
Evaluating a High-Level Parallel Language
(GpH) for Computational GRIDs

Abdallah D. Al Zain, Phil W. Trinder, Greg J. Michaelson, and Hans-Wolfgang Loidl

Abstract—Computational GRIDs potentially offer low-cost, readily available, and large-scale high-performance platforms. For the

parallel execution of programs, however, computational GRIDs pose serious challenges: they are heterogeneous and have hierarchical

and often shared interconnects, with high and variable latencies between clusters. This paper investigates whether a programming

language with high-level parallel coordination and a Distributed Shared Memory (DSM) model can deliver good and scalable

performance on a range of computational GRID configurations. The high-level language Glasgow parallel Haskell (GpH) abstracts over

the architectural complexities of the computational GRID, and we have developed GRID-GUM2, a sophisticated grid-specific

implementation of GpH, to produce the first high-level DSM parallel language implementation for computational GRIDs. We report a

systematic performance evaluation of GRID-GUM2 on combinations of high/low and homogeneous/heterogeneous computational

GRIDs. We measure the performance of a small set of kernel parallel programs representing a variety of application areas, two parallel

paradigms, and ranges of communication degree and parallel irregularity. We investigate GRID-GUM2’s performance scalability on

medium-scale heterogeneous and high-latency computational GRIDs and analyze the performance with respect to the program

characteristics of communication frequency and degree of irregular parallelism.

Index Terms—Concurrent, distributed, and parallel languages, grid computing, functional languages.

Ç

1 INTRODUCTION

HARDWARE price and performance ratios make cluster
computing increasingly attractive. Moreover, emer-

ging GRID technology [1] offers the potential of connecting
these ubiquitous clusters to form a computational GRID: a
low-cost yet large-scale high-performance platform. Clus-
ters and computational GRIDs are most commonly used to
execute large numbers of independent sequential programs,
for example, under Condor [2] or the LSF Platform [3]. For
such systems, the computational resource available to a
single program is bounded by the most powerful machine
in the network. In contrast, we consider the parallel
execution of a single program on a computational GRID,
where the computational resource available to a program is
the sum of all the resources on the network. The key
technical distinction from high-throughput computing is
the dependencies between the components of the parallel
program: they must communicate and synchronize.

Computational GRIDs are much harder to utilize effec-
tively for parallelism than a classical high-performance
computer (HPC). A classical HPC typically comprises a
large number of homogeneous processing elements (PEs),
communicating by using an interconnect with uniform and
relatively low latency. Typically, PEs and interconnect are
dedicated to the sole use of the program for its entire

execution. An SPMD model of parallel programming,
which is supported by standard communication libraries
like MPI [4], is the dominant parallel programming
paradigm. In contrast, a computational GRID is typically
heterogeneous in the sense that it combines clusters of
varying sizes, and different clusters typically contain PEs
with different levels of performance. Moreover, the inter-
connect is highly variable, with different latencies within
and between each cluster. Moreover, the interconnect
between clusters is typically both high latency and shared,
and as a consequence, communication latency may vary
unpredictably during program execution. We argue that
such an architecture is too complex and dynamic for
programmers to readily manage at a relatively low level,
for example, using SPMD.

Despite the challenges, the attraction of computational
GRIDs as low-cost, readily available, and large-scale high-
performance architecture has encouraged a number of
groups to develop parallel execution environments. The
most common approach is to specify the parallelism at a
low level, although some higher level parallel models have
been used, for example, algorithmic skeletons [5], as
detailed in Section 2.

We advocate specifying parallelism on computational
GRIDs in a language with high-level coordination and a
Distributed Shared Memory (DSM) model. Such a language
abstracts over the architectural complexities of a computa-
tional GRID: the programmer controls only a few key
parallel coordination aspects, and the remaining coordina-
tion aspects and virtual shared memory are dynamically
managed by a sophisticated runtime environment (RTE).
The language investigated here is Glasgow parallel Haskell
(GPH) [6], and its GUM RTE has been engineered to deliver
good performance on classical HPCs and clusters [7]. We

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 2, FEBRUARY 2008 1

. A.D. Al Zain, P.W. Trinder, and G.J. Michaelson are with the School of
Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh
EH14 4AS, Scotland. E-mail: {ceeatia, trinder, greg}@macs.hw.ac.uk.

. H.-W. Loidl is with the Institut fur Informatik, Ludwig-Maximilians-
Universitat Munchen, Germany. E-mail: hwloidl@tcs.ifi.lmu.de.

Manuscript received 8 Sept. 2006; revised 9 Mar. 2007; accepted 15 May
2007; published online 28 June 2007.
Recommended for acceptance by G. Karypis.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0279-0906.
Digital Object Identifier no. 10.1109/TPDS.2007.70728.

1045-9219/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

have previously shown that a direct port of GUM to a the
GRID, GRID-GUM1, only reliably provides good perfor-
mance for low-latency homogeneous GRIDs and that load
management limits the performance [8]. To overcome the
limitations of GRID-GUM1, we have designed and
implemented GRID-GUM2 with novel dynamic load
scheduling mechanisms that record and use both static
and dynamic information about the computational GRID.
We have also reported preliminary performance measure-
ments on heterogeneous computational GRIDs [8].

This paper investigates whether a high-level DSM
parallel programming paradigm can deliver good scalable
performance for a variety of applications on combinations
of high/low and homogeneous/heterogeneous computa-
tional GRIDs. That is, we present a systematic evaluation of
the GRID-GUM2 implementation of GPH, which is the
first virtual shared-memory parallel language for computa-
tional GRIDs. The investigation uses six kernel parallel
programs from a range of application areas, for example, AI
and Symbolic Algebra, with data-parallel and divide-and-
conquer parallel paradigms, and with a range of dynamic
properties like communication frequency and degrees of
irregular parallelism.

The remainder of this paper is structured as follows:
Section 2 describes related work. Section 3 describes the
GPH language and its GUM RTE designed for a single HPC
or cluster. Section 4 summarizes the design and perfor-
mance of an initial port of GUM to the GRID GRID-GUM1.
Section 5 outlines the design of GRID-GUM2 with new
load management mechanisms. Section 6 evaluates the
performance of GRID-GUM2 on a low-latency hetero-
geneous and homogeneous computational GRIDs. Section 7
evaluates the performance of GRID-GUM2 on high-
latency heterogeneous and homogeneous computational
GRIDs. Section 8 investigates the performance scalability of
the GRID-GUM2 load distribution mechanisms on high-
latency heterogeneous computational GRIDs. Section 9
analyzes the relative performance of all programs under
GRID-GUM1 and GRID-GUM2 on combinations of low-
latency/high-latency and homogeneous/heterogeneous
computational GRIDs with respect to their communication
behavior and degree of irregular parallelism. Section 10
concludes.

2 RELATED WORK

2.1 High-Level Parallel Coordination

A parallel program must specify both computation, that is, a
correct and efficient algorithm, and coordination, that is, how
the computations across the PEs can be organized.
Coordination typically includes aspects such as thread
creation, placement, and synchronization. The computation
aspect of a parallel program may be specified at a range of
levels of abstraction, for example, relatively low level like
assembler or C, or at a high level like SML or Haskell 98.

Like the computation aspect, the coordination aspect of a
parallel program may be specified at a range of levels of
abstraction, and we use the characterization of coordination
abstraction levels from [9]. In a language with explicit
parallelism, a programmer may explicitly create and place

each thread and communicate and synchronize between
threads. For example, the MPI [4] and PVM [10] libraries
support coordination at this level. In languages with
semiexplicit parallelism like GPH or Eden, the programmer
specifies only a few key coordination aspects, for example,
what threads to create, and the language implementation
automatically manages the remaining coordination aspects.
In an implicitly parallel language like High-Performance
Fortran [11] or PMLS [12], the programmer does not specify
coordination aspects, as the parallelism is implicit in the
language semantics.

The great advantage of high-level, that is semiexplicit or
implicit, parallel coordination is that it frees the programmer
from specifying low-level coordination details. The disad-
vantages are that an automatic coordination management
complicates the operational semantics, makes the perfor-
mance of programs opaque, is hard to implement, and is
frequently less effective than hand-crafted coordination. In
these languages, the low-level coordination may be managed
solely by the compiler as in PMLS [12], solely by the RTE as in
GPH [13], or by both as in Eden [14]. Whichever mechanism is
chosen, the implementation of sophisticated automatic
coordination management is arduous, and there have been
many more designs for semiexplicit and implicit parallel
languages than well-engineered implementations.

2.2 Computational GRIDs

The GRID is an emerging large-scale distributed computing
architecture that enables the collaborative use of computing
resources owned and managed by multiple organizations
[15]. Multiple networked machines, often from different
administrative domains, are linked into a virtual architec-
ture. The resources of any of the networked machines are
available to computations on the virtual architecture, as
governed by service-level agreements. The architecture is
hierarchical, with a number of layers. The Globus [16] and
Legion [17] projects have been the most important realiza-
tions of the GRID infrastructure.

GRIDs are used for a variety of purposes, including on-
demand computing and collaborative computing [18]. By
this classification, we employ computational GRIDs, which
aggregate substantial computational resources to tackle
problems that cannot be solved on a single system. A
computational GRID typically comprises a number of HPCs,
often clusters, connected by a shared wide area network.
Such an architecture has a number of challenging proper-
ties. It is heterogeneous in that the number of PEs, and the
speed of the PEs, in each cluster may be different. There is a
hierarchy of communication latencies, with communication
to PEs at remote clusters being the slowest, to PEs at nearby
clusters being slow, and to PEs within the same cluster
being the fastest. Moreover, as the wide area network is
shared, the communication latency may vary unpredictably
during program execution.

Currently, computational GRIDs are most commonly
used to execute large numbers of independent sequential
programs, supported by a number of systems, including
Condor [2], Maui [19], and Legion [17]. In such systems, the
computational power available for a single program is
bounded by the speed of the fastest PE in the GRID.
Moreover, ASSIST and KOALA are prototype systems. In

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 2, FEBRUARY 2008

contrast, the challenge that we address is effectively
executing components of a single program in parallel on a
computational GRID. Under parallel evaluation, the com-
putational power available to a program is bounded by the
sum of all PEs in the GRID.

The dominant parallelism paradigm for classical HPCs is
Single Program, Multiple Data (SPMD) [20]. The paradigm
is supported by standard communication libraries like MPI

[4], giving portability between parallel architectures. In
SPMD and related paradigms like BSP [21], all PEs are
initialized to the same set of invocable processes, and no
computations are transferred dynamically. Instead, the
same effect is achieved by dynamically changing the
patterns of process invocation across PEs.

An SPMD approach is impractical for computational
GRIDs where, in principle, an arbitrary number of PEs may
be available to a program. Populating all potential PEs is
very wasteful. A first alternative is true dynamic process
mobility, but the process granularity for an arbitrary
program, especially in a typical coarse-grained imperative
parallel program, may not be suitable.

2.3 Low-Level GRID Parallelism

A number of paradigms that are more dynamic than SPMD
have been proposed for GRID Parallelism, the majority
requiring the programmer to provide dynamic low-level
coordination. Heterogeneous Adaptable Reconfigurable
Networked Systems [22] (Harness) focuses on dynamic
adaptive resource management and even provides facilities
for dynamically splitting and merging of distributed virtual
machines. Compared to the more classical use of static
machine configurations over the lifetime of a parallel
program, this approach provides increased scalability of
the system, combining heterogeneous sets of machines.
Within the context of GRID computing, Harness supports
defining a personalized subset of a GRID infrastructure and
treating it as a unified network. Furthermore, it is possible
to use plug-ins for system components such as job
scheduling or memory management, effectively generating
instances of the virtual machine customized for the under-
lying architecture.

The ConCert system [23] has a similar philosophy to
GPH, using ML as a high-level computation language. The
Hemlock compiler translates an ML subset to machine code
for execution on a computational GRID. In contrast to our
work, however, the parallel coordination in ConCert is
largely explicit, with primitives to explicitly spawn and
synchronize tasks. This reflects ConCert’s distributed
memory model implemented by mobile code units (chords).
The DSM parallel graph rewriting enables a relatively
simple denotational and operational semantics for GPH
[24], whereas ConCert uses a modal lambda calculus [25].

To achieve good parallel performance on a variety of
different machines, the Automated Empirical Optimization
of Software (AEOS) paradigm has been proposed [26]. The
essence of this paradigm is to provide several implementa-
tions of an operation and to use empirical data such as
runtime measurements to decide which version should be
chosen, for example, to select cutoff values in recursive
functions, depending on the processor speed. However, in
the AEOS paradigm, the adoption of the software has to be

done by a program and not automatically by the system, as
we propose in our research.

We argue that low-level or explicit parallel programming
paradigms are not appropriate for GRID parallel computing,
as the architecture is too complex and dynamic for
programmers to readily manage.

2.4 Distributed Shared Memory

One means of providing high-level coordination is to
abstract over the memory architecture of a distributed
system, that is, to enable a thread at one PE to transparently
access data residing on other PEs. Such a Distributed
Shared Memory (DSM) model may be implemented in the
hardware, by the operating system, or by a programming
language. There are a large number of research systems,
and [27] gives a useful summary, classified by the unit of
memory managed, that is, location, page, or object.

The key issue with DSM systems is efficiently maintain-
ing a coherent view of the “shared” memory in the presence
of concurrent updates on multiple PEs. A coherence
protocol, which is chosen in accordance with some
consistency models, maintains memory coherence. For
example, MESI is a simple and well-known coherence
protocol, named after the memory object tags used:
Modified, Exclusive, Shared, and Invalid. Because declara-
tive languages like GPH or single-assignment languages
restrict where updates can occur, their coherence protocols
can be far simpler than in conventional languages that allow
unrestricted updates.

Because the costs of maintaining consistency rise with
the number of PEs, DSM has previously been used mainly
on clusters, that is, relatively small scale systems. Example
cluster DSM systems include Kerrighed [28] and Tread-
Marks [29]. Recently, there has been considerable research
interest in DSM systems for various types of GRIDs,
including computational GRIDs. For example, Teamster is
a DSM system for computational GRIDs with rather low-
level coordination and, so far, only measured on small-scale
GRIDs [30]. In contrast, GPH has the potential of utilizing
large-scale computational GRIDs, and we report measure-
ments on medium-scale GRIDs in Section 8.

Our GPH language supports a DSM model, and research
contributions of this paper include proposing mechanisms
for supporting DSM on the dynamic heterogeneous
computational GRID architectures and measuring how well
such a DSM model scales on a computational GRID. A GPH
program is represented as a graph that the GUM RTE
maintains in distributed virtual shared memory. Parallelism
is introduced by rewriting multiple graph nodes simulta-
neously on multiple PEs. The coherence of the graph is
maintained using specific graph-rewriting protocols, for
example, blocking any thread that demands the value of a
graph node that is currently under evaluation.

Our GPH language has the potential of utilizing large-
scale computational GRIDs, and we report measurements
on medium-scale GRIDs in Section 8.

2.5 Other High-Level GRID Parallel Paradigms

Currently, there is much interest in developing high-level
paradigms that reduce the effort of GRID parallel program-
ming. Much of the work is relatively immature, with

AL ZAIN ET AL.: EVALUATING A HIGH-LEVEL PARALLEL LANGUAGE (GPH) FOR COMPUTATIONAL GRIDS 3

systems currently under development or being prototyped.
A range of high-level paradigms is being explored, as
outlined below.

High-level coordination languages/frameworks are
being used to compose GRID applications from large-scale
components, for example, the ASSIST [31] and GrADS [32]
projects. The key idea is that the coordination language or
framework automatically manages the GRID complexities
like resource heterogeneity, availability, and network
latency. The components, which may be sequential or
parallel, require minimal changes to be deployed on the
GRID. In contrast, our approach describes the computation
and the coordination in a single high-level language GPH [6].

Algorithmic skeletons are being used to provide high-level
parallelism on computational GRIDs. The essence of the idea
is to provide a library of higher order functions that
encapsulate common patterns of a parallel GRID computa-
tion. Parallel applications are constructed by parameterizing
a suitable skeleton with sequential functional units. Examples
of this approach include work groups lead by Aldinucci and
Danelutto [33], [34], Cole [35], and Alt et al. [5]. In contrast to
the fixed set of skeletons, it is possible to define new
coordination constructs in GPH, as outlined in Section 3.1.

Perhaps, the approach that is most closely related to ours
is to port a high-level distributed programming language to
the GRID. Both van Nieuwpoort et al [36] and Gorlatch et al.
[37], [38] port Java to the GRID and use Remote Method
Invocation (RMI) as the programming abstraction. Coordi-
nation in GPH is on a higher level than in RMI and is more
extensible.

Our approach is unique both in adopting a DSM model
and in specifying parallelism in a high-level language GPH.
GPH abstracts over the architectural complexities of a
computational GRID. That is, the programmer controls only
a few key parallel coordination aspects by using high-level
evaluation strategies, as outlined in Section 3.1. The
remaining coordination aspects are dynamically managed
by a sophisticated RTE GRID-GUM2 specifically designed
for computational GRIDs. GPH provides higher level
coordination than the other GRID parallel programming
languages described in the previous section.

3 GPH AND GUM

3.1 Glasgow Parallel Haskell (GPH)

GPH is a semiexplicit parallel functional language, enabling
the programmer to specify parallelism with relatively little
effort by using high-level parallel coordination constructs. It
is a modest and conservative extension of Haskell 98, which
is a nonstrict purely functional programming language [6].
GPH extends Haskell 98 with a parallel composition par,
and an expression e1 ‘par’ e2 e2 (here, we use Haskell’s
infix operator notation) has the same value as e2. Its
dynamic effect is to indicate that e1 could be evaluated by a
new parallel thread, with the parent thread continuing the
evaluation of e2. Results from e1’s evaluation are available
in e2, which shares subgraphs evaluated in e1, for example
through common variables. GPH programs also sequence
the evaluation of expressions by using the seq sequential
composition. For example, a parallel naive nfib function,

which is based on the Fibonacci function, can be written as
follows:

parfib 0 ¼ 1

parfib 1 ¼ 1

parfib n ¼ nf2 ‘par’ ðnf1 ‘seq’ ðnf1þ nf2þ 1ÞÞ
where nf1 ¼ parfib ðn� 1Þ

nf2 ¼ parfib ðn� 2Þ
Higher level coordination is provided using evaluation

strategies, that is, higher order polymorphic functions that
use par and seq combinators to introduce and control
parallelism. For example, using applies a strategy to an
expression to control its evaluation:

using :: a �> Strategy a �> a

using x s ¼ s x ‘seq’ x

Hence, the following parMap parallel map function applies
the function f to all of the elements of the list xs in parallel.
parMap is implemented using the parList and rnf

strategies. The parList function evaluates the elements
of a list in parallel to the degree specified by its argument,
in this case, to normal form by using the rnf strategy.
parList and rnf have straightforward implementations
using par and seq:

parMap f xs ¼ map f xs ‘using’ parList rnf

Specifying parallel coordination at such a high level
substantially frees the programmer from considering
specific aspects of the underlying architecture. We argue
that this is of great benefit for computational GRIDs, where
the architecture is very complex. As a more substantial
example, Appendix A.4 shows the GPH sumEuler pro-
gram used in the measurements in later sections. Here, the
programmer does not need to adapt the program to
different computational GRID architectures and only needs
to structure the sumTotient function appropriately and
add the architecture-neutral evaluation strategy at the last
line of the function. A thorough account of how one can
engineer efficient parallel programs in GPH is given in [39].
The cost of providing the programmer with such a high-
level abstraction is that GPH requires an elaborate RTE to
dynamically manage parallel execution on complex archi-
tectures, and these are described next.

3.2 GUM: A Parallel Haskell Runtime Environment

GUM is a portable parallel RTE for GPH. GUM implements a
specific DSM model of parallel execution, namely, graph
reduction on a distributed but virtually shared graph. Graph
segments are communicated in a message passing architec-
ture designed to provide an architecture-neutral and portable
RTE. Here, we describe the key components for a GRID

context, namely, program initialization and load distribution,
for GUM 4.06 using the PVM communications library [10]. A
full description of GUM is available in [13].

3.3 GUM Program Initialization

When a GPH program is launched under GUM, it initially
creates a PVM manager task, whose job is to control the
start-up and termination. This manager task then spawns
the required number of logical PEs as PVM tasks, which
PVM maps to the available processors. Each PE task then
initializes itself: processing runtime arguments, allocating
heap, etc. Once all PE tasks have initialized and been

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 2, FEBRUARY 2008

informed of each other’s identity, one of the PE tasks is
nominated at random as the main PE. The main PE then
begins executing the main thread of the Haskell program.

3.4 GUM Thread Management

The unit of computation in GUM is a lightweight thread,
and each logical PE is an operating system process that
coschedules multiple lightweight threads, as outlined
below and detailed in [13]. Threads are automatically
synchronized using the graph structure, and each PE
maintains a pool of runnable threads. Parallelism is
initiated by the par combinator. Operationally, when the
expression x ‘par’ e is evaluated, the heap object referred
to by the variable x is sparked, and then e is evaluated. By
design, sparking a reducible expression or thunk is a
relatively cheap operation, and sparks may freely be
discarded if they become too numerous. If a PE is idle, a
spark may be converted to a thread and executed. Threads
are more heavyweight than sparks, as they must record the
current execution state.

3.5 GUM Load Distribution

GUM uses dynamic, decentralized, and blind load manage-
ment. The load distribution mechanism is designed for a
flat architecture with uniform PE speed and communication
latency and works as follows: If (and only if) a PE has no
runnable threads, it creates a thread to execute from a spark
in its spark pool, if there is one.

If there are no local sparks, then the PE sends a FISH
message to a PE that was chosen at random. A FISH message
requests work and specifies the PE requesting work. The
random selection of a PE to seek work from is termed blind
load distribution, as no attempt is made to seek work from a
“good” source of work.

If a FISH recipient has an empty spark pool, it forwards
the FISH to another PE that is again chosen at random. If a
FISH recipient has a useful spark, it sends a SCHEDULE
message to the PE that originated the FISH, containing the
sparked thunk packaged with a nearby graph. The
originating PE unpacks the graph and adds the newly
acquired thunk to its local spark pool. To maintain the
virtual graph, an ACK message is then sent to record the
new location of the thunk.

3.6 GUM Performance

The GUM implementation of GPH delivers good perfor-
mance for a range of parallel benchmark applications on a
variety of parallel architectures, including shared-memory

and distributed-memory architectures [39]. GUM’s perfor-
mance is also comparable with other mature parallel
functional languages [7].

GUM can also deliver comparable performance to
conventional parallel paradigms. For example, Loidl et al.
[7] compare the performance of a GPH and a C with PVM

matrix multiplication programs. The program multiplies
square matrices of arbitrary precision integers, and the C
program uses the GNU Multiprecision library and the GNU
C compiler. The sequential C program is five times faster,
but the GPH program has better speedups, and on 16 PEs,
the C+PVM program is just 1.6 times faster than the GPH
program. However, the sizes of the GPH and C+PVM

programs differ substantially: the C+PVM program is six
times longer than the GPH program.

4 GRID-GUM1

4.1 GRID-GUM1 Architecture

GRID-GUM1 is a port of GUM to the GRID [8]. The key
part of the port is to utilize the MPICH-G2 communication
library [40] in the GUM communication layer. MPICH-G2, in
turn, uses the Globus Toolkit middleware, as illustrated in
Fig. 1.

4.2 GRID-GUM1 Performance

The following section summarizes the GRID-GUM1
results from [8]. It reports measurements of the suite of
programs characterized in Appendix A.2, where a key
characteristic of the programs is the communication degree,
that is, the number of messages transmitted per unit of
execution time. The programs are measured on the
collection of GRID-enabled Beowulf clusters specified in
Appendix A.1.

Table 1 shows that for programs with a sufficiently large
execution time, GRID-GUM1 can deliver good speedups
on homogeneous computational GRIDs with relatively low
communication latency. The measurements are performed
on the Edin1 Beowulf cluster, and the fourth column
records the relative speedup.1

In contrast, on heterogeneous computational GRIDs or
those with high communication latency, GRID-GUM1
only delivers acceptable speedups for low-communication

AL ZAIN ET AL.: EVALUATING A HIGH-LEVEL PARALLEL LANGUAGE (GPH) FOR COMPUTATIONAL GRIDS 5

Fig. 1. GRID-GUM1 system architecture.

TABLE 1
GRID-GUM1 Speedups on a 16-PE Homogeneous

Low-Latency Computational Grid

1. An absolute speedup is defined with respect to a sequential execution,
and a relative speedup is defined with respect to the execution of parallel
code on a single processing element. Absolute and relative speedups for
GUM, together with sequential and parallel efficiency measures, are
reported in [13].

degree programs like queens, and little speedup for high-
communication degree programs like raytracer. Table 2
illustrates the impact of heterogeneity and shows that
adding even a single slow machine to a five-PE cluster
dramatically reduces the speedup, for example, from 4.0 to
2.8 for queens. The measurements use the relatively slow
SBC S and relatively fast Edin3 F Beowulf clusters, as
described in Table 14. The first column shows the GRID

configuration. For example, FFSSS is a configuration with
two fast machines and three slow machines. The first
machine in the configuration string is where the program
starts. The second column shows the mean CPU speed of
that configuration. As a measure of heterogeneity, the
standard deviations of CPU speeds in all configurations is
between 353 and 432 MHz. The third and the sixth columns
record the speedup by using F ’s sequential runtime for
raytracer and queens, respectively. The fourth and
seventh columns record the speedup by using S’s sequen-
tial runtime, and the fifth and last columns show the wall
clock execution times.

Tables 3 and 4 show an example of the impact of a high
communication latency interconnect. The measurements in
both latency tables are undertaken on the Muni and Edin2
Beowulf clusters described in Table 14. Each Muni machine
is labeled M, and each Edin2 machine is labeled E. Table 3
shows that low communication-degree programs parFib

and sumEuler deliver good speedups on a range of high-
latency computational GRIDs. However, Table 4 shows that
high communication-degree programs like raytracer,
matMult, and linSolv all deliver poor speedups. The
columns in the table are as before, except that the second

column reports the mean latency of the GRID configuration.
The variation in latency is similar for all configurations; that
is, the standard deviation of the inter-PE latencies is
approximately 17 ms.

5 GRID-GUM2: AN ADAPTIVE RTE FOR

COMPUTATIONAL GRIDs

5.1 GRID-GUM2 Design

To address the shortcomings of GRID-GUM1, we have
designed and implemented a revised GPH RTE for
computational GRIDs GRID-GUM2. The GRID-GUM2
design is described in full in [8]. In GRID-GUM2, each PE
dynamically maintains latency and load information to
inform load management so that work is only sought from
PEs that are known to be relatively heavily loaded and to
give preference to local cluster resources. To propagate the
necessary information, we augment the messages in
GRID-GUM1 to carry dynamic information about latency
and load between PEs, and hence between clusters. Such
information is combined with static PE characteristics to
determine relative loads. To the best of our knowledge,
GRID-GUM2 is the first fully implemented virtual shared-
memory RTE on computational GRIDs.

The new load distribution mechanism in GRID-GUM2
has two main components: information collection and
adaptive load distribution. The information collection
component obtains both static information, like the CPU
speed of every PE, at program start-up and dynamic
information throughout the execution. An example of
dynamic information is the current load of every PE and
the communication latency from this PE to every other PE.
The dynamic information is time stamped and partial, and
is cheaply propagated between PEs whenever they com-
municate.

The adaptive load distribution mechanisms utilize the
static and dynamic information, and the following are the
key new policies:

. An idle PE only seeks work from (sends a FISH
message to) a PE that has high load relative to its
CPU speed.

. PEs have a preference for obtaining work from PEs
that currently have low communication latency.

. In response to a message seeking work (a FISH
message) from a remote or high-communication-
latency PE, the recipient sends additional work if
possible, with the intention of offsetting the high

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 2, FEBRUARY 2008

TABLE 2
GRID-GUM1 Speedups on Heterogeneous Low-Latency

Computational Grids

TABLE 3
Low Communication-Degree Programs: GRID-GUM1 Speed-

ups on Homogeneous High-Latency Computational Grids

TABLE 4
High Communication-Degree Programs: GRID-GUM1

Speedups on Homogeneous High-Latency Computational Grids

latency, for example, between clusters, with
bandwidth.

. GRID-GUM2 starts the computation in the “big-
gest” cluster, that is, the cluster with the largest sum
of CPU speeds over all PEs in the cluster.

In summary, GRID-GUM2 incorporates bespoke light-
weight mechanisms for reducing communication, as well as
measuring and managing load, rather than using generic
GRID services. GRID connective-layer services provide
communication between, and authentication of, the PEs.
GRID-GUM2 is designed to work in a closed computa-
tional GRID; that is, it is not possible for other machines to
join the computation after it has started. Moreover, it is
tuned for a common high-performance setup, that is, to be
most effective on 1) dedicated computational GRIDs where
only one program is executed at a time and 2) a
nonpreemptive environment, where each program executes
to completion without interruption.

6 GRID-GUM2 ON LOW-LATENCY

COMPUTATIONAL GRIDS

The following sections evaluate the performance of the new
adaptive load distribution mechanism in GRID-GUM2 on
low-latency heterogeneous and homogeneous computa-
tional GRIDs.

6.1 Low-Latency Homogeneous Performance

Section 4.2 showed that GRID-GUM1 already delivers
good performance on low-latency homogeneous computa-
tional GRIDs [8]. Columns 2 and 5 in Table 5 show that
GRID-GUM2 maintains this good performance and some-
times makes a small improvement. The remainder of this
section compares the overhead and performance variability
of GRID-GUM1 and GRID-GUM2.

6.1.1 Variability

The measurements in Table 5 have been performed on
10 PEs from the Edin1 cluster. In Table 5, the second and
fifth columns record the mean of 50 runs (in seconds). The
third and sixth columns show the variance of the 50 runs.
The fourth and seventh columns present the percentage
variance relative to the mean. The last column shows the
percentage reduction in variance.

Table 5 shows that GRID-GUM1 gives a highly variable
performance, especially for programs with irregular paral-
lelism. In Table 5, the programs with regular parallelism
show less variations, for example, 23 percent in queens

and 26.7 percent in parFib. However, the programs with
irregular parallelism show greater variations, for example,
47 percent in sumEuler, 36.2 percent in linSolv, and
35.2 percent in raytracer.

The unpredictable behavior in GRID-GUM1 is due to
its load distribution mechanism, which is based on a
naive, random, and blind fishing mechanism, as dis-
cussed in Section 3.2. The performance is good when idle
GRID-GUM1 PEs are “lucky” in their random selection
of a PE to request work from. The performance is poor,
however, if the idle PEs chose the wrong PE to request
work from.

In contrast to GRID-GUM1, the adaptive mechanisms
in GRID-GUM2 result in far less performance variation. In
Table 5, queens and parFib show improvements in
percentage variance of 98 percent and 84 percent respec-
tively. sumEuler, linSolv, and raytracer, which have
irregular parallelism, show improvements of 63 percent,
66 percent, and 82 percent, respectively.

6.1.2 Overheads

Table 6 compares the overhead induced by GRID-GUM1
and GRID-GUM2 for the six programs. These measure-
ments are made on 16 PEs from the Edin1 Beowulf cluster,
and the runtimes reported are the median of three executions
to ameliorate the impact of the operating system and shared
network interaction. In the second column, GG1 and GG2
stand for GRID-GUM1 and GRID-GUM2, respectively.
The third column records the total number of threads
generated during the execution. The remaining columns
show the averages over all processors for the maximal heap
residency (that is, the maximum amount of heap that is alive
at garbage collection time), the allocation rate (that is, the
amount of local memory allocated per second of execution
time), the communication degree (that is, the number of
messages sent per second of execution time), and the average
packet size (that is, the size of packets in bytes).

Table 6 shows that, except for the communication
degree, GRID-GUM1 and GRID-GUM2 have similar
overheads. GRID-GUM2 decreases the communication
degree by using the information about the load, latencies,
and CPU speeds to reduce the number of work-locating
FISH messages.

AL ZAIN ET AL.: EVALUATING A HIGH-LEVEL PARALLEL LANGUAGE (GPH) FOR COMPUTATIONAL GRIDS 7

TABLE 5
GRID-GUM1 and GRID-GUM2 Performance

Variation on 10 PEs

TABLE 6
GRID-GUM1 and GRID-GUM2 Overhead on 16 PEs

6.1.3 Low-Latency Homogeneous GRID Performance

Summary

. GRID-GUM2 maintains this good performance of
GRID-GUM1 on low-latency homogeneous GRIDs
and sometimes makes a small improvement (col-
umns 2 and 5 in Table 5).

. GRID-GUM2 programs exhibit far less perfor-
mance variance than GRID-GUM1, reducing the
variation by at least 63 percent for all programs
measured (column 8 in Table 5).

. GRID-GUM2 retains a very light overhead, which
does not effect the program’s dynamic properties
(Table 6).

6.2 Low-Latency Heterogeneous Performance

Table 7 reproduces measurements of the GRID-GUM1 and

GRID-GUM2 performance on heterogeneous computa-

tional GRIDs with moderate communication latency from

[8]. The measurements compare runtimes on a small

heterogeneous cluster formed from four PEs from Edin1

and four PEs from the Edin2 Beowulf cluster. The runtimes

reported are the median of three executions to ameliorate

the impact of the operating system and shared network

interaction.
Table 7 shows that GRID-GUM2 outperforms

GRID-GUM1 on low-latency heterogeneous computa-

tional GRIDs. linSolv scores a modest improvement

under GRID-GUM2 of 17 percent. The limited irregular

parallelism and the low communication degree in linSolv

helps GRID-GUM1 overcome the heterogeneous architec-

ture without an adaptive load distribution mechanism. Due

to this, the gains from using the adaptive load distribution

of GRID-GUM2 to improve linSolv are limited.
GRID-GUM2 maintains the good parallel performance

of parFib under GRID-GUM1, as reported in Table 1, but

cannot significantly improve it. Likewise, GRID-GUM2

cannot significantly improve matMult due to inherent

limitations on the parallelism [7].
Programs with a low degree of parallelism are most

sensitive to a heterogeneous architecture, because an

appropriate placement of the small number of threads is

essential for good performance. Indeed, the low paralle-

lism-degree programs raytracer, queens, and sumEu-

ler show the greatest improvement under GRID-GUM2,

each improving by more than 50 percent.

6.2.1 Low-Latency Heterogeneous GRID Performance

Summary

Table 7 shows the following points:

. Compared with GRID-GUM1, GRID-GUM2 im-
proves the performance of five of the six programs
and maintains the good performance of the sixth
(parFib).

. Only certain programs are sensitive to low-latency
heterogeneous computational GRIDs: some, like
parFib, already give good performance, whereas
others, like matMult, are already at some perfor-
mance bound.

. GRID-GUM2 improves the performance of low
parallelism-degree programs by more than
50 percent.

7 GRID-GUM2 ON HIGH-Latency
Computational GRIDs

The following sections evaluate the performance of
GRID-GUM2 on high-latency heterogeneous and homo-
geneous computational GRIDs.

7.1 High-Latency Homogeneous Performance

Table 8 compares the performance of raytracer under
GRID-GUM1 and GRID-GUM2 on all combinations of
homogeneous GRIDs with up to five PEs. The configura-
tions combine PEs from two very similar clusters with high-
latency interconnect, namely, the Muni and Edin2 Beowulf
clusters described in Tables 14 and 15. Each Edin2 machine
is labeled E, and each Muni machine is labeled M.

In Table 8, the first and second columns show the case
number and GRID configuration. The third column presents
the mean communication latency. The fourth and fifth
columns record the runtime (in seconds) for GRID-GUM1
(GG1) and GRID-GUM2 (GG2), respectively. The last
column shows the percentage improvement in
GRID-GUM2 runtime.
GRID-GUM2 improves the raytracer performance

on each of the high-latency homogeneous GRID configura-
tions in Table 8. For raytracer, as for sumEuler and
queens, GRID-GUM2 has the greatest improvement
against GRID-GUM1 on configurations of the form
xEyM, where x < y. This is because in GRID-GUM1, the

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 2, FEBRUARY 2008

TABLE 7
GRID-GUM1 and GRID-GUM2 Performance on
Low-Latency Heterogeneous Computational Grids

TABLE 8
Homogeneous High-Latency Computational Grids

(raytracer)

first PE is selected as the main PE, which is an E PE in this
case. As a consequence, the larger number of remote M PEs
must communicate with the main PE through the high-
latency interconnect. In contrast, in this configuration,
GRID-GUM2 selects the main PE from the remote group
of M PEs, and hence, a smaller number of PE(s) required to
obtain work through the high-latency interconnect. More-
over, when a FISH is sent over the high-latency inter-
connect, more work is returned, as described in Section 5.

In summary, Table 8 shows that GRID-GUM2 outper-
forms GRID-GUM1 on a high-latency homogeneous
architecture for raytracer, a program with high commu-
nication degree and highly irregular parallelism.

7.1.1 Additional High-Latency Homogeneous

Measurements

We have made similar measurements to those reported
above for the queens and sumEuler programs [41].
GRID-GUM2 improves the performance on all high-
latency homogeneous GRID configurations measured for
both programs, with a maximum improvement of
30 percent for sumEuler and a maximum improvement
of 9 percent for queens.

7.1.2 High-Latency Homogeneous GRID Performance

Summary

. GRID-GUM2 outperforms GRID-GUM1 on all
of the homogeneous high-latency computational
GRID architectures for all three sensitive programs
(Table 8).

. GRID-GUM2 improves the performance of pro-
grams with a range of parallel behaviors. raytra-
cer with high communication degree shows an
improvement of up to 37 percent (Table 8). sumEu-
ler with low communication degree and irregular
parallelism shows an improvement of up to 30
percent. queens with low communication degree
and regular parallelism exhibits the least improve-
ment of up to 9 percent (Section 7.1.1).

7.2 High-Latency Heterogeneous Performance

High-latency heterogeneous computational GRIDs are the
most challenging architecture. The previous section showed
that raytracer, queens, and sumEuler are the programs
that are sensitive to heterogeneity, and this section
investigates the behavior of these programs on heteroge-
neous computational GRIDs.

Table 9 compares the performance of raytracer under
GRID-GUM1 and GRID-GUM2 on all nontrivial hetero-
geneous GRIDs with up to five PEs. The improvements are
analyzed to identify the improvements due to the use of
static and of dynamic information by using the
GRID-GUM1:1 experimental RTE outlined in Appendix
A.3. The measurements in Table 9 are performed on two
heterogeneous Beowulf clusters: Edin1 and Muni. PEs in
the Edin1 Beowulf cluster have slower CPU speed than
those in the Muni Beowulf cluster. Moreover, the Edin1 and
Muni Beowulf clusters are connected over a high-latency
interconnect, as detailed in Tables 14 and 15.

In Table 9, each Edin1 machine is labeled E, and each
Muni machine is labeled M. The first and second columns
show the case number and different combinations of PEs
from the Edin1 and Muni Beowulf clusters, respectively.
The third and fourth columns report the mean CPU speed
and mean latency for the configuration. As before, the
variation in latency and CPU speeds is similar for all
configurations, with standard deviations of approximately
17 ms and 470 MHz, respectively. The fifth, sixth, and
seventh columns record the runtime (in seconds) for
GRID-GUM1 ðGG1Þ, GRID-GUM1:1 ðGG1:1Þ, a n d
GRID-GUM2 ðGG2Þ, respectively. The seventh column
shows the static information (CPU speed) contribution to
the performance change under GRID-GUM1:1 in compar-
ison with GRID-GUM1. The ninth column indicates the
dynamic information (loads and latencies) contribution to
the change under GRID-GUM2. The last column reports
the total performance change by using both static and
dynamic information in GRID-GUM2 in comparison with
GRID-GUM1.

The additional static information enables a substantial
improvement when there are more fast PEs M’s than slow
PEs E’s, that is, cases 1, 2, and 3. For instance, in case 1,
GRID-GUM1:1 reduces the runtime by 54 percent. How-
ever, the improvement due to static information is less
when there are more slow PEs than fast PEs (cases 6, 8, 9,
and 10) and may even degrade the performance. For
instance, in case 10, GRID-GUM1:1 increases the runtime
by 23 percent. This behavior of raytracer under
GRID-GUM1:1 is related to the high-latency communica-
tion. In a configuration of the form ðxEyMÞ, where x > y
(cases 7, 8, 9, and 10), GRID-GUM1:1 nominates the main
PE from M PEs. In this case, E PEs have to seek work
during the course of the execution from M PE(s) through
high-latency interconnect. Hence, for programs with a
relatively high communication degree like raytracer,
high-latency communication has a major impact on the
GRID-GUM1:1 performance.

The seventh column in Table 9 shows that the use of
dynamic load and latency information in GRID-GUM2
improves the performance on all of the GRID configura-
tions. The improvement varies according to the number of
remote and local PEs and their CPU speed. If there are
fewer slow PEs than fast ones (xEyM, where x < y), the
dynamic information makes a limited contribution to the
performance. For instance, in case 1, the dynamic informa-

AL ZAIN ET AL.: EVALUATING A HIGH-LEVEL PARALLEL LANGUAGE (GPH) FOR COMPUTATIONAL GRIDS 9

TABLE 9
raytracer: Heterogeneous High-Latency Computational Grid

tion improves the performance by only 7 percent. In

contrast, if there are more slow PEs than fast ones (xEyM,

where x > y), the dynamic information has a greater

contribution to the performance. For instance, in case 9,

the dynamic information improves the performance by

34 percent. In this case, the dynamic information is used to

nominate the main PE from among the E PEs, decreasing

the number of PEs required to seek work over the high-

latency interconnect, and load information is used to

transfer larger amounts of work over the high-latency

interconnect, thereby reducing the number of messages.
Broadly speaking, both static and dynamic information

contribute to the GRID-GUM2 performance gains for a

program like raytracer with a relatively high commu-

nication degree and irregular parallelism. For instance, in

case 1, to finish the computation of raytracer in five

PEs ð1E4MÞ, GRID-GUM1 requires 1,490 s. However,

GRID-GUM2 requires only 583 s, which is an improve-

ment of 60 percent.

7.2.1 Additional High-Latency Heterogeneous

Measurements

We have made similar measurements to those reported

above for the queens and sumEuler programs [41]. For

sumEuler, there is a maximum total improvement of

GRID-GUM2 over GRID-GUM1 of 32 percent, and

maximum static and dynamic improvements of 27 percent

and 16 percent, respectively. For queens, there is a

maximum total improvement of GRID-GUM2 over

GRID-GUM1 of 35 percent, and maximum static and

dynamic improvements of 23 percent and 12 percent,

respectively.

7.2.2 High-Latency Heterogeneous GRID Performance

Summary

. Compared with GRID-GUM1, GRID-GUM2 im-
proves the performance of all three programs on all
heterogeneous high-latency GRID configurations
measured (column 10 in Table 9).

. GRID-GUM2’s static information gives substantial
improvements when there are more fast PEs than
slow PEs, but this is less when there are more slow
PEs than fast PEs (column 7 in Table 9).

. GRID-GUM2’s dynamic load and latency informa-
tion improve the performance on all of the hetero-
geneous high-latency GRID configurations
measured. The improvement is greater if there are
more slow PEs than fast ones, and this is less if there
are more fast machines than slow ones (column 7 in
Table 9).

. For a program with a high communication degree,
that is, raytracer, GRID-GUM2 delivers a sub-
stantial maximum improvement of 60 percent,
whereas for both programs with a relatively low
communication degree (sumEuler and queens),
there are more modest improvements of 31 percent
and 35 percent (Section 7.2.1).

8 SCALABILITY

This section investigates the performance scalability of the
GRID-GUM2 load distribution mechanism on the most
challenging GRID configuration, namely, a high-latency
heterogeneous computational GRID. The measurements in
this section are made on three heterogeneous Beowulf
clusters: Edin1 and Edin2, which were connected over a
low-latency interconnect, and Muni, which was connected
with the other two clusters over a high-latency interconnect,
as specified in Tables 14 and 15. Because of the relative
cluster sizes, many configurations have six Edin1 PEs for
every Muni PE.

The experiments have the following limitations:

. The programs in Table 16 were designed for smaller
scale HPCs, and only some of them generate
sufficient parallelism to utilize medium-scale and
large-scale computational GRIDs.

. The numbers of PEs available for these experiments
at the cooperating sites were limited: Edin1 E has
30 PEs, Edin2 E2 has 5 PEs, and Muni M has 6 PEs.

8.1 raytracer
The raytracer is a realistic parallel program with
limited amounts of highly irregular parallelism and a
relatively high communication degree (Table 16). Table 10
compares the scalability of the raytracer program
under GUM and GRID-GUM1. The table shows that
GUM and GRID-GUM1 deliver very similar performance
levels up to 28 PEs, although GRID-GUM1 is executing
on a high-latency heterogeneous computational GRID.
More significantly, the last two cases show that when the
size of the local cluster limits the GUM speedups,
GRID-GUM1 can scale further by using PEs in a remote
cluster.

The GRID configurations measured in this section have
very similar mean CPU speeds and latencies, namely,
676 MHz and approximately 9.2 ms. Likewise, the config-
urations have very similar variations in CPU speed and
communication latencies, namely, approximately 360 MHz
and 15.5 ms, respectively. Moreover, the input size to the
raytracer and parFib programs is large, and hence, it is
not possible to obtain a sequential runtime. As a result, the
sequential runtime and, hence, both relative speedups and
parallel efficiency are computed from the runtime on a
seven-PE configuration, that is, the raytracer runtime on
the 7E row in Table 10 and the parFib on the
6E1M GRID-GUM2 row in Table 12.

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 2, FEBRUARY 2008

TABLE 10
GUM and GRID-GUM1 Scalability (raytracer)

Table 11 compares the scalability and parallel efficiency
of the raytracer program under GRID-GUM1 and
GRID-GUM2 on a high-latency heterogeneous computa-
tional GRID. The efficiency comparison of the two cluster
results relies on the similarity of the architectures, that is,
six Edinburgh PEs for every Munich PE, and obviates the
requirement for a sophisticated calculation of heteroge-
neous efficiency. The table shows that GRID-GUM2
always improves on GRID-GUM1 performance. More-
over, although the speedup improvement is modest on
small GRIDS, it increases with the GRID size. For example,
on the largest, that is, 41-PE, configuration, GRID-GUM2
gives a 46 percent improvement, that is, a runtime of 1,133 s
compared with 1,652 s for GRID-GUM1.

Although GRID-GUM2 is always more efficient than
GRID-GUM1, the absolute efficiency of GRID-GUM2
falls significantly to just 38 percent on a 35-PE cluster.
Although some of the loss of efficiency is attributable to the
high-level DSM programming model, readers should recall
that raytracer is a challenging program, that is, exhibit-
ing highly irregular parallelism and high levels of commu-
nication, executing on a challenging architecture, that is, a
high-latency heterogeneous GRID. Section 4 suggests that
better speedups and efficiency would be obtained on either
a homogeneous GRID or a low-latency GRID. Moreover,
Table 12 reports a rather better efficiency for a less
challenging program.

8.2 parFib
In contrast to the realistic raytracer program, parFib is
an ideal parallel program with very large potential
parallelism and a low communication degree (Table 16).
Table 12 compares the scalability and efficiency of parFib
under GRID-GUM1 and GRID-GUM2 on a high-latency
heterogeneous computational GRID. It shows that both
GRID-GUM1 and GRID-GUM2 deliver good and very
similar speedups. The speedup is excellent up to 21 PEs, but
declines thereafter. The speedup is still increasing, even
between 35 and 41 PEs, with a maximum speedup of at least
27 on 41 PEs. GRID-GUM2 is again always more efficient
than GRID-GUM1. Moreover, although the drop in the
absolute efficiency to 65 percent on 35 PEs is substantial, it
is far less than for the challenging raytracer. Section 4
suggests that even better speedups and efficiency would be
obtained on either a homogeneous GRID or a low-latency
GRID.

The good GRID-GUM1 performance reported in
Table 12 demonstrates that a sophisticated load distribution
is not required for parFib. That the GRID-GUM2

performance is so similar to the GRID-GUM1 performance
shows that even on medium-scale computational GRIDs, the

overhead of GRID-GUM2’s load distribution mechanism
remains minimal.

8.3 Scalability Summary

. The experiments in this section show that the
emerging GRID technology offers the opportunity
of improving the performance by integrating remote
heterogeneous clusters into a computational GRID

(Table 10).
. The measurements in Tables 11 and 12 show that the

parallel performance of GRID-GUM2 scales to
medium-scale heterogeneous high-latency computa-
tional GRIDs, that is, 41 PEs in three clusters, and (as
shown in Table 11) continues to deliver significant
performance benefits over GRID-GUM1 for a
realistic program.

. The measurements of parFib, a program with near-
ideal parallel behavior, show that the overhead of
the GRID-GUM2 load management is relatively
low, even on medium-scale computational GRIDs
(Table 12).

9 GRID-GUM2 PERFORMANCE ANALYSIS

This section analyzes the performance of the benchmark

programs under GRID-GUM1, GRID-GUM1:1, and
GRID-GUM2 on combinations of high/low and homoge-

neous/heterogeneous computational GRIDs with respect to
their communication behavior and degree of irregular

parallelism. In Table 13, the second and third columns
present the program characteristics, parallelism regularity,
and communication degree, respectively. The fourth and fifth

columns give the GRID latency and homogeneity/hetero-
geneity. The sixth, seventh, and eighth columns rank the

performance of GRID-GUM1 ðGG1Þ, GRID-GUM1:1

ðGG1:1Þ, and GRID-GUM2 ðGG2Þ, respectively, from 3

(best) to 1 (worst). The last column presents the case number.
We make the following conclusions based on Table 13:

. GRID-GUM2’s dynamic adaptive load manage-
ment techniques are effective: they improve or
maintain the performance of all the benchmark
programs on all GRID configurations (column 8).

. Sophisticated load management is not required to
effectively parallelize regularly parallel programs
on homogeneous computational GRIDs. That is,
GRID-GUM2 does not reliably improve the

AL ZAIN ET AL.: EVALUATING A HIGH-LEVEL PARALLEL LANGUAGE (GPH) FOR COMPUTATIONAL GRIDS 11

TABLE 11
GRID-GUM1 and GRID-GUM2 Scalability (raytracer)

TABLE 12
GRID-GUM1 and GRID-GUM2 Scalability (parFib)

performance of these programs (cases 14, 16, 18, 20,
22, and 24).

. Static information is the key to effectively paralleliz-
ing regularly parallel programs on heterogeneous
computational GRIDs: GRID-GUM2 shows the
same improvement as GRID-GUM1:1 for these
programs (cases 13, 15, 17, 19, 21, and 23).

In summary, the adaptive load distribution of
GRID-GUM2 not only delivers a more predictable
performance than GRID-GUM1, as shown in Table 5, but
also reduces the runtime of all programs.

10 CONCLUSION

10.1 Summary

We have presented a systematic evaluation of the perfor-
mance of GPH, the first DSM language with a high-level
parallel coordination on computational GRIDs. We report
both the absolute performance and the performance relative
to GRID-GUM1 and GUM, and the latter has previously
been compared with conventional parallel technology (C
with PVM). In essence, we have demonstrated that a high-
level DSM parallel programming paradigm can deliver
good parallel performance for a variety of applications on a
range of high-latency/low-latency and homogeneous/
heterogeneous computational GRIDs. Moreover, the perfor-
mance scales to medium-scale computational GRIDs. The
core of our approach to achieving good performance from
this class of parallel language is a sophisticated RTE with an
aggressive and dynamic load management mechanism.

We have summarized an earlier work outlining
GRID-GUM1, a port of the GUM RTE for GPH originally
designed for a single HPC, to computational GRIDs. It
showed that GRID-GUM1 only reliably delivered good

performance on low-latency homogeneous computational
GRIDs and that poor load management limits the
GRID-GUM1 performance. It also outlined the design of
GRID-GUM2, which is a new RTE incorporating new
adaptive load management techniques.

The evaluation of the GRID-GUM2 performance covers
combinations of high-latency/low-latency and homoge-
neous/heterogeneous computational GRIDs, with the re-
sults outlined in the following paragraphs. Unsurprisingly,
GRID-GUM2 gives the greatest performance improve-
ments on the most challenging combination: a 60 percent
improvement on a heterogeneous high-latency computa-
tional GRID (Table 9).

On low-latency homogeneous computational GRIDs,
Table 5 shows how GRID-GUM2 maintains the good
performance of GRID-GUM1 reported in Table 1 (Sec-
tion 6.1). On low-latency heterogeneous computational
GRIDS, GRID-GUM2 improves the performance of five
out of six programs and maintains the good performance of
the sixth, although only certain programs are sensitive to
heterogeneity (Section 6.2). On high-latency homogeneous
computational GRIDS, GRID-GUM2 improves the perfor-
mance of all three programs on all the GRID configurations
measured (Section 7.1). On high-latency heterogeneous
computational GRIDS, GRID-GUM2 improves the perfor-
mance of all three sensitive programs on all the GRID

configurations measured (Section 7.2).
The scalability measurements consider the most challen-

ging but most common computational GRIDs, that is,
heterogeneous high-latency GRIDs. The results show that
the GRID-GUM2 performance scales to medium-scale
heterogeneous high-latency computational GRIDs, for ex-
ample, delivering a speedup of 28 on 41 PEs in three
clusters, although the efficiency falls to just 65 percent on
this challenging architecture (Section 8). The relative
performance of the programs on all combinations of low-
latency/high-latency and homogeneous/heterogeneous
computational GRIDs has been analyzed with respect to
their communication behavior and the degree of irregular
parallelism. The analysis shows that GRID-GUM2’s
dynamic adaptive load management techniques are effec-
tive, as they improve or maintain the performance of all the
benchmark programs on all GRID configurations (Section 9).

10.2 Limitations and Future Work

The current work has the following limitations. The parallel
programs measured are small-scale and medium-scale
kernels. The scalability of GRID-GUM2 has only been
measured on medium-scale computational GRIDs.
GRID-GUM2 inherits limited and user-authentication-
biased security mechanisms from the Globus Toolkit.
GRID-GUM2 inherits a restriction to closed systems, that
is, executing on a fixed set of PEs, from the MPICH-G2
communications library. Currently, GRID-GUM2 has no
fault-tolerant mechanisms: if any PE or communication link
fails, then the entire computation may fail.

There are several avenues to extend this research and
address the limitations. One avenue is to implement larger
parallel programs, and our current work entails paralleliz-
ing large computer algebra computations as part of the
Symbolic Computation Infrastructure for Europe (SCIEnce)

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 2, FEBRUARY 2008

TABLE 13
Comparative Performance Summary: GRID-GUM1,

GRID-GUM1:1, and GRID-GUM2

Project EU FP VI I3-026133. A second research avenue is to
investigate the scalability of GRID-GUM2 on large-scale
computational GRIDs, for example, with hundreds of PEs.
Such a GRID is likely to be heterogeneous and have high
latency, and we hope to make these measurements in the
SCIEnce Project.

Another future research avenue is to implement a
program-based security mechanism to analyze the program
behavior to decide whether the execution of the code should
be permitted. For example, to enhance program-based
security, certificates of bounded resource consumption
could be attached to the code sent between PEs in the
network and checked by a resource protection component
before executing the code. Using a communication library
other than MPICH-G2 would enable GRID-GUM2 to
support open systems, and possibilities include using an
optimized version of PVM for computational GRIDs, for
example, as done in [42].

A rather more challenging task would be to tackle the
problem of fault-tolerant parallel execution on computa-
tional GRIDs. Here, GRID-GUM2 could benefit from the
statelessness of functional programs. Statefulness amounts
to updating the global program state, and its absence means
that the damage caused by a failing computation is
confined. Moreover, if an error is detected, pure computa-
tions can automatically be restarted without the danger of
making multiple updates. A second potential benefit of
high-level language technology is that fault tolerance is a
global property affecting all operations of the virtual
machine underlying a language, and enforcing such a
property is easier with a high-level virtual machine like
GRID-GUM2. Indeed, the RTE-level fault tolerance has
been proposed for GUM [43].

APPENDIX A

A.1 Hardware Apparatus

The measurements have been performed on five Beowulf
clusters: three located at the Heriot-Watt Riccarton campus
(Edin1, Edin2, and Edin3), a cluster located at the Ludwig-
Maximilians University, Munich (Muni), and a cluster
located at the Heriot-Watt Borders campus (SBC). See
Tables 14 and 15 for the characteristics of these Beowulfs.

A.2 Software Apparatus

Table 16 summarizes the characteristics of the six programs
measured. parFib computes Fibonacci numbers. The
sumEuler program computes the sum over the application
of the Euler totient function over an integer list. The
queens program places chess pieces on a board. The
raytracer program calculates a 2D image of a given scene
of 3D objects by tracing all rays in a given scene of 3D

objects by tracing all rays in a given grid or window. The
matMult program multiples two matrices. The linSolv

program finds an exact solution of a linear system of
equations.

Three of the programs have regular parallelism, that is,
queens, parFib, and matMult, whereas three programs
have irregular parallelism, that is, sumEuler, linSolv, and
raytracer. Programs with regular parallelism generate
threads that have approximately the same cost of computa-
tion. Programs with irregular parallelism generate threads
with varying cost of computation. Moreover, irregular-
parallel programs generate threads at different stages
through the course of execution. Among the programs,
queens, sumEuler, and linSolv have relatively low
communication degrees, that is, perform relatively little
communication per unit of execution time, whereas parFib,
matMult, and raytracer have relatively high communica-
tion degree, as shown under column 6 in Table 6.

A.3 GRID-GUM1:1

A special implementation of GRID-GUM2, that is,
GRID-GUM1:1, is used to study the performance impact
of the static information, namely, the CPU speed of every
PE in the GRID. GRID-GUM1:1 uses the CPU speed
information to choose a fast PE as the main PE, where the
program starts, and to prevent slow PEs from extracting
work from faster PEs, unless the latter is the main PE.
Unlike GRID-GUM2, GRID-GUM1:1 does not collect or
use dynamic information on PE loads and latencies.

A.4 GPH Example: sumEuler
As a nontrivial example of the GPH language, the complete
code for the sumEuler program outlined in Table 16 is
given as follows, and the only evaluation strategy required
to parallelize the program is at the last line of the
sumTotient function:

AL ZAIN ET AL.: EVALUATING A HIGH-LEVEL PARALLEL LANGUAGE (GPH) FOR COMPUTATIONAL GRIDS 13

TABLE 14
Beowulf Cluster Architectures

TABLE 15
Approximate Intercluster Latencies (in Milliseconds)

TABLE 16
Program Characteristics

- -
- - This program calculates the sum of Euler

- - totients between a lower and an upper limit,

- - using fixed precision integers.

- -

module Main(main) where

import System(getArgs)

import Strategies

- -

- - Primary Functions: sumTotient & Euler

- -

sumTotient :: Int -> Int -> Int -> Int

sumTotient lower upper c =

sum (map (sum . map Euler)

(splitAtN c upper, upper-1 .. lower])

“using” parList rnf)

Euler :: Int -> Int

Euler n = length (filter (relprime n) [1 .. n-1])

- -

- - Auxiliary Functions

- -

relprime :: Int -> Int -> Bool

relprime x y = hcf x y == 1

hcf :: Int -> Int -> Int

hcf x 0 = x

hcf x y = hcf y(rem x y)

mkList :: Int -> Int -> [Int]

mkList lower upper =

reverse (enumFromTo lower upper)

splitAtN :: Int -> [a] -> [[a]]

splitAtN n [] = []

splitAtN n xs = ys: splitAtN n zs

where (ys, zs) = splitAt n xs

- -

- - Interface Section

- -
main = do args <- getArgs

let

lower = read (args!!0) :: Int

upper = read (args!!1) :: Int

c = read (args!!2) :: Int

putStrLn (“Sum of Totients between [“ ++

(show lower) ++ “..” ++

(show upper) ++ “] is “ ++
show (sumTotient

lower upper c))

REFERENCES

[1] I. Foster and C. Kesselman, “Computational Grids,” The Grid:
Blueprint for a Future Computing Infrastructure, 1998.

[2] J. Basney and M. Livny, “Deploying a High Throughput
Computing Cluster,” High Performance Cluster Computing, vol. 1,
Prentice Hall, 1999.

[3] S. Zhou, X. Zheng, J. Wang, and P. Delisle, “Utopia: A Load
Sharing Facility for Large, Heterogeneous Distributed Computer
Systems,” Software—Practice and Experience, vol. 23, no. 12,
pp. 1305-1336, 1993.

[4] “MPI: A Message Passing Interface Standard,” Int’l J. Super-
computer Application, vol. 8, nos. 3-4, pp. 165-414, 1994.

[5] M. Alt, H. Bischof, and S. Gorlatch, “Program Development for
Computational Grids Using Skeletons and Performance Predic-
tion,” Proc. Third Int’l Workshop Constructive Methods for Parallel
Programming (CMPP ’02), June 2002.

[6] P. Trinder, K. Hammond, H.-W. Loidl, and S. Peyton Jones,
“Algorithmþ Strategy ¼ Parallelism,” J. Functional Programming,
vol. 8, no. 1, pp. 23-60, http://www.macs.hw.ac.uk/~dsg/gph/
papers/ps/strategies.ps.gz, Jan. 1998.

[7] H.-W. Loidl, F. Rubio Diez, N. Scaife, K. Hammond, U. Klusik, R.
Loogen, G. Michaelson, S. Horiguchi, R. Pena Mari, S. Priebe, A.
Rebon Portillo, and P. Trinder, “Comparing Parallel Functional
Languages: Programming and Performance,” Higher-Order and
Symbolic Computation, vol. 16, no. 3, pp. 203-251, 2003.

[8] A. Al Zain, P. Trinder, H.-W. Loidl, and G. Michaelson,
“Managing Heterogeneity in a Grid Parallel Haskell,” J. Scalable
Computing: Practice and Experience, vol. 6, no. 4, 2006.

[9] R. Loogen, “Programming Language Constructs,” Research Direc-
tions in Parallel Functional Programming, K. Hammond and
G. Michaelson, eds. Springer-Verlag, pp. 63-91, 1999.

[10] A. Geist, A. Beguelin, J. Dongerra, W. Jiang, R. Manchek, and V.
Sunderam, PVM: Parallel Virtual Machine. MIT Press, 1994.

[11] D.B. Loveman, “High Performance Fortran,” IEEE Parallel and
Distributed Technology, vol. 1, no. 1, pp. 25-42, 1993.

[12] G. Michaelson, N. Scaife, P. Bristow, and P. King, “Nested
Algorithmic Skeletons from Higher Order Functions,” Parallel
Algorithms and Applications, vol. 16, pp. 181-206, 2001.

[13] P. Trinder, K. Hammond, J. Mattson Jr., A. Partridge, and S.
Peyton Jones, “GUM: A Portable Parallel Implementation of
Haskell,” Proc. ACM Conf. Programming Languages Design and
Implementation (PLDI ’96), pp. 79-88, http://www.macs.hw.
ac.uk/~dsg/gph/papers/ps/gum.ps.gz, May 1996.

[14] S. Breitinger, R. Loogen, Y. Ortega Malln, and R. Peña Marı́,
“Eden: The Paradise of Functional Concurrent Programming,”
Proc. European Conf. Parallel Processing (EuroPar ’96), pp. 710-713,
1996.

[15] The Grid: Blueprint for a New Computing Infrastructure, I. Foster and
C. Kesselman, eds., Morgan Kaufmann, 1999.

[16] Globus, http://www.globus.org/toolkit/, 2005.
[17] A. Grimshaw and W. Wulf, “The Legion Vision of a World-Wide

Virtual Computer,” Comm. ACM, vol. 40, no. 1, pp. 39-45, 1997.
[18] F. Berman, G. Fox, and T. Hey, “The Grid: Past, Present, Future,”

Grid Computing: Making the Global Infrastructure a Reality,
F. Berman, G. Fox, and A. Hey, eds. John Wiley & Sons, pp. 9-
50, 2003.

[19] D. Jackson, “Advanced Scheduling of Linux Clusters Using
Maui,” Proc. Usenix Ann. Technical Conf. (Usenix ’99), 1999.

[20] E. Smirni and E. Rosti, “Modelling Speedup of SPMD Applica-
tions on the Intel Paragon: A Case Study,” Proc. Int’l Conf. and
Exhibition High-Performance Computing and Networks, Languages and
Computer Architecture (HPCN ’95), 1995.

[21] L. Valiant, “A Bridging Model for Parallel Computation,” Comm.
ACM, vol. 33, no. 8, p. 103, Aug. 1990.

[22] M. Beck, J. Dongarra, G. Fagg, A. Geist, P. Gray, M. Kohl, J.
Migliardi, K. Moore, T. Moore, P. Papadopoulos, S. Scott, and V.
Sunderam, “HARNESS: A Next Generation Distributed Virtual
Machine,” Future Generation Computer Systems, special issue on
metacomputing, vol. 15, nos. 5-6, pp. 571-582, Oct. 1999.

[23] B.-Y. Evan Chang, K. Crary, M. DeLap, R. Harper, J. Liszka, T.
Murphy VII, and F. Pfenning, “Trustless Grid Computing in
ConCert,” Proc. Third Int’l Workshop Grid Computing (GRID ’02),
2002.

[24] C. Baker-Finch, D. King, J. Hall, and P. Trinder, “An Operational
Semantics for Parallel Lazy Evaluation,” Proc. Fifth Int’l Conf.
Functional Programming (ICFP ’00), pp. 162-173, Sept. 2000.

[25] T. Murphy VII, K. Crary, and R. Harper, “Distributed Control
Flow with Classical Modal Logic,” Proc. 19th Int’l Workshop
Computer Science Logic (CSL ’05), pp. 51-69, July 2005.

[26] R. Whaley, A. Petitet, and J. Dongarra, “Automated Empirical
Optimisations of Software and the ATLAS Project,” Parallel
Computing, vol. 27, pp. 3-35, 2001.

14 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 2, FEBRUARY 2008

[27] Distributed Shared Memory Home Pages, http://www.ics.uci.
edu/ javid/dsm.html/, 2006.

[28] C. Morin, P. Gallard, R. Lottiaux, and G. Valle, “Design and
Implementations of NINF: Towards a Global Computing Infra-
structure,” Future Generation Computer Systems, vol. 20, no. 2, 2004.

[29] Y. Hu, H. Lu, A. Cox, and W. Zwaenepoel, “OpenMP for
Networks of SMPs,” J. Parallel and Distributed Computing, vol. 60,
no. 12, pp. 1512-1530, 2000.

[30] T.-Y. Liang, C.-Y. Wu, J.-B. Chang, and C.-K. Shieh, “Teamster-G:
A Grid-Enabled Software DSM System,” Proc. Fifth IEEE Symp.
Cluster Computing and the Grid (CCGrid ’05), pp. 905-912, 2005.

[31] M. Aldinucci, M. Coppola, M. Danelutto, M. Vanneschi, and C.
Zoccolo, “ASSIST as a Research Framework for High-Performance
Grid Programming Environments,” Grid Computing: Software
Environments and Tools, J. C. Cunha and O. F. Rana, eds., Springer,
Jan. 2006.

[32] F. Berman, A. Chien, J. Cooper, K. Dongarra, I. Foster, D. Gannon,
L. Johnsson, K. Kennedy, C. Kesselman, J. Mellor-Crummey, D.
Reed, and L.W.R. Torczon, “The GrADS Project: Software Support
for High-Level Grid Application Development,” Int’l J. High-
Performance Computing Applications, vol. 15, no. 4, pp. 327-344,
2001.

[33] M. Aldinucci, M. Danelutto, and J. Dünnweber, “Optimization
Techniques for Implementing Parallel Sckeletons in Grid Envir-
onments,” Proc. Fourth Int’l Workshop Constructive Methods for
Parallel Programming (CMPP ’04), July 2004.

[34] M. Aldinucci and M. Danelutto, “Advanced Skeleton Program-
ming Systems,” Parallel Computing, http://www.di.unipi.it/
aldinuc/papers.html, 2006.

[35] M. Cole, “Bringing Skeletons Out of the Closet: A Pragmatic
Manifesto for Skeletal Parallel Programming,” Parallel Computing,
vol. 30, no. 3, pp. 389-406, 2004.

[36] R.V. van Nieuwpoort, J. Maassen, G. Wrzesinska, R. Hofman, C.
Jacobs, T. Kielmann, and H.E. Bal, “Ibis: A Flexible and Efficient
Java Based Grid Programming Environment,” Concurrency and
Computation: Practice and Experience, vol. 17, nos. 7-8, pp. 1079-
1107, June 2005.

[37] J. Dünnweber, M. Alt, and S. Gorlatch, “Apis for Grid Program-
ming Using Higher Order Components,” Proc. 12th Global Grid
Forum (GGF ’04), http://pvs.uni-muenster.de/pvs/mitarbeiter/
jan/adgggf04.html, Sept. 2004.

[38] M. Alt and S. Gorlatch, “Adapting Java RMI for Grid Computing,”
Future Generation Computer Systems, vol. 21, no. 5, pp. 699-707,
http://pvs.uni-muenster.de/pvs/publikationen/, 2005.

[39] H.-W. Loidl, P.W. Trinder, K. Hammond, S.B. Junaidu, R.G.
Morgan, and S.L. Peyton Jones, “Engineering Parallel Symbolic
Programs in GPH,” Concurrency: Practice and Experience, vol. 11,
pp. 701-752, http://www.macs.hw.ac.uk/~dsg/gph/papers/ps/
cpe-gph.ps.gz, 1999.

[40] N. Karonis, B. Toonen, and I. Foster, “MPICH-G2: A Grid-Enabled
Implementation of the Message Passing Interface,” J. Parallel
Distributed Computing, vol. 63, no. 5, pp. 551-563, 2003.

[41] A. Al Zain, “Implementing High-Level Parallelism on Com-
putational GRIDs,” PhD dissertation, School of Math. and
Computer Sciences, Heriot-Watt Univ., http://www.macs.
hw.ac.uk/trinder/theses/AlZainAbstract.html, Apr. 2006.

[42] G. Sipos and P. Kacsuk, Executing and Monitoring PVM
Programs in Computational Grids with Jini, LNCS 2840,
J. Dongarra, D. Laforenza, and S. Orlando, eds. Springer,
pp. 570-576, http://springerlink. metapress.com/openurl.asp?
genre=article&issn=0302-9743&volume=2840&spage=570, 2003.

[43] P. Trinder, R. Pointon, and H.-W. Loidl, “Towards Runtime
System Level Fault Tolerance for a Distributed Functional
Language,” Proc. Second Scottish Functional Programming Workshop
(SFP ’00), vol. 2, pp. 103-113, July 2000.

Abdallah D. Al Zain received the BSc degree in
computer science from the Applied Science
University, Jordan, in 1998 and the PhD degree
from the Heriot-Watt University, Edinburgh, in
April 2006. His PhD research was implementing
high-level parallelism on computational grids. He
has a two-year working experience on data-
bases. He is currently a postdoctoral researcher
with the EU-funded Symbolic Computation
Infrastructure for Europe (SCIEnce) Project that

utilizes the Grid-enabled parallel Haskell implementation (Grid-GUM),
which he implemented during his PhD research.

Phil W. Trinder received the BSc degree (with
honors) from Rhodes University, South Africa, in
1983 and the DPhil degree from Oxford Uni-
versity in 1989. His PhD research was on
parallel functional databases. He is currently a
senior lecturer of Computer Science at the
Heriot-Watt University. He has a strong record
of research in the design, implementation, and
evaluation of high-level parallel and distributed
programming languages. He has held six major

UK, EU, and industrial grants to support this activity and has more than
60 publications in refereed journal and conference proceedings
publications.

Greg J. Michaelson is the head of the Depart-
ment of Computer Science, Heriot-Watt Univer-
sity. He has a strong record of research in
formally motivated software engineering, with
particular expertise in the design and implemen-
tation of functional languages for parallel,
distributed, mobile, and embedded deployment.
He has held seven major UK, EU, and industrial
grants to support this activity and has more than
60 publications in refereed journal and confer-

ence proceedings. He is a Fellow of the British Computer Society.

Hans-Wolfgang Loidl received the MSc (Dipl-
Ing) degree from the Johannes Kepler Univer-
sity, Austria, in 1992 and the PhD degree from
the University of Glasgow in 1998. His PhD
research was the parallel implementation of
functional languages. From 1999 to 2002, he
was a postdoctoral research fellow in the
Austrian Academy of Sciences, Heriot-Watt
University, Edinburgh, working on architecture-
independent parallelism. He is currently a post-

doctoral researcher with the Theoretical Computer Science Group,
Ludwig-Maximilians University, Munich, working on the EU-funded
Embounded Project.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

AL ZAIN ET AL.: EVALUATING A HIGH-LEVEL PARALLEL LANGUAGE (GPH) FOR COMPUTATIONAL GRIDS 15

