikhil. pHluid: The Design of a Parallel
Functional Language Implementation on Workstations. In
ICFP’96 — Intl Conf on Functional Programming, pages
169–179, Philadelphia, PA, May 24–26, 1996. ACM Press.

[3] S. Goldstein.Lazy Threads: Compiler and Runtime Struc-
tures for Fine-Grained Parallel Programming. PhD thesis,
University of California, Berkeley, 1997.

[4] K. Hammond and S. Peyton Jones. Profiling Scheduling
Strategies on the GRIP Multiprocessor. InIFL’92 — Intl
Workshop on the Implementation of Functional Languages,
pages 73–98, RWTH Aachen, Germany, Sept. 1992.

[5] M. Kesseler. Reducing Graph Copying Costs. InPASCO’94
— Intl Symp on Parallel Symbolic Computation, Linz, Aus-
tria, Sept. 26–28, 1994. World Scientific Publishing.

[6] H.-W. Loidl. Load Balancing in a Parallel Graph Reducer.
In Trends in Functional Programming, volume 3, pages 63–
74. Intellect, 2002.

[7] H.-W. Loidl, P. Trinder, K. Hammond, S. Junaidu,
R. Morgan, and S. Peyton Jones. Engineering Paral-
lel Symbolic Programs in GPH. Concurrency – Prac-
tice and Experience, 11:701–752, 1999. Available from:<URL:http://www.cee.hw.ac.uk/˜dsg/gph/ >.

[8] E. Mohr, D. Kranz, and R. Halstead Jr. Lazy Task Creation:
A Technique for Increasing the Granularity of Parallel Pro-
grams.IEEE Transactions on Parallel and Distributed Sys-
tems, 2(3):264–280, July 1991.

[9] S. Peyton Jones. Parallel Implementations of Functional
Programming Languages.Computer Journal, 32(2):175–
186, Apr 1989.

[10] S. Peyton Jones, C. Clack, J. Salkild, and M. Hardie. GRIP
— a High-Performance Architecture for Parallel Graph Re-
duction. InFPCA’87 — Conf on Functional Programming
Languages and Computer Architecture, LNCS 274, pages
98–112, Portland, OR, Sept. 14–16, 1987. Springer-Verlag.

[11] S. Peyton Jones, C. Hall, K. Hammond, W. Par-
tain, and P. Wadler. The Glasgow Haskell Com-
piler: a Technical Overview. InJoint Framework
for Information Technology Technical Conference, pages
249–257, Keele, UK, Mar. 1993. Available from:<URL:http://www.haskell.org/ghc/ >.

[12] D. Ridge, D. Becker, P. Merkey, and T. Sterling. Beowulf:
Harnessing the Power of Parallelism in a Pile-of-PCs. In
IEEE Aerospace, 1997.

[13] P. Trinder, K. Hammond, J. Mattson Jr., A. Partridge, and
S. Peyton Jones. GUM: a Portable Parallel Implementation
of Haskell. InPLDI’96 — Programming Languages Design
and Implementation, pages 79–88, Philadelphia, PA, USA,
May 1996.


