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Abstract. In this paper we present a formalisation of the embedded sys-
tems language Hume in the Isabelle/HOL theorem prover. This formali-
sation integrates two logics, a VDM-style program logic for the functional
sub-language and a TLA-style logic for the coordination sub-language of
Hume. We present a soundness proof of the program logic, and demon-
strate the usability of the these logics on two example proofs.

1 Introduction

Typically resources on embedded systems, such as memory, are very scarce.
Thus, an important property of an embedded program is to execute within these
limited resources. The Hume embedded systems language achieves a high degree
of predictability of resource consumption by defining two language layers: a
strict, higher-order functional language at the expression layer, and a restricted
language of interacting boxes at the coordination layer. With this design the
full computational power of a modern programming language can be used at
the expression layer. Where verification and analysis of an expression become
intractable, the code can be decomposed into a network of boxes. This language
is far more restricted, but easier to analyse.

The different layers require different formalisms for proving (resource) prop-
erties. At the expression layer we apply standard techniques from program veri-
fication and develop a VDM-style [15] program logic to reason about programs.
At the coordination layer, where we find a network of interacting boxes, we
choose the Temporal Logic of Actions (TLA) [17] as a suitable mechanism for
reasoning. We use a shallow embedding of the coordination language and of TLA
into the Isabelle/HOL theorem prover and combine it with a deep embedding of
the expression language and a shallow embedding of its assertion language.

While these two kinds of logics, and their formalisations, have been studied
in isolation, this paper makes three contributions in combining them into one
integrated reasoning infrastructure for a concrete language, in proving soundness
for the VDM-style program logic, and in demonstrating the usability of the
integrated infrastructure by proving functional correctness and bounded heap
consumption for two simple Hume programs.



2 The Hume Language

Hume [10, 12] is designed as a layered language where the coordination layer is
used to construct reactive systems using a finite-state-automata based notation,
representing a static system of interconnecting boxes; while the expression layer
describes the behaviour of a box using a strict, higher-order, purely functional
rule-based notation. A central design goal of Hume is predictability of resource
consumption, so that each expression-layer program can execute within bounded
time and space constraints. Thus, we are mainly interested in proving resource
bounds for Hume programs.

The expression layer of Hume corresponds to a strict, higher-order language
with general algebraic datatypes. We formalise the expression layer of Hume in
the form that is used as an intermediate language in the compiler. This language
makes some structural restrictions on the source code, most notably it is in let-
normal-form, and uses general algebraic data-types:

Patt 3 p ::= x | v | c x1 . . . xn |
Expr 3 e ::= x | v | c x1 . . . xn | f x1 . . . xn | x x1 . . . xn | if x then e1 else e2 |

x1 ⊕ x2 | let x = e1 in e2 | case x of p1 → e1 otherwise e2

A pattern p is either a variable x ∈ Var, a value v ∈ Val, a constructor application
c x1 . . . xn (c ∈ Constr) or a wildcard . An expression e is either a variable x, a
value v, a constructor application c x1 . . . xn, a first-order function call of f or a
higher-order function call of x with arguments x1 . . . xn, a conditional, a binary
primitive operation ⊕, a let-expression, or a case expression. The latter is a one-
step matching expression, with a default branch to be used if the match was
unsuccessful. The entire program is represented by a table funTab, which maps
a function name (f) to its formal arguments (argsf ) and to its body (bodyf ).

On coordination layer, Hume programs comprise a set of concurrent, asyn-
chronous boxes, scheduled in an alternating sequence of execute and super-step
phases. In the execute phase any box with sufficient available inputs will be ex-
ecuted. In the following super-step phase, the results of the boxes will be copied
to single-buffer wires, provided they are free. Boxes are defined as a series of
pattern-matching rules, of the form p → e, using the syntax of the expression
language above. The semantics of these rules is similar to the one of expression-
layer pattern matching, but additionally accounts for possibly missing input
values.
As an example, the Hume code to the right
shows a box that takes a 16-bit integer as input
value, and produces as output value the input
value increased by one.

box inc

in ( i :: int 16 )

out ( i’ :: int 16 )

match i -> i+1;

In general, the body of a box is comprised of a sequence of rules, with the left
hand side being matched against the input data, and first successful match en-
abling execution of its right hand side. Networks of boxes on the Hume coordi-
nation layer are best presented in figures, like the examples in Figure 5.



l, a, r ∈ Locn = N ] {nil} E,E′ ∈ Env = Var⇒ Val
h, h′ ∈ Heap = Locn ;f Val G ∈ Ctxt = P {(Expr,Assn)}
v ∈ Val = {⊥} ] Z ] B ] Locn ] (Constr, Locn∗) ] (Funs, N, Locn∗)
P,Q,A ∈ Assn = Env⇒ Heap⇒ Heap⇒ Val⇒ Resources⇒ B
p ∈ Resources = (clock :: Z, callc :: Z,maxstack :: Z)

Fig. 1. Basic Domains

3 A VDM-style Program Logic for the Expression Layer

3.1 Operational Semantics

Figure 1 summarises the domains used in the formalisation. The sets of identifiers
for variables (x ∈ Var), functions (f ∈ Funs), and data constructors (c ∈ Constr)
are disjoint. We represent heaps (h ∈ Heap) by finite mappings from locations to
values (written ;f ), and environments (E ∈ Env) by total functions of variables
to values (written⇒). A location l ∈ Locn is either a natural number (represent-
ing an address in the heap), or the constant nil. We write Locn∗ for the domain
of sequences of elements in Locn, E ? ~xs for mapping E over the sequence ~xs,
prefix # for the length of a sequence and ++ for append of sequences. We model
heap usage of h as the size of its domain, ie. | dom h |. Other resources, such
as time, are modelled in the resource vector p ∈ Resources and ^ combines
these. We obtain costs for basic operations from a parameterised table R. The
operation freshloc has the property: freshloc s 6∈ s, for all s.

A judgement of the big-step operational semantics, shown in Figure 2, has the
form E, h ` e ⇓m (v, h′, p) and is read as follows: given a variable environment, E,
and a heap, h, e evaluates in m steps to the value v, yielding the modified heap,
h′, and consumes resources p. A value v is itself the result (Value). For a variable
x a lookup is performed in E (Var). For a constructor application c ~xs the heap is
extended with a fresh location, mapped to c and its argument values (Constr).
For primitive operations a shallow embedding is used so that the operator ⊕ can
be directly applied to the values of its variables (PrimBin). A conditional returns
the value of the then branch e1 or the else branch e2, depending on the value of x.
A let binds the result of e1 to the variable x and returns the value of the body e2
(Let). The judgement of the pattern-matching semantics, MATCH E, h ` p at l ⇓
(E′, l′), matches the value at location l against pattern p, returning a modified
environment and l on success, or the same environment and ⊥ on failure. A case
is a one-step matching expression, that matches a variable x against a pattern
p; if successful its value is that of e1 (CaseTrue), if unsuccessful its value is
that of e2 (CaseFalse). In first-order function calls, we bind the values in the
arguments to the formal parameters (argsf ), and use the modified environment
to evaluate the body (bodyf ) of the function f (CallFun). For higher-order
function calls, with function closures represented as triples (f, i, ~rs) of function
name, number of arguments and their values, we have to distinguish two cases.
If we have fewer than the required number of arguments, the result will be a



E, h ` v ⇓1 (v, h,Rkonst)
Value

E x = v

E, h ` x ⇓1 (v, h,Rvar)
Var

l = freshloc (dom h)
~rs = E ? ~xs h′ = h(l 7→ (c, ~rs))

E, h ` c ~xs ⇓1 (l, h′,Rconstr # ~xs)
Constr

v1 = E x1 v2 = E x2

v = v1 ⊕ v2
E, h ` x1 ⊕ x2 ⇓1 (v, h,R⊕)

PrimBin

E x = true E, h ` e1 ⇓n (v, h′, p′)

E, h ` if x then e1 else e2 ⇓n+1 (v, h′, p′ ^ Rif true)
IfTrue

E x = false E, h ` e2 ⇓n (v, h′, p′)

E, h ` if x then e1 else e2 ⇓n+1 (v, h′, p′ ^ Rif false)
IfFalse

E, h ` e1 ⇓m (v, h′, p′) E(x := v), h′ ` e2 ⇓n (v′′, h′′, p′′)

E, h ` let x = e1 in e2 ⇓m+n (v′′, h′′, p′ ^ p′′ ^ Rlet)
(Let)

l = E x MATCH E, h ` p at l ⇓ (E′, v′) v′ 6= ⊥ E′, h ` e1 ⇓n (v, h′, p′)

E, h ` case x of p→ e1 otherwise e2 ⇓n+1 (v, h′, p′ ^ Rcase true)
(CaseTrue)

l = E x MATCH E, h ` p at l ⇓ (E′, v′) v′ = ⊥ E, h ` e2 ⇓n (v, h′, p′)

E, h ` case x of p→ e1 otherwise e2 ⇓n+1 (v, h′, p′ ^ Rcase false)
(CaseFalse)

E′ = E(argsf := E ? ~xs) E′, h ` bodyf ⇓n (v, h′, p)

E, h ` f ~xs ⇓n+1 (v, h′, p ^ Rf # ~xs)
(CallFun)

l = E x Some (f, i, ~rs) = h l i+ # ~xs < #argsf

l′ = freshloc (dom h) h′ = h(l′ 7→ (f, (i+ # ~xs), (~rs++(E ? ~xs))))

E, h ` x ~xs ⇓1 (l′, h′,Rap false # ~xs)
(CallVarUnderApp)

l = E x Some (f, i, ~rs) = h l i+ # ~xs = #argsf

E′ = E(argsf := ~rs++(E ? ~xs)) E′, h ` bodyf ⇓n (v, h′, p)

E, h ` x ~xs ⇓n+1 (v, h′, p ^ Rap true # ~xs)
(CallVarExact)

Fig. 2. Operational Semantics of Expression-layer Hume



new closure consisting of f , the number of arguments supplied so far and their
values. If we have precisely the number of arguments that the function requires,
the values in the closure and the those of the arguments ( ~xs) are bound to the
formal parameters (argsf ) of the function, before the function body is evaluated
using these new bindings (CallVarExact).

3.2 Program Logic

A judgement has the form G � e : P , meaning that expression e fulfills the
assertion P in a context G. As shown in Figure 1, an assertion is a predicate
over the components of the operational semantics, and a context is a set of pairs
of program expression e ∈ Expr and assertion P ∈ Assn.

The rules in Figure 3 define the program logic for expression-layer Hume. A
value w is the result value, and the heap is unchanged (vdmValue). A variable x
requires a lookup in the environment, and the heap is unchanged (vdmVar). In
a constructor application, the newly allocated location is existentially quantified,
and the heap is updated with a binding to this location (vdmConstr). The two
possible control flows in the conditional are encoded in the logic as implications,
based on the boolean contents of variable x (vdmIf). In the let rule (vdmLet),
the intermediate value, heap and resources are existentially quantified, and the
environment for executing e2 is updated accordingly. The control flows in the
case construct are encoded as implications, based on the result from the pattern
match (vdmCase). In a first order call (vdmCallFun), the assertion to be
proven for f is added with the call into the context, and the function body has
to fulfill the assertion, after modifying environment and resources. The higher-
order function call (vdmCallVar) directly encodes the preconditions of the two
cases of under application (Φ) and of exact application (Ψ) from the operational
semantics. Thus, the definition of Φ reads as follows: for the pre-state E, h we
find in variable x a closure with i arguments, and the total number of arguments
is smaller than the function’s arity (i+ # ~xs < #argsf ). In this case, the result
state v, h′, p is constructed such that the result value is a new closure, containing
all arguments, and the result heap is updated accordingly. The definition of Ψ
reads as follows: For the pre-state E′, h we find in variable x a closure with
i arguments, and the total number of arguments matches the function’s arity
(i + # ~xs = #argsf ). In this case, the second premise in rule vdmCallVar
demands that the body of f (bodyf ) fulfils the assertion P , with the environment
adjusted for parameter passing and a modified resource vector to account for the
costs of the function call. Note that Ψ has to be parameterised over the function
f and the argument values ~rs captured in its closure, so that the vdmCallVar
rule can quantify over f and ~rs. In particular, the quantification over f scopes
over the entire second judgement in the premise of vdmCallVar, because it is
needed to retrieve the function’s body via bodyf . Finally, the quantification over
~rs scopes over the entire pre-condition inside the assertion. The environment
E is constructed out of E′ by binding the formal parameters to the values in
the closure (~rs) and those retrieved from the arguments ~xs. The final two rules,



G � w : λE h h′ v p. v = w ∧ h = h′ ∧ p = Rkonst
(vdmValue)

G � x : λE h h′ v p. v = E x ∧ h = h′ ∧ p = Rvar
(vdmVar)

G � c ~xs : λE h h′ v p. ∃l ~rs.
l = freshloc(dom h) ∧ ~rs = E ? ~xs ∧ v = l ∧ h′ = h(l 7→ (c, ~rs)) ∧ p = Rconstr # ~xs

(vdmConstr)

G � x1 ⊕ x2 : λE h h′ v p. ∃v1 v2. E x1 = v1 ∧ E x2 = v2 ∧ v = v1 ⊕ v2 ∧ h = h′ ∧ p = R⊕
(vdmPrimBin)

G � e1 : P1 G � e2 : P2

G � if x then e1 else e2 : λE h h′ v p.
((E x = true −→ ∃p′. P1 E h h′ v p′ ∧ p = p′ ^ Rif true)∧
(E x = false −→ ∃p′. P2 E h h′ v p′ ∧ p = p′ ^ Rif false))

(vdmIf)

G � e1 : P1 G � e2 : P2

G � let x = e1 in e2 : λE h h′ v p. ∃v′ h′′ p′ p′′.
(P1 E h h′′ v′ p′ ∧ P2 E(x := v′) h′′ h′ v p′′ ∧ p = p′ ^ p′′ ^ Rlet)

(vdmLet)

G � e1 : P1 G � e2 : P2

G � case x of p1 → e1 otherwise e2 : λE h h′ v p. ∀l. l = E x −→ ∀E′ v′.
MATCH E, h ` p1 at l ⇓ (E′, v′) −→

((v′ = ⊥ −→ ∃p′. P2 E h h′ v p′ ∧ p = p′ ^ Rcase false) ∧
(v′ 6= ⊥ −→ ∃p′. P1 E

′ h h′ v p′ ∧ p = p′ ^ Rcase true))
(vdmCase)

{(f ~xs, P )} ∪G � bodyf : λE h h′ v p. ∀E′. E = E′(argsf := E′ ? ~xs) −→ P E′ h h′ v (p ^ Rf # ~xs)

G � f ~xs : P
(vdmCallFun)

∀E h h′ v. Φx, ~xs E h h′ v −→ P E h h′ v Rap false # ~xs

(∀f. {(x ~xs, P )} ∪G � bodyf : λE h h′ v p.

∀E′. (∃ ~rs. Ψx, ~xs E
′ h h′ v f ~rs ∧ E = E′(argsf := ~rs++(E′ ? ~xs)) −→ P E′ h h′ v (p ^ Rap true # ~xs))

G � x ~xs : P
(vdmCallVar)

(e, P ) ∈ G
G � e : P

vdmAx
∀E h h′ v p. P E h h′ v p −→ Q E h h′ v p G � e : P

G � e : Q
vdmConseq

Φx, ~xs ≡ λE h h′ v. ∃l l′ f i ~rs. E x = l ∧ h l = Some(f, i, ~rs) ∧ i+ # ~xs < #argsf ∧
l′ = freshloc (dom h) ∧ v = l′ ∧ h′ = h(l′ 7→ (f, (i+ # ~xs), (~rs++(E ? ~xs))))

Ψx, ~xs ≡ λE′ h h′ v f ~rs. ∃l i . E′ x = l ∧ h l = Some (f, i, ~rs) ∧ i+ # ~xs = #argsf

Fig. 3. Program Logic for Expression-layer Hume



vdmAx and vdmConseq, are the standard rules for using an axiom, present in
the context, and for logical consequence in the meta-language.

3.3 Soundness

We define (relativised) semantic validity of an assertion for an expression in a
context as follows.

Definition 1 (validity). Assertion P is valid for expression e (|=n e : P ) iff

∀m ≤ n. ∀E h h′ v p. (E, h ` e ⇓m (v, h′, p)) −→ P E h h′ v p

Assertion P is valid for expression e in context G (G |= e : P ) iff

∀n. ((∀(e′, P ′) ∈ G. |=n e′ : P ′) −→ |=n e : P )

Based on these simple definitions of validity, exploiting the shallow nature of
our embedding of assertions, the soundness theorem can be stated as follows.

Theorem 1 (soundness). For all contexts G, expressions e, assertions P

G� e : P =⇒ G |= e : P

Proof structure: By induction over the rules of the program logic. In the case of
function calls, induction over the index n in the semantics relation. 2

Our approach to proving mutually recursive functions, building on [1], is to
define a predicate goodContext . In the first-order case, it requires context ele-
ments to be function calls associated to entries in the function specification table
F , and, informally, the context must be powerful enough to prove all of its as-
sertions. This means that it has to encode information about all functions called
in the body of the function under consideration. Note the universal quantifica-
tion over the arguments ~ys of the function. This allows us to adapt the function
arguments to the concrete values provided at the call site.

Definition 2. A context G is called a good context w.r.t. specification table F ,
written goodContext F G, iff

(∀e P . (e, P ) ∈ G −→
(∃f ~xs. e = f ~xs ∧ P = F f ~xs ∧

(∀ ~ys. G� bodyf :
λE h h′ v p. ∀E′. E = E′(argsf := E′ ? ~ys) −→

(F f ~ys) E′ h h′ v (p ^ Rf # ~ys)))

Figure 4 shows a set of admissible rules that are useful in proving concrete
program properties. The rules ctxtWeak and cut are proven by induction
over the derivation of G � e : P . Rule mutrec is proven by induction over
the size of G. Finally, vdmAdapt, which is used when proving a property on a
function call, follows directly from mutrec. Note that vdmAdapt reduces the
proof to one of the above good context predicate that has to be constructed for
the function under consideration. Thus, proving goodContext F G, for a specially
constructed context, becomes the main step in proving a property for (mutually)
recursive functions. Section 5.2 gives an example.



G � e : P

G ∪G′ � e : P
ctxtWeak

G � e′ : P ′ ({(e′, P ′)} ∪G) � e : P

G� e : P
cut

finite G | G |= n goodContext F G (e, P ) ∈ G
∅ � e : P

(mutrec)

goodContext F G finite G (f ~xs,F f ~xs) ∈ G
∅ � f ~ys : F f ~ys

(vdmAdapt)

Fig. 4. Admissible Rules

4 Incorporating the Coordination Layer using TLA

The Temporal Logic of Actions (TLA) [17] was developed to reason about con-
current systems, and can capture both safety and liveness properties in the same
uniform logic. We have previously formalised the Hume coordination layer, em-
bedded in TLA, in Isabelle/HOL [8], and found it suitable for proving proper-
ties [11, 9]. In this work we focus on the VDM-TLA integration, thus following
the “state-behaviour integration” approach (see Section 6). TLA combines tem-
poral logic with actions, thus creating three tiers: a state level, where a state is a
mapping from variables to values; an action level over two states; and a temporal
level over an infinite sequence of states. All levels include a full predicate cal-
culus. The action level has an additional priming (’) operator, which separates
variables in the “result” state (primed) from those of the “before” state. At this
level, “before” variable x and its “result” counterpart x′, are distinct.

On the temporal level, a TLA embedding of a Hume program has the form
I ∧2[N ]v, where I is a state predicate defining the initial state, N is an action
which defines the computation, and v is a tuple containing all program and meta
variables. An invariant P , which is the focus here, is prefixed by the temporal
always operator: 2P . To show that an invariant holds for a program, we must
show that the program implements the property. In TLA both programs and
properties are specified in the same logic, hence this is formalised as logical
implication. Moreover, temporal formulas are always attempted to be reduced
to the simpler action level. For example, Inv reduces a temporal invariant proof
to the action level, where P ′ is the invariant over the “result” state:

I −→ P P ∧N −→ P ′ P ∧ v′ = v −→ P ′

I ∧2[N ]v −→ 2P
(Inv)

TLA is mechanised in Isabelle/HOL using possible world semantics [8]. This
embedding is shallow, which enables direct use of existing Isabelle/HOL tools
and theorems. Moreover, the Hume embedding is also shallow, which simplifies
the expression layer integration.



Hume boxes are executed in a two-step lock step algorithm [9]: in the first
execute phase all runnable boxes are executed sequentially; this is followed by
a super-step, which copies box outputs to wires. This is embedded by two (enu-
meration) meta-variables: a scheduler s and a program counter pc.

The scheduling is formalised by an action S, which updates the scheduling
variable s. The scheduler depends on whether pc′ equals the (defined) “last box”
in the enumeration type.

Definition 3. By giving the value of this “last box” predicate as argument, the
scheduler is defined as follows:

S last box ≡ s′ = (if s = Execute ∧ last box then Super else Execute)

Each Hume wire is represented by a variable, and to achieve the lock-step
scheduling, each box has one result buffer variable for each output. This is illus-
trated in Figure 5, which shows the examples discussed in Section 5. In addition,
each box has a state/mode variable (e.g. even st) of the enumeration type con-
sisting of Runnable, Blocked, and Matchfail : a Runnable box can be executed;
Matchfail denotes that the box has failed in matching the inputs and cannot be
executed; a Blocked box has failed asserting the output buffer with the output
wires, and cannot be executed. All the result buffers and wires are of type Val.
In addition each program has one heap h ∈ Heap and a p ∈ Resources which
specifies resource properties. Every box has one action for each phase.

In the super-step, box outputs are checked, and if succeeded the result buffer
is copied to the wires. For heap structures, this is a shallow copy of the references
on the stack, thus the heap is left unchanged. In the execute phase, only the
current box (identified by pc) is executed in a given step. Moreover, it is only
executed when it is not Blocked. In a box execution, there is first a check that
there is a match that will succeed (a box may not be total). If this check succeeds,
E, h ` e ⇓ (v, h′, p) is used to represent the execution of the expression layer e,
under the environment E, with a correct variable (Var) to value (Val) mapping
and the current heap h.

To enable usage of the inductively defined judgement E, h ` e ⇓ (v, h′, p)
within the TLA-embedded expression layer, it must be seen as a function, ac-
cepting the old heap h, environment E and expression e as input, and returning
the new heap h′, the return value v and resources used p.

Definition 4. We define the exe function as follows:

((v, h′, p) = exe E h e) ≡ (E, h ` e ⇓ (v, h′, p))

The exe function is then used to update the result buffer, heap h and resource
variable p in the TLA representation. The proof of TLA invariants of the coor-
dination layer relies on pre-post conditions of the exe function. To achieve this,
the exe function must be linked with the the VDM logic for proofs of properties
of the form E, h ` e ⇓ (v, h′, p). This is achieved by the following theorem,
which is the key for the integration between the TLA and VDM logic:



Fig. 5. Box Diagrams of EvenOdd and ListCopy Examples

Theorem 2 (vdmexe). J((v, h′, p) = exe E h e); ∅� e : AK =⇒ A E h h′ v p

Proof. The assumption applied to the soundness theorem gives ∅ � e : A. By the
definition of validity in context, this gives |� ∅ −→ (� e : A) which gives (G1)
� e : A. Moreover, the definition of exe and the assumption of vdmexe, implies
E, h ` e ⇓ (v, h′, p). The goal then follows from unfolding (G1), by using the
definition of validity, followed by an application of it. 2

This integration works directly due to the shallow TLA embedding and the
shallow assertion language for a VDM property. VDM properties are then ex-
plored within TLA, since the vdmexe theorem turns the VDM property into a
HOL predicate, enabling the VDM proof to be independent of TLA. We will now
illustrate how the VDM and TLA logics are combined in the proof of a Hume
invariant 2P . This approach will be known as the “standard Hume/TLA in-
variant structure.” Firstly, the Inv rule above is applied. The base (initial state)
I ⇒ P and “unchanged” P ∧v′ = v ⇒ P ′ cases are handled by the Isabelle/HOL
simplifier, and not discussed further.

In the main P ∧ N ⇒ P ′ case, N is a conjunction of the scheduler S and
all the box actions. It starts by case-analysis on s, creating two cases. The
first case, s = Super is achieved purely within the TLA logic. The second case,
s = Execute is followed by a case analysis on pc. If P ′ depends on the result
of execution pc, then it is followed by a case-split on pc st = Blocked (the box
state/mode variable). Let e be the expression layer of this box. If the check for
a match succeeds, then the proof of P ′ depends on a sufficiently strong A such
that ∅� e : A can be proved by the VDM-logic. The vdmexe theorem is applied
to enable the use of A in the main TLA proof of P ′.

5 Examples

5.1 Example: Even-Odd

Our first example is the even-odd program depicted in Figure 5 (left). It is a
closed network with two boxes, each incrementing its argument by one. Our
goal is to show that one wire can only contain an even number, while the other
wire can only contain an odd number. The variables have the same names as
in Figure 5. The execution order of the boxes is defined to be peven then podd,



followed by the super-step phase Super. In the execute phase, pc is updated
by the “active box.” The box action even exe for the execute phase of even is
defined as follows:

if pc 6= peven then Unchanged(w2, even res, even st)
else pc′ = podd ∧

if even st = Blocked then Unchanged(w2, even res, even st, h, r)
else if w2 = ⊥ then Unchanged(w2, h, r) ∧

even res′ = ⊥ ∧ even st′ = Matchfail
else w2′ = ⊥ ∧ even st′ = Runnable

(even res′, h′, r′) = exe ∅(x := w2) h (inc [x])

where Unchanged x ≡ x′ = x and inc is the expression layer program:

inc [x] ≡ case x of y → (λx y.x+ 1) y y otherwise x

The box action odd exe for odd is defined similarly. To specify the exchange of
data between boxes, the super-step action even sup is defined as follows

if ao even res w1
then even st′ = Runnable ∧ w1′ = nw even res w1 ∧ even res′ = ⊥
else even st′ = Blocked ∧ Unchanged(w1, even res)

where ao A B ≡ A = ⊥ ∨ B = ⊥ and nw A B ≡ if A = ⊥ then B else A
(⊥ denotes unavailability of data). The super-step action odd sup has a similar
definition. The “next” action N is defined as:

S ∧ (s = Execute −→ even exe ∧ odd exe) ∧ (s = Super −→ even sup ∧ odd sup)

In the initial state I, w1 = I 0, while all other values are ⊥, and all boxes are
Runnable, s = Execute and pc = peven.

To verify the property we first define even and odd numbers as mutually
inductive sets Even and Odd.

0 ∈ Even
(base)

n ∈ Odd

n+ 1 ∈ Even
(step1)

n ∈ Even

n+ 1 ∈ Odd
(step2)

From the expression layer, we require the following VDM-property.

Lemma 1 (even-odd1).

∅ � inc [x] : (λE h h′ v p. (∀i. (E x = (I i)) −→ v = (I (i+ 1))))

Proof structure. The proof is structure directed, and standard simplification is
sufficient to solve the remaining verification conditions. 2

The first invariant to verify is a typing invariant stating that all wires and buffers
are integers when they are not empty.

Lemma 2 (even-odd2).

2

(
((∃ i. w1 = (I i)) ∨ w1 = ⊥) ∧ ((∃ i. even res = (I i)) ∨ even res = ⊥)
∧ ((∃. i w2 = (I i)) ∨ w2 = ⊥) ∧ ((∃ i. odd res = (I i)) ∨ odd res = ⊥)

)



Proof structure. The proof follows the “standard Hume/TLA invariant struc-
ture.” It follows from Inv, the even-odd1 lemma, and variable instantiations. 2

Due to the closed wiring between the two boxes, there is a circular dependency
between the wires and result buffers. These must be proven at the same time.

Lemma 3 (even-odd3).

2

(
(∀ i. w1 = (I i) −→ w1 ∈ Even) ∧ (∀ i. even res = (I i) −→ even res ∈ Even)
∧ (∀. i w2 = (I i) −→ w2 ∈ Odd) ∧ (∀ i. odd res = (I i) −→ odd res ∈ Odd)

)
Proof. Using the “standard Hume/TLA invariant structure,” it follows from Inv,
even-odd1 and even-odd2, and the inductive definitions of Even and Odd. 2

Theorem 3 (even-odd).

2
(
(∀ i. w1 = (I i) −→ i ∈ Even) ∧ (∀ i. w2 = (I i) −→ i ∈ Odd)

)
Proof. The proof follows directly from even-odd3 using standard TLA reasoning.

5.2 Example: List-Copy

We are now proving a resource property over the heap. The program is shown in
Figure 5 (right). The copy box performs a list-copy over its input list, producing
two identical lists; the fuse box takes these two lists and combines them into one
list, using only the smaller of the two elements from the input lists.

copy [x] ≡ case x of
(CONS [h, t])→ let y = copy [t] in CONS [h, y] otherwise NIL []

fuse [x0, x1] ≡ case x0 of (CONS [h0, t0])→ case x1 of (CONS [h1, t1])→
let y = fuse [t0, t1] in let b = (h0 < h1) in
if b then CONS [h0, y] else CONS [h1, y]

otherwise NIL [] otherwise NIL []

The TLA embedding of this program follows the same structure as the Even-Odd
example. In this case, the fuse box accepts two inputs (x, y), binding them in the
environment, and the copy box returns two values. This is captured by the follow-
ing interface: (fuse res′, h′, r′) = exe ∅(x := w1, y := w2) h (fuse [x, y]). For copy
we model the fact that the input from w3 is forwarded directly to its first output
as follows: (copy res1′, (copy res2′, h′, r′)) = (w3, exe ∅(x := w3) h (copy [x])).
The super-step is similar to the one already described, although the copy box
checks and updates two wires.

In this example the box network is open, with input wire w3 and output
wire w4. Therefore we have to extend N with an additional conjunct env, which
models the environment. Both w3 and w4 are assumed to be updated by other
boxes (or streams). In the coordination-layer proof below, we model a single, non-
overlapping evaluation where wire w3 initially contains a list structure (mList)
and is never updated, while wire w4 consumes the result.



We specify the layout of a list structure by the following inductive definition
mList . Informally, (n, a, U, h) ∈ mList means that at address a in heap h we
find a list structure with n CONS and 1 NIL cells, covering the addresses in U .

h a = Some (NIL, [])

(0, a, {a}, h) ∈ mList
mListNIL

h a = Some (CONS, [r, r′])
a /∈ U (n, r′, U, h) ∈ mList

(n+ 1, a, U ∪ {a}, h) ∈ mList
mListCONS

The following definition is useful to express that address a contains a list of
length n: list h a n ≡ ∃ U. (n, a, U, h) ∈ mList

We are interested in the heap consumption, specified as a relation between
the pre-heap h and the post-heap h′. We define these resource properties as
entries in the function specification table F . The specification for copy states,
that provided the argument x points to a list structure of length n in the pre-
heap h, the size of the post-heap h′ is at most the size of the pre-heap plus n+1.
Thus, the heap consumption of the copy function is n + 1. Furthermore, the
result of the function (in v) is a list of length n at location r′ in the post-heap
h′. The remaining clauses assure that the input data structure is not modified.
The clause h ∼(dom h′)−U ′ h′ states that the heaps h and h′ contain the same
values at addresses (dom h′) − U ′, i.e. only the values in U ′ are modified. The
clause U ′ ∩ (dom h) = ∅ states that the copy of the list does not overlap with
the input list, and the (n, r, U, h′) ∈ mList clause states that the structure of the
input list is indeed unchanged. Analogously, the specification for fuse states, that
provided the arguments x0 and x1 point to list structures, of the same length n0

and n1, at locations r0 and r1 in the pre-heap h, the size of the post-heap h′ is
at most the size of the pre-heap plus n0 + 1. The result of the function is a list
of length n0 at location r′ in the post-heap.

F copy [x] ≡ λE h h′ v p. ∀n r U.
E x = r ∧ (n, r, U, h) ∈ mList −→
| dom h′ |≤| dom h | +n+ 1 ∧ (∃r′ U ′. v = r′ ∧ (n, r′, U ′, h′) ∈ mList ∧
h ∼(dom h′)−U ′ h′ ∧ U ′ ∩ (dom h) = ∅ ∧ (n, r, U, h′) ∈ mList)

F fuse [x0, x1] ≡ λE h h′ v p. ∀n0 n1.
(∃r0 U0. E x0 = r0 ∧ (n0, r0, U0, h) ∈ mList) ∧
(∃ r1 U1. E x1 = r1 ∧ (n1, r1, U1, h) ∈ mList) ∧ n0 = n1) −→
| dom h′ |≤| dom h | +n0 + 1 ∧ (∃n′ r′ U ′. v = r′ ∧ (n′, r′, U ′, h′) ∈ mList ∧ n′ = n0)

In order to prove these two assertions, we first construct for each function a
context, with specifications for all function calls in its body. We then prove the
good context predicate, for these contexts. In both functions we find one direct
recursive call, and therefore construct a one-element context for each function.

Lemma 4. goodContext F {(copy ~xs, F copy ~xs)} ∧ goodContext F {(fuse ~xs,F fuse ~xs)}

Proof structure. The same structure as in the proof for Theorem 4, but using
vdmAx when encountering the recursive call. 2



Now the resource consumption can be proven in an empty context:

Theorem 4. ∅ � copy ~xs : F copy ~xs ∧ ∅ � fuse ~xs : F fuse ~xs

Proof structure. In both clauses, by first applying the syntax-directed rules, and
by applying ctxtWeak, vdmAdapt and Lemma 4 when encountering the re-
cursive call. The proof of the remaining subgoal proceeds by case distinction
over the structure of the input, and over the cases in the conditional. 2

On coordination layer the main theorem below states that at each point in
the execution any wire and any expression-layer result is either empty (⊥), or
contains a reference to a list structure with N elements (list . . .).

Theorem 5. 2


(w1 = ⊥ ∨ list h w1 N) ∧ (w2 = ⊥ ∨ list h w2 N)
∧ (w3 = ⊥ ∨ list h w3 N) ∧ (w4 = ⊥ ∨ list h w4 N)
∧ (copy res1 = ⊥ ∨ list h copy res1 N)
∧ (copy res2 = ⊥ ∨ list h copy res2 N)
∧ (fuse res = ⊥ ∨ list h fuse res N)


Proof structure. Standard TLA reasoning reduces the proof of each conjunct as
a separate invariant, which is outlined below. 2

We will focus on the proof of one conjunct, shown as Lemmas 8. The other
conjuncts are verified similarly. We start with the proof for an auxiliary theorem,
relating the expression-layer result to the coordination-layer structure.

Lemma 5. list H V M ∧ (W,H ′, S) = exe ∅(x := V ) H (copy [x]) −→ list H ′ V M

Proof structure. This is proven from the expression-layer specification of copy
using the Integration Theorem (vdmexe). 2

Note that this property asserts that after box-execution the input V is still a
list. Capital letters represent free variables. The invariant in Lemma 6 ensures
that no other boxes (incl. the environment) can execute when copy res1 6= ⊥.

Lemma 6. 2(copy res1 6= ⊥ −→ w1 = ⊥∧ w2 = ⊥∧w3 = ⊥∧ fuse res = ⊥)

Proof. The proof follows the “standard Hume/TLA invariant structure” and
follows from 2(w3 6= ⊥ −→ w1 = ⊥ ∧ w2 = ⊥ ∧ copy res1 = ⊥ ∧ copy res2 =
⊥ ∧ fuse res = ⊥), which can be proven directly using the same structure. 2

The following invariant asserts that wires and expression-layer results are well-
formed, and that box executions do not interfere.

Lemma 7. 2(w3 = ⊥ ∨ list h w3 N)

Proof structure. This is proved using the “standard Hume/TLA invariant struc-
ture” with the same strengthening as in the proof of Lemma 6. 2

Lemma 8. 2(copy res1 = ⊥ ∨ list h copy res1 N)



Proof. The proof follows the “standard Hume/TLA invariant structure”, strength-
ened by Lemmas 6 and 7, instantiating the free variables of Lemma 5. 2

The proofs of the other conjuncts of Theorem 5 have the same structure, using
lemmas over the expression-layer result of copy and fuse similar to Lemma 5.
Since the entire expression-layer heap is discarded after execution, the size of
the live heap at coordination-layer is the sum of all data structures reachable
from the wires and results. From the 7 list predicates in Theorem 5 we can
immediately conclude that 7N + 7 is such a bound. Moreover, Lemma 6 and
similar lemmas for the other expression-layer results restrict the possible com-
binations of non-⊥ values in the wires and results: after executing copy only
w1, w2, copy res1 and copy res2 are non-⊥; after executing fuse only w4 and
fuse res are non-⊥. Therefore, we can refine the upper bound on the size of the
live heap to 4N + 4.

6 Related Work

Our VDM-style, resource-aware program logic builds on our logic in [1], espe-
cially in handling mutual recursion and parameter adaptation, where the source
language was an abstraction of JVM bytecode, but without algebraic data-types
or higher-order functions as in Hume. In our formalisation we use techniques
studied in Nipkow’s Hoare-style logic for a simple while language in [21] and
the Hoare-style logic for Java-light by von Oheimb [26], both formalised in Is-
abelle/HOL. Our choice of a VDM-style logic was partially driven by the study of
variants of Hoare-style and VDM-style logics explored in Kleymann’s thesis [16].
Isabelle/HOL formalisations of a program logic for a call-by-value, functional
language are studied in [18]. DeBoer et al. [5, 22] present a sound and complete
Hoare-style logic for a sequential object-oriented language with inheritance and
subtyping, with tool support for generating VCGs from annotated flowcharts,
which are solved in HOL [3]. Other related reasoning infrastructures, mostly
for object-oriented languages, are: the Jive system [20], building on a Hoare-
style logic for a Java subset [23]; the LOOP project’s encoding of a Hoare-style
logic, with extensions for reasoning about abrupt termination and side-effects,
in PVS/Isabelle [14]; the Why system [6], with Krakatoa [19] as front-end, using
Coq for formalisation and interactive proofs of JML-annotated Java programs.

Our choice of TLA for the coordination layer comes from the stateful nature
of both systems, whereas approaches such as process algebras are stateless. For
the “independent” mechanisation of the coordination layer, we have developed
several proof tactics, which automate the verification of “standard Hume/TLA
invariant structure” [8], albeit using Isabelle/HOL directly to encode the expres-
sion layer. Our integration of the two formalisations follows the “state-behaviour
integration” approach, exemplified by csp2b [4], CSP||B [25] and CSP-OZ [7].
However, in this integration computation is state based (B or Z), and the com-
munication uses a stateless process algebra [2]. In Hume on the other hand,
computation is within a (stateless) purely functional language, and communi-
cation is within a (stateful) finite state machine language. All these tools are



motivated by using suitable tools for the different aspects of a system. csp2b
[4] works by translating the CSP (process algebra) [13] into a B machine, while
CSP||B [25] and CSP-OZ [7] give a CSP semantics to the computational aspect
(B and Object-Z). In our case, both the TLA and VDM representations are built
on top of Isabelle/HOL, and integration is naturally achieved by “unlifting” into
the Isabelle/HOL level, and no (resource preserving) translation is required.

7 Conclusion

We have presented an integrated Isabelle/HOL formalisation of the two language
layers of Hume. Our formalisation combines a high level of abstraction through
the VDM-style program logic for the expression layer, ensured through the meta-
theoretic soundness result, with a direct, shallow embedding of a TLA logic for
the coordination layer. By formalising the most suitable style of logics for these
two layers in a theorem prover, we obtain a powerful reasoning infrastructure.
We have applied this infrastructure to two Hume programs, verifying both func-
tional and resource properties of the code, refining the latter through proofs of
the availability of wire-values. These examples show that while the proofs can
become lengthy, the proof strategies that can be applied follow naturally from
the respective logics.

Notably, the TLA proofs follow a common structure, and we have explored
their automation, through proof tactics, in the stand-alone coordination layer
embedding [8]. In our integrated system, the proofs are (manually) driven by
this structure at the coordination layer. Where needed, we make use of the VDM
logic to prove the required properties for expressions. For resource properties only
simple inequalities, eg. over heap sizes, have to be proven. The main complication
comes from asserting disjointness of data structures, and here techniques from
separation logic could help [24]. To raise the level of abstraction further, we are
currently working on a specialised resource logic for the expression layer and on
tactics for combining the two layers.
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