

Design and implementation of a massively multi-player
online historical role-playing game

David Alexander Bond
H00124719

February 2015

Computer Science

School of Mathematical and Computer Sciences

Dissertation submitted as part of the requirements for
the award of the degree of MSc in Advanced Internet

Applications

2 | P a g e

3 | P a g e

DECLARATION

I, David Alexander Bond, confirm that this work submitted for assessment is my own and is
expressed in my own words. Any uses made within it of the works of other authors in any form
(for example: ideas, equations, figures, text, tables, programs) are properly acknowledged at any
point of their use. A list of the references employed is included.

Signed: _________________________________

Date: ____ 13-02-2015_______________

4 | P a g e

ABSTRACT

The goal of this project was to design and evaluate the initial version of a distributed, scalable game
engine, the JominiEngine. The project focused on developing the essential core of the JominiEngine,
and used it to instantiate Overlord: Age of Magna Carta, a game set on mainland Britain in the time
period of 1194-1225. Future projects will extend, by degrees, the functionality of the JominiEngine,
ultimately resulting in the production of a fully featured, adaptable MMORPG (Massively Multiplayer
Online Role-Playing Game) platform.

Wargames and historical simulations have been popular pastimes since the last half of the 20th
Century, and their value as tools for the teaching and reinforcement of creative decision-making is
increasingly being applied across a whole spectrum of occupations. The arrival of computer gaming
has resulted in a huge increase in popularity for this type of game; in particular, with the advent of
the Internet, the last two decades have seen a huge global increase in the player-base of MMORPGs.

The development of a historical MMORPG, therefore, presents the developer with challenges in the
areas of both game design, in which a balance has to be reached between the requirements of
historical accuracy and player enjoyment, and system architecture, which poses significant
challenges with regard to system complexity and scalability.

The aims and objectives of the project were to develop: i) A core game model, specifying the basic
game objects, interactions, rules, mechanisms, and victory metrics. ii) A core game engine, enabling
players to perform the functionality outlined in the game model. iii) A system architecture, enabling
the efficient operation of the game engine at varying usage levels.

Particular attention was paid to the key areas of: historical accuracy, to ensure educational value
and player immersion; modularity, to allow for the future expansion of the JominiEngine in
subsequent projects; scalability, to ensure that the game supports up to several thousand
concurrent players, at an acceptable level of performance.

A game model was developed that stipulated basic class types (PC, NPC, Fief, and Army), key game
roles (king, herald, system administrator), and specified component mechanics, rules and victory
conditions. The design process was both thorough and systematic, and UML-style diagrams were
used extensively, providing a well-documented basis for subsequent work.

Using this game model, a core game engine (the JominiEngine) was developed and implemented
that allowed players to use the specified mechanics to manipulate objects within the game world in
the manner defined by the rules. Modularity was facilitated through the provision of thorough
documentation and clear interfaces to game and system components, and existing protocols were
used where possible. Historically accurate data was imported into the JominiEngine to allow
Overlord to be fully instantiated.

The choice of a non-relational (NoSQL), distributed DBMS, Riak, as the backend database for the
system architecture is relatively novel, and should help to address the issue of scalability through its
ability to sustain performance during periods of high usage, and its distributed nature, which could
reduce latency for a widely distributed player base. Additionally, Riak’s distributed architecture also
provides a built-in redundancy in the event that one of its nodes should fail.

Suggestions were made for future developments, including various expansions to the JominiEngine
game model, full implementation of client-server architecture, the addition of game content
authoring (modding), and the introduction of a full graphical user interface.

5 | P a g e

ACKNOWLEDGEMENTS

I’d like to thank the following people for their help with this project:

• Hans-Wolfgang Loidl for his support and wise counsel throughout and for somehow
managing to keep my spirits up. Thanks also to Sandy Louchart for some very useful
feedback and suggestions on the game design phase.

• My family and friends for their unceasing support and for not sounding too bored when I

talked about nothing else except this project for eight months solid.

• My very understanding and flexible employers for allowing me to take this course, giving me
the time to attend lectures and finding a way to fit my ‘work’ work (you know, the stuff I’m
actually paid for) around my studies. Also my work colleagues for quietly listening to me
drone on about my lost weekends.

I’d like to dedicate this dissertation to my wife, Ann, and to my late father, Peter Bond, both of
whom I know would have been cheering me on from the side-lines.

6 | P a g e

CONTENTS

1. INTRODUCTION Page 8

1.1 Aims and objectives
1.2 Background
1.3 Requirements and specification
1.4 Report outline

2. LITERATURE REVIEW Page 14

2.1 Game design
2.2 System architecture

3. METHODOLOGY Page 36

3.1 System development
3.2 System evaluation
3.3 Environment and software

4. PROJECT MANAGEMENT Page 42

4.1 Timeline
4.2 Risk assessment
4.3 Professional, legal, ethical, and social issues
4.4 Project management methodology

5. GAME DESIGN Page 48

5.1 Game model
5.2 Game engine

6. IMPLEMENTATION Page 64

6.1 Initial implementation
6.2 The fief: its management and its place in the game world
6.3 Movement and travel interaction
6.4 Backend database management system
6.5 Project extension
6.6 Household management, inheritance and in-game messaging
6.7 Army management
6.8 Combat
6.9 Second project extension
6.10 Royal functions and overlord functions
6.11 Victory conditions and calculation
6.12 System administrator functions
6.13 Code refactoring and testing

7. REFLECTION Page 84

7.1 Compliance with requirements, aims and objectives
7.2 Project management
7.3 Programming practices
7.4 Tools and technologies used
7.5 Required changes to the existing code
7.6 Suggestions for future development

7 | P a g e

8. CONCLUSIONS Page 96
8.1 Game model and engine
8.2 System architecture, scalability and availability
8.3 Modularity
8.4 Facilitation of future extensions: Content authoring and GUI
8.5 Suggestions for future development

9. REFERENCES Page 100

APPENDICES

APPENDIX A: DIAGRAMS Page 105

APPENDIX B: FORMULAS Page 127

APPENDIX C: FILES Page 141

APPENDIX D: TESTING Page 143

8 | P a g e

1. INTRODUCTION

Wargames and historical simulations have been popular pastimes since the last half of the Twentieth
Century. Furthermore, their value as tools for the teaching and reinforcement of creative decision-
making has been recognised since Georg von Reisswitz first introduced his wargaming rules in the
early 19th Century. Indeed, this aspect is increasingly being applied not only in the military
profession but also for managerial personnel across a whole spectrum of occupations.

The arrival of computer gaming has led to an increased flexibility not only in game design but also in
the way in which games are played, and this has resulted in a significant increase in popularity. In
particular, with the advent of the Internet, the last two decades have seen a huge global increase in
the player-base of Massively Multiplayer Online Role-Playing Games (MMORPGs) such as EVE and
World of Warcraft.

The development of a historical MMORPG, therefore, presents the developer with challenges in two
main areas:

• Firstly, game design, in which a balance has to be reached between the requirement for
historical accuracy and the need to keep the game enjoyable for its players.

• Secondly, system architecture which poses significant challenges with regard to system
complexity and scalability, requiring a well-documented modular design with the application
of clear interfaces.

1.1 Aims and objectives

The goal of this project is to design and evaluate the initial version of a distributed, scalable game
engine, the JominiEngine, for a historically-based MMORPG set in a medieval context, entitled
Overlord: Age of Magna Carta (hereafter referred to as Overlord).

It is intended that this be the first in a series of projects that will extend, by degrees, the
functionality of the JominiEngine, ultimately resulting in the production of a fully featured, adaptable
MMORPG platform allowing the creation of games in which players will assume the role of nobles
and will manage fiefs, generate income, raise armies, fight wars with other players, and ensure their
own family's lineage.

This project will focus on developing the essential core of the JominiEngine, and use it to instantiate
Overlord, a game set on mainland Britain in the time period of 1194-1225.

1.1.1 Aims

The aims for this project are to develop the following components:

• A core game model, specifying the basic game objects, interactions, rules, mechanisms, and
victory metrics (see Figure 5 in Section 3.1 Methodology and Figure 9 in Section 5.1 Game
model design). It is intended that the complexity of the initial version be reduced by scaling
down the number of game components; therefore, the model is to be designed in such a
way as to facilitate future development (see Section 1.3: Requirements and specification, for
more details).

9 | P a g e

• A core game engine, enabling players to perform the functionality outlined in the game
model (see Figures 10, 11 and 12 in Section 5.2 Game engine design). Only a minimal user
interface is to be provided, sufficient for testing purposes, although it is hoped to provide a
simple hexagon map of the game world for added context.

• An underlying system architecture, enabling the efficient operation of the game engine at

varying usage levels.

1.1.2 Primary objectives

Primary objectives for this project are:

• The creation of an interactive core game engine. In order to achieve this, it is necessary to
selectively reduce game scope and complexity, whilst still maintaining useful core
functionality, and facilitating future expansion.

• Modularity: it is important to regard the project in the overall context of an ongoing

development process. To ensure for future expansion, therefore, the game engine must be
designed with clear, well documented interfaces and protocols to all game components.
Furthermore, interfaces should be of a high enough level to allow the replacement of
underlying components (for example, the system database) without the need for extensive
re-engineering.

• Scalability: ensuring that the game will support up to several thousand concurrent players,

at an acceptable level of performance. This requires the appropriate selection of system
components and load balancing mechanisms. It is intended to assess scalability through the
measurement of latency (i.e. how long it takes the game engine to process commands).

1.1.3 Secondary objectives

Secondary (optional) objectives for this project are:

• Content authoring: providing a facility for players to modify game content. This can be
achieved through the exposure of game data, which can then be ported into the game by
the player with the use of a scripting language.

• Availability: providing a sufficient level of redundancy to allow for the failure of key system

architecture components.

1.2 Background

Unsurprisingly, given the increasing commercial significance of computer gaming, particularly
multiplayer gaming, both the fields of game design and game system architecture have seen a
growth in the amount of research being undertaken.

10 | P a g e

1.2.1 Game design

Research into game design covers a broad range of subjects, including:

• Game analysis. This includes: the morphological or ontological classification of games in
order to facilitate both further study and game development; The identification of the key
mechanics that should be present in a game and the ways in which these mechanics can be
accessed by the player; Investigations into the motivation of players as a way of identifying
aspects of games that may attract or repel potential game consumers.

• Technical aspects of game design. This area includes:

 How to ensure modularity and increase game engine efficiency through the use of
different programming paradigms, such as Object-Oriented Programming (OOP),
Data-Oriented Design (DOD) and Entity Component System (ECS).

 The way in which player interest can be maintained through use of scripting or
content authoring systems that allow the modification and extension game content.

• Of particular interest to this project is the use of historical accuracy and how it can increase

the immersive aspects of gaming, whilst also enabling the game to become an educational
tool. This extends the relevance of the project beyond the immediate domain of computer
science, to also include the social sciences.

1.2.2 System architecture

The area of game system architecture has seen research into a variety of approaches, including:

• How to efficiently balance the game load. Proposed solutions include distributing players
according to interaction, dividing the game world into distinct but connected zones, using
P2P architecture to dynamically balance the load amongst players, and the modularisation
of functions in order to reduce the load on the core engine.

• How to minimise network traffic. Proposed solutions include basing communication around

the player’s AOI, judicious use of the publish-subscribe pattern, and the reviewing of
standard networking practices such as obtaining object locks and the use of
acknowledgement messages.

• How game data is stored. Proposed solutions include the use of relational or non-relational

DBMSs, the use of distributed and non-distributed DBMSs, and the use of P2P architecture
to share data storage amongst players.

With both game design and game system architecture in mind, this project focuses on:

• Firstly, the design and implementation of a core game engine, initially of reduced
functionality, that attempts to combine playability with historical accuracy.

• Secondly, an investigation into the suitability of a distributed NoSQL database to store game
data, and to address the issue of scalability.

• Thirdly, being mindful of future projects, it attempts to ensure modularity and to expose
game data in order to facilitate the future introduction of content authoring.

11 | P a g e

1.3 Requirements and specification

1.3.1 Functional requirements

1.3.1.1 Game model

As planned and described in the Research Report, in order to focus on technical aspects of the
system architecture, the game functionality for this project contains core components only,
including a reduction in the number of object attributes and game mechanisms.

It was decided that the game model should contain the following basic classes, along with any
additional classes that may be required in order to allow them to perform their functions:

• PlayerCharacter (PC), controlled by the player. Players should be able to manage fiefs (raise
income), raise and lead armies, move through the game world, interact with NPCs and with
other players (for example exchanging money and troops), and conduct family affairs (to
ensure family lineage).

• NonPlayerCharacter (NPC), controlled by a very simple AI. The NPC should be able to

manage fiefs, lead armies, and move through the game world.

• Fief. A fief generates population and income, quantities of which will depend on fief

attributes (for example, fields, industry, tax rate) and the attributes of the fief manager
(player or NPC).

• Army. An army is a collection of troops of different types; it can move through the game

world and can be used in a defensive or aggressive role against enemy armies or fiefs. The
effectiveness of an army will depend on a variety of factors, primarily numbers and strengths
of troops, and the attributes of the army leader (player or NPC).

In addition to the above, the game model should provide the following roles:

• Faction leaders (i.e. kings). This role acts as the focus for a faction and has increased
income and powers within the game (for example, appointing nobles to honorary
positions).

• Faction heralds. These are essentially helpers and facilitators, providing advice to

faction members, helping the king with his finances, and generally enabling the smooth
running of the game.

• System administrator (sysadmin). The sysadmin performs an overview role for the

entire game system and have access to all administrative functions, including the editing
of game objects. The sysadmin is strictly neutral and is available to provide help and
advice for any players.

Where possible, within the limitations of game and the level of abstraction, game mechanisms and
data should be historically accurate; Overlord, the concrete instance of the game should reflect the period
of 1194-1225.

The game model should provide channels of communication in order to facilitate the formation of
alliances between PCs, and to allow other game-related communication. This could be achieved

12 | P a g e

mainly through external tools, such as third-party chat systems, rather than deeply integrated into
the game engine.

1.3.1.2 Game engine

It was decided that the game engine should:

• Provide a minimal user interface, through a test client, allowing the player to:
 Interact with game objects, as defined by the game rules.
 View their current holdings, finances, and armies.
 View their current location within the game world.
 View their in-game progress and ranking.
 (Optional) View their current location and holding (and those of their faction) on a

hexagon map.

• Allow players to communicate with each other through chat and/or bulletin boards.

• Allow players to register accounts, enabling them to participate in games; also, allow players

to delete their accounts, removing any account information.

• Allow players to see games in progress and to join them where there are places available.

• (Optional) Provide a facility for players to modify existing game content or introduce new

content; alternatively, design the architecture in such a way as to facilitate the future
addition of this functionality.

1.3.1.3 System architecture

It was decided that the underlying system architecture should:

• Provide a means for storing both persistent game world data, data associated with individual
games, and data metrics. This should be achieved through the use of a database
management system (DBMS); it should allow for large numbers of small database
transactions, system scalability, and the sophisticated interrogation of data metrics.

1.3.2 Extra-functional requirements

1.3.2.1 Game engine

It was decided that the game engine should:

• Be designed to run on the following operating systems: i) Microsoft Windows (version 7
onwards); ii) Any Linux-based operating system, allowing it to be hosted on a machine in the
Linux labs of the School of Mathematical & Computer Sciences, Heriot-Watt University

• (Optional) Allow for the future development of a graphical user interface (GUI).

13 | P a g e

1.3.2.2 System architecture

It was decided that the underlying system architecture should:

• Allow scalability up to thousands of concurrent players; this will be tested through the
measurement of system latency.

• In the interests of modularity, provide clear interfaces to all game and system components

and a clear definition of protocols used to exchange data. In order to facilitate this, where
possible, standard protocols and specifications will be employed; for example, the GEDCOM
specification could be used to communicate and display PC genealogical data.

• (Optional) provide sufficient redundancy to ensure availability in the event of the failure of

key system architecture components.

1.4 Report outline

Section 2 (Literature review) provides an overview of the research that has been undertaken in the
fields of game design and game system architecture, highlighting those areas that are key to this
project. A comprehensive list of references is provided in a separate section at the end of the
report.

Section 3 (Methodology) covers the decisions taken with regard to the game engine design (both
strategic design concerns and specific implementation issues), and reviews the environment,
software tools and languages used in the course of the project, giving the reasons for their choice.

Section 4 (Project management) addresses issues concerned with the management of the project,
including proposed project plan (timeline); risk assessment; professional, legal, ethical and social issues;
project management methodology.

Section 5 (Game design) describes the creation of the game model, explaining any decisions taken
regarding the core game mechanics and rules. It also describes how the model was translated into
the initial design of the game engine, detailing the proposed structure and key features.

Section 6 (Implementation) describes how the game design was implemented and the manner in
which the project was conducted, giving details and explanations of any game design or project
management decisions that were taken in the process.

Section 7 (Reflection) analyses the degree to which the project succeeded in accomplishing its aims
and objectives, highlighting both the main achievements and any known gaps and limitations, and
drawing general conclusions. It reflects upon the performance and suitability of the technologies
used, draws attention to any immediate tasks needing to be undertaken, and makes suggestions and
recommendations for medium- and long-term extensions to the game model and system.

Section 8 (Conclusions) succinctly highlights the main outcomes of the project, and provides
suggestions for the ways in which future work may build upon those outcomes.

Please note that supplementary information and data, such as test tables and formulas used in the
game engine, can be found in the appendices at the end of the report.

14 | P a g e

2. LITERATURE REVIEW

Although, as stated in Section 3: Objectives, the main focus of the project will be concerned with
technical aspects of the underlying system architecture (for example, how to ensure scalability), it is
necessary to look at a number of other areas, some of which will form part of future projects (see
Section 4: Future developments). These include game design, content authoring, and historical
background.

2.1 Game design

Anderson et al. (2010) survey the area of ‘serious games’, defining them as “computer games that
are not limited to the aim of providing entertainment, that allow for collaborative use ... for learning
and educational purposes” (Anderson et al., 2010, p.255). The review focusses on the use of ‘serious
games’ in the field of cultural heritage, a genre which has in recent years seen a growth in popularity
with the release of commercially successful games such as the Civilization and Total War series.

An increasing number of commercial history-based games have become available, many based on
historical conflicts. These games often contain a high degree of historical accuracy and range from
‘traditional’ wargames that depict specific battles in which units are abstractly represented on
hexagon maps, to those that use cutting edge animation technology to allow the player to actually
take part in battles.

As Kirschenbaum (2011) points out the value of wargames as tools for the teaching and
reinforcement of creative decision-making has been recognised since Georg von Reisswitz first
introduced his wargaming rules in the early 19th Century. Indeed, this aspect is increasingly being
applied not only in the military profession but also for managerial personnel across a whole
spectrum of occupations. He asserts that the wargame is “a vehicle for its participants, either
through role-playing or the arbitrary rule-based constraints of the game world, to critically examine
their own assumptions and decision-making processes.” (Kirschenbaum, 2011)

Video games are seen as an ideal medium for attracting the interest of young people, and the
availability of high performance video gaming engines has led to the development of games
specifically targeted at cultural heritage education - Anderson et al. mention the Virtual Egyptian
Temple, for example, developed by Jacobson and Holden (2005) and the Ancient Olympic Games,
developed by Gaitatzes et al. (2004).

Anderson et al. also draw attention to the increasing provision of modding tools as an intrinsic part
of many commercial games has allowed some of them to be adapted for educational purposes; for
example, The History Game Canada (unfortunately no longer available) which adapted Civilization III
in order to model Canadian history.

The use of AI to model realistic behaviour in the denizens of virtual worlds, and thus create a more
immersive experience, has become also increasingly important, say Anderson et al. Programming
techniques are being continuously developed to enable game entities to implement decision-making
in order to achieve in-game goals and objectives. These techniques include the use of Finite State
Machines (FSMs) which defines a set of distinct behavioural states for an entity, only one of which
can be active at any one time, and which are triggered by in-game events. Anderson et al. also
mention Goal-Oriented Action Planning (GOAP) which relies on the entity dynamically decides upon
a plan of action based on the goal, available actions, and the costs associated with those actions.
Another technique being developed to further enable AI is that of annotated environment, in which

15 | P a g e

the objects that make up the game world contain the necessary knowledge (data) that allow other
game objects to interact with them. This allows game entities to ‘learn’ new behaviour simply by
adding data to the environment, removing the need to continually re-write their functionality.

2.1.1 Game design: Game analysis

An essential first step in the creation of a computer game (or, indeed, any computer system) is to
identify the component parts, objectives, player motivations, etc. This information can then be used
to develop a template for the proposed system.

Sicart (2008) attempts to define the concept of game mechanics in the context of object-oriented
programming, allowing the inter-relationship of the mechanics to be more clearly mapped, and also
showing how they relate to game hardware and player experience.

He refers to research carried out by Avedon (1971) into the structural components of games, which
makes the distinction between game rules (permitted actions) and mechanics (how they are carried
out). Sicart sees game mechanics as “actual interaction” and rules as the “possibility space” in which
some mechanics can be accessed.

He asserts that a more useful definition for the game programmer is that “… game mechanics are
methods invoked by agents, designed for interaction with the game state.” This definition allows
mechanics to be described in an object-oriented way, which is more useful to the description of the
game as a software system and can be more easily described using existing object-oriented tools
such as UML diagrams. Additionally, this definition is not limited to the requirement for human
interaction but can be applied to automated entities - i.e. an agent could be a PC or an AI controlled
NPC.

Sicart is of the opinion that games should use several categories of game mechanics, some of which
relate to the principal aims and challenges of the game, and others that allow the player to perform
actions that are not necessarily aimed at achieving those central goals. The game should allow for
the player having their own goals, and should provide players with the freedom to pursue them.
This ‘sandbox’ aspect of games is becoming increasingly important, particularly in MMORPGs, and is
seen as a way of encouraging player’s to invest their time and energy in the game.

Sicart defines core game mechanics as those that are repeatedly used to achieve the victory game-
state, as defined by the game designer. He further breaks core mechanics down into two sub-types -
primary and secondary. Primary core mechanics are those that can be directly used to overcome
problems, resulting in the achievement of the victory game-state. Secondary core mechanics are not
essential to achieving the victory state and may only be available under certain circumstances, but
they may nevertheless aid the player in achieving victory. This distinction allows designers and
programmers to apply a finer granularity to the mechanics they provide to their players.

Sicart also defines concept of ‘compound mechanics’ as a sub-set of game mechanics that comprise
a core mechanic, although it is often useful to think of them as single mechanic for purposes of initial
game design.

Sicart feels that this definition of game mechanics can be used in relation not only to game entities
such as PCs and NPCs but also to other game components such as input devices. Additionally, it
lends itself readily to transcription into documentation and thus aids communication between
designers and programmers.

16 | P a g e

Crawford (2013) argues that there is a significant gulf between those who design games, whose
outlook tends to be artistic and creative, and those who program them, who tend to approach things
in a more procedural and disciplined manner. As a result, the final version of a game will often not
reflect the designer’s vision.

In order to bridge this gulf, Crawford (2002) encourages game designers to think of their games in
terms of verbs - what actions will the player want or need to be able to perform in the game?

“At the outset of the design process, after you have established the goals of the design but
before you have begun work on the design itself, you must ask yourself the question, "What
are the verbs in this design?" All through the design process, you must ask yourself that
question time and time again." (Crawford, 2002, p.93)

Crawford (2013) states that, when thinking of game objects, the designer should consider them in
terms of what actions they perform. “A window is not glass; it’s something that blocks air
movement while permitting light to pass freely.” (Crawford, 2013, p.90) Such thinking can help
highlight basic actions and inter-object relationships, which can then be mapped to methods in the
programming stages.

Crawford (2013) also uses the concept of ‘personality models’ in order to define the way in which
game characters (PC and NPC) interact with each other. To do this he proposes assigning each
character a number of variables, divided into several types: intrinsic, mood, volatility, accordances,
and relationships. Intrinsic variables are the basic attributes, such as intelligence, integrity and
attractiveness. Mood variables cover the extent to which a character exhibits basic emotions such
as anger and sadness. Volatility variables control the rate at which a character’s moods change (for
example, adrenaline effects anger). Accordance and relationship variables dictate the way in which
a character will perceive the intrinsic variables of other characters.

Crawford (1984) also urges game designers to closely consider the relationships between opponents
which can define the whole tone of the game. Is this relationship asymmetric, in which each
opponent is assigned a unique combination of resources and attributes, or symmetric, in which
opponents receive exactly the same resources and victory just depends upon execution? The former
often makes for a more interesting game but tends to be harder to program, as goals need to be
carefully balanced in order to be achievable by both sides.

Designers should, Crawford asserts, attempt to introduce the concept of triangularity into their
games; this is the ability to pursue victory through the use of indirect strategies, which may also
leave the player open to defeat. This concept can be extended to allow victory to be achieved
through third parties, such as NPCs or even PCs. Such aspects of gaming can, Crawford feels, help to
reveal certain intrinsic truths about society: “… society discourages direct conflicts. Yet conflict
remains in our lives, taking more subtle and indirect forms … Only indirect games offer any
possibility of designing games that successfully explore the human condition.” (Crawford, 1984,
p.72)

Lankosk and Björk (2008) propose a novel approach to game design by basing the game structure
around the design of its characters and their interaction. Their proposed method is based around
three main aspects of character design: i) Recognition: how a character is defined in the game world,
both physically and emotionally; ii) Alignment: how the character is controlled and what kind of
access is given to their thoughts and motivations. A way of defining alignment, for example, is by
associating with a particular social group; iii) Allegiance: the characteristics of a character that allow

17 | P a g e

a player to positively identify with them. This aspect can be very important in regard to a player’s
immersion in the game: As Lankosk and Björk point out, “Successful allegiance makes players feel
that what they are doing in the game is the right course of action since they buy into the goals of the
PCs.” (Lankosk and Björk, 2008, p.4). This is an especially important aspect for role-playing, where
giving a player moral choices that can be rewarded or punished both increases their engagement
with the game-world and reinforces their sense of freedom.

Alverez et al. (2006) argue that the classification of computer games is intrinsically difficult because
of the constant evolution of computer technology. They attempt to overcome this problem by
creating a tool - V.E.Ga.S. (Video Entertainment & Games Studies) – that takes a morphological
approach to classification; that is, based on a game’s component parts and how they are structured.

Using a seed collection of 588 games, several areas were analysed including: interactivity (how the
player interacts with the game world); actions; rules; results. The last three areas can be easily
mapped to what programmers might refer to as a function - i.e. it takes an input (action), defines
how it can be transformed (rules), and this produces an output (result).

Alverez et al. used the data from this analysis to derive a number of ‘game bricks’, a combination of
which can be used to classify any game. The following twelve bricks were identified: answer;
manage; have luck; shoot; construction/creation; block; destroy; move; avoid; position; time; score.

Alverez et al. found that it was possible, using the game bricks, to identify a number of game
‘families’ (games that had the same combination of bricks) and that, furthermore, these families
often contained games from different genres. In this way, it was possible to reveal underlying
themes that were not easy to see at first glance.

Alverez et al. also identified a number of ‘metabricks’ (bricks that always accompany each other).
For example, ‘shoot’ always accompanies ‘destroy’ and can be combined into the metabrick ‘killer’.
Using this method the following metabricks were identified: driver; killer; god; brain. These
metabricks allow games that were classified in unique families (a family containing only a single
game) to be reclassified as belonging to other broad families.

Yee (2006) attempts to create an empirical model of the motivations of MMORPG players, arguing
that the ability to classify player motivations, in combination with usage or subscription figures,
could be a powerful tool for not only game designers and publishers, but also for researchers (for
example, in the field of psychology).

Early research in this area was carried out by Bartle (1996), who identified four main Player Types –
killers, socialisers, achievers, explorers – and attempted to define the ways in which they interacted
with each other and with the game world. Yee points out, however, that the assumptions Bartle
made to arrive at his model have never been empirically tested.

Yee compiled a questionnaire containing forty questions (each with a rated answer of 1-5), based on
Bartle’s player types, with additional input from previous MMORPG surveys. Data was then
collected from 3,000 participants. Ten main motivational categories were derived from the results,
each of which contained a number of sub-categories. For example, the ‘advancement’ category
contains ‘progress’, ‘power’, ‘accumulation’ and ‘status’. These categories were further sorted into
three main groupings – ‘achievement’, ‘social’ and ‘immersion’.

18 | P a g e

Figure 1: MMORPG player motivations (Yee, 2006)

The results revealed some interesting correlations. For example, whilst both males and females are
equally sociable, females tend to be more interested in relationships; Males are more competitive
than females; Analysis seemed to indicate that the ‘escapism’ motivation could be correlated to
problematic (i.e. unhealthy) usage.

Yee was also able to disprove one of Bartle’s assumptions, namely that Player Types are
independent of each other; Yee’s results showed that players with a strong preference for one
motivational category can, in fact, rate highly in others.

Aarseth et al. (2003) attempt to define a system for more accurately identifying genres of ‘virtual
world’ games by using to set of ‘dimensions’ (i.e. game aspects), grouped under five main space,
time, player structure, control, and rules (see Table 1).

Dimension Explanation
Space
Perspective Omni-present (the player can see everything) or vagrant (can only see what the

character sees)
Topography Geometrical (continuous freedom of movement) or topological (discrete non-

overlapping moves – e.g. chess)
Environment Dynamic (the environment can be changed by player or game events) or static

(non-changing - e.g. a football field)
Time
Pace Real-time or turn-based
Representation Mimetic (events realistically mimic real-world event time) ors arbitrary (events

occur at set pace)
Teleology Finite (there is a clear ending point for the game) or infinite (the game can just

keep going - e.g. The Sims)
Player structure
Player structure Single player, multiplayer, single team, etc.
Control
Mutability (of
character)

Static (e.g. the player is just awarded points), experience-levelling (the
character’s stats are permanently enhanced), or power-ups (the character

19 | P a g e

receives a temporary boost to powers)
Savability Non-saving, conditional (e.g. at certain ‘checkpoints’) or unlimited
Determinism Deterministic (the same outcome can be reproduced by carrying out the same

actions) or non-deterministic (there is an element of randomness)
Rules
Topological-rules Victory rests on the presence of the player at a certain place in the game world
Time-based-rules The passing of time effects victory status
Objective-based-
rules

Victory is based upon specific conditions being met

Table 1: Aarseth’s ‘dimensions’ for game classification

It is Aarseth et al.’s goal that the classification of games using the above method may lead to the
design of new games by combining dimensions in new ways; taking an existing game and altering
some dimensions could radically alter its nature in ways that had not initially occurred to the
designer.

2.1.2 Game design: Scripting and content authoring

Anderson (2011) reviews the field of scripting systems deigned to modify and expand game content,
and attempts to classify existing systems.

Although originally only used by game developers as a tool in the game design process, the inclusion
of scripting systems, be they generic or proprietary, provide the player with the opportunity for
content authoring (also known as ‘modding’), providing the potential to significantly expand the
game’s scope. Indeed, Anderson argues that “scripting systems are considered one of the most
important developer tools that are included in modern game engines.” (Anderson, 2011, p.47). Such
systems also allow the development of ‘serious games’ - educational historical simulations – through
the adaptation of existing commercial game technology, and has also enabled the commercialisation
and licencing of game engines such as Unreal.

Many games now include fully-featured integrated development environments (IDEs) for the
purpose of content modification (or ‘modding’) which has led to the increasing popularity of the
data-driven programming paradigm. Data-driven design separates system behaviour from system
functionality and architecture, allowing behaviour to be defined by input data.

This has the effect of freeing game designers and artists from the constraints of working with
program code and, correspondingly, allows programmers to progress more quickly without having to
wait for designers. The result is a transformation from internal coded program logic to external
game asset, states Anderson, reducing the complexity of the core game engine. Anderson defines a
scripting system in this context as “a system using a programming language which allows the
modification of program logic without the need to recompile the application (game engine) source
code.” (Anderson, 2011, p.49).

Anderson’s review finds that scripting systems are often interpretive rather than compiled, which
increases ease of understanding (an important issue for end-users who may not be trained
programmers) but reduces performance. However, many are designed to be pre-compiled and
executed within a virtual machine (VM) which makes for an improved performance and a reduction
of run-time errors. Many scripting systems are embeddable within the core game engine, and trend
is towards generic rather than proprietary languages.

20 | P a g e

Anderson’s classification defines 3 main categories of scripting system, based on functionality: i)
Initialisation systems, which are run once, usually to set the initial values of parameters, etc. at game
startup. ii) Trigger-only induced systems, which either define actions to be taken by game engine
when certain event occurs, or define both the event and subsequent actions. Iii) Traditional
program-like systems, which contain familiar programming structures (for example, control loops).

Anderson finds that many languages can be included in all of the categories above. One such
language is Lua, which may account for its increasing popularity. Binstock (2013) asserts that
scripting languages “have already become standard practice in game development, where Lua is
frequently embedded for scripting UI components.”

White et al. (2009) also recognise the potential benefit to be gained from using scripting languages
which “allow developers to easily specify how an object or character is supposed to behave, without
having to worry about game itself” (White et al., 2009, p.43); they argue that it is of special
importance for MMOs because of the sheer number of objects and players present in game. The use
of scripting languages has sometimes resulted in the development of completely new games (for
example, Counter-Strike from the Half-Life source), although it is often necessary to limit their
capabilities in order to reduce the occurrence of software errors and cheating.

White et al. also draw attention to some problems, however. A drawback to many traditional
scripting languages (e.g. Python) is that the user must be aware of some low-level issues (such as
frame rates) that are crucial to game performance but which most amateurs and even designers are
often not be familiar with. There have also been problems, particularly in MMOs, arising from
running many scripts concurrently, resulting in inconsistent game state. Many of these problems are
being solved by adapting scripting languages to make use of tried and tested OOP patterns, such as
the state-effect pattern which ensures that an object’s state can be updated by many concurrent
effects (i.e. the results of actions that can change the state) in a more structures way.

Another problem pointed out by White et al. arises from the way in which scripts can interact with
each other in subtle and unforeseen ways; this means that an incorrect data value in one script can
cause an error in another. To try to help identify where these problems might occur, work is being
carried out in the area of data provenance (i.e. tracing where data originates, how it has been
altered, how it is transferred between entities, etc.) but this is proving difficult to introduce into
scripting languages.

2.1.3 Game design: Programming paradigm

Another approach to game design, advocated by West (2007), is the use of Entity Component
System (ECS) programming. West asserts that the traditional object-oriented approach to games
programming often results in three common problems: Firstly, leaf objects can become over-
burdened by the presence of superfluous functionality further up the inheritance tree. Secondly,
some functions are only available to very specific types of objects; if the programmer wants to allow
another type of object to invoke it, they either have to duplicate the functionality or move
functionality further up the inheritance tree. Thirdly, over time, as the code is modified, objects
tend to morph into blob anti-patterns.

With ECS, on the other hand, game objects are replaced by an entity composed of a series of
separate components. Rather than being a hard-coded object, each entity is defined by its
constituent components and each component contains the methods that are used in its processing,

21 | P a g e

independent of other components. Components should be as independent as possible but,
pragmatically, there may need to be dependencies between certain components (for example,
component A may need to be processed before component B); such dependencies need to be
addressed through programming.

Figure 2: Object composition using components, viewed as a grid (West, 2007)

Such an approach lends itself to data-driven programming and enables the simple creation of new
objects from existing components. In turn, this provides designers with the freedom to experiment
without need for significant coding.

Martin (2007) argues that the use of ECS for MMORPGs allows for increased efficiency in processing
large numbers of game objects based on common characteristics (i.e. components), a feature that is
increasingly useful as MMORPGs grow in both game world size and graphical sophistication. Also,
when used in combination with an underlying database, it allows objects to be defined fluidly using
queries, rather than a coded list of components.

Another programming paradigm to consider when designing games is Data-Oriented design (DOD),
advocated by Llopis (2009). Llopis argues that, with its dependency on grouping code around a
perceived object, “object-oriented programming (OOP) and the culture that surrounds it … could be
hindering your project rather than helping it.”

Conversely, DOD shifts the focus of the program to the data itself and how it is handled. DOD
specifies that a program should be structured in a way that is most suitable for the processing of the
data; where possible data should be grouped by type, even if it is from different objects. In this way,
the programmer can address a single aspect of multiple objects simultaneously (see Figure 3).

22 | P a g e

Figure 3: Data calls in object-oriented (left) and data-oriented (right) programming (Llopis, 2009)

Llopis claims that DOD can help with a number of issues: Firstly, parallelisation because it enables
the processing of separate data types in different threads or processors with a minimal need for
synchronisation. Secondly, cache usage because the same code is being used consecutively rather
than different consecutive functions for the various data types in an object. Thirdly, modularity
because functions designed to work on single data types are often small and simple to follow.
Finally, testing because tests only need to supply an input and check on the output.

However, Llopis also draws attention to some disadvantages: Firstly, there can be a significant
overhead when learning DOD, as most developers will have been taught object-oriented
programming. Secondly, it can be very difficult to interface a DOD program into an existing object-
oriented one. Finally, DOD can make debugging harder because data relating to a single logical
entity can be stored in different structures and be processed separately.

2.1.4 Game design: Historical background

Dunnigan (2000) argues that a key feature in the design of wargames and historical simulations is
accuracy. “The object ... is to enable the player to recreate a specific event … [therefore] the game
must be realistic” (Dunnigan, 2000, p.13). This places an extra burden on the game designer who
needs to ensure accuracy, both in game data and mechanisms, regarding aspects such as geography,
society, and military technology and doctrine.

However, Dunnigan points out, it is also important to remember that it is a game and should
therefore be fun to play; most players of wargames and historical simulations are looking for what
Dunnigan terms as ‘dynamic potential’ – how the player might interact with the game world and
mechanisms in order to change history.

It is important, therefore, that the game model should be based around issue of conflict and the
attainment of victory conditions that make sense in this context. Essentially, the game should be

23 | P a g e

concerned with how best to manage resources in order to achieve this aim. The in-game battles will
be abstracted but should reflect general concepts within the historical context (for example, how
military technology and practices affected the relative strengths of troops for each nationality).

Two very useful sources for wargaming, emerged from the aftermath of the Napoleonic wars: Von
Clausewitz (1997) provides much useful information on the principles and conduct of warfare,
covering topics such as the foundations of strategy, the importance of information and planning, and
the best uses of offense and defence. Of more practical use to game designers, von Reiswitz (1824)
produced what is regarded as the first modern set of wargaming rules, aimed specifically at the
military profession and since translated and adapted by military establishments in many countries
around the world. It defines a rigid set of rules and charts that can be used to simulate the events
and effects of battle.

The location and period selected to be the subject of the MMORPG in this project is Western Europe
in the high and late medieval periods (roughly AD 1100 to 1450); conflicts of this period include the
First Baron’s War, the Hundred Years War and the Wars of the Roses, all of which are the subject of
many historical works.

The pioneering work by influential historian Charles Oman (1885) chronicles the development of
military practices throughout the medieval period, including the increasing importance of siege
warfare. Although somewhat venerable, the work of Oman is significant because of its ability to
construct a coherent narrative from fragmentary and often partisan sources. Although primarily a
study of the ‘military art’, Oman’s work always attempts to place this topic within a political context:
“… to speak of the characteristics of military science involves the mention of many political
institutions … Feudalism, in its origin and development, had a military as well as a social side, and its
decline is by no means unaffected by military considerations.” (Oman, 1885, p.1)

Tuchman (1979), whose work is concerned with the Hundred Years War, describes the late medieval
period as “a violent, tormented, bewildered, suffering and disintegrating age” (Tuchman, 1979, p.xv)
that historians have come to see echoed in the tumultuous events of the Twentieth Century,
particularly those surrounding the two world wars. Tuchman argues that the very fact that we can
see, from a vantage point of 600 years in the future, certain similarities in the behaviours of people
and societies, shows them to be “permanent in human nature” (Tuchman, 1979, p.xvi) and therefore
valuable in the lessons that they can teach.

However, Tuchman points out that it is very hard to chronicle events of this period for a number of
reasons; for example, dates were calculated differently (the year began at Easter, which varied from
year to year), populations and numbers in armies were almost always exaggerated, different sources
spelt names in different ways, and sources generally contradict each other.

Tuchman’s work is very much a narrative history of the Hundred Years War, grounded by following
the life of one particular participant, the French noble Engeurrand de Coucy VII. However, it is
nevertheless a valuable source of data on the late medieval period; for example, giving a succinct
explanation of the names, values, and weights of the coins and currency of the age.

Sumption’s 3-volume work (1990, 1999, 2009) on the Hundred Years War attempts to not only
chronicle the events of this epic conflict but also to place them within the context of medieval
society, showing the ways in which it shaped that society. For example, he recounts how the
delicate socio-economic balance that existed between the towns and the rural areas was often
disrupted by the influx of farmers who, due to privations caused by conflict, abandoned their small
holdings for a new life in the town.

24 | P a g e

Like Tuchman, Sumption also draws attention to the unreliability of medieval sources, finding most
chronicles to be “episodic, prejudiced, inaccurate and late” (Sumption, 1990, p.x), often because
they were written under the patronage (and therefore reflecting the interests) of particular
aristocrats. Other sources, however, such as civil and military records, frequently contain much
unbiased and illuminating information.

Nofi and Dunnigan (1997) provide a wealth of information not only about the Hundred Years War
but also about medieval life and society in general, including warfare, customs, economy, and life
expectancy. This illustrated online book was compiled as a companion to Nofi and Dunnigan’s
MMORPG, The Hundred Years War, (no longer available) and contains much information of direct
relevance to the prospective MMORPG designer, whilst also attempting to put the events of that
conflict into the context of happenings in the wider world.

Gillingham (1990) gives an account of the Wars of the Roses, the series of conflicts that arose in
England shortly after the conclusion of the Hundred Years War. He attempts to divorce the events
of these wars from the myths that have since come to dominate our perception of them, thanks in
no small part to the works of William Shakespeare. Gillingham provides some very useful
information about medieval life in England and helps to explain why the nature of that conflict was
so very different from that of the Hundred Years War. For example, because of an extended period
of peace in England (in total contrast to continental Europe) there were very few towns with walled
defences and, therefore, very few sieges in the Wars of the Roses. This led to short, sharp
campaigns in which the opposing sides tried, in general, to bring each other to battle as soon as they
could gain an advantage.

Nicole (1996) provides a compendium of facts relating to military science and practices in Europe
throughout entire medieval period (AD 400 to 1400), sub-divided into distinct periods, one of which
is the late medieval period (AD 1275 to 1400). He includes data on recruitment, organisation, siege
warfare, taxation, logistics and strategy.

There are also a number of sources written specifically for designers of MMORPGs; these aim to
provide game world data for games that either take place in the medieval era or in a fantasy setting,
most of which are firmly based on medieval society and demographics. Steele (2012) provides a
detailed and thorough study of the fief, very much the key building block of medieval society,
concentrating on life in England and France during the middle to late medieval periods. Topics
covered include fief ownership and responsibilities, agriculture, economy, taxes, population, warfare
and society in general.

Written as a companion piece to the work above, Steele (2010) concentrates on the entity of the
European town and city during the late medieval period, giving a detailed overview of all aspects of
life, including commerce, taxes, laws, governance and urban society. Being mindful of her intended
audience (game designers), Steele attempts in both of these works to supply many useful facts and
figures (for example, military wages and prices for common trade items).

Similarly, Ross (2013) provides concise, usable data that focusses particularly on late medieval
Europe, aiming to help instil a sense of realism to the game world. Topics covered include
population density (cities and rural), economy and agriculture, and fortifications.

Other, more narrowly focussed, texts can also prove useful when trying to introduce realism and
authenticity:

25 | P a g e

• Broadberry et al. (2011) focus on the English population during the high to late medieval
period and attempt to arrive at accurate estimates by considering sources such as the
Domesday Book, poll tax returns, and manor records; these population estimates were also
considered in the light of agricultural records, to see if they could be supported by the
amount of food available.

• Adams (2004) examines the way in which Lanchester’s Laws can be used to arrive at a
reasonably realistic estimate of battle casualties, given the numbers involved and the rough
historical period. Lanchester’s Linear Law can be applied to ‘ancient’ warfare (i.e. where
battle was essentially a man-to-man affair) and predicts that, given similar weapons and
troop quality, casualties will be roughly equal on both sides. Lanchester’s Square Law is
used for modern combat and takes into account the application of ranged weapons, giving
the larger army an even more significant advantage than would at first be apparent.

2.2 System architecture

Caltagirone et al. (2002) identify a number of key goals that an MMORPG must fulfil. They include:

• The provision of a game world that contains customisable objects (thus providing the role-
playing element)

• A game world state that is persistent (i.e. that exists independently of a player’s gaming
sessions)

• The ability for players to interact both with other players and with the game world

To this list Driel et al. (2011) also adds:

• A game world state that is not only persistent but also consistent, between the client and
the game servers, and also between the clients themselves

In order to provide these components, the MMORPG architecture must face various issues
(Caltagirone et al., 2002), including:

• The minimisation of network traffic
• Load balancing
• Efficient client-side performance
• Scalability
• Security

2.2.1 System architecture: Models

Caltagirone et al. identify two main models of architecture that are commonly used in the design of
the MMORPG – centralised, or client-server (C-S), in which the game state and logic are stored in
and processed by servers before being communicated to the client to allow viewing and interaction
by the player; Peer-to-peer (P2P) in which the game state and logic are stored in and processed
collaboratively by the clients. Driel et al. (2011) adds a third type, namely the hybrid architecture,
which contains elements of both C-S and P2P.

26 | P a g e

Caltagirone et al. give several reasons why C-S is traditionally seen as the model of choice for
MMORPGs:

• Unlike P2P, it allows the game to be controlled centrally, which is a more acceptable
business model for many game publishers.

• Being hosted on dedicated servers which are available 365 days a year, it is easier to
maintain game world persistency and consistency without the need for the complex
synchronisation required by P2P.

• It is more easily secured against cheating, as each client request can be verified against the
centrally-stored game state before it is actioned.

• It is a simpler architecture to understand and implement.
• Through the proper application of scalability, any potential server bottlenecks, a

disadvantage often associated with the C-S model, particularly during periods of high usage,
can be mitigated.

Proponents of P2P, often make the claim that the level of network traffic is lower, thus reducing
latency, but this is a much-debated issue. Caltagirone et al. cite Cronin et al. (2001) as claiming that
C-S and P2P have roughly equivalent network traffic profiles, whilst Diot and Gautier (1999) claim
that P2P only generated half the network traffic of C-S.

2.2.2 System architecture: Client-Server distributed functions

Modularisation of functions, in order to provide for the most efficient running of the core game
engine, is a strategy suggested in a number of articles. Dieckmann (2013) proposes a multi-server
architecture with the following separate components:

• Underlying the whole system, a dedicated database; this ensures persistence and provides a
definitive source of data in case of system failure.

• A login server; this allows for the most efficient processing of logins and, being a distinct
function, is ideal to separate. In addition, to protect the player’s personal information,
enhanced security measures can be more easily implemented.

• A patch server; this enables the updating of clients prior to login, allowing a potentially high-
load process to be carried out in parallel to other game functions.

• Game server(s); these run the core game engine and provide scalability by running in
parallel.

• Proxy server(s); these are responsible for all server-to-client communications and perform
three main functions. Firstly, removing the need for game servers to de/encrypt and
de/compress data; secondly, improving security and filtering out any harmful traffic (for
example, Denial of Service attacks) by removing the direct connection between clients and
game servers; thirdly, improving scalability by allowing new proxy servers to be created
dynamically.

• A synchronisation server; a relational database can be a potential bottleneck, especially as
the number of players increase, as frequent real-time access can considerably reduce the
system performance. A synchronisation server can alleviate this issue by storing the game
data in memory, allowing fast access. The database still needs to be updated but the
synchronisation server can do this in the most efficient way possible (for example, in
batches). Having an additional copy of the game data also helps with recovery from system
failures.

• A ‘world server’; with so many separate components, the world server is responsible for co-
ordination – for example, the matching of clients to game servers, spawning new proxy or
game servers, the provision of centralised functions such as chat.

27 | P a g e

Figure 4: A distributed-function MMO architecture (Dieckmann, 2013)

Radoff 2007) proposes a very similar architecture but includes two additional elements:

• A single ‘worldwide’ chat server, enabling chat amongst all game clients, no matter which
game server they are currently connected to.

• A web server, through which certain game-related data may be exposed (for example,
rankings, group memberships, etc.).

Caltagirone et al. (2002) propose a C-S MMORPG architecture with several optimisations. These
include, firstly, a single database stores the persistent world state but, for ease of access and to
reduce any network ‘bottlenecks’, subsets of the database are stored in direct access memory on
different servers, each of which can correspond to particular game world servers. This arrangement
allows the game world to be divided amongst several game servers, each of which contains a
geographical zone of the game world, thus providing scalability. Additionally, this arrangement also
provides a certain degree of redundancy.

Secondly, the architecture provides for a separation of functions, both on the server and client sides.
Server-side a module (the “Governor”) administers server co-ordination, user authentication, player
group functions, AI components, and network functions (e.g. en/decryption). This allows the core
game functions to operate without the added computational load associated with the periphery
functions. It also facilitates the alteration of individual components independently of each other.

A similar central control module (the “Mayor”) exists client-side. This handles a number of
functions, including the maintenance of the local game state, updated as necessary by server
updates; the real-time processing of graphics; and the translation of player input into game state
data and graphical representation. This arrangement enables the client to assume some of the
processing burden which, again, improves network traffic and overall performance.

28 | P a g e

2.2.3 System architecture: Load balancing strategies

In order provide for scalability, an MMORPG architecture must identify the most efficient method
for balancing the processing load between a number computing resources.

One common method amongst C-S architectures is the use of ‘shards’, a term originally associated
with the MMORPG Ultima Online (derived, in fact, from the actual game lore). Shards are mirrors of
the game world, each of which runs independently in parallel on one or more servers. Whilst
allowing for an even distribution of players and computing resources, Drain (2011) points out that
there can be significant disadvantages, not least of which is the dividing of the player-base into sub-
communities, thereby limiting the opportunity for player-vs-player (PvP) play, and introducing the
potential for skewing the shards’ economic and political models.

An alternative to the traditional shard model is the single-shard model used by EVE, the space-based
MMORPG, and described by Drain (2008) and Emilsson (2014). EVE maintains a single world for all
of its players (approximately 500,000), consisting of over 5,000 star systems, each of which is run as
a separate game process. EVE runs on hundreds of ‘SQL’ servers, all of which are connected to a
central database server which maintains the game state. The mapping of star systems to physical
servers is dependent on the star system population, so that a single server might house one
particularly popular star system, or several low-population star systems. In order to keep track of
which SQL server a player is using, and to facilitate player transfer from one server to another (i.e.
travel between star systems), EVE uses a series of proxy servers to which the clients are connected.

Emilsson highlights a number of advantages of the single-shard: from a technical standpoint, not
having to cope with the synchronisation and duplication issues inherent in moving data between
databases; from a game experience standpoint, principally a more realistic evolution of both the
economic and political systems and the development of a mature and complex, albeit less forgiving,
‘social tapestry’.

However, there are also disadvantages: firstly, the high cost of purchasing, maintaining and
upgrading servers in order to keep up with an expanding player-base; secondly, the potential
bottleneck caused by using a single underlying database. Emilsson states that “running an MMO in a
single shard introduces strains on system architecture, low-level runtime, databases, and
operations.”

Whether or not single or multiple shards are employed, a common model for balancing the
processing load is to divide the game world into several geographical zones and to distribute these
zones amongst the available servers. Clients will then connect to whichever server is hosting that
part of the game world in which they are currently residing.

One example is the architecture described by Emilsson above. Another is proposed by Assiotis and
Tzanov (2005), who highlight one of the main challenges associated with this method, namely how
to synchronise, without a noticeable detrimental effect on performance, the transition of a player
from one zone to another. Many games solve this issue by partitioning one zone from another, only
allowing movement between zones through the use of artificial mechanisms such as a sea voyage or
a teleport; however, this method introduces strict limitations on the design of the game world.

Assiotis and Tzanov propose a model that not only allows free movement between zones but also
provides for events that occur close to zone borders and therefore affect multiple zones. They
achieve this through the use of the Publish-Subscribe pattern, in which neighbouring servers are
automatically subscribed to receive notification of events that occur within a specified border area.

29 | P a g e

For example, if a player P passes over the border then AA, the server that currently ‘owns’ P, will
send an event message to BB, the new server, indicating that BB now has ownership of P; this
message will contain all state information for P, which includes a list of all other players that are
within interaction distance of P. BB will then contact P’s client, telling it to connect to BB from now
on.

Variations of the geographical model exist in which load-balancing algorithms are used to attempt to
dynamically balance the load between physical servers. Kim and Park (2013) cite research by
Andrade and Corruble (2005) and Jinzhonh and Zhigang (2010) in which the game world is divided
into fixed-size cells, multiples of which are hosted on a single server. When the load on a server
reaches a certain level, cells can be transferred to a server with a lesser load. Jinzhonh and Zhigang
propose an algorithm that selects the cell with the least interaction with its neighbouring cells for
transfer to another server.

Alecu (2012) states that two key issues with dynamic load-balancing systems, such as those
mentioned above, are: i) each server needs to be in constant communication with its neighbours in
order to know which are available in case a transfer of cells is required; ii) the computational load
dedicated to this process, can have a detrimental effect on core game functions. He proposes an
architecture in which this burden, and other central functions, is assumed by a ‘master’ server which
monitors the load of all game servers and spawns new servers as required, or redistributes the
overall load in order to shut down unneeded servers during quite periods.

By definition, in P2P or hybrid architecture models, the load is distributed amongst the participating
peers, with each client assuming responsibility for the immediate locality – area of interest (AOI) – in
which the player is operating. This has the advantage of greatly reducing the need to maintain large
numbers of servers, and also of being able to dynamically respond to the ebb and flow of concurrent
player numbers. However, it also introduces problems: Firstly, the load is distributed but not
balanced. Players in densely crowded areas of the game world have a much higher load than those
in sparsely populated areas. Secondly, there is the potential for a significant degree of data
duplication on different clients, and of the need to synchronise game state between clients. Again,
this is exacerbated by high player density.

One area, reviewed by Fan et al. (2010), in which the load can be more evenly distributed is that of
NPC hosting. NPCs are AI-controlled characters that are present in a game in order to provide
additional interaction for players, or to contribute to the storyline, or to simply make the game
world more realistic and immersive. However, they also represent a significant computational and
network traffic load, which increases in relation to NPC numbers and AI sophistication.

Fan et al. outlines two main approaches that are used to handle the NPC load. Firstly, as proposed
by Knutsson et al. (2004) and Iimura et al. (2004), the region-based approach, in which a ‘super-peer’
is given the responsibility for hosting all NPCs in a given geographical region. This removes the load
from most clients but can result in a huge burden on the super-peer, especially as the super-peer is
often not chosen for its suitability (i.e. processing capacity) but simply on a ‘first come, first serve’
basis.

Secondly, as proposed by Bharambe (2006), Yonekura et al. (2004) and Hu et al. (2008), the virtual-
distance-based approach, in which an NPC is hosted by the player nearest to them in the game
world. This spreads the NPC load more evenly and potentially reduces network traffic because the
NPC will be hosted by the player it is most likely to interact with. However, once again, areas of high
NPC density can result in a high computational load on the nearest player and, in games with high

30 | P a g e

mobility, it may require much switching of NPCs from one host to another and much computation to
decide upon the nearest (and therefore hosting) player.

Fan et al. (2010) proposes a third approach, heterogeneous task-sharing. In this approach, super-
peers are used in a match-making role in which, when the game requires the creation of a new NPC,
they select the most appropriate peer to use as a host, based on processing capacity. This not only
ensures that the NPC load is distributed in a more efficient manner but also, as the host will remain
with that peer until it leaves the game, reduces the need to transfer between hosts.

Hybrid systems can use elements of both C-S and P2P architectures to manage load balancing. Driel
et al. (2011) describe a hybrid architecture, proposed by Jardine and Zappala (2008), in which a
central server is responsible for maintaining the game state, and for electing a number of peers to be
regional servers for a specific geographical zone. Peers are connected to a regional server, which is
responsible for disseminating any movement-related updates amongst its connected peers; any non-
movement related changes of state (for example, changes to player inventory) are handled by the
central server, which then sends updates to the regional servers for dissemination.

Another hybrid model, mirrored game architecture, described by Cronin et al. (2004), uses multiple
game servers, each of which contains an identical game world. Clients connect to any of the game
servers, although the system can be configured to automatically assign the closest server, thereby
reducing latency. The game servers are then connected to each other in a peer-to-peer relationship,
using a high-speed VPN, and any state changes made on one server are communicated to all others.
This architecture allows the balancing of overall load amongst server-peers, whilst still retaining
many of the advantages of the C-S architecture, listed in Section 5.2.1. However, as discussed by
Assiotis and Tzanov (2005), there are some disadvantages: Firstly, as player numbers increase, it
becomes ever more difficult to maintain a consistent game state between all servers; secondly,
servers may require considerable processing capacity in order to maintain a copy of the entire game
world.

2.2.4 System architecture: Minimisation of network traffic

In order to reduce latency and improve game performance, it is essential to reduce the amount of
processing overhead and bandwidth associated with network traffic.

One of the key concepts associated with this issue is that of interest management (IM) – how to
present the player with the information that is relevant to him (i.e. his AOI) whilst minimising any
non-relevant information. Fan et al. (2010) summarise three methods used to address this issue in
P2P architectures.

Firstly, the spatial model, also known as ‘aura-nimbus’, in which the nimbus is the area within which
an object can perceive other objects, and the aura is the area within which an object can interact
with other objects: the breaching of a player’s nimbus allows preparation to take place before the
actual interaction occurs (within the player’s aura). This model allows the fine-tuning of the state
and event data sent to a player but can also result in additional network traffic between peers in
order to maintain a spatial awareness of other objects. Fan et al. state that a variant of the spatial
model, proposed by Buyukkaya, E and Abdallah, M. (2008) and HU, S-Y. et al. (2008), reduces this
extra traffic by requiring peers to create Voronoi diagrams in order to perceive their relationship
with their neighbours, each peer acting as a ‘lookout’ to warn its neighbours of the approach of any
new objects. However, although this reduces network traffic, it adds an additional computational
burden associated with maintaining the Voronoi diagrams.

31 | P a g e

Secondly, the regional model, in which the game world is divided into zones; using the Publish-
Subscribe pattern, peers will be subscribed to receive updates on all other objects in any regions
that currently intersect their AOI. This model reduces the computational overhead associated with
the spatial model and allows a simpler communication structure (for example, the use of multicast)
but, if the region size is less than optimal, can potentially result in the player receiving unnecessary
updates.

Finally, the hybrid communication model combines elements from both of the models above. The
game world is divided into regions and a super-peer is selected for each region which receives
movement updates from each peer that enters its region. This allows the super-peer to maintain a
spatial overview of its region, enabling it to ensure that communications are established between
players that are likely to enter each other’s AOI. This model is less complex than the pure spatial
model, whilst nevertheless allowing the fine-tuning of traffic between peers; it also reduces the
unnecessary additional traffic associated with the regional model. Its chief disadvantage, however,
is that it places a high computational and communication load on the super-peer, so it may be
necessary to implement some kind of dynamic region resizing in order to cope with areas of high
player density.

Assiotis and Tzanov (2005) propose a C-S architecture that uses the Publish-Subscribe pattern in
order to reduce the amount of network traffic exchanged between client and server; again the
concept of AOI is employed to ensure that a client only receives relevant state and event data. In
this model, the game world is divided into regions, each of which is controlled by a physical server,
and each player has a defined AOI (which may vary from player-to-player). It is the responsibility of
the server to ensure that each player is automatically subscribed to receive updates regarding
objects and events that occur within its AOI. The Publish-Subscribe pattern is also used between
servers to ensure that events that occur on a neighbouring server can be perceived by players close
to the border.

Bharambe et al. (2008) propose a P2P architecture, Donnybrook, that attempts to reduce the
amount of network traffic by using a novel adaptation of the AOI concept. Donnybrook takes
advantage of the limited human capacity to simultaneously focus on multiple objects, in order to
reduce the number of objects within a player’s AOI about which they will receive updates. For each
player, the system compiles an ‘interest set’ of five players that they are most interested in, based
on proximity, aim (i.e. orientation), and how recently they have interacted. A player will only send a
real-time update to another player if they are included in that player’s interest set. Players within
the AOI that are not in the interest set are represented by bots controlled by the game’s AI but
guided by less frequent updates from the player they represent. In this way, the amount of network
traffic is reduced, particularly for high-density occurrences, such as large battles.

The architecture proposed by Kim and Park (2013) attempts to reduce the amount of data
transferred between servers by anticipating likely interaction between players. They suggest that,
given the importance of player interaction in MMORPGs, it would be sensible to place adjacent
players (i.e. those who fall, or are likely to fall, within each other’s AOI) on the same server where
possible, thus reducing data transfer between players on different servers. They propose a system
for selecting an appropriate server when the player logs in, based on the adjacency of other active
players.

Using the game TailPlanet (developed by Connected Dreams), Alecu (2012) proposes a similar
system that attempts to address the issue of data transfer between servers, resulting from players
on different servers interacting with each other. He introduces a function that monitors the

32 | P a g e

‘closeness’ of players based on previous interactions, taking into account factors such as the amount
of chat interaction between players, the amount of game-related interaction (i.e. time spent in each
other’s AOI), and the length of interactions as compared with the overall length of game sessions.
When a player logs in, the system will use this data to place them on the server most likely to
facilitate interactions, based on which other players are currently active. The function is also used
in-game when a user on one server wishes to interact with a player on a different server. In this
case, the function is used to determine which player should be moved, and whether any other
players should also be moved in anticipation of future interaction. When tested with TailPlanet, use
of the closeness function showed a 12% decrease in the amount of data transferred between
servers.

Other approaches at reducing network traffic involve changes to the traditional practices associated
with communication over networks. McKnight et al. (2012) focus on games that divide the game
world into regions distributed across multiple servers; many of these games, in order to facilitate
cross-border perception and movement, use overlapping border zones in which all objects are
duplicated on each server. In order to maintain game state consistency, if the state of an object in a
border area is altered, it is necessary to obtain an inter-server lock on the object, a process that not
only requires the implementation of a complex system component but also involves additional inter-
server network traffic.

McKnight et al. propose a C-S architecture (Gendu) that does not use inter-server locks, thereby
simplifying the design by removing an entire component process, and increasing efficiency by
reducing inter-server communication. There are a number of requirements: firstly, a system to
determine ‘jurisdiction’ over mutable (i.e. state-changeable) game objects; secondly, an
asynchronous remote-write protocol in which all changes to an object’s state must occur on the
server with jurisdiction; thirdly, the use of only prescribed types of write operation. Writes must be
atomic operations, and are only regarded as successful when the value is read back from the primary
source (i.e. the server with jurisdiction). Also, in order to avoid one update being asynchronously
overwritten by another, writes must use delta values (where modifications are made in relation to
an existing value).

McKnight et al. tested Gendu using both single server and multi-server configurations and were able
to demonstrate that their lockless architecture could successfully support a game world divided
amongst multiple servers.

2.2.5 System architecture: Data storage

In order to provide for a persistent game world, a suitable method must be found for the storage of
game state data. This function can be handled in very different ways, depending on the type of
architecture being used.

Traditionally, C-S architectures utilise a relational database management system (RDBMS); this
allows data to be modified in an ACID-compliant manner (atomicity, consistency, isolation,
durability), whilst also providing a very powerful tool for obtaining data related to system usage and
performance. The database being centrally controlled also provides additional security and reduces
the opportunities for cheating.

However, the database can also be a performance weak point for an MMORPG; although relational
databases have been designed for the efficient throughput of transactions, they often find it hard to
cope with the sheer volume generated through a fast-moving MMORPG with thousands of

33 | P a g e

concurrent players. Discussing the space-based MMORPG EVE, Emilsson (2014) states that “the
main bottleneck that we have had to overcome is I/O performance of database storage.”

A common method used to mitigate the database bottleneck is that of employing a number of
interim servers, which cache the data in direct-access memory, greatly speeding up the transactions
times. In the architecture proposed by Dieckmann (2013), a ‘synchronisation’ server is used to store
the game data in memory, removing the requirement for direct real-time access to the database by
clients (see Figure 4). Other advantages of this method are, firstly, that having additional copies of
the game data can help with recovery from system failures and, secondly, it enables scalability by
spawning additional data servers.

This method still requires that the central database, being the authoritative source of game state
data, be regularly updated but this can be done in a more efficient manner (for example, at optimum
intervals in batches).

There are variations of this method. Caltagirone et al. (2002) propose that, as each game server
hosts a specific region of the game world, the data server connected to that game server need only
contain data relevant to that region. Similarly, each ‘SQL’ server used by EVE only contains data for
those star systems that it hosts (Emilsson, 2014).

The architecture proposed by Alecu (2012) divides the data in a different manner, comprising of two
complimentary database layers. One layer allows direct access to the database and contains
information that is rarely changed (for example, player account information and state data for
immutable game objects); the other layer keeps the data in memory and contains game state data
that is frequently changing. In this way, the fast-access memory is more efficiently targeted and
utilised.

Another factor to consider is the type of database to use. Traditionally, the type most commonly
employed in computer systems is the relational database, which allows data to be stored in separate
tables, according to certain criteria, and between which relationships are defined, based on key
values in each table. Structured Query Language (SQL) can be used to interact with the database for
the purposes of insertion, deletion, or data selection.

However, there are a number of alternative types, broadly described by the umbrella term ‘NoSQL’,
meaning non-relational. The various types of NoSQL database include document-oriented, key-value
store, and object. There can be a number of advantages for NoSQL databases, including that they
sometimes perform certain tasks faster than relational databases, or that their structure may more
closely match the data structure used in a computer program. There are also inherent
disadvantages, however, such as the lack of sophisticated querying languages, the lack of ACID
support for transactions, and the fact that there will usually be a steep learning curve associated
with their adoption.

In his proposal for a C-S architecture, Muhammad (2011) evaluates three different types of
database, namely MySQL (an open-source relational database), CouchDB (a document-oriented
database), and Riak (a key-value store database). Each database was tested on a single database
server by using scripts to perform select, insert, and update operations, with the number of
transactions per second being recorded against the number of players connected. Results showed
that, with 200 concurrent players, both of the NoSQL databases out-performed MySQL - CouchDB by
approximately 7.6% and Riak by approximately 23%.

34 | P a g e

Diao et al. (2014), identifying the challenges associated with data storage in MMORPGs, studied the
use of a cloud-based, distributed NoSQL database, Cassandra, to provide data storage for an
MMORPG, focussing on the areas of scalability and performance. Cassandra, a wide-column store
DBMS, has the advantage of not requiring the use of the join operations needed in a relational
database; however, some data duplication is required in order to ensure that not only could all data
associated with an object could be retrieved in a single atomic operation, but that certain
component parts could also be retrieved separately. Tests showed that increasing the number of
nodes led to a marked increase in the number of clients that could be supported, from 600 clients in
a 1-node configuration to 1500 in a 3-node configuration; operation times (i.e. for read/write) were
also improved.

Alqwbani et al. (2014), performed a similar study of Cassandra and reported analogous results. They
attributed this to certain inherent advantages of NoSQL databases: i) they lack the high overhead
required for distributed relational databases in order to maintain consistency in the schema; ii) they
have no requirement for ACID constraints; iii) they have no requirement to link separate data with
queries.

They also identified two further advantages: firstly, when using a relational database, any changes to
the table structure will often require extensive refactoring of game code. This is not so with a NoSQL
database, which can handle highly varied (or unique) objects without any need to define a schema.
Secondly, NoSQL databases tend to use simpler interface protocols, as there is no need for SQL
binding.

Zeigler (2006) suggests that object databases may be more suited to the demands of an MMORPG
and may result in an improvement in performance. The reason for this is that the structure in which
data is stored in a relational database does not map efficiently onto the data structure used in a
game’s program code. Zeigler states that “SQL requires all data to be placed in simple tables …
However, game data is very structured and hierarchical.” In order to access the data for an object,
the programmer has to create SQL statements that define relationships for data held in different
tables; quite often this requires the creation of an SQL layer between the game server and database,
which results in additional latency. With an object database, however, the data structure reflects
the code structure which not only makes for faster retrieval but also automatically handles object-
oriented concepts such as inheritance.

The configuration of the database can also have an effect on performance. Distributed databases
are designed to operate on multiple hosts, which enable them to improve performance by not only
taking advantage of the increased processing capacity, but also by allowing them to be located
closer to separate (and possibly geographically distant) communities of end-users, thus reducing
latency. Muhammad (2011) evaluated the distributed database, Riak, comparing the number of
transactions per second for single node and two-node configurations. Results showed that the
single node was able to only satisfy 1,200 transactions per second, whereas the two-node
configuration was able to satisfy 1,500 per second.

Because of the lack of a permanent server-side structure, P2P architectures have to handle the issue
of data storage in different ways from C-S. One architecture, proposed by Buyukkaya et al. (2009),
makes a distinction between the storage of game data and the responsibility for determining who
receives updates on changes in state. The storage of data is achieved through the introduction of a
structured database layer, based on a distributed hash table (DHT), which evenly distributes the data
amongst all connected peers, regardless of where they currently reside in the game world. Peers
then use Voronoi diagrams to gain a spatial overview of all objects and players in their game world
neighbourhood. If an object falls inside the Voronoi cell of a particular peer, that peer determines

35 | P a g e

whether the object is within the AOI of any of its neighbouring peers, then sends this list of
‘interested’ peers to the objects host peer (as specified in the DHT). The hosting peer then knows
who to send any state updates to.

Fan et al. (2010) point out that a potential weakness of a system such as that proposed by
Buyukkaya et al. (2009), above, is that the read/write speed for data stored in a P2P structured
database layer is slow and results in increased latency. Fan et al. (2010) mention another P2P
architecture, proposed by Iimura et al. (2004), that attempts to solve this problem by using a system
of super-peers to store volatile data in memory, allowing updates to occur much more efficiently.
The non-cached, distributed data storage layer can then be utilised for backup purposes.

36 | P a g e

3. METHODOLOGY

As described in Section 1.1 Aims and objectives, the project was structured into two main phases:
design and implementation.

The design phase addressed, firstly, the development of a core game model, specifying the basic
game classes, interactions, rules, mechanisms, and victory metrics; secondly, the design of a game
engine enabling players to perform the functionality outlined in the model, and taking into account
the subsequent introduction of client-server architecture.

Key considerations to be addressed during the implementation phase were, firstly, to ensure
modularity through the creation of clear interfaces and the use of standard and well-documented
protocols; secondly, to ensure scalability through the use of components and architecture that
would ensure high performance during periods of high usage.

The implementation phase also included a planned period of testing and code review and the
creation of a basic client in order to facilitate the implementation and testing of the core game
engine.

3.1 System development

It was decided that system development would proceed in the following stages:

3.1.1 Game model: The design of a game model that fulfils the functional requirements specified in
Section 1.3 Requirements and specification (see Figure 5: Use case diagram). This model should
attempt to minimise complexity by reducing the size of the game world, and the number of game
class attributes and mechanisms; however, the model should be expandable, allowing for additional
concepts to be added at later stages.

37 | P a g e

Figure 5: Use case diagram showing main player actions

3.1.2 Game engine: The design and production of a simplified game engine that implements the
game model above.

A basic user interface (text-based or button-based), should be developed, separate from the game
engine and accessed through a test client; at this stage, the purpose of the user interface is simply to
allow testing of the game engine. However, as mentioned in Section 1.3.2: Extra-functional
requirements, provision should be made for the future addition of a full graphical user interface
(GUI). One possible development engine that might be used for the implementation of a GUI is
Unity 3D, which uses C# to create scripts.

Game content will be expanded in future stages; therefore, all interfaces and protocols should be
clearly defined and documented. Where possible, the game engine should make use of standard

38 | P a g e

definitions for the communication of game data; for example, the GEDCOM specification could be
used to communicate and display PC genealogical data.

Figure 6: Sequence diagram showing an example of client-server communication

3.1.3 Game system architecture: Most importantly for this project, the design and implementation
of an underlying game system architecture that best achieves low latency during periods of high
usage. A number of decisions need to be made in order to find the best methods and structure to
achieve this goal; the decisions include:

• In what format and structure to store the game data. As discussed in Section 2.2.5 of the
Literature review, there are a number of different options including a relational DBMS, any
one of the variety of NoSQL databases, or other formats (such as XML files).

In the context of both the functional and extra-functional requirements (see Sections 1.3.1.3
and 1.3.2.2), the initial choice of DBMS was Riak. This is due to its speed and basic query
support, and because it is also a distributed database, which may help spread the data load
and reduce latency – see Muhammad (2011). Should Riak prove unsuitable, another

39 | P a g e

possibility is a relational database such as SQLite, a fully featured relational DBMS with a
lower performance overhead than many of its competitors.

• How best to achieve load balancing. As discussed in Section 2.2.3 of the Literature review,

there are a number of options, including the division of the game world into zones (hosted
on separate servers), the replication of the whole game world, or the use of P2P architecture
to spread the load between the players computing resources.

Regarding, the basic architectural model, it was decided that the project would use the
client-server approach, as it provides for simpler design and testing, and is beneficial to
security and control.

• How best to reduce the load on the game server through abstraction of functions. The game

engine will include many distinct functions, some of which can be separated, facilitating
modularity, and potentially distributed, improving scalability and core game engine
performance by running specific resource-heavy functionality on a dedicated server (for
example, see Figure 4 in section 2.2.2 of the Literature review).

In order to simplify the initial system architecture, it was decided to investigate the
possibility of ‘outsourcing’ these functions; for example, the use of Facebook Login for
account authentication, and the use of a third-party chat or bulletin board system for inter-
player communication.

Figure 7: Deployment diagram showing initial system architecture

3.2 System evaluation

The game engine should be evaluated in respect of two main areas:

• Firstly, to ensure that it fulfils the functional requirements outlined in Section 1.3.1. This
testing should utilise the basic user interface (see Section 1.1.1) and could, for example, take
the form of a scripted sequence of actions carried out by a number of human participants.

• Secondly, to ensure that it fulfils the extra-functional requirements outlined in Section 1.3.2.

The performance of the game engine should be evaluated by measuring the degree of
latency at varying usage levels. This requires a low-latency network environment, in order
to isolate latency caused by game system architecture. Testing requires two main
components: i) automated test agents (simple ‘bots’) to provide the driver for system load,

40 | P a g e

simulating usage levels; ii) timers, built into game actions and accessed through the test
client, to perform the actual latency measurement.

Testing should be undertaken both concurrently with coding and in a dedicated period towards the
end of the implementation period.

3.3 Environment and software

The environment chosen for hosting the game system was:

• Linux 2.6.32-358.18.1.el6.x86_64 running CentOS release 6.4 (Final). This particular Linux OS
was chosen primarily because of its reputation as a stable platform but also because it
supports the chosen DBMS (Riak), and is currently used on machines in the Linux labs in the
School of Mathematical & Computer Sciences, Heriot-Watt University. This should ensure,
firstly, flexibility as regards to hosting and, secondly, familiarity with the platform for any
participants in future projects to expand the system.

The following local environments and software tools were chosen for development:

• Linux 2.6.32-358.18.1.el6.x86_64 running CentOS release 6.4 (Final) and Windows 7 Home
Premium 6.1.7601 (Service Pack 1 build 7601). The dual OS approach is necessary to ensure
that the system meets the specified extra-function system requirements (see Section
1.3.2.1). It also allowed the game system to be initially hosted in a Linux environment with
access to the Riak DBMS, prior to the development of the client-server configuration.

• C# 4.5. When deciding on which programming language to choose, particularly with the

dual OS requirement in mind, two languages stood out – Java and C#. Both are fully-
featured, object-oriented languages that boast a well-developed catalogue of supporting
libraries. Java is platform-independent but C# can also run on other platforms through the
use of the Mono system (see below). Crucially, with a view to the possible future
development of a GUI for the game system, C# is used by Unity 3D, a cross-platform game
creation system built using Mono. For this reason, C# was chosen for this project.

• CorrugatedIron 1.4.2 C# library. At the time of development, this was the only library for

connecting C# to Riak, and provides easy access to the basic Riak functions (search, retrieve,
write) required by project. It makes use of JSON.NET 4.5.10 library for serialising object
data, thus minimising the need for the creation of custom methods; this also introduces the
possibility of using JSON as the format for data exchanged between the game engine client
and server.

• QuickGraph 3.6.61119.7 C# library. An optional requirement of the user interface is the

provision of a hexagon map, which would entail the creation of a graph structure within the
program. QuickGraph is one of several libraries that facilitate the creation of graphs, and is
widely regarded in C# community as being the simplest to use, whilst providing a number of
useful graph functions (for example, a shortest path function based on Dijkstra's algorithm).

• Microsoft .NET 4.5. Although primarily designed for the Windows OS (to provide cross-

language inter-operability), this software framework can be supported on other platforms
through the use of Mono. It is required by the C# programming language.

41 | P a g e

• Mono 3.4.0 As previously mentioned, it was a requirement that the game system should be
executable in both Microsoft Windows (version 7 onwards) and any Linux-based OS. Mono
is an open source implementation of Microsoft's .NET Framework aimed at allowing
developers to write cross-platform applications.

• MonoDevelop 4.2.2 and Xamarin Studio 4.2.5 (build 0). MonoDevelop is an open-source IDE,

created as a part of the Mono project for use in developing and debugging applications
designed to be run in Mono. In a project that requires developing across different
platforms, MonoDevelop and its sister IDE, Xamarin Studio (the Windows implementation),
provide additional continuity.

• Riak 1.4.8

• Microsoft Visual Studio 2010 10.0.40219.1 SP1. Developed specifically for use in the

creation of .NET applications, MS Visual Studio is recognised as a very strong IDE for C#
projects and would be the obvious choice for this project should MonoDevelop prove
unsuitable. Additionally, it is also used in PC labs in the School of Mathematical & Computer
Sciences, Heriot-Watt University, and would thus ensure familiarity for any participants in
future projects to expand the system.

• Git 1.9.0.msysgit.0 (Windows), Git 1.7.1 (Linux) and GitHub. Git is a reliable, well-supported,

cross-platform version control system (VCS). In combination with GitHub (the online
repository for software projects using Git), it provides a variety of functions to the software
developer including the ability to keep track of changes to their code, create separate
development branches, and provide easy access to the current code to all interested parties.
Git was chosen over rival VC systems such as Subversion because of its decentralised nature,
which ensures that changes can be made to the local copy of the repository in situations
where Internet connectivity is not guaranteed.

• UMLet 13.1. An open source utility for the creation of UML diagrams, containing templates

for the most commonly used types, and allowing diagram export in a number of formats.

• WinSCP 5.1.4 (Build 3020) and PuTTY 0.63. These open source utilities provide FTP (WinSCP)
and telnet/SSH (PuTTY) functionality should it be necessary to remotely access any hosts
based at Heriot-Watt University.

42 | P a g e

4. PROJECT MANAGEMENT

4.1 Timeline

The project schedule was drawn up as follows (see Figure 6: Project Gantt chart):

Game model (Tuesday 8th – Friday 18th April)

• Classes and attributes
• Mechanisms (i.e. methods) and formulas
• Victory criteria
• User interface displays and functions

System model (Saturday 19th – Friday 25h April)

• Identify game engine components, including those that can be ‘outsourced’ (for example,
login and communication)

• Identify required data metrics
• Select and design data storage
• Select load balancing method
• Select/design communication protocols
• Identify security requirements/mechanisms

Implementation – prototype (Saturday 26th April – Friday 23rd May)

• Identify which subset of game components are to be included in prototype
• Create game objects and mechanisms, using locally stored (or coded) data
• Create user interface (test client)
• Deliver game prototype

Implementation – architecture and advanced features (Saturday 24th May – Friday 27th June)

• Assess whether full implementation of system is possible; if not, which features are to be
excluded

• Implement data storage
• Implement load balancing functions
• Implement remaining architecture functions (as decided above)
• (optional) Implement enhanced user interface (with hex map)

Evaluation (Saturday 28th June – Friday 25th July)

• Identification of evaluation criteria
• Evaluate game functionality (scripted walkthrough)
• Evaluate scalability (latency testing)

Write up and poster presentation (Saturday 28th June – Thursday 28th August)

• Main report
• Poster

43 | P a g e

Figure 8: Project Gantt chart

44 | P a g e

4.2 Risk assessment

Main risks for the project are identified in Table 2, below.

Risk Impact Likelihood Resolution

Project is too big or
complex

Major Possible (40-69%) Simplify data (game world and object
attributes); reduce functionality
(game model & decisions)

Data storage is not
stable or does not
support all functions

Moderate Unlikely (10-39%) Switch to alternative data storage
solution; ensure data can be ported
into another system to perform
missing functions

MonoDevelop IDE is
not stable or does not
support all functions

Moderate Unlikely (10-39%) Switch to alternative IDE system (e.g.
MS Visual Studio); switch to
alternative programming language
(e.g. Java) in order to meet OS
requirements

Project schedule
negatively impacted by
issues related to my
employment

Moderate Possible (40-69%) Reduce project workload by
simplifying data and/or reducing
functionality; negotiate project
extension

Loss of host or
development platform

Major Rare (1-10%) Move to alternative platform using
most recent data backup; negotiate
project extension

Temporary loss of
project author (e.g. due
to illness)

Major Rare (1-10%) Reduce project workload by
simplifying data and/or reducing
functionality; negotiate project
extension

Loss of project
supervisor (e.g. due to
change of employment)

Major Rare (1-10%) Arrange for an alternative project
supervisor

Poor developer
knowledge/capability
leads to delays

Major Unlikely (10-39%) Reduce project workload by
simplifying data and/or reducing
functionality; provide additional
developer training; negotiate project
extension

Table 2: Risk assessment

4.3 Professional, legal, ethical, and social issues

4.3.1 Professional issues

As information technology professionals, it is incumbent upon the authors of this research to ensure
that the project is implemented in a professional manner, according to good practice; this involves
employing approved methodologies and displaying technical competence. The authors should also
accept full professional responsibility for their work and any consequences resulting thereof.

45 | P a g e

As the programme under which this project is being undertaken (MSc Advanced Internet
Applications) is accredited by the Chartered Institute of IT (BCS), attention should be given to that
body’s Code of Good Practice, particularly those codes pertaining to research. This document
includes recommendations on practices such as project management and data security.

As a representative of Heriot-Watt University (both as a student and an employee), it is important to
ensure that no harm comes to its reputation as a result of unacceptable standards of
professionalism. In this respect, special attention should be paid to the Heriot-Watt University Code
of Good Practice in Research; for example, it is considered unprofessional not to acknowledge the
role of any collaborators or other participants who assist or support the research. It is also
unprofessional not to keep clear and accurate records of any results.

4.3.2 Legal issues

In accordance with the Copyright, Designs and Patents Act 1988, it is essential that the authors of
this project ensure that the use of, or reference to, intellectual property belonging to other
individuals is correctly acknowledged.

It is important to ensure that the use of any software programs comply with their licensing
requirements. For this reason, a special effort will be made to, where possible, make use of
software that is open source or subject to free distribution under other licensing schemes (for
example, Creative Commons).

As the project involves the creation of computer software, it is also necessary to give consideration
as to which license will be used to govern its use and distribution. In order to allow as much
freedom as possible, it has been decided to use the OSI (Open Source Initiative) approved MIT
license (details: http://opensource.org/licenses/MIT); this basically allows any kind of use providing
the original author is attributed, whilst ensuring that the original author is not held liable for any
subsequent alterations or usage.

In accordance with the Data Protection Act 1998, it is required that any personal data stored in the
game system is kept safe and secure, is accurate, and is only used for the limited and specific
purposes for which it was acquired. In a similar vein, the BCS Code of Good Practice also encourages
its members to protect the confidentiality of any private data used in research.

As this project does not involve research techniques that would require its collection, the amount of
personal data stored in the system is likely to be very limited (for example, email addresses used as
login names); nevertheless, care will be taken to protect any data from unauthorised access, and to
provide a facility for players to delete their account, removing any associated data. Regarding
accuracy, people registering to play the game will be warned that they are responsible for the
accuracy of any data they input.

The Computer Misuse Act 1990 covers the “securing [of] computer material against unauthorised
access or modification” (Great Britain, Computer Misuse Act 1990). It is important, therefore, to
ensure that the project does not result in access to data that is unauthorised by its owners, and that
it does not employ software whose functionality can result in the committing of a crime.

http://opensource.org/licenses/MIT

46 | P a g e

4.3.3 Ethical issues

Information Technology professionals are often accused of being fixated by functionality, often at
the expense of any ethical issues. In this context, therefore, it is even more important to give
serious consideration to potential ethical issues before the practical stage of the project gets
underway.

The Heriot-Watt University Code of Good Practice in Research makes specific reference to ethical
considerations in research projects that involve human participants or animals. Of more relevance
to this project, however, is the broader encouragement that all research be conducted in an honest
fashion. Care will be taken, for example, to ensure that results are accurately reported, supported
by primary data, and not in any way engineered in order to obtain a particular outcome.

The BCS Code of Good Practice also encourages ethical behaviour in research, asking its members
not to take part in any research that is detrimental to society or the public, and to be aware of (and
take responsibility for) the potential for misuse of research outcomes.

4.3.4 Social issues

One of the main aspects of an MMORPG is the element of interaction between players; this includes
interaction controlled by game mechanics and enabled through the game interface, and free flowing
communication, often enabled through chat systems. Where such interaction exists, therefore,
there will always be the possibility of its misuse.

The game system created for this research project will attempt to reduce the opportunity for any
form of in-game bullying of players by introducing the player-assigned roles of, firstly, system
administrator and, secondly, faction heralds. Between them these roles will be responsible for
administering the game system, and advising (and mediating between) players. Where necessary,
they will have the authority to remove a player from a game, or even to ban a player from the
system entirely.

It is also important to ensure that the game contains no content that can be construed as offensive.
For example, a French person may take offense at the notion that English troops in the game are
considered to be of higher quality than their French counterparts. Care must be taken, therefore, to
maintain historical accuracy in order to counter any such claims of bias.

4.4 Project management methodology

As much as was possible in a development team consisting of a single person, it was decided to
adopt an agile approach, albeit with some necessary modifications to allow for the particular
circumstances of the project. Key features of the agile model used for the project include:

• An iterative approach, enabling an incremental focus on specific sub-sets of functionality,
and avoiding the possibility of becoming over-burdened by long-term planning.

• Frequent communication: it was decided that regular face-to-face meetings be held

between student and tutor for the duration of the project, enabling rapid feedback during
each iteration. Due to the particular circumstances (both student and tutor are in full-time
employment) the interval between meetings was set at two weeks, longer than is normal in

47 | P a g e

the agile model. Communication by other means, chiefly email, was also encouraged during
inter-meeting intervals. Additionally, the use of Git and GitHub allowed easy access for all
project members to the current code.

• An adaptive approach: although key milestones were specified in the Project plan (see

Section 4.1) it was recognised that these were likely to change due to emerging
circumstances and that, therefore, a flexible attitude was advisable and should be supported
through frequent communication between student and tutor.

• Testing: the agile model promotes the practice of testing in parallel with coding, rather than

a dedicated testing period towards the end of the project, as is typically seen in the waterfall
model. In this particular case, it was decided to combine both approaches by carrying out
testing concurrently with coding but also specifying a test period immediately prior to the
production of the project report.

• Focus on code: due to the limited timespan of the project it was necessary to focus almost

exclusively on the production of code rather than documentation, which was limited to that
which was included in the report.

48 | P a g e

5. GAME DESIGN

5.1 Game model

Broadly speaking, the game model as specified in Section 1.1.1 Aims could be represented by three
main areas of functionality – fief management, army management and household management –
joined together by various secondary functions, such as movement (see Figure 9). However, a more
detailed model needed to be developed before implementation could begin.

Figure 9: Basic game model

5.1.1 Game setting

The game engine is intended to model the setting and circumstances of Medieval Europe; ultimately,
it will allow scenarios to be created for any period during the high to late medieval period (roughly
1100AD – 1450AD). As seen in Section 2.1.4 of the Literature review, much data is available on the
medieval era and, crucially, some very useful information on characters and places was publically
available on the website of Albert Nofi and James Dunnigan’s MMORPG, The Hundred Years War,
(unfortunately, no longer available) – see Nofi, A.A. and Dunnigan, J.F. (1997).

The decision was taken to make the default period 1194, a time leading up to the drawing up of the
Magna Carta and the First Baron’s War, in which there were uneasy relationships between England
and its bordering countries, Scotland and Wales, potentially leading to events of interest.

49 | P a g e

Importantly, historical data could be readily sourced for this period from a variant of Nofi and
Dunnigan’s game for which the data had been archived. The decision to limit the geographical area
to that of mainland Britain removed the need for sea transport and ensured that the game world
could comfortably be hosted on a single server.

To convey both the nature and setting of the game, it was decided to give it the title ‘Overlord: Age
of Magna Carta’. The game engine underlying Overlord was named the JominiEngine, after the 19th
Century strategist and military theorist Baron Antoine-Henri Jomini; it may have perhaps been more
appropriate, given the broad scope of the game content (addressing both military and political
issues), to name the engine after Jomini’s contemporary, Carl von Clausewitz but that name was
already being used by another game engine.

5.1.2 Game time model

Broadly speaking, computer games, be they stand-alone or multiplayer, can be divided into two
main types as regards the way in which they model the passage of time:

• Turn-based, in which each turn represents a specific period of time (many ‘traditional’
wargames fall into this category). Progression between turns is handled in one of two ways:
 Players plan and perform actions sequentially, the game progressing to the next turn

when all players have finished.
 Players plan actions concurrently with each other, and the game engine then

performs all actions simultaneously, after which it progresses to the next turn.

• Real-time, in which all players perform actions concurrently and the game progresses at a
regular, albeit in many cases accelerated, rate.

It was decided that the JominiEngine would be primarily turn-based, but include some real-time
aspects; each turn represents a season of 90 days duration (spring, summer, autumn, winter) and a
single turn will be processed for each real-world day, an update at midnight allowing the transition
between turns. Players are free to login at any time during the day to perform their actions
concurrently, with each action taking a specific number of game-world days to perform. Some
actions (battle, for example) will have immediate outcomes, whilst the effects for others (adjusting
the tax rate for a fief, for example) are calculated during the daily update. Ideally, this allows a
combination of real-time cooperation between players, whilst also providing ‘time out’ to plan;
additionally, it gives the players flexibility regarding the way in which they fit the game into their
available time.

5.1.3 Game goals

Sicart (2008) posits that a game should have concrete goals, leading to an achievable victory, but
that it should also provide a degree of freedom for its players. In addition to this, as Dunnigan
(2000) points out, many players of historical games are looking to compare their own performance
with that of historical figures, to see whether they can reverse the tides of history.

50 | P a g e

Accordingly, the decision was made to set the following victory conditions for the game:

Victory conditions Game type
Total: all fiefs owned by one nationality Team
Historical: conditions based on a conflict of the period Team
Score: based on PlayerCharacter’s fiefs owned, population controlled and
stature (Note: this was later amended to also include finances)

Individual

Table 3: Victory conditions

These provide readily understood and attainable objectives but also allow the players a great deal of
freedom to pursue their own agenda (for example, a private grudge match with another player, or
the development of an economic empire). Also, the victory conditions need not be mutually
exclusive; it would be possible for one team, for example, to win the game based on historical
conditions but for the player with the highest individual score to come from the losing team.

5.1.4 Game mechanics

As Crawford (2002) observes, compiling a list of verbs that the developer would want the player to
be able to perform in the game can be a useful tool in identifying the underlying mechanics.

By using this technique, the following initial list of verbs was compiled for the game:

Verb Explanation
Move Includes PCs, armies, NPCs
View See other game objects in the vicinity
Marry Marriage between a PC (or family member) and an NPC from another family
Sire Get wife pregnant to ensure the continuation of the PC’s lineage
Inherit An NPC family member inherits from a deceased PC, allowing the player to continue

in the game
Manage Manage a fief, household or army
Annex Take possession of a fief using non-hostile or hostile means
Besiege Besiege an enemy fief (possibly resulting in annexation)
Battle Encompasses Attack and Defend
Lead Lead an army
Pillage Pillage an enemy fief
Hire Hire an NPC
Transfer Includes funds between fiefs or between players, or troops between armies
Bar Bar an individual or an entire nationality from a fief

Table 4: Main game verbs (actions)

From these verbs a list of core game mechanics were compiled, which could then be translated more
readily into object-oriented programming structures and functions. As suggested by Sicart, the core
mechanics were sub-divided into primary (those whose employment have a direct influence on the
achievement of victory) and secondary (those that do not directly result in the achievement of
victory but nevertheless are useful to the player). In addition, some mechanics are defined as
compound; that is a number of tertiary mechanics that, when combined, comprise a core mechanic.

51 | P a g e

Primary mechanics
Movement
View armies in fief
View characters in fief
Marriage (composite)
Sire an heir (composite)
Fief management (composite)
Recruit army
Besiege fief (composite)
Battle

Secondary mechanics
Army management (composite)
Pillage
Hire NPC
Bar character or nationality
Add/remove NPC to/from entourage
View game information updates
Transfer funds between players
Adjust overlord tax rate

Composite mechanics
Core mechanic Constituent tertiary mechanics
Fief management Adjust tax rate; Adjust various fief expenditures (garrison, officials,

infrastructure, keep); Transfer funds between treasuries; Appoint a bailiff;
View previous/current financial status

Besiege Negotiate; Reduce defences; Storm keep; Pillage; End siege; Battle
(optional)

Army management Set army standing orders (based on aggression and combat odds); Appoint
a leader; Maintain army; View troop numbers; Recruit additional troops;
Disband army

Marriage Propose engagement; Respond to proposal; Process marriage
Sire an heir Impregnate wife; Process childbirth

Table 5: Game mechanics, derived from verbs

As one of the requirements of Overlord (see Section 1.3.1.1 of the Requirements and specification) is
that it provides a system administrator role, it was decided to extend the mechanic concerned with
information updates to also include the facility to collect metrics and to view error messages, system
events, etc. This feature would require the ability to filter messages by type and recipient.

It was also necessary to consider other mechanics, not directly player-initiated but nevertheless
necessary for the operation of the JominiEngine; they can be termed ‘Housekeeping mechanics’ and
examples include:

• Fief seasonal update (population growth, industry growth, calculation of status, etc.)
• PC/NPC seasonal update (check health, reset days available)
• Death processing (inheritance, removal from game, etc.)
• Processing of scheduled game events (e.g. birth, marriage)
• Scores update
• Army attrition

52 | P a g e

As with other aspects of the JominiEngine, the need to simplify the initial version had an influence on
the choice of mechanics. Accordingly, the following mechanics were considered before being
disregarded as not being essential to the core game:

• Assassination
• Kidnap
• Train (to acquire enhanced attributes or traits)
• Joust
• Religious-themed mechanics (for example, excommunication and crusade)
• Raid (a lesser version of pillage)
• Seduction

5.1.5 Game character model

Crawford (2013) spoke of the need for ‘personality models’ in order to more realistically define
interaction between game characters; this particularly refers to NPCs who, unlike PCs, do not have
their behaviour directly influenced by the player. This can be done by allocating characters a
number of attributes to represent their abilities in various areas; these can then be directly mapped
to class attributes when designing the program.

The following attributes were initially decided upon for characters in the JominiEngine:

• Stature
• Leadership
• Protection
• Endurance
• Attack
• Management
• Guile
• Virility
• Loyalty
• Maximum health

In order to focus on a few key attributes, it was decided to combine some existing ones into a single
composite; for example, leadership, protection, endurance and attack were combined to form the
‘Combat’ attribute which influences both army leadership and survival in combat situations. The
final list was:

• Stature
• Combat
• Management
• Virility
• Maximum health

In addition to attributes, each character was assigned a number of ‘traits’ which either refines their
ability to perform certain mechanics or directly influences particular attributes. A single trait
typically embodies a particular trait which influences, positively or negatively, a number of
mechanics and attributes; for example, the trait ‘Robust’ positively influences both Virility and the
character’s ability to perform the ‘NPC hire’ mechanic.

53 | P a g e

In the interest of simplicity and to allow the concept to be more easily tested, it was decided to only
create a very limited number of traits and to allocate only 2-3 per character. Additionally, care was
taken to ensure an even spread of positive and negative influences. The traits decided upon were:

• Command
• Chivalry
• Abrasiveness
• Accountancy
• Stupidity
• Robust
• Pious

5.1.6 Game resources

Much of the enjoyment in any game is derived from the success with which a player can utilise the,
often scarce, resources available in order to outwit their opponents and achieve victory.
Management of these resources is fundamental to the game dynamics and the way in which players
interact, and thus needs to be carefully designed. It is necessary, therefore, to examine which
resources will be provided by the game and address the manner in which they are provided, what
they can be used for, and to what extent they can be replenished. In a historically-based game,
there is also the added burden of ensuring that resources are depicted in a realistic, albeit
abstracted, fashion.

The resources initially identified for Overlord were money, population and game days; after further
consideration it was felt that NPCs could also be classed as a type of resource.

Resource Increased by Reduced by Used for
Money ‡ Fief income; pillage/siege;

transfer between players
Pillage/siege; transfer
between players

Recruitment; NPCs; fief
expenses; family expenses

Population Population growth Pillage/siege Recruitment; fief
productivity

Game days Passage of time (seasonal
update)

Negative skills Performance of game
actions

NPCs Birth (family); re-spawning
(non-family)

Death, hiring by
another player

Assuming roles of
responsibility

Troops ‡ Recruitment, transfer
between players

Combat, transfer
between players

Combat

‡ denotes resource is tradable between players

Table 6: Game resources and their characteristics

It was considered important to provide flexibility in the way in which resources can be utilised,
thereby requiring the player to strategise; care was also taken to ensure that the means for
replenishing resources were historically authentic, given Overlord’s level of abstraction.

When designing mechanics, care was taken, where possible, to use formulas that modelled real life
processes (see Appendix B: Formulas). The exception to this rule was the choice, taken for the sake
of simplicity, to re-spawn non-family NPCs in order to provide a steady ‘employment pool’ from
which to recruit.

54 | P a g e

5.1.7 Game rules

Sicart (2008) defines game rules as the ‘possibility space’, stipulating which game mechanics are
accessible to the player at a given point in the game. Once the rules have been determined, they
can be readily mapped to predicates and conditional checks in the game program.

When deciding on rules for the JominiEngine, many were implicitly dictated by common sense; for
example, the value of the fief tax rate must lie between 0-100, and one army can only attack another
if both armies are in same fief. However, it is still necessary to take note of such rules, as they will
require conditional checks in the program.

In some cases, in the interests of enjoyable gameplay, decisions have to be taken which may
contradict the application of common sense. An example of this is the implementation of the
‘Besiege’ mechanic; if a played PC is in a keep that is under siege, it would be sensible to ensure that
he could not perform the mechanics required to administer his other fiefs, or to order the
movement of armies. However, this would so severely limit the player’s actions as to possibly make
the game unplayable. In the JominiEngine, therefore, a player is allowed to perform certain
mechanics when under siege (send an army to relieve the siege, etc.), although other actions (for
example, moving the PC to another fief) are still prohibited.

Some rules in the JominiEngine are dictated by the need to maintain, where possible, historical
accuracy. Examples of this include:

• A fief owner cannot grant a fief title to another character if he is the ancestral owner of the
fief.

• The practice by medieval nobles of using marriage as a tool to acquire stature is represented

in the JominiEngine by the rule that marriages can only be arranged between characters that
are members of played PCs; NPC employees are simply not of sufficient rank.

• Unemployed NPCs are not to be located in the court of a fief; Courts contain only nobles,

their families, and other members of their household.

Other rules have been impacted by the need to simplify the initial version of the JominiEngine. For
example:

• In the inheritance mechanic, PCs must be male and inheritance is relayed exclusively from
father to son.

• It was decided not to model the effects of terrain upon combat, or to map the effects of one

troop type upon another.

In some cases, the decision to simplify was made in the interests of gameplay. For example:

• The fief management mechanic entails the adjustment of only a small set of expenditures
(garrison, officials, infrastructure, keep), rather than requiring the player to make the myriad
calculations that would be required in reality; concepts such as corruption, for example,
were considered but ultimately rejected. Whilst reducing complexity, this decision was
made primarily to prevent players being buried under a mountain of ‘number crunching’.

55 | P a g e

• Similarly, maintaining an army in the field is a straightforward matter of allocating the
appropriate funds, rather than arranging for the purchase and delivery of different types of
supplies.

5.2 Game engine

The next stage of the project involved translating the abstract game model into a concrete design for
the JominiEngine.

5.2.1 Class definition

Four main classes had been identified in the game model – PC, NPC, Fief and Army. Against each
class were listed the mechanics in which they would be the primary object involved; this would then
be used as a guide when deciding in which class to place the resulting methods.

PC/NPC:

• Movement
• Hire NPC
• Marriage
• Sire
• Add/remove NPC to/from entourage
• Death processing
• Seasonal update

Fief:

• Fief management
• Adjust overlord tax rate
• Pillage
• Besiege
• View armies in fief
• View characters in fief
• Bar character or nationality
• Transfer funds between players
• Seasonal update

Army:

• Recruit
• Army management
• Battle
• Pillage
• Besiege
• Attrition

56 | P a g e

Figure 10: The main activities involved in fief management.

Potential attributes were now identified for each class that would both define it and allow its
participation in each mechanic.

PC and NPC attributes included:

• The ‘personality’ attributes identified in Section 5.1.5.
• Those that defined identity; for example, ID, first name, surname, age, sex, nationality,

language.
• Those required for mechanics; for example, spouse, sire (father), head of family, pregnant

(all required for marriage and sire), location (required for movement), days (required for
many mechanics).

• Those required specifically by PC; for example, purse.
• Those required specifically by NPC; for example, salary

57 | P a g e

Fief attributes included:

• Those that defined identity; for example, ID, name, province, kingdom/country, language,
industry level, field level, population, GDP.

• Those required for mechanics; for example, keep level, numbers of troops by type (required
for siege), tax rate, garrison expenditure, infrastructure expenditure, income, bailiff
(required for fief management), terrain (required for calculating movement cost).

Army attributes included:

• Those that defined identity; for example, ID, owner.
• Those required for mechanics; for example, numbers of troops by type (required for battle,

siege, pillage).

The attributes were then reviewed to see if any were derived values that did not require to be
stored and, as a result, several were removed; for example:

• Fief income can be derived from GDP, expenses and tax rate.
• Fief GDP can be derived from the field level, industry level and population.

The class list was then reviewed to identify the requirement for any additional classes. As a result,
several new classes were added:

• The similarities between PC and NPC immediately suggested the need for a superclass,
Character, containing all common attributes; it would be extended by PC and NPC, which
contained only those attributes necessary for their specific needs.

• Character traits are shared amongst a number of objects and their application relies upon

several pieces of data; it was decided, therefore, that a separate Trait class would be useful,
containing attributes for name and a collection of trait effects.

• All characters contain nationality information, necessary for the bar mechanic and for

determining which side is in possession of a fief (traced through the owning PC’s nationality).
The decision was taken to create a simple Nationality class to hold this information.

• All fiefs contain terrain data, necessary for the calculation movement cost (and potentially

for future enhancements to the battle mechanic); as many fiefs would have the same terrain
type, it was sensible to create a distinct Terrain class containing description and cost
attributes.

• Similarly, all fiefs and characters have a language attribute which is used in the recruit

mechanic and influences fief loyalty and bailiff effectiveness, so a Language class was
created to hold this information, containing name and dialect attributes.

• In order to implement the movement mechanic, a graph structure would have to be created

to map the fiefs into a coherent infrastructure. Utilising the QuickGraph library, the
HexMapGraph class was created to provide this facility and to allow access to useful
methods, such as the calculation of the shortest path between two nodes (fiefs).

• In order to provide a political and administrative structure to the game, all fiefs contain

province data, also required for the fief management mechanic. The decision to create a
Province class not only permitted a single province to be shared amongst many fiefs but also

58 | P a g e

allowed the overlord and overlord tax rate attributes to be removed from the Fief class. The
methods concerned with adjusting the overlord tax rate could also be moved into this class.

• To keep track of game-time (year and season), used for the calculation of character age and

for the calculation movement cost (variable, depending on season), it was decided to create
a GameClock class, accessible to all game objects (probably through a static class).

Figure 11: The main activities involved in household management.

5.2.2 Methods

Each mechanic identified in the game model was mapped approximately to a method (or collection
of methods), the probable location (class) for each method having been decided during the class
definition phase (Section 5.2.1).

59 | P a g e

The rules defined in the game model were then used to draw up initial lists of predicates and
conditional checks for the main methods. For example, the following checks were identified for a
marriage proposal:

• The groom is male
• The bride is female
• Both bride and groom are ‘of age’ (defined as 14 in Overlord)
• Neither bride nor groom can be already engaged
• Neither bride nor groom can be already married
• Both bride and groom must come from families of played PCs (also the groom can himself be

a played PC)
• Bride and groom must come from different families

This process was not only useful in planning the construction of a method, it often highlighted the
need for additional attributes in the class, especially for holding state information. Examples of
attributes identified in this way include:

• fiancée (to check for an existing engagement)
• englishBarred (to ensure English characters cannot enter the keep in this fief)

Given that Overlord is trying to model real life processes, it was considered important to try to
reflect this in the formulas employed in the methods. Consequently, formulas were specified for all
important processes, grouped into broad areas covering combat, fief and character. Examples of
formulas include:

• For combat, the calculation of: an army leader’s leadership value, the chance of bringing an
enemy army to battle, the chance of winning a battle, the effects upon a fief of a pillage, the
chance of a leader being injured in battle.

• For fief, the calculation of: population growth, GDP, the effect of tax rate change on fief

loyalty, the chance of unrest or rebellion, the effect of bailiff attributes on fief income, the
relationship between infrastructure expenditure and the growth of a fief’s fields and
industry levels.

• For character, the calculation of: a character’s stature , the way in which traits are applied to

game mechanics, an NPC’s ‘worth’ as an employee (i.e. potential salary), the chance of
character death during the seasonal update, the extent to which a child’s attributes will vary
from that of its parents.

Also examined were other game aspects, such as:

• The time taken (in game days) to perform the various mechanics.
• Given Overlord’s time model, at which point specific object attributes should be updated.

For example, battle casualties occur immediately, as a part of the battle mechanic, whereas
population growth occurs during the daily seasonal update.

This process was very useful in identifying those mechanics that would be better broken down into a
number of ‘sub-methods’ in order to provide discrete access to component data. This is especially
important for components that are used in more than one mechanic. For example, when calculating
fief loyalty, it is necessary to into account the following:

• Tax rate
• Surplus
• Bailiff attributes (including language)
• Bailiff traits

60 | P a g e

• Officials expenditure
• Garrison expenditure

Once the core objects and methods have been identified, it is often helpful to view them in
diagrammatical form, allowing relationships between objects and mechanisms to be more clearly
defined, whilst also helping with the process of designing the test client.

Figure 12: The main activities involved in army management and combat

5.2.3 User Interface

Although Section 1.3.1.2 of the Requirements and specification only stipulates the creation of a test
client with a minimal user interface, it was still necessary to consider in some detail how best to

61 | P a g e

present the functions and information that the player would require in order to effectively play the
game.

Regarding the nature of the interface, there were two main choices – i) text-based, presenting a
series of text menus and requiring user input at the command line; ii) graphical, making use of
elements such as buttons and drop-down menus. The graphical option, readily available through the
.NET System.Windows.Forms namespace, was felt to be the most appropriate option, being both
easier to use and allowing the more efficient presentation of interface components. It was also felt
that it would more easily facilitate the creation of a fully realised hexagon map, an optional
requirement of the client interface.

The game objects and mechanics were assessed with a view to creating logical groups of functions
that could be accessed from a single point in the interface. It was also useful at this point to
examine the online help pages of Nofi and Dunnigan’s The Hundred Years War to see how its
interface had been organised, although allowances had to be made due to its text-based approach.

The following initial functional areas were identified:

• PlayerCharacter information
• Movement
• Fief management
• Army management and combat
• Household management
• In-game messages (i.e. information on game events)
• King functions
• System administrator functions

The process of considering what information needed to be available to the player at certain points in
the interface, also led to an appraisal of the most efficient way to retrieve the necessary data and,
therefore, the most appropriate structure for its storage. The two main decisions that needed to be
made were:

• Should classes contain local collections of objects for faster retrieval, rather than relying on
the filtering of all objects of that type. For example, should the Fief class contain a collection
of characters located in that fief, or should all character objects be filtered by their location
attribute? If the former, then could the Character class location attribute be removed
entirely?

• Should certain attributes consist of embedded objects, again for faster access to the object

data, or should they simply hold the ID of the object, which could then be retrieved from a
master collection? For example, should the Fief class owner attribute consist of a
PlayerCharacter object or merely the object ID?

In most cases, the decision made was to hold collections of objects (or object IDs) within the class,
rather than having to filter all objects. For example, the PlayerCharacter class would hold a
collection of associated NPCs (family members and employees). However, it was also decided to
take a ‘multiple redundancy’ approach by retaining the associated attributes within those classes.
Using the example above, NonPlayerCharacter class would retain the familyID attribute. This would
allow flexibility in the retrieval of data, depending on the particular situation.

Decisions on the type of attribute to use (object or ID), were made on a case-by-case basis,
depending on the perceived frequency with which they would be accessed. For example, it was

62 | P a g e

decided that the PlayerCharacter class NPCs collection would be frequently accessed and should,
therefore, contain Character objects. Conversely, it was decided that the Character class fiancée
attribute would be infrequently accessed and would, therefore, contain a character ID, rather than
the actual object. In most cases, the attribute was initially left as an ID until access frequency could
be verified.

Unexpectedly, the decision to employ a graphical user interface also effected the choice of IDE used
in the project; for reasons of performance in Linux environments, the MonoDevelop and Xamarin
Studio IDEs make use of GTK# to create graphical interfaces, rather than Windows.Forms (although
the Mono environment does support the execution of Windows.Forms applications). As the project
developer had no previous experience of using GTK#, it was decided to proceed with the use of
Windows.Forms which, in turn, meant that Microsoft Visual Studio 2010 (and by extension
Windows) would need to become the primary development environment. To ensure cross-platform
functionality, the application would be regularly tested in Linux, using MonoDevelop to debug any
identified errors.

5.2.4 Architecture

Although the first stage of the project plan (see Section 4.1) called for the prototype to be developed
using locally stored data (i.e. not in a client-server configuration), it was still necessary to consider
some issues of architecture in order to more easily facilitate its later introduction.

It was decided to create collections holding specific object types (PC, NPC, Fief, etc.); these
collections would use the Dictionary class, allowing the reliable retrieval of an object using its ID.
These collections would also be used during the daily seasonal update, allowing easy iteration
through objects of a particular type. Each collection would be created at the appropriate point in
the implementation phase (i.e. when that object type was first required by the application).

In order to allow all game objects to have access to all other objects, it was decided that these
collections would be initially contained within the Form1 class, which would instantiate all other
game objects.

It was decided that the Form1 class would also need to contain attributes used to keep a track of
which fief, character, army, etc. was currently being viewed in the interface and which PC objects
had been designated to fill the game roles of king, herald and system administrator. These
attributes would allow the corresponding objects to be easily passed to methods as parameters.

Looking ahead to the introduction of a client-server architecture, thought was given to those
attributes that would need to be accessible to all game clients (for example, the king, herald, and
sysadmin attributes; the object collections) and those that were required only by that particular
client (for example, which PlayerCharacter was being played, which fief was currently being viewed).
It was thought that, at a future point, a static class (or classes) might be used to make these
attributes easily accessible but, as mentioned above, they would be stored in the Form1 class
initially.

Thought was also given as to the later-stage architecture with regard to ensuring consistent
communication of game state and information updates (for example, ‘news’ items about battles,
sieges, marriages, deaths) between the server and clients. The adoption of the MVC or observer
pattern was thought appropriate as it allows a semi-automated approach to communication and, as

63 | P a g e

a result, the decision was taken to create the appropriate interfaces, although they would not be
properly employed until later in the implementation.

64 | P a g e

6. IMPLEMENTATION

Implementation mainly proceeded based on functional modules, although, due to their
interconnected nature, it was frequently necessary to revisit modules in order to implement new
features (see Appendix C: Overview of files and content). In general, however, implementation
progressed in the following phases:

• Initial creation of objects and basic user interface
• The fief: its management and its place in the game world
• Movement, travel interaction and hiring
• Backend database management system
• Household management, inheritance and in-game information messaging
• Army management
• Combat
• Royal functions and overlord functions
• Victory conditions and calculation
• System administrator functions

In addition, the developer planned periods towards end of implementation to allow for:

• Code refactoring
• Testing

See Figure 13, Appendix A: Diagrams, for a UML entity relationship diagram showing the
relationships between the main JominiEngine classes.

Certain decisions were taken during the design phase (see Section 5.2) or early on in the
implementation phase regarding coding practices, although they were subject to change due to
emerging circumstances. These decisions included:

• The use of collections (‘master lists’) of particular object types that would allow efficient and
reliable retrieval of specific objects for use in methods, and the straightforward iteration
through a collection, which was very useful for the daily seasonal update.

• The Dictionary was chosen as the type of collection used for the master lists as it allowed the

fast retrieval of an object using its ID. One drawback of using the Dictionary was the
difficulty in retrieving a collection member by its index position but the need for this was
infrequent.

• In order to give a global scope to the master lists and, subsequently, other attributes and

utility methods, it was decided to make use of static classes for the initial version of the
engine, mainly in the interests of simplicity. It was recognised, however, that it would
probably be more effective to switch to an alternative method (such as the Singleton
pattern) for future versions to facilitate, for example, the creation of user-defined extension
methods (something that cannot be achieved with a static method). Later in the
implementation, distinct static classes were used to separate attributes associated with the
client and server side of the JominiEngine.

• In the early stages of implementation, error reporting and user feedback was provided

exclusively through the use of the MessageBox class (System.Windows.Forms). It was later
decided that error reporting should make use of the exception handling in those
circumstances where the error was predictable and was likely to affect the execution of the
game engine (for example, in a constructor, to alert the user to the inability to create an

65 | P a g e

object) or where exceptions provided the simplest way to check for incorrect user input (for
example, inputting a string instead of a integer). Care was also taken, where possible, to
carry out conditional checks to ensure that errors should not arise (see Section 5.2.2).

6.1 Initial implementation

The initial phase consisted of the creation of the main game classes specified in Section 1.3.1.1
(Character, PC, NPC, Fief and Army), the HexMapGraph class, which used the QuickGraph library,
and the basic user interface (an instance of Windows.Form). Other objects, identified during the
design phase as being required, were also created (Trait, Language, and Province).

The HexMapGraph class is employed essentially to tie together the fief objects into a coherent and
navigable game world and its implementation at a very early stage was, therefore, vital. It consists
of two main elements:

• A collection of vertices, which are the nodes in the graph (i.e. the components that you are
wishing to connect). In this case, a vertex maps to a Fief object.

• A collection of edges, constructs used to establish a connection between two vertices (the
source and target). The type of edge chosen for HexMapGraph was the TaggedEdge, which
allows an edge to be identified and retrieved, based on its tag; in this case, the tags mapped
to the direction of the connection on the hexagon map (‘W’, ‘NW’, ‘NE’, ‘E’, ‘SE’, ‘SW’).

A third element was subsequently added:

• A Dictionary associating each edge with a double value, representing the travel cost. This
was used to facilitate a QuickGraph method that used Dijkstra's algorithm to identify the
shortest path between two vertices.

The most important function of HexMapGraph is to return a fief object which can then be used as a
character’s next location (or, in some cases, a collection of fiefs representing a path along which the
character will sequentially travel). The GetFief method is used to identify and return a fief, using the
source (current fief) and direction (string) passed in as parameters. The key segment of code that
achieves this is the following (where ‘f’ is the source fief, ‘direction’ is the desired direction of travel,
and ‘myFief’ is the fief to be returned):

 // iterate through graph edges

foreach (var e in this.myMap.Edges)
 {
 // if source matches f, check tag
 if (e.Source == f)
 {
 // if tag matches, get target
 if (e.Tag.Equals(direction))
 {
 myFief = e.Target;
 break;
 }
 }
 }

At this stage, the user interface was very basic, consisting of a single container which displayed the
text output from a test method; this method allowed the developer to test that object attributes
could be correctly displayed and that the character could move from one fief to another on a simple
(seven fief) map. As each functional module was developed, the user interface was adapted
accordingly, usually requiring the addition of a container, to house information displays and objects,
and a new drop-down menu item to provide access to the new container.

66 | P a g e

For the sake of convenience, a separate form, SelectionForm, is also used in a number of places to
allow the listing and selection of game objects for a specified purpose (for example, candidates for a
bailiff appointment, or armies in a fief).

6.2 The fief: its management and its place in the game world

As can readily be seen from Table 6 (Section 5.1.6), the Fief class is integral to the production of two
main resources, money and population, both of which are factored into a player’s individual score;
indeed the ownership and shrewd management of fiefs can be identified as the single most
important component in the attainment of victory. It was decided, therefore, to make fief
management the first major module to be implemented.

6.2.1 Fief management

Figure 10 (Section 5.2.1) shows fief management to comprise of a small set of relatively simple
operations and components that interact in a quite complex manner. It was felt important,
therefore, that complex procedures should be broken down into separate methods, thus allowing
easier identification and testing.

Fief management methods can be grouped into three main categories, most of which are located in
the Fief class (but some of which are in the Form1 or SelectionForm classes):

• Those directly used by the player, via the user interface, to: i) adjust the tax rate and the
four expenditures (garrison, officials, infrastructure and keep); ii) transfer funds between the
player’s home fief and his other fiefs; iii) appoint a bailiff; iv) grant the fief title to an NPC.
Additionally, although not called for in the original design, there is a set of extension
methods to detect and adjust overspending (i.e. when insufficient funds are available in the
fief’s treasury).

• Those used to calculate changes to key attributes such as the fields and industry levels (both

dependant on infrastructure expenditure), keep level (dependant on keep expenditure) and
loyalty (dependant mainly on changes to the tax rate and fief surplus but also on garrison
and officials expenditure). These methods are mainly used during the seasonal update –
UpdateFief – but also to display information to the player.

• Those used to calculate derived data such as GDP (based on fields and industry levels) and

income (based on GDP, and tax rate) and surplus (based on income, expenses, overlord tax
rate, and fief status). In addition, many of these elements (loyalty, income, expenses) are
effected by the attributes of the fief bailiff, but only if the bailiff has spent 30 days in the fief
during that season. Again, these methods are used during the seasonal update or for
information displays.

As work proceeded on the fief management interface, the need became clear for better way to
display the financial data required by the player in order to make sound decisions; information
needed to be available for the previous and current seasons, and also an estimated projection for
the next season, based on the player’s tax and spending decisions. A consequence of this was the
decision to create two new attributes (double arrays) holding a variety of financial data for the
previous and current seasons; these would be updated during the seasonal update.

67 | P a g e

Family expenses are one of the primary expenses involved with fief management; these are basically
a combination of employee wages and family member allowances. For the sake of simplicity, it was
decided that bailiff expenses would be applied in the fiefs for which they are bailiff and all other
expenses (including non-bailiff employee wages) would be applied at the home fief. Family member
allowances are derived by using the NonPlayerCharacter CalcFamilyAllowance method which
basically specifies an allowance based on family function. Additionally, family expenses in the home
fief are influenced by the attributes of the head of family or his wife, rather than the bailiff.

See Figure 39 (Appendix A: Diagrams) for an entity relationship diagram showing the influence of fief
components upon each other.

6.2.2 The fief’s place in the game world

To allow the more accurate modelling of the game world and its political aspects the Kingdom and
Rank objects were implemented. This allowed a fief to be associated, via its Province, with its
rightful Kingdom and King (the owner of the Kingdom), and also made it possible to identify a fief
that was ‘under occupation’. Rank allowed stature value to be associated with each place, which
was then used when calculating a character’s base stature. The Place object was later implemented
as a superclass for Fief, Kingdom and Province.

Much of the political landscape of medieval Europe centred on the ancestral ownership of land; it
was decided, therefore, to model this in Overlord. The Fief class contains the ancestralOwner
attribute, specifying a PlayerCharacter. Ancestral ownership effects gameplay in a number of ways:

• A PC cannot grant a fief title to another character if he is the ancestral owner; the exception
to this is the king.

• If ownership of a fief changes as the result of a siege, fief loyalty will decrease if the
ancestral owner has been ousted, but will increase if the new owner is the ancestral owner.

• During an attempt to quell a rebellion in a fief, the chance of success will be increased if the
owner of the quelling army is the ancestral owner and the current fief owner is not.

It is worth noting that, during the design phase, the decision was taken to simplify two aspects
connected with the fief:

• The handling of money; rather than having to physically transport money around the
kingdom, any money generated by a fief is stored in its own treasury and can be transferred
into the player’s home fief treasury which is then available for the player to spend. Money
can also be transferred in the other direction, to support expenditure in a particular fief.
The home fief is identified by a PlayerCharacter attribute containing its ID. Note that the
PlayerCharacter does have a purse attribute, but only to support future changes to
functionality in this area.

• The handling of troops; rather than having Fief attributes containing numbers of specific

troop types, any requirement for calling up troops (for example, recruitment or the
formation of a militia in the event of pillage) uses recruitment ratios (stored in global
variables) to generate the appropriate forces, based on the fief’s population. This method is
also used, in conjunction with the fief’s garrison spend, to generate the garrison in the event
of a siege.

68 | P a g e

6.3 Movement and travel interaction

6.3.1 Movement

The next core module to be implemented was movement. Three movement mechanics were
identified as being of use to the player:

• Simple fief-to-fief movement.
• ‘Exact route’ movement, in which the player specifies a series of directions in which he

wishes to travel, starting at the current fief (for example, ‘w,nw,e,nw’).
• ‘Go here’ movement, in which the player gives the fief ID for his destination and is moved

there by the least expensive path.

Fief-to-fief movement was achieved quite simply by accessing the GetFief method (see Section 6.1),
having first determined the cost of the move and checked to see if the PlayerCharacter had enough
days left to accommodate it. Once the fief has been retrieved, the necessary steps are taken in a
separate method (Character.MoveCharacter) to remove the PC from the current fief and place him
in the target; this involves changing the PC’s location attribute to the new fief, removing the PC from
the fief’s charactersInFief attribute (a List of Characters) and adding him to the target fief’s
charactersInFief.

‘Exact route’ movement required the creation of a new Character attribute, goTo, a Queue
containing the fiefs to which the character will move. A Queue was chosen as it is specifically
designed to sequentially process its collection in the order in which they are added and has methods
to look at (Peek) or remove (Dequeue) the first item in the collection.

Once this attribute was in place, it was a relatively straightforward task to iterate through an array of
directions input by the player, retrieving the Fief by using GetFief and adding it to the goTo attribute.
If an incorrect direction entry was encountered, the path would be stopped at the last valid entry.
Once the goTo has been populated, each of the movement steps is processed in turn until the goTo
queue is empty or the character’s days have been exhausted.

‘Go here’ movement also makes use of goTo to store a series of fiefs retrieved from QuickGraph’s
ShortestPathsDijkstra method.

Given that both ‘Exact route’ and ‘Go here’ movement may result in goTo queues that the character
cannot complete in a single season, it was necessary, during the season update, to check each
character’s goTo queue and process any remaining moves.

In order to more efficiently store terrain data, needed to calculate movement costs, a Terrain class
was created and replaced the simple string terrain attribute in the Fief class. Movement costs were
initially based on the terrain cost of the target fief, but it was decided that a more realistic way to
calculate the cost of a move would be an average of both the source and target fief’s terrain costs;
this would remove the occurrence of two characters paying different costs for the same move simply
because they were going in different directions.

The decision was also taken, during the planning phase, to allow for certain circumstances that
might have an effect on travel costs. Therefore, the movement method calls two other methods
that calculate a season travel modifier (for example, the cost of travel in winter is twice that of
summer) and an army travel modifier, based on the size of an accompanying army.

69 | P a g e

Another factor to take into account when performing movement is the synchronisation of a
PlayerCharacter’s entourage. This is done by iterating through the PC’s myNPCs attribute (a list of
Characters) and identifying those that have their inEntourage attribute set to true. Rather than
performing the full MoveCharacter method on each NPC, however, the PC’s location attribute is
used to make the necessary changes and the NPC days are then synchronised with the PC’s.
Conversely, if an NPC who is in the PC’s entourage is given an independent movement order, it is
necessary to remove them before processing the move.

It was also decided that, in order to introduce a dynamic element into Overlord, unemployed NPCs
should move about the map by performing a single random move per seasonal update. This is done
by calling the ChooseRandomHex method in HexMapGraph and passing in the current fief; it then
iterates through the edges collection, identifies all edges with the supplied fief as a source, selects a
random edge from this list and returns the target fief.

6.3.2 Travel interaction and hiring

This area concerns the interaction between the PlayerCharacter and the other characters that he
encounters in his travels. In the design phase, the decision was made to provide three ‘meeting
places’ for the PC to interact in this way:

• The court of the fief, which provides access to any characters currently inside the keep; for
example, the fief owner and his family and employees. A PC may not be able to access the
court due to barring.

• The tavern, which is outside the keep and provides access to any unemployed NPCs.
• ‘Outside the keep’, which is basically the inverse of the court, listing all characters not in the

keep.

The need for simplification resulted in a reduction of the mechanics available in the meeting places,
although the court may eventually provide access to mechanics such as tournament combat and
seduction.

In the initial game engine, the most important activity accessible through the meeting place is the
hiring mechanic, which allows a player to examine and hire unemployed (and employed) NPCs to
perform duties for his household, chiefly fief bailiff and army leader. The hiring mechanic uses a
fairly complex formula to assess the likely worth (i.e. potential salary) of an NPC and then applies a
random element to model the negotiation that may occur during the process.

An NPC’s potential salary takes into account (including traits) their worth as a bailiff, their worth as
an army leader, and their current salary. The resulting salary is then influenced (i.e. possibly
reduced) by the hiring NPC’s stature, and also by the current employer’s stature (i.e. possibly
increased). A ‘scope of negotiation’ is then calculated (between 90% and 110% of the potential
salary), against which the hiring PC’s offer is compared; a random double, itself influenced by the
hiring PCs ‘npcHire’ trait, is used to ascertain whether the negotiation has been successful or not.
Additionally, the NPC’s lastOffer attribute is used to ensure that subsequent offers from PCs must be
for an increased amount.

6.4 Backend database management system

At this stage, it was decided to start to address another of the project’s primary objectives (see
Section 1.1.2), that of scalability. A necessary component of any MMO architecture (there are

70 | P a g e

numerous examples in the Literature review, Section 2.2.5) is the use of an efficient and reliable
backend database management system (DBMS) which can be used to store object sets for the
creation of new game instances and also the current game state, enabling an existing game to be re-
initialised, should the need arise.

Although inherently reliable, one of the key drawbacks of the traditional relational DBMS is that they
are designed for large throughput operations, rather than the small but frequent operations
associated with MMO gaming. As mentioned in the Methodology (Section 3.1.3), the non-relational
DBMS, Riak, was chosen for the project due to its purported ability to support a combination of ‘big
data’ and frequent access operations. It was intended to test its suitability, not only in regard to its
non-standard design but also its distributed architecture, which might be employed to provide
speedy access to a client-base potentially dispersed across a wide geographical area.

The anticipated need for object serialisation in connection with DBMS storage and retrieval meant
that it was advisable to address this issue earlier on in the implementation, when the number of
object types was still relatively few.

Unfortunately, Riak can only be installed on a Linux platform which, although not a problem as such
(the server side of the game engine was always intended to be hosted on a Linux machine), did
entail a temporary move to the MonoDevelop IDE and, from this point on, frequent switching
between Windows and Linux for testing purposes.

The CorrugatedIron library was easily installed and setup to provide the functionality to link to Riak,
and initial tests indicated that the connection to Riak was fast and reliable, albeit with small amounts
of data. Riak data is organised in a relatively flat fashion which made it difficult to store and retrieve
objects of a specific type; this necessitated the creation of Lists containing object IDs which could
then be used to retrieve object collections for insertion into the game master lists.

It became obvious at an early stage that the combination of decisions to, firstly, nest objects within
other objects and, secondly, to adopt a ‘multiple redundancy’ with regards to the access of object
data, would increase the amount of work necessary for serialisation. CorrugatedIron uses the
JSON.NET library to automatically serialise objects prior to storage but the recursive nature of some
of the object relationships meant that additional work would have to be carried out prior to this. For
example, the Character location attribute contains a Fief object, which itself contains a number of
Character objects (in its charactersInFief attribute), each of which will contain the Fief object and so
on.

It was necessary, therefore, using a combination of constructor and other methods, to substitute
object IDs for the actual objects both prior to storage and subsequent to retrieval. Anticipating an
impact on Riak transaction speeds, the decision was taken to change some existing class attributes
from object to object ID, whilst leaving those that would be most frequently used.

The only other issue that arose with the Riak implementation was in regard to the HexMapGraph
class which used QuickGraph object structures not known by JSON.NET. It would have been possible
to define JSON schemas specifically for this purpose but it was found to be unnecessary due to the
discovery of a QuickGraph method that enabled the creation of a graph by passing in a collection of
edges. It was only required, therefore, to serialise the HexMapGraph edges collection, substituting
Fiefs with Fief IDs on storage and vice versa on retrieval.

71 | P a g e

When implementing the DBMS functionality, care was taken to ensure that there was a clean
interface between the methods referencing CorrugatedIron and the rest of the game engine, via the
DatabaseRead and DatabaseWrite methods.

A later extension to the DBMS interface was the addition of functionality (Form1 ImportFromCSV
and related methods) that allowed the direct import of game data from CSV files into the database,
which could then be used to initiate a game.

6.5 Project extension

At this point in the implementation, it became apparent that the deadline for producing the
JominiEngine prototype (Friday 23rd May 2014) was not going to be achieved. The main reasons for
this were:

• Firstly, the project was more complex than had originally been appreciated; although steps
had been taken during the design phase to reduce the complexity of the core engine, it
nevertheless involved the intricate interaction of large objects composed of many attributes
(Fief, for example, has over 50 attributes if financial data is included). The introduction of
each additional functional area entailed a significant increase in complexity, often requiring
refactoring of existing mechanics.

• Secondly, given the above, the project was attempting to address too many issues; it

became clear that investigation of the architectural aspects of the game engine should be
dealt with separately from the core game functionality.

• Thirdly, developer’s personal circumstances, specifically the fact that he was in full time

employment, were having a negative impact upon the amount of time that could be
dedicated to working on the project.

The decisions were taken, therefore, to both extend the deadline for the project to Friday 19th
December 2014, and to revise the aims and objectives. The newly agreed aims and objectives were
specifically focussed on the production of a core game model, a robust core game engine, and a
minimal user interface, sufficient for testing purposes.

6.6 Household management, inheritance and in-game information messaging

The next component to be implemented was household management; this part of the interface
provides the facility to view a list of family member and employees (stored in the PC’s myNPCs
attribute), to examine their details, to add them to the PC’s entourage, and to give them movement
instructions (this is done using duplicate controls to those in the travel interface).

Care was taken to ensure that the player has enough information about NPCs upon which to base
their employment decisions, including the display of current responsibilities. Initially, the
NonPlayerCharacter getFunction method produced a string detailing the NPCs family position (for
example, ‘Son’) and their employment role (for example, ‘Bailiff of …’). Later, however, the decision
was taken to make a distinction between the role within the family and any employment
responsibilities and to provide a new method (GetResponsibilities) to derive the latter.

72 | P a g e

One of the key functional areas identified during the design phase (see Section 5.1.4 Game model
design) concerned the continuation of the player’s family line through childbirth and inheritance.
Simply put, in the initial version of the JominiEngine, if the player does not ensure that his PC has a
son to inherit his mantle, the game will end upon the death of the PC. To achieve this aim, the
player can make use of two main mechanics, childbirth and marriage, both of which rely on the use
of the in-game information messaging system.

6.6.1 In-game information messaging

The in-game information messaging system in Overlord provides several functions:

• The communication of information messages regarding game events. This facility can be
extended to include any type of message; for example, some system errors produce a
JournalEntry for the system administrator containing relevant details.

• The communication of marriage proposals and their replies.
• The scheduling of certain game events such as birth and marriage.

To facilitate this functionality, two classes were created:

• Journal, which provides a medium in which to store messages. It contains methods to
search and retrieve messages based on specified criteria.

• JournalEntry, which comprises the messages itself and contains attributes to store details
such as the type of event, personae involved, the location, etc. It contains methods to, for
example, check for player interest in a message, and assign a priority.

Although the client-server architecture of the JominiEngine was not implemented in this project, it
was decided to make use of distinct static classes to model this behaviour, storing client-side data in
Globals_Client (for example, the character currently being viewed), game-specific server-side data in
Globals_Game (for example, the object master lists), and game-independent server-side data in
Globals_Sever (for example, the next available game ID). It was then possible to implement the
Observer pattern for the purpose of communicating in-game messages.

Journal objects employed in the initial version of Overlord are:

• The pastEvents journal in Globals_Client, which contains messages of specific interest to the
player.

• The pastEvents journal in Globals_Game, which contains all messages communicated during
the course of the game.

• The scheduledEvents journal in Globals_Game, which contains events that are scheduled to
occur at some point in the future (currently just births and marriages). This journal is
checked during each seasonal update to see if any events are due to be processed during
that update; if so, the appropriate method is called.

An attribute in Globals_Game (jEntryPriorities), comprises a Dictionary that associates JournalEntry
type and character ID with a priority level; this is used to assign priorities to certain types of
messages.

A simple user interface was developed that allowed the player to browse through messages in
Globals_Client pastEvents and to respond to any marriage proposals in their role as head of the
family.

73 | P a g e

As many in-game events require the creation of journal entries, implementation of the in-game
information messaging system was occurred throughout the project, with additions to
jEntryPriorities being added as and when required.

See Figure 40, Appendix A: Diagrams for a sequence diagram showing the communication between
objects for in-game information messaging.

6.6.2 Childbirth

The childbirth mechanic, mirroring real life, comprises of two distinct steps: pregnancy, which uses
the Character GetSpousePregnant method, and birth, which uses Form1 GiveBirth and related
methods.

The pregnancy formula takes into account the wife’s age and an average of the couple’s virility to
arrive at a percentage chance, which is then compared with a random double. If successful, a
journalEntry is created and added to the Globals_Game scheduledEvents journal, to be processed
three updates hence.

The birth process involves a fairly complicated sequence of methods, orchestrated by GiveBirth.

• The parent characters are retrieved using the IDs contained in the birth message in
scheduledEvents, and a new NPC is generated.

• This NPC will derive its attributes from the parents, including amended ‘personality’
attributes, which could be better or worse than the parents.

• A check is then performed to see if mother and/or baby have died during the process.
Although, the Character CheckDeath method is used for other occasions, it was necessary to
adapt it to account for the enhanced danger involved in the birth process during these
times.

• An appropriate message is sent to Globals_Game pastEvents (and propagated to
Globals_Client pastEvents).

If successful, the birth will result in the new NPC being added to the myNPCs attribute of the
relevant head of family.

6.6.3 Marriage

Like childbirth, marriage consists of two steps: proposal, which uses Form1 ProposeMarriage and
ReplyToProposal, and marriage, which uses Form1 ProcessMarriage.

Proposal is a relatively straightforward process:

• Various conditional checks are performed (see Section 5.2.2 Game engine design).
• A proposal message is created for the intended bride’s head of family.
• Once alerted to the proposal, the ‘accept/reject’ controls are enabled in the head of family’s

journal interface which call ReplyToProposal.
• This creates a new message containing the reply, and the original message is also amended

to show the reply.
• If the proposal is accepted, a slightly amended version of the reply message is added to

scheduledEvents, to be processed during the next season update.
• The bride and groom’s fiancée attributes are updated accordingly.

74 | P a g e

The ProcessMarriage method simply amends a number of the bride’s and groom’s attributes (for
example, fiancée, spouse, familyName) and the bride is transferred into the groom’s family, taking
the groom’s familyID and being transferred from one head of family’s myNPCs to the other’s.

6.6.4 Death and inheritance

The other key process involved in the inheritance area is the ‘housekeeping’ mechanics for checking
and processing a character’s death, primarily performed by Character CheckForDeath and
ProcessDeath, respectively. Death in Overlord can occur through a variety of circumstances,
including battlefield injury, childbirth (mother or new infant), and natural causes.

In order to more accurately model the effects of injury and disease, the Ailment class was created; it
contains attributes recording the current effect of the ailment and the minimum effect (some
ailments never completely disappear). Ailment processing (during the season update) will
incrementally reduce each ailment effect until the finally reach the minimum level, and will remove
any ailments that have an effect of 0.

Each character’s health is derived from their maxHealth attribute, above which their health cannot
rise, modified by age and by any ailments they might have. During the season update,
CheckForDeath performs a check on each character, generating a chance of death based on their
health, sex (women are less likely to die), and modified by their ‘death’ trait.

Death processing is a complex but easily understood process, which basically involves ‘tidying up’
the character’s affairs and then transferring titles, property and other possessions (for example,
family members and employees) to the designated recipient PC. In the cause of historical
authenticity, it was decided that if a PC without an heir were to die, his king will inherit.

The process involves:

• Removing the character from any positions of responsibility.
• Cancelling scheduled marriages and births, where necessary.
• Removing from their location (Fief object).
• Removing from their spouse (updating the spouse’s spouse attribute).
• Re-assigning titles, where necessary (these may be inherited by the heir).
• If the deceased was a non-family NPC, they will be re-spawned in a random fief of the same

language, using a Character constructor that will vary their ‘personality’ attributes slightly.

If the deceased was a PC, inheritance varies slightly depending on whether there is an heir:

• If there is an heir, this NPC will be promoted, using a PlayerCharacter and Character
constructors tailored for the purpose. The new PC will then inherit his father’s properties,
positions, titles, armies, sieges, and NPCs, and the familyID or employer attributes of all of
his NPCs will be changed to his ID.

• A similar process occurs if the king inherits with the exceptions that any armies are
disbanded, sieges ended, and family members cast out (employees are retained).

See Figure 38, Appendix A: Diagrams for an activity diagram showing the main steps involved in
death and inheritance.

75 | P a g e

6.7 Army management

Like fief management, army management is another compound mechanic, although a less intricate
one, dealing primarily with less complex classes (Army and Siege).

Recruitment has to be carried out by the player’s PC in his current fief and is processed using the
PlayerCharacter RecruitTroops method. Prior to recruitment, various conditional checks are made;
for example, the PC cannot recruit troops if he speaks a different language from the fief (unless he
has high stature), and recruitment can only occur in each fief once per season (as indicated by the
fief’s hasRecruited attribute).

As mentioned in Section 6.2.2, although the player may specify a number of troops that he wishes to
recruit, the numbers of specific troop types that are raised will depend on national recruitment
ratios, held in Globals_Server recruitRatios, in conjunction with the fief population, and influenced
by a random element. Once the recruitment has proceeded and the funds have been deducted from
the PC’s home treasury, the troops are added to the PC’s army (if he was not leading an army, a new
one will have been created).

Army leaders are appointed by calling the Army AssignNewLeader method (either from
SelectionForm to allow selection of an NPC, or directly from the army management screen if the PC
is appointing himself leader). This basically updates the leader’s armyID attribute and the army’s
leader attribute, whilst also performing other necessary actions if required (for example, removing
the new leader from the PC’s entourage, and removing the new leader from command any other
armies).

It was decided that, rather than create a new movement mechanic specifically for an army, the
existing character movement methods would be amended and utilised. Essentially, the army is
treated in the same manner as an entourage; if an army is detected during the execution of
moveCharacter, its location will be updated and its days synchronised with those of the leader.

A unique ‘housekeeping’ mechanic associated with the army object, required for sake of
authenticity, is attrition, a process of gradual disintegration that occurs if any army is not properly
supplied in the field. This effect is modelled in Overlord by applying a formula that takes into
account the army’s size, in relation to the population of the fief they are in. The chance of attrition
occurring is modified by the season and by the leader’s attributes (desertions are lessened for a
more effective leader), and casualties are also increased during the winter and spring seasons.

Attrition casualties are applied by using the Army ApplyTroopLosses method which accepts a double
(between 0 - 0.99) and applies losses by iterating through the army’s troop types; this method is
used to apply all troop losses, irrespective of the circumstance. The code can be seen below (where
lossModifier is the double passed in):

 // keep track of total troops lost
 uint troopsLost = 0;

 for (int i = 0; i < this.troops.Length; i++)
 {
 // calculate no. lost
 uint thisTypeLost = Convert.ToUInt32(this.troops[i] * lossModifier);
 // apply losses
 this.troops[i] -= thisTypeLost;
 // update total
 troopsLost += thisTypeLost;
 }

 return troopsLost;

76 | P a g e

Attrition is incurred for every new fief that is entered or for every seven days spent in one place
(attrition is more likely to occur during periods of exertion). One way to negate the effects of
attrition is to maintain the army, paying a set amount per man to provide them with provisions; this
can only be done once per season (the army’s isMaintained attribute being reset during the season
update).

Transfers can be made between a player’s armies, or between the armies of different players, by
using the army management interface to create a detachment of troops and add it to the fief’s
troopTransfers attribute. The detachment can then be picked up (via a screen in SelectionForm), by
either the designated recipient PC or the donating PC, and added to the collecting army’s own
troops. Care was taken to prevent misuse of this mechanic by ensuring that attrition does apply to
troop detachments, applied during the season update or when the detachment is picked up.

Due to the multiplayer nature of Overlord and its time model, armies can become involved in
combat without the player being aware. To allow for this, it was decided to implement a simple
‘standing orders’ mechanic that allowed an army’s behaviour to be specified under certain
conditions. This is done in the army management interface through the adjustment of two army
attributes, aggression and combatOdds:

• aggression determines the default stance an army takes when faced with combat (for
example, an army attempts to stand and fight if the value is 1).

• combatOdds is used to modify the default behaviour in some circumstances (for example,
the army may only stand and fight if the combat odds are below the specified level).

6.8 Combat

In order to progress toward victory in Overlord, a player will usually have to acquire additional fiefs
to those he started the game with; combat is the most reliable way to achieve this. Combat
comprises of various mechanics, most of which are interconnected to some extent:

• Battle, in which one army attacks another ‘in the field’.
• Pillage, in which an army will attempt to extract money from a fief, and to damage its

infrastructure; pillage can involve a battle between the pillaging army and the fief garrison
and militia.

• Siege, in which an army will attempt to gain control of the fief. This may take several
‘rounds’ and may involve both battle (if the defending forces sally from the keep) and pillage
(if the siege is successful).

• Quell rebellion, in which an army attempts to restore calm in a fief where the populace has
risen in rebellion. If successful, this will result in the army owner assuming ownership of the
fief, irrespective of who was the original owner.

6.8.1 Battle

The battle mechanic is a fairly complex one, and uses Form1 GiveBattle and related methods.
Separate methods are employed to:

• Perform various conditional checks prior to attack: Army ChecksBeforeAttack).
• Obtain battle values for both armies: Form1 CalculateBattleValue.
• See if the defending army has been successfully brought to battle: Form1 BringToBattle.

This uses data held in Globals_Server battleProbabilities.
• Decide whether the attacker is victorious: Form1 DecideBattleVictory.

77 | P a g e

• Calculate casualties (troops) and injuries (characters): Form1 CalculateBattleCasualties and
Character CalculateCombatInjury. The chance of character injury is based on the army
casualty level, modified by the character’s combat attribute.

• Handle retreats: Form1 CheckForRetreat and Form1 ProcessRetreat

The formula for deciding an army’s battle value involves the following steps:

• The calculation of its base combat value: the total combat value for all troops and any
characters involved (i.e. the leader and his entourage). Combat values for different troop
types of different nationalities are held in Globals_Server combatValues.

• The calculation of the army leader’s leadership value, which takes into account the leader’s
combat, management and stature attributes, and the influence of any ‘battle’ traits.

• The comparison of the two army leadership values to derive a modifier which is then applied
to one of the armies.

The calculation of casualties proved to be quite problematic. Initially, this formula applied losses
proportionally to each side, taking into account the battle odds and which side had achieved victory;
however, testing demonstrated that this often resulted in high losses for a large army, even if it had
been victorious against a smaller opponent. It was therefore decided to base casualties on the
relative battle values of the two armies (taking into account the size and quality of an army and its
leader), using an adapted version of Lanchester’s Laws – see Adams (2004). In the case of the largest
army losing, the casualties would derive from an approximation of Lanchester’s Linear Law (the two
armies losing approximately the same numbers); in the case of the largest army winning, the
casualties would derive from a modification of Lanchester’s Square Law (the largest army suffering
the least casualties).

Retreat paths are calculated in a semi-random fashion; if the option is available, the retreating army
will always choose to retreat into a fief owned by the army owner. If not, a hex is chosen at random.
The starting hex is noted, to ensure that the army does not ‘double back’ on itself.

Interaction between the battle mechanic and various others, notably siege, meant that particular
care had to be taken to ensure that the outcome of the battle did not result in the removal of
objects being used by other methods; for example, a battle could result in the loss of a character or
even in the ending of a siege. Also, the JournalEntry object created in GiveBattle has to account for
many different circumstances (battle, siege, or pillage) and outcomes (who won, if any characters
were injured or died, if there was a retreat, etc.).

Battle can be affected by the defending army’s standing orders. An aggression value of 0 will cause
the defending army to attempt retreat; so will a value of 1, depending on how the odds for the
coming battle compare with the combatOdds value.

The outcome of a battle will positively and negatively affect the stature of, respectively, the
victorious army’s owner and the defeated army’s owner.

6.8.2 Pillage

Pillage is a secondary mechanic in Overlord; i.e. it is not essential to victory but can help the player to
achieve it; it is performed by Form1 PillageFief and ProcessPillage.

At the start of a pillage, a defending army is created for the fief (using data from Globals_Server
recruitRatios) consisting of the garrison, a ‘professional’ force, the size of which is specified by

78 | P a g e

garrison expenditure, and fief militia, which contains a high proportion of untrained ‘rabble’ and
whose size is derived from the fief population. This force will then try to bring the pillaging army to
battle, and this may result in the cancelation of the pillage.

The pillage, if it proceeds, will take a variable number of days (7-15) and the outcome is calculated
on the basis of the number of pillaging troops per 1000 population; it will adversely affect
population, treasury, loyalty, fields, and industry, and will net the pillaging army’s owner a variable
amount of money, based on the fief GDP.

To realistically reflect the attitudes of the time, however, the pillaging PC will never gain any stature
from a pillage; he will actually lose stature if he has pillaged a fief with the same BaseLanguage as
himself, and even more if it has the same Language (i.e. the same dialect).

Pillage, like battle, can be affected by standing orders: if the fief that an army intends to pillage
contains an enemy army, and if that army has an aggression value of 2, the pillage cannot proceed
until it has departed the fief (either voluntarily or as the result of battle).

6.8.3 Siege

The decision was taken, given the complexity and possible duration of a siege, to create a Siege class
to enable the proper synchronisation of all objects and processes involved, including armies,
characters, fief, casualties, and start season and year. Additionally, a new PlayerCharacter attribute,
mySieges, was introduced to store the sieges in which he is involved (as besieger or defender). A
new user interface screen was added which lists all of the player’s sieges and allows him to both see
information about the siege and, if he is the besieger, to carry out actions (for example, storm the
keep).

The main methods associated with conducting a siege are Form1 SiegeStart, SiegeStormRound,
SiegeReductionRound, SiegeNegotiationRound, and SiegeEnd. Also, the Siege SyncSiegeDays method
was introduced to ensure that the days of all relevant participating objects were synchronised with
the days of the besieging army’s leader (seen as the controlling entity).

Like pillage, a siege can be prevented by the presence of an enemy army with the appropriate
standing orders. If that army is located inside the keep, however, it will be included as a component
of the siege (in the Siege defenderAdditional attribute). This army may then sally to attack the
besieging army if it has the appropriate combatOdds value.

Once the siege has commenced, the besieging player can choose to conduct a number of different
types of siege ‘round’, each lasting 10 days:

• The reduction round (Form1 SiegeReductionRound) is the default activity for a siege; i.e. the
besieging army will attempt to reduce the keep level and inflict defender casualties with a
view to storming the keep at a later point. At the beginning of the round, if an additional
defending army is present, it may attempt to sally and attack; if successful, the siege will be
raised.

• The negotiation round consists of a reduction round, followed by a call to Form1

SiegeNegotiationRound. The chance of success is calculated as if for a battle, with each keep
level representing 1000 troops for the defender. The resulting percentage value is divided
by 2 to derive the chance of a negotiated success. If successful, the siege is ended and

79 | P a g e

ownership changes hands in a civilised manner (using Fief ChangeOwnership); the besieging
PC will receive an increase in status for the success but will not suffer a penalty for failure.

• The storm round consists of a reduction round, followed by a call to Form1

SiegeStormRound. The chance of success is calculated as if for a negotiation, except that the
full percentage value is used. A storm round will always result in additional damage to
defences and casualties to both defender and attacker, with attacker casualties being even
higher in the case of failure.

As with negotiation, success in a storm round will end the siege and result in a change of fief
ownership but there are also additional consequences: firstly, the fief is pillaged and,
secondly, captives are taken and ransomed. Only the defending PC and his family, and PCs
of a different nationality to that of the besieging PC are taken captive; the ransom consists
of the family allowance for NPCs and a proportion of the GDP for PCs (i.e. the total GDP of all
of their fiefs). Finally, the besieging PC will have his stature positively or negatively affected
depending on the result, the amount being based on the fief’s population.

Given the possible duration of a siege, attrition does play a part, especially for the besieging army.
The point at which attrition starts to affect the defending forces is dependent on the management
value of the fief bailiff (who leads the garrison).

The logical consequences of a siege made it necessary to refactor several other mechanics. For
example:

• Many army management functions are unavailable to a defending army in a siege.
• Many fief management functions are affected, including the calculation of fief income and

the ability to view some financial information.
• A marriage may need to be postponed if one of the couple is inside the keep of a besieged

fief.

6.8.4 Quelling a rebellion

Quelling a fief rebellion is a relatively straightforward procedure as it assumes a general state of
chaos, rather than the presence of an organised enemy army, and can be a ‘cheap’ way to gain
possession of a fief; it uses Fief QuellRebellion and associated methods.

The chance of success is simply a product of the proportion of troops in the quelling army as
compared to the fief population, and is modified by the army leader’s leadership value. If the army
owner is the fief’s ancestral owner and the current fief owner is not, this will also have a positive
effect on the chance.

Success results in a pillage of the fief and, if he does not already own it, fief ownership being
transferred to the army owner. Failure simply results the army having to perform a single hex
retreat.

6.9 Second project extension

At this point in the implementation, it became clear that, with some core functionality not yet
implemented, an additional extension would be required in order to complete the project to a
satisfactory standard.

80 | P a g e

It was considered unnecessary to amend the previously agreed aims and objectives but, as this
project would form the basis for those that followed, it was felt that the reliability of the game
engine was important, and that this could best be achieved by carrying out some basic refactoring
and testing.

6.10 Royal functions and overlord functions

Kings in Overlord can perform certain functions to reward (bribe) followers and cement their
position; these gifts involve potential increases in stature and, in most cases, financial gain.
Accordingly, a ‘Royal gifts’ container was created in the user interface, to allow access to these
functions, and to display financial information. To facilitate viewing permissions, the kingOne and
kingTwo attributes were added to Globals_Game; heralds (heraldOne and heraldTwo) also need to
have access to royal financial information in their role as royal advisers.

6.10.1 Granting province titles and fief titles

As with all PCs, the king can grant the title of a fief that he owns to any NPC (via the fief
management interface). Unlike normal PCs, however, the king can also grant fief titles to other PCs
(his loyal subjects) and this is performed through the royal gifts interface, which uses SelectionForm
to list potential candidates, before calling Character TransferTitle to make the appropriate changes
(updating the fief’s titleholder attribute and the character’s myTitles).

More importantly, the king can also grant titles of any provinces that he owns, thereby giving the
new title holder the opportunity to set and collect taxes from the constituent fiefs. This is done
using the same procedure described above.

The king can also, subsequently, revoke a title (province or fief), again by calling TransferTitle, and
passing himself as the new holder.

6.10.2 Granting fief ownership

The king can also grant ownership of a fief to another PC; as with a successful siege, this is done by
using Fief ChangeOwnership. Unlike granting a title, however, once fief ownership has changed, it
cannot be revoked.

6.10.3 Granting positions

Another feature of Overlord, introduced to maintain historical accuracy, was the ability of the king to
appoint characters to honorary positions, which would result in an increase of stature. In order to
achieve this, the Position object was created, extending Rank, and containing attributes titleHolder
and nationality, which allow the position (unlike a Rank) to be associated with a particular
nationality and individual character.

The granting of a position is performed using the Position BestowPosition method, which performs
the necessary changes to the character’s statureModifer; like fief or province titles, positions can
also be revoked at any time, cancelling the stature enhancement.

81 | P a g e

6.10.4 Overlord functions

Ironically, overlord functions in Overlord are quite limited. A PC can:

• View those provinces for which he is the title holder or the owner.
• Examine the constituent fiefs and see how much tax income they produce.
• Adjust the province tax rate, thereby modifying the income generated.

6.11 Victory conditions and calculation

As mentioned in Section 5.1.3 Game goals, an important aspect of any game in motivating players
and maintaining their interest is the establishment of suitable victory conditions; in the case of
Overlord, these conditions should be both readily understood and reflect historically accurate goals.
Three victory conditions were defined during the design phase: total, historically-based, and
individual points. After some consideration, it was decided to add an additional victory condition, in
which the victors would be whichever players were the kings for either side when the game ended.

Total victory (i.e. one team/nationality owning all fiefs in the game world) was relatively
straightforward to implement, involving iteration through the fief master list, whilst keeping a
running total of owner nationality.

The historically-based victory, although discussed, was not fully implemented in this project, mainly
because the era and geographical scope used in the prototype system did not model a specific
historical conflict.

In order to keep a record of individual scores, the VictoryData class was created, containing the
player ID and other details associated with the calculation of victory. Scores take into account the
following factors:

• The percentage of population falling under the player’s control,
• The percentage of total fiefs owned by the player.
• The percentage of total money possessed by the player.
• The player’s stature.

In each case, the score is based not only on the final figures but also on the degree of change during
the course of the game. It is necessary, therefore, to store both the initial and current values, and to
ensure that they are updated during the season update. Accordingly, VictoryData contains methods
to calculate the individual components of the score (for example, CalcStatureScore) as well as
UpdateData, which calls various methods in PlayerCharacter to obtain the current data (for example,
GetMoneyPercentage).

In order to facilitate the achievement of the ‘kings victory’ and, to a lesser extent, the points victory,
it was decided to implement a mechanic that allowed players to challenge for ownership of both
provinces and kingdoms, the latter being effectively a bid for the crown. In each case, the criterion
for success is the same:

• To achieve ownership of a province, a player needs to own more than 50% of the
constituent fiefs for 4 consecutive seasons.

• To achieve ownership of a kingdom, a player needs to own more than 50% of the
constituent provinces for 4 consecutive seasons.

82 | P a g e

The OwnershipChallenge class was created to keep track of current challenges, storing details of the
challenger, place ID, place type, and an integer, to be incremented during each season update.
Globals_Game ProcessOwnershipChallenges updates challenges by iterating through the appropriate
master list, and calculating the proportion of constituent parts owned by the challenger; each
challenge either has its counter incremented or is removed. If successful (i.e. the counter has
reached the value of 4), the TranferOwnership method of the appropriate class is used to make the
necessary changes, including the update of Globals_game kingOne and kingTwo, if appropriate.

6.12 System administrator functions

One of the requirements for the game model (see Section 1.3.1.1) was provision for a system
administrator (sysadmin) role with a full complement of administrative functions. These functions
should include the editing of game objects, the population of global variables, the viewing of game
logs and event journals, the banning of players from a game, etc. Accordingly, a sysAdmin attribute
was added to Globals_Game and a container created in the user interface to provide access to the
functions.

Due to lack of development time, however, sysadmin functions were only partially realised, being
limited to the ability to edit a selection of game objects (PC, NPC, Fief, Province, Kingdom, Army and
Trait); attribute validation had not been implemented before development ceased.

6.13 Code refactoring and testing

The final stage of implementation was dedicated to code review and refactoring, and concurrent
testing across both Windows and Linux platforms.

Primary code review and refactoring tasks included:

• Ensuring the provision of comprehensive validation in constructors.
• Ensuring the existence in all methods of appropriate checks for null values or empty strings.
• Moving, where possible, of functionality from event-triggered methods (for example,

responding to the click of an interface button) into game class methods.
• Moving methods from one class to another, where appropriate.

Testing was separated into two distinct phases:

• Constructor testing, focussing on validation, using the CSV import methods.
• A period of gameplay testing in which all main game mechanics were systematically utilised.

The initial intention was to carry out the main gameplay testing in Linux, in order to make use of the
Riak DBMS to populate the game world with a full collection of game objects. However, it became
apparent, that the debugging features offered by MonoDevelop were inadequate for the task. As a
result, additional methods were created to allow the initiation of a new game through the direct
import of CSV data, and the primary testing was switched to the Windows platform.

As was expected in such a complex application, the gameplay testing revealed a selection of errors,
unreliable formulas, inconsistent programming practices, and functions that had not been fully
implemented. A certain amount of restructuring was therefore required.

83 | P a g e

Unfortunately, there was simply not enough time to finish moving all methods to their correct
classes. To facilitate the future completion of this task, Form1 was sub-divided into partial classes,
each of which contained methods associated with a particular area of functionality.

84 | P a g e

7. REFLECTION

Reflecting upon a large and complex project will necessarily involve contemplation of a broad range
of topics, such as the manner in which the project was managed, the suitability of the tools and
technologies used, and personal reflections regarding various aspects of my own performance.

7.1 Compliance with requirements, aims and objectives

Given the academic context of the project, the most sensible place to start would be to assess the
degree to which the project’s aims and objectives have been achieved. This is can be best
accomplished through taking a ‘bottom up’ approach by considering to what extent the
requirements outlined in Section 1.3 Requirements and specification have been met.

Functional requirements Compliance
Game model
Contain the following basic objects: PC, NPC, Fief, Army
Provide the following roles: Faction leaders (i.e. kings), Faction heralds, System
administrator (sysadmin)

Provide channels of communication Partial
Be historically accurate within the limitations of game and the level of abstraction

Game engine
Provide a minimal user interface, through a test client
Allow players to communicate with each other via chat and/or bulletin boards external
Allow players to register (and delete) accounts X
Allow players to see games in progress X
(Optional) Design the architecture in such a way as to facilitate the future
modification of game content

Partial

System architecture
Provide a means for storing both persistent game world data, data associated with
individual games, and data metrics.

Extra-functional requirements
Game engine
Be designed to run on Microsoft Windows (version 7 onwards) and any Linux-
based operating system.

(Optional) Allow for the future development of a graphical user interface (GUI)

System architecture
Allow scalability up to thousands of concurrent players Partial
In the interests of modularity, provide clear interfaces to all game and system
components and a clear definition of protocols used

Partial

(Optional) provide sufficient redundancy to ensure availability in the event of the
failure of key system architecture components

Partial

Table 7: Compliance with project requirements

85 | P a g e

As can be seen in Table 7, the project succeeded in fulfilling many of its core requirements, albeit
partially in some cases. However, Table 8 shows that in some cases the requirements were actually
over-achieved through the introduction of features that were initially intended for implementation
in future projects.

Feature Explanation
Test client A more thorough test client was developed to facilitate a supplementary

period of testing and code review.
Code quality Increased code quality, and thus robustness, due to the above.
Game data The use of more detailed ‘game quality’ data to allow better improved

testing in more realistic game environment.
Ancestral ownership Mechanic not scheduled for implementation in this game version (see

Section 7.1.3 for details).
Individual troop types Expanded mechanic not scheduled for implementation in this game

version (see Section 7.1.3).
Language refinement Enhanced mechanic not included in planning (see Section 7.1.3).
Expenditure adjustment New mechanic not included in planning (see Section 7.1.3).
Troop estimates Enhanced mechanic not included in planning (see Section 7.1.3).

Table 8: Over-achievement of project requirements

7.1.1 Functional requirements compliance

A game model was developed that included all of the stipulated class types (PC, NPC, Fief, Army) and
provided the means to assume the key roles (king, herald, system administrator).

Game model design was thorough, systematically addressing both prosaic issues, such as class
structure, victory conditions and the flow of game resources, and creative issues, such as the
interaction of game mechanics, and character personality. Care was taken to provide players with
challenging but attainable goals, whilst also allowing them total freedom to pursue their own actions
and agendas, should they wish.

Within the limitations of the game and the level of abstraction, a strong effort has been made to
model historical accuracy; this applies to:

• The mechanics available; for example, siege and pillage.
• The rules within which the mechanics operate; for example, the rule that prevents a

character granting the title of a fief for which he is the ancestral owner.
• The object data imported into the game, which represent real-life characters and attempt to

accurately depict the physical world as it was during the medieval period.
• The formulas employed in key methods, which attempt to model realistic consequences; for

example, the use of Lanchester’s Laws to model battlefield casualties.

The requirement to provide channels of communication was only partially implemented when
development ceased. A system had been developed that allowed the communication of in-game
events (such as birth, siege outcomes, etc.) and the necessary modifications had been made to allow
the creation of messages for all key game events. However, although trialled during the testing
phase, this functionality had not been extended to the collection of game metrics.

86 | P a g e

A test client was developed which provides the player with an interface with which to interact with
the game world and its constituent objects, within the limits defined by the game rules. Crucially,
due to a period of testing and limited refactoring, the JominEngine is robust.

An effort was made to facilitate the future modification of game content by storing key data, such as
troop strengths and recruitment ratios in globally accessible variables, although this was not fully
implemented due to insufficient time. The documentation of game formulas, showing the methods
in which they appear (see Appendix B: Formulas), should expedite the completion of this process.

As specified in the initial plan, no full client-server was implemented, rather just an embedded test-
client. Therefore, the game engine functional requirements that were dependant on a full
implementation were not completed; namely, the facility to communicate directly with other players
using chat or bulletin boards, the provision of user accounts and related functions, and the display of
game progress information. However, the decision had already been made to investigate external
options in some of these cases (for example, chat and account login).

Through the implementation of an interface to the Riak DBMS, a means was provided for storing
both game world and other game-related data, although only the storage of game world data was
actually implemented. Limited testing of Riak would appear to support its suitability for the task,
although this cannot be confirmed until more rigorous testing under full game conditions has been
performed.

7.1.2 Extra-functional requirements compliance

As specified, the JominEngine supports both Microsoft Windows and, through the use of Mono,
Linux-based operating systems.

The decision to use the Microsoft .Net framework, Mono and particularly the choice of C# as the
programming language, should facilitate the porting of the JominiEngine into Unity 3D, a cross-
platform game creation system, which will allow the future implementation of a full graphical user
interface.

As client-server was not implemented, only partial progress towards supporting scalability;
specifically, the decision to use the Riak DBMS was made both because of its purported ability to
sustain performance during periods of high usage, and its distributed nature, which could potentially
allow game data to be stored locally, thereby reducing latency for a widely distributed player base.
Similarly, although no explicit fault-tolerance mechanisms were introduced in the game engine code,
the provision of system redundancy was partially addressed through the choice to use Riak which,
being distributed, has a high degree of built-in redundancy.

Where possible, an effort has been made to provide clear interfaces to game and system
components and to ensure the provision of adequate documentation; for example, there is a distinct
interface to the DBMS, and its use of JSON for serialisation ensures full supporting documentation.
However, some work still needs to be done regarding the final location of game methods; to
facilitate their future removal to other game classes, Form1 partial classes have been created,
containing methods associated with specific areas of functionality.

87 | P a g e

7.1.3 Requirements over-achievement

Table 8 details those areas of the implementation which have resulted in over-achievement.

In order to facilitate a supplementary period of testing and code review, not originally included in
the planning, a more thorough test client was developed. Additionally, the use of historically
accurate ‘game quality’ data allowed testing to be carried out in a true game environment. These
measures, in turn, led to enhanced code quality and, therefore, a more robust product.

In some cases, an expanded feature was added ahead of schedule, or a completely new feature
introduced; examples include:

• Ancestral ownership: a PC’s ancestral ownership of a fief can have an important effect upon
his interaction with other game objects (for example, his status can be enhanced). This
mechanic was not scheduled for implementation until a later project.

• Individual troop types: it was initially decided to have a single troop type (foot) and to
introduce other types with varying combat values subsequently. However, I implemented
the full complement of troop types in this project.

• Refined language definition: the interaction between character and fief languages can have
an effect upon the character’s ability to perform certain tasks (e.g. recruitment) or upon his
status (when pillaging a fief). I have refined this concept to allow a distinction to be made
between the base language (say, English) and the exact language, which also includes
dialect. This should provide for increased realism.

• Expenditure adjustment: this is a useful mechanic that allows a player to automatically
adjust fief expenditure (in proportion with original expenditure levels) to match funds
available in the fief treasury. It can be accessed manually but is also performed
automatically during the season update. This is a new mechanic, not mentioned at all in
planning.

• Troop estimates: this models the uncertainty involved with estimating the number of troops
in an enemy army. It bases the accuracy of the estimate upon the observer’s military skills
(leadership value, including traits), determining a ‘scope of error’, and then using a random
number to arrive at an estimate.

7.1.4 Compliance with aims and objectives

Aims Compliance
Develop a core game model, specifying the basic game classes (PC, NPC, Fief, and
Army), interactions, rules, mechanisms, and victory metrics

Develop a core game engine, enabling players to perform the functionality
outlined in the game model

Develop an underlying system architecture, enabling the efficient operation of the
game engine at varying usage levels

Designed (not
implemented)

Primary objectives
Creation of an interactive core game engine
Modularity: to enable future expansion by ensuring that the game engine be
designed with clear, well documented interfaces and protocols to all game
components

Partial

Scalability: ensuring that the game will support up to several thousand concurrent
players, at an acceptable level of performance

Partial

88 | P a g e

Secondary (optional) objectives
Content authoring: exposure of game data to facilitate the modification of game
content

Partial

Availability: providing a sufficient level of redundancy to allow for the failure of
key system architecture components

Partial

Table 9: Compliance with project aims and objectives

In summary, as can be seen in Table 9, through the achievement of most core requirements, the
majority of the project’s aims and objectives have also been fully or partially realised; those that
were not fully accomplished, were focussed around the unfortunate failure to implement the
underlying client-server architecture.

Significantly, the project was able to add to the scope of knowledge in the area of MMORPG design
by proposing and examining the novel use of a NoSQL (and therefore non-standard) DBMS and, at
least in principal, demonstrating its suitability for the task; the main research into this aspect,
however, will need to be undertaken in future projects.

The most important achievement was the implementation of a robust core game engine that
allowed players to participate in the historically authentic game world defined in the game model,
and to interact with a realistic collection of game objects in ways defined by rational but
unrestrictive rules.

7.2 Project management

During the course of the project, I feel it is in the area of project management that I learned the
most pertinent lessons.

Throughout the project, I attempted to follow the suggested guidelines in the British Computer
Society’s Code of good practice. Prior to commencing the project, meetings were held at which
aims, objectives and deliverables were discussed, and a timeline agreed; I decided to take an agile
approach to the project, which would ensure both flexibility and timely communication and
feedback.

I was generally satisfied with the way the project was managed:

• The risk assessment accurately identified potential problems and, in each case, provided a
course of action that could be taken to rectify them.

• The agile approach seemed to work well, with good communication in both directions and

rapid feedback on progress.

• On the whole record keeping was good, notably with regard to the use of Git commit
messages to record the frequent changes to the code. The only area that could have been
improved was the recording of meeting minutes, which were often written rather than
typed.

• Despite the need for extensions, the project progressed in methodical and logical way,

sequentially focussing on functional areas identified in the design phase.

89 | P a g e

• The testing and code refactoring stage proved very fruitful in identifying errors and potential

weaknesses and enabled the production of a more robust product.

One issue raised in Section 4.3.4 Social issues, is the need to be aware of potentially offensive game
features. There are a small number of features in Overlord that may fall under this category;
however, in each case care was taken to consider whether their inclusion was warranted within the
context of the project. For example, the assertion that English troops were superior to their
opponents can be justified by historical accuracy. Another example, the reduced role of women,
reflects to a certain extent historical circumstances, but was also a deliberate design decision, in
order to reduce complexity in the initial version; it may be rectified in a future extension.

I was also aware, however, of those aspects of the project management where I made mistakes:

• My lack of experience in undertaking projects of this size meant that the initial aims and
objectives were overly ambitious; realistically, attempting to develop both core game engine
and client-server architecture was a step too far.

• Another consequence of my inexperience was the failure to comprehend that a seemingly

simple application could actually become very complex over the course of a project; towards
the end of implementation, the introduction of even a small feature often resulted in
numerous changes to existing code.

• I also did not appreciate the extent to which my employment would affect the time available

to work on the project, especially when taken in conjunction with my own deliberate nature
which tended to lengthen the amount of time spent on the various stages.

• In some cases, my enthusiasm for the project resulted in the development of functionality

that had not been agreed in the initial plan. For example, although it had been agreed to
include attributes to show ancestral ownership of fiefs, the associated mechanics were not
due to be implemented in this project; however, I decided to do so. This, and similar
decisions, would later have an impact on the time available for testing and refactoring.

However, I realise that the realisation of one’s mistakes is a valuable part of the process, and I would
certainly be wiser regarding these matters in any future projects.

7.3 Programming practices

On the whole, I was pleased with the solid (if unsophisticated) programming technique that I applied
during the course of implementation. I feel I also exhibited a reasonable degree of flexibility when
faced with the challenges of a complex design; in particular, the frequent code revision necessary
upon the addition of a new mechanic.

I was careful throughout implementation to make use of XML summaries for classes, attributes and
methods (giving details of parameters and returned objects), and I included copious comments to
explain the flow and intent of the code.

Although limited time was available for testing and code review, it was carried out in a systematic
manner, the results were properly documented (see Appendix D: Testing), and it proved beneficial to
quality of the application.

90 | P a g e

However, it is necessary to also recognise some areas in which a combination of inexperience and
the pressure of time led to mistakes being made.

On occasion, my inexperience resulted in indecision that slowed implementation and sometimes
resulted in a lack of consistency; for example, my uncertainty over whether to use embedded
objects or object IDs in attributes. There are advantages and disadvantages for both practices: the
use of full objects gives more immediate access to object data and reduces the need to iterate
through object master lists. However, it requires that more work be carried out to ensure the
serialisation of those attributes and, by extension, this has an impact on the time required to carry
out database read/write operations. Ultimately, it will probably depend on the way in which the
database is utilised during the game.

Also, despite attempting where possible to break methods into component, easily manageable
parts, there are nevertheless a small number of very large methods (for example, Character
ProcessDeath and Form1 GiveBattle) that will need to be sub-divided.

I optimistically assumed I would have several weeks in which I could review and refactor code.
Thinking that I could rely on this stage at the end of the implementation phase, I sometimes pushed
ahead with code, knowing that it did not conform to good practice but believing that I would have
sufficient time to put it right. As is quite a common occurrence during software projects, however,
time ran out before these changes could be made. For example, various methods were created in
the Form1 class, simply to provide easy access to all game objects; many of these should probably be
located in game object classes.

7.4 Tools and technologies used

The overall performance and suitability of tools and technologies selected for use on the project was
high.

Both Visual Studio 2010 and MonoDevelop offered a good range of features, including
straightforward refactoring (for example, method or attribute renaming), good layout that made for
easy navigation of the application code, and plugins for version control systems, including Git.
Unfortunately, MonoDevelop’s debugging facilities left a lot to be desired, making it very hard to
track errors as they occurred, and often resulting in the need to reboot. As a result, Windows
became the de facto development platform, even when coding for the Linux-based Riak DBMS.

Mono proved to be a very reliable distribution of the .NET framework, supporting the full
functionality of .NET 4.5 without any noticeable performance issues. It was especially useful for the
development of the interface to the Riak DBMS.

The chosen programming language, C#, was fully featured and offered an extensive collection of
useful libraries, as would be expected for a language developed specifically for Windows by
Microsoft. Both of the external libraries selected for the project, QuickGraph (for creating the graph-
based game map) and CorrugatedIron (for creating the Riak interface) were easy to use and
contained some very useful methods. Additionally, JSON, used by CorrugatedIron for serialisation,
might prove to be a suitable protocol for client-server communication in later projects.

Riak was easy to install and straightforward to use, offering both port-based and HTTP-based
connectivity. It appeared to perform with acceptable speed and without any significant impact upon

91 | P a g e

the game engine, even when loading thousands of game objects upon game start-up. However, it
was only used in a rudimentary fashion in this project, and will require further investigation in a
client-server environment under more strenuous conditions before a decision can be made
regarding its suitability.

The Git version control system, along with its web-based repository service GitHub, proved an
invaluable tool during the implementation stage of the project. It provided a number of useful
functions, including the ability to:

• Share the JominiEngine code.
• Create parallel code branches to test different features.
• Examine code from previous versions.
• Create incremental comments detailing code changes, thereby enabling the implementation

history to be traced.
• Continue working with a local copy of the repository during the occasional period when an

Internet connection could not be obtained.
• Act as a cloud-based backup.

UML (Unified Modelling Language) diagrams were frequently used in this report to enable the
graphical representation of various aspects of the JominiEngine design, including basic structure
(class diagram), inter-object communication (sequence diagram), game world ‘work flows’ (activity
diagram) and ‘interaction space’ between the player and game mechanics (use case diagram).

I have found UML to be very useful, both during the design and implementation phases, for
visualising what is essentially an entirely abstract entity (a software program) from a number of
different perspectives, and allowing the components of that program to be comprehended
irrespective of the programming language being used to implement it.

During the design of the game model, however, I occasionally encountered a concept that was
difficult to illustrate using UML; for example, the interaction between the various processes involved
with the fief management mechanic (a compound mechanic). I wished to show how the individual
elements affected each other, sometime directly, sometimes inversely; ultimately, I found that a
non-UML entity relationship diagram best suited my purposes.

On a related note, I can recommend the open source utility UMLet for the creation of the basic types
of UML diagrams with the minimum of fuss.

7.5 Required changes to the existing code

As previously mentioned, although the core game engine is largely completed, some tidying up is
required before future projects can be undertaken:

• Some methods are too large, making the logic of the code hard to follow; these need to be
sub-divided into more manageable methods, each addressing a distinct function. Primary
examples include Form1 GiveBattle and SiegeStormRound, and Character ProcessDeath.

• Form1 has become a ‘God class’ containing methods that should be located in other classes.

These methods have been placed into Form1 partial classes (for example, Form1_battle) to
facilitate this process.

92 | P a g e

• Object validation needs to be added to the object editing methods accessible via the system
administrator interface (Form1 SaveTraitEdit, SaveArmyEdit, SaveCharacterEdit, and
SavePlaceEdit).

There are also some other, optional, tasks that should be considered:

• The methods used for error reporting are not entirely consistent, with constructors making
use of exceptions but methods in the database interface (for example, Form1
DatabaseRead_NPC) using popup MessageBoxes to report errors; these should probably be
changed to use exceptions.

• The process of using global variables to store data employed in key formulas was only

partially completed (for example, Globals_Server combatValues); this should to be
completed to facilitate the future modification of game content. Appendix B contains
information on the formulas used and the methods in which they appear.

• Currently, even if a character dies in the game, their object remains in the master list (to

allow access to the data, if required). However, over the course of a long game, this will
have an inevitable impact on performance, and so an alternative method needs to be
implemented (for example, keeping this data in the backend database).

7.6 Suggestions for future development

The ultimate goal of this and subsequent projects is to produce a game engine that will allow the
creation of fully featured historically-based MMORPGs set in a medieval context. This project has
made a solid start through the development of the core game functionality but considerable work
remains to be done before this goal is achieved.

7.6.1 Suggestions for short-term development

7.6.1.1 Game system architecture

An obvious starting point for future development would be the implementation of those elements
that were originally planned for this project but which were not completed. Specifically, the
implement of client-server architecture and the associated multiplayer functions, namely player
communication (for example, via chat or bulletin board), player accounts (including login), and lobby
functions (for examples, view games in progress, join an existing game). Care should be taken to
examine the use of third-party solutions in order to reduce system complexity and development
time.

Once this infrastructure is in place, investigations can be carried out into the crucial areas of
scalability and redundancy. The performance of the Riak DBMS should be thoroughly tested to
ascertain its suitability, and comparisons should be made between its single node and distributed
modes. Riak 2 is now available (current version 2.0.4) and its functionality should be investigated.

The issue of basic load-balancing should be addressed, including the possibility of mirroring
(sharding) or sub-division of the game world over separate servers. If the latter option is examined,
strategies will need to be developed for the transition of game objects between game world regions

93 | P a g e

and for coping with game objects and events that occur in the border zone of two regions (and are
therefore potentially visible to players in both regions).

7.6.1.2 Game design

There are also extensions that could be made to the game design, especially regarding the expansion
or completion of existing mechanics. In my opinion, these changes would be best carried out
subsequent to the introduction of the client-server architecture mentioned above.

• The completion of the system administrator functions to include, for example, the ability to
ban a player, and to re-assign roles for a game in progress. Some of these functions will be
necessary if the multiplayer architecture is implemented.

• The expansion of the data collection/communication mechanic to include metrics allowing
the analysis of various aspects of game usage. This data could also be examined in
conjunction with latency measurements, etc.

• The addition of new character attributes to ‘flesh out’ the personality and allow a more fine-
tuned interaction with the game world. These might include the re-introduction of
attributes simplified for the initial version of the game, such as leadership, or the
introduction of completely new attributes, such as intelligence.

• In conjunction with the above, the expansion of the traits collection from its current limited
subset.

• The expansion of the geographical scope to include France, Scotland, and Ireland, converting
‘megafiefs’ where necessary.

• The introduction of a sea travel mechanic. This will be necessary if the suggested changes to
geography above are implemented. Also, sea travel can be examined within the context of
dividing the game world between separate servers.

• The implementation of the Hundred Years War scenario.

Additional suggestions for expanding existing mechanics that would be relatively straightforward to
implement include:

• Expanded roles for women, allowing them to be PCs, and to inherit.
• Expanded combat, to model the effects both of terrain and of one troop type on another.
• Expanded pillage to allow the lesser option of raiding.
• Expanded barring to allow the barring of characters speaking particular languages.
• Expanded roles for NPCs, including spying and recruitment.
• Expanded troop transfers to allow the joining of two armies, or the separation of one.
• Expanded inheritance to allow more complex family trees.
• Expanded use of the distinction between Language and BaseLanguage into the areas of

recruitment and bailiff effectiveness (currently, the distinction is only applied during
pillage).

7.6.2 Suggestions for medium-term development

7.6.2.1 Game system architecture

Section 1.1, Aims and objectives, and Section 1.3, Requirements and specifications, alluded to the
possible future introduction of several features, including the modification of game content, and a
functional graphical user interface (GUI).

94 | P a g e

Game content modification relies on the exposure of key game data in order to allow game content,
and sometimes game behaviour, to be customised by the player. A start has already been made in
this area (for example, the ability to import game objects from CSV files) but further work needs to
be carried out both on the JominiEngine data structure and on provision of a suitable interface.
Third-party options should be thoroughly investigated, such as the use of Lua scripting language,
well-regarded by the game developer community.

Probably the most sensible route to the introduction of a GUI for the JominiEngine would the use of
a third-party game development system, negating the requirement for the in-house production of
high quality graphics and accompanying changes to infrastructure. Unity 3D, one such system that is
popular in the game developer community, should be investigated to ascertain its suitability.
Crucially, certain decisions regarding the technology used to develop the JominiEngine were taken
with this system in mind; specifically, Unity is built on Mono and uses C# as one of its main
development languages.

The prior implementation of client-server architecture would also provide further development
opportunities. Investigation can be carried out into the separation of functions such as the
administration of network connection to players, or the segregation of database storage in order to
provide faster access to dynamic data.

Strategies for reducing network traffic could also be examined, such as the introduction of the area
of interest (AOI) concept, requiring that players only be updated on changes to game state that are
relevant to them. However, this would only apply if the JominiEngine implements a form of ‘fog of
war’.

7.6.2.2 Game design

Short-term changes to the game design (see Section 7.6.1.2) suggested expansions to already
existing mechanics. The next stage would be to introduce new mechanics into the JominiEngine.
These might include:

• The introduction of game elements based on the role of religion, a very important part of
medieval life. Examples include the ability for PCs to join a crusade; the possibility of being
excommunicated for wrongdoings (in the eyes of the church); the introduction of divorce
and the role played in it by the church. A new role of pope might be implemented, giving
access to some of these functions.

• ‘Dirty tricks’ such as assassination, kidnapping, and seduction as methods by which a player
can destabilise his opponents’ positions and raise some extra money. The combination of
these mechanics and religion would add an extra dimension to the game, as well as
increased authenticity.

• The release of a series of well-researched scenarios depicting specific historical conflicts such
as the Wars of the Roses and the invasion of England by the Normans. This would also
compliment, and possibly be used as a proof of concept for, the introduction of a content
authoring system.

• The ability to train characters based on the attributes of the trainer.
• The introduction of tournament combat as a ‘mini game’ in which PCs could participate to

attain extra stature.
• The introduction of a game mode that disables the royal right of inheritance in cases where

a PC has no heir. Instead, the deceased PC’s fiefs could fall into rebellion and be claimed
through the quelling mechanic.

95 | P a g e

7.6.3 Suggestions for long-term development

Obviously, long-term development will very much depend on the steps that have been taken
previously. However, my suggestions for further enhancements would include:

• The introduction of enhanced NPC AI, facilitating more authentic behaviour in the game
world and allowing the autonomous performance of responsibilities such as fief
management. This not only adds to the player’s sense of immersion but also opens up the
project to a completely new area of research and development.

• The creation of ‘plug-in’ modules to reduce the level of abstraction and significantly expand
certain game mechanics; for example, modules that allow battles to be fought on a tactical
level, or fiefs to be improved and administered in detail. This would provide the opportunity
to potentially extend the game’s target player base.

• The expansion of game world geography to include all of Europe. This could be done in a
modular fashion, perhaps in conjunction with the release of historical scenarios.

• The introduction of enhanced game graphics and advanced GUI.

96 | P a g e

8. CONCLUSIONS

8.1 Game model and engine

A game model was developed that included all of the stipulated class types (PC, NPC, Fief, and
Army), provided the means to assume key roles (king, herald, system administrator), and specified
component mechanics, rules and victory conditions. This fulfils the project’s first aim (see Section
1.1.1).

The design process for the game model was both thorough and systematic, and resulted in a model
that addressed all of the issues specified in the aims and objectives. UML-style diagrams were used
extensively for both the game model and the software system design, helping to provide a sound,
well-documented basis for the longer term effort.

Care was taken to not only consider functional aspects of the game – object types, mechanics,
resources, and rules – but also to ensure that the model reflected, within the limitations of the
game, a high degree of authenticity and historical accuracy. One characteristic feature of Overlord
is the concrete embedding of the game model into a historically accurate context. This is achieved
by the choice of rules and game mechanics reflecting the “Age of Magna Carta”, but also through the
use of a historically accurate database of NPCs and a complete model of England as the geographic
context. Within this context, victory conditions were deliberately balanced to offer goals that were
both challenging and realistic, whilst also permitting freedom to pursue individual motivations.

Using this game model, a core game engine (the JominiEngine) was developed and implemented
that allowed players to use the specified mechanics to manipulate objects within the game world in
the manner defined by the rules. This fulfils the project’s second aim and the first primary objective
(see Section 1.1.2).

All aspects of the game model were implemented, including some mechanics that had been
earmarked for future expansions; however, lack of time resulted in only a partial implementation of
secondary game concepts, such as the in-game information messaging system and the system
administrator functions.

A prototype client was implemented to allow the testing of the JominiEngine; this facilitated a period
of code review and testing at the end of the implementation phase, which helped to identify errors
and potential weaknesses and enabled the production of a more robust product. Some preliminary
work will be required, however, primarily code restructuring, to prepare the JominiEngine for future
projects.

It is worth noting the, with this prototype client and the above historically accurate context, Overlord
represents a deployable instance of the JominiEngine, which is an appreciable over-achievement of
the originally specified aims of the project

8.2 System architecture, scalability and availability

Although considered during the planning phase, the limited time available meant that the
implementation of the client-server aspects of the game engine could not be carried out.
Consequently, various system functions that were dependant on the presence of the client-server
architecture could not be implemented; specifically, the facility to communicate directly with other
players using chat or bulletin boards, the provision of user accounts and related functions, and

97 | P a g e

various ‘lobby’ functions. For these aspects, however, external software, such as chat clients, can be
easily used; therefore the lack of these features inside of the game engine doesn't pose a serious
limitation to its functionality.

Some progress was made, however, towards the investigation of both system scalability, a primary
objective (see Section 1.1.2), and system availability and redundancy, a secondary objective; this was
achieved through the installation of the Riak DBMS, as a means for storing both game state and
other game-related data (although only the storage of game state data was implemented in this
project). The Literature review (see section 2.2.5) identifies concrete advantages of Riak (and NoSQL
databases in general) as a DBMS for MMORPGs.

Riak was chosen for both its purported ability to sustain performance during periods of high usage,
and its distributed nature, which could potentially allow game data to be stored locally, thereby
reducing latency for a widely distributed player base. Additionally, Riak’s distributed architecture
also provides a built-in redundancy in the event that one of its nodes should fail. Limited testing of
Riak would appear to support its suitability for the task; it performed with acceptable speed and
without any significant impact upon the game engine, even when reading and writing thousands of
game objects. However, it was only employed in a rudimentary fashion in this project, and its
distributed architecture remains untested. More rigorous investigation in a client-server
environment will be required before a decision can be made regarding its suitability.

Importantly, the use of non-relational (NoSQL) DBMS’s in MMOs is relatively novel and is an area
that could benefit from additional research. It is hoped, therefore, that this project was able to add,
in a modest fashion, to the scope of knowledge in this particular area of MMORPG design.

8.3 Modularity

With a view to the future implementation of additional functionality, an effort was made to address
the primary objective of modularity (see Section 1.1.2) through the provision of thorough
documentation and clear interfaces to game and system components; for example, there is a distinct
interface to the DBMS and to CSV import methods. Where applicable for the purpose, existing
protocols have been used; for example, the JSON format is employed by the CorrugatedIron library
for serialisation, and may prove suitable for client-server communication in future versions of the
JominiEngine.

XML summary sections have been added to all methods, giving details of parameters and returned
objects, and the methods contain copious comments to explain their content. Additionally, the
appendices to this report contain details of key formulas used in methods (see Appendix B:
Formulas), and a list of containers used in the test user interface (see Appendix D: Testing).

8.4 Facilitation of future extensions: Content authoring and graphical user interface

Although not fully implemented due to insufficient time, an effort was made to facilitate the future
modification of game content (‘modding’), and to increase the flexibility of the game engine, by
exposing key data in globally accessible variables, such as troop strengths, battle probabilities and
recruitment ratios. The documentation of key formulas used in methods (see Appendix B:
Formulas), should expedite the completion of this process.

98 | P a g e

One of the extra-functional requirements for the project (see Section 1.3.2.1) was provision for the
future development of a graphical user interface (GUI). This has, to a certain extent, been fulfilled
through the decisions to use the Microsoft .Net framework, Mono and C#. These choices should
facilitate the porting of the JominiEngine into Unity 3D, a popular game creation system, built on
Mono and using C# as one of its main development languages.

8.5 Suggestions for future development

8.5.1 System architecture

A good starting point for future development would be the introduction of those elements that were
not implemented for this project; specifically, client-server architecture and the associated
multiplayer functions. The use of external software and third-party solutions should be examined in
order to reduce system complexity and development time; for example, Facebook Login for player
account management, and chat clients such as mIRC and Mystic BBS for player communication.

Technically the most profitable direction for further work would be to carry out research into
scalability and redundancy, with particular reference to the performance of the Riak DBMS and its
distributed architecture. Riak 2 is now available (current version 2.0.4) and its functionality should
be investigated.

The issue of basic load-balancing should be addressed, including the possibility of mirroring
(sharding) or sub-division of the game world over separate servers. If the latter option is examined,
strategies will need to be developed for the transition of game objects between game world regions
(servers) and for coping with game objects and events that occur in the border zone of two regions.

In the medium term, further research could be carried out into areas such as the reduction of
network traffic; this might include, for example, the introduction of the area of interest (AOI)
concept, requiring that players only be updated on changes to game state that are relevant to them.

As referred to in Section 1.1.3 of Aims and objectives, the JominiEngine could be extended to allow
the modification of game content, although further work needs to be carried out both on the
JominiEngine data structure before this can be attempted. Third-party options should be thoroughly
investigated, such as the use of the well-regarded Lua scripting language.

Also alluded to in this project, the implementation of a GUI for the JominiEngine would be a
necessary step towards the development of fully featured MMORPG. The use of a third-party game
development system, removing the need for the in-house production of high quality graphics and
accompanying changes to infrastructure, should be investigated; Unity 3D, would seem to be an
obvious candidate.

8.5.2 Game model and engine

A starting point for future development of the game model and engine would be the expansion or
completion of existing mechanics. Specifically, extension of the system administrator functions
would be necessary in order to efficiently manage massive multiplayer instances of the engine, and
the expansion of the game analytics mechanic to include metrics allowing the analysis of various
aspects of game usage, could also prove very useful with regard to measuring system performance.

99 | P a g e

Other relatively simple short-term enhancements would include the development of a more realistic
character model through the expansion of attributes and traits, the expansion of the game world
geography (probably requiring the introduction of a sea transport mechanic), and the full
implementation of concrete historical episodes in the general time-frame, such as the post-Magna-
Carta civil war.

An attempt should be made to increase authenticity of the game model by expanding the roles for
women (such as allowing women to inherit - 'Salic Law'), modelling combat in a more realistic
fashion (allowing for the effects both of terrain and of one troop type on another), and expanding
inheritance through the modelling of complex family trees.

Medium-term developments should concentrate on introducing new mechanics into the
JominiEngine. Two such areas, that would complement each other well, would be:

• The introduction of the role of religion, a very important part of medieval life (see Steele,
2012). Religious mechanics might include the ability to join a crusade, the modelling of
investiture and its potential political conflicts, the possibility of being excommunicated, and
the introduction of divorce. In this context, the new role of a Pope should be modelled and
implemented.

• ‘Dirty tricks’ such as assassination, kidnapping, and seduction as methods by which a player
can destabilise his opponents’ positions and raise some extra money.

A way to demonstrate the versatility of the JominiEngine might be to release of a series of well-
researched scenarios depicting specific historical conflicts. This could be carried out in conjunction
with, and possibly be used as a proof of concept for, the introduction of a content authoring system.

Long-term development might explore the area of enhanced NPC artificial intelligence, which could
be employed to model authentic behaviour in the game world, and allow the autonomous
performance of responsibilities such as fief management. This not only adds to the player’s sense of
immersion but also opens up the project to a completely new area of research and development.

Another way to extend the game model, and to potentially extend the game’s player base, would be
to create ‘plug-in’ modules that allow a switch from the current strategic management of game
components, to more detailed tactical management; for example, modules that allow battles to be
fought on a tactical level, or fiefs to be improved and administered in detail.

100 | P a g e

9. REFERENCES

Aarseth, E., Smedstad, S.M. and Sunnana, L. (2003) ‘A multi-dimensional typology of games’ in: Level
Up: Digital Games Research Conference 2003, Utrecht: The Netherlands, 48-53.

Adams, E. (2004) The Designer's Notebook: Kicking Butt by the Numbers: Lanchester's Laws [online],
available: http://www.gamasutra.com/view/feature/2123/the_designers_notebook_kicking_.php
[accessed 9 February 2015].

Alecu, V.M. (2012) Developing a client-server architecture and minimizing data transfer for a
massively multiplayer online game, MSc dissertation Utrecht University, unpublished.

Alqwbani, A., Zuping, Z. and Aqlan, F. (2014) ‘Big Data Management for MMO Games and Integrated
Website Implementation’, Global Journal of Computer Science and Technology (B): Cloud and
Distributed, 14(2).

Alverez, J. et al. (2006) ‘Morphological study of the video games’, in Proceedings of the International
Conference on Games Research and Development (CGIE ’06), pp. 36–43, Perth, Australia, December
2006.

Anderson, E.F. et al. (2010) ‘Developing serious games for cultural heritage: a state-of-the-art
review’, Virtual Reality, 14(4), December 2010, 255-275.

Anderson, E.F. (2011) ‘A classification of scripting systems for entertainment and serious computer
games’, in Proceedings: 2011 Third International Conference on Games and Virtual Worlds for Serious
Applications: VS-Games 2011, Los Alamitos: IEEE Computer Society, 47-54.

Andrade, G., & Corruble, V. (2005) ‘Challenge-sensitive action selection an application to game
balancing’, in Proceedings: The 2005 IEEE/WIC/ACM International Conference on Intelligent Agent
Technology, Los Alamitos: IEEE Computer Society, 194–200.

Assiotis, M. and Tzanov, V. (2005) ‘A Distributed Architecture for MMORPG’, in NetGames '06:
Proceedings of 5th ACM SIGCOMM Workshop on Network and System Support for Games, New York:
ACM, Article No. 4., 1-7.

Avedon, E. M. (1971) ‘The Structural Elements of Games’, In Avedon, E. M. & Brian Sutton-Smith
eds., The Study of Games, New York: John Wiley and Sons, 419-426.

Bartle, R. (1996) ‘Hearts, clubs, diamonds, spades: Players who suit MUDs’, Journal of Virtual
Environments [online], 1(1), available: http://mud.co.uk/richard/hcds.htm [accessed 5 April 2014].

Bharambe, A. (2006) ‘Colyseus: A distributed architecture for online multiplayer games’, in
Proceedings: Symposium on Networked Systems Design and Implementation (NSDI), San Jose:
USENIX, 3-6.

Bharambe, A. et al. (2008) ‘Donnybrook: enabling large-scale, high-speed, peer-to-peer games’, in
SIGCOMM '08: Proceedings of the ACM SIGCOMM 2008 conference on Data communication, New
York: ACM, 389-400.

http://www.gamasutra.com/view/feature/2123/the_designers_notebook_kicking_.php
http://mud.co.uk/richard/hcds.htm

101 | P a g e

Binstock, A. (2013) The Quiet Revolution in Programming [online], available:
http://www.drdobbs.com/architecture-and-design/the-quiet-revolution-in-
programming/240152206 [accessed 5 April 2014].

Broadberry, S., Campbell, B. and van Leeuwen, B. (2011) ‘English Medieval Population: Reconciling
time series and cross sectional evidence.’ University of Warwick unpublished manuscript. [online],
available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.360.9324&rep=rep1&type=pdf
[accessed 9 February 2015].

Buyukkaya, E. and Abdallah, M. (2008) ‘Data management in Voronoi-based P2P gaming’, in
Proceedings: CCNC 2008: 5th IEEE Consumer Communications and Networking Conference, Los
Alamitos: IEEE Computer Society, 1050-1053.

Buyukkaya, E. et al. (2009) ‘VoroGame: A hybrid P2P architecture for massively multiplayer games’,
in Proceedings: CCNC 2009, 6th IEEE Consumer Communications and Networking Conference,
Alamitos: IEEE Computer Society, 1 - 5.

Caltagirone, S. et al. (2002) ‘Architecture for a Massively Multiplayer Online Role Playing Game
engine’, Journal of Computing Sciences in Colleges, 18(2), 105–116.

Crawford, C. (1984) The art of computer game design [online], available:
http://www.scribd.com/doc/140200/Chris-Crawford-The-Art-of-Computer-Game-Design [accessed 9
February 2015].

Crawford, C. (2002) The art of interactive design: A euphonious and illuminating guide to building
successful software, San Francisco: No Starch Press.

Crawford, C. (2013) Chris Crawford on interactive storytelling, 2nd ed., Berkeley: New Riders.

Cronin, E. et al. (2004) ‘An efficient synchronization mechanism for mirrored game architectures’,
Multimedia Tools and Applications, 23(1), 7-30.

Diao, Z. et al. (2014) ‘CloudCraft: Cloud-based data management for MMORPGs’, in Databases and
Information Systems VIII, Amsterdam, IOS Press, 71-84.

Dieckmann, M. (2013) A Journey into MMO Server Architecture [online], available:
http://www.mmorpg.com/blogs/FaceOfMankind/052013/25185_A-Journey-Into-MMO-Server-
Architecture [accessed 5 April 2014].

Drain, B. (2008) EVE Evolved: EVE Online's server model [online], available:
http://massively.joystiq.com/2008/09/28/eve-evolved-eve-onlines-server-model/ [accessed 5 April
2014].

Drain, B. (2011) The industry’s obsession with shards [online], available:
http://massively.joystiq.com/2011/03/29/the-soapbox-the-industrys-obsession-with-shards/
[accessed 5 April 2014].

Driel, M. et al. (2011) A Survey on MMOG System Architectures [online], available:
http://kaidence.org/research/MMOG.pdf [accessed 5 April 2014].

http://www.drdobbs.com/architecture-and-design/the-quiet-revolution-in-programming/240152206
http://www.drdobbs.com/architecture-and-design/the-quiet-revolution-in-programming/240152206
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.360.9324&rep=rep1&type=pdf
http://www.scribd.com/doc/140200/Chris-Crawford-The-Art-of-Computer-Game-Design
http://www.mmorpg.com/blogs/FaceOfMankind/052013/25185_A-Journey-Into-MMO-Server-Architecture
http://www.mmorpg.com/blogs/FaceOfMankind/052013/25185_A-Journey-Into-MMO-Server-Architecture
http://massively.joystiq.com/2008/09/28/eve-evolved-eve-onlines-server-model/
http://massively.joystiq.com/2011/03/29/the-soapbox-the-industrys-obsession-with-shards/
http://kaidence.org/research/MMOG.pdf

102 | P a g e

Dunnigan, J.F. (2000) Wargames handbook: How to play and design commercial and professional
wargames, 3rd ed., Lincoln: Writers Club Press.

Emilsson, K. (2014) Infinite space: An argument for single-sharded architecture in MMOs [online],
available:
http://www.gamasutra.com/view/feature/132563/infinite_space_an_argument_for_.php?print=1
[accessed 5 April 2014].

Fan, L. et al. (2010) ‘Design issues for Peer-to-Peer Massively Multiplayer Online Games’
International Journal of Advanced Media and Communication, 4(2), 108-125.

Gaitatzes, A. et al. (2004) ‘The Ancient Olympic Games: being part of the experience’, in VAST ‘04:
Proceedings of the 5th International Conference on Virtual Reality, Archaeology and Cultural
Heritage, Aire-la-Ville: Eurographics Association, 19–28.

Gillingham, J. (1990) The Wars of the Roses: Peace and conflict in fifteenth-century England, London:
Weidenfeld and Nicolson.

Hu, S-Y. et al. (2008) ‘Voronoi state management for peer-to-peer massively multiplayer online
games’, in Proceedings: CCNC 2008: 5th IEEE Consumer Communications and Networking
Conference, Los Alamitos: IEEE Computer Society, 1134-1138.

Iimura, T. et al. (2004) ‘Zoned federation of game servers: a peer-to-peer approach to scalable multi-
player online games’, in NetGames '04: Proceedings of the 3rd ACM SIGCOMM Workshop on
Network and System Support for Games, New York: ACM, 116-120.

Jacobson, J. and Holden, L. (2005) ‘The Virtual Egyptian Temple’, in Proceedings: EdMedia 2005:
World Conference on Educational Multimedia, Hypermedia & Telecommunications, Chesapeake:
AACE, 4531-4536.

Jardine, J. and Zappala, D. (2008) ‘A hybrid architecture for massively multiplayer online games’, in
NetGames '08: Proceedings of the 7th ACM SIGCOMM Workshop on Network and System Support for
Games, New York: ACM, 60-65.

Jinzhonh, W. A. N. G. and Zhigang, Y. U. E. (2010) ‘A finding less-load server algorithm based on
MMOG and analysis’, in International Conference on Intelligent Computation Technology and
Automation (ICICTA), Changsha, Hunan, China, 1, 96–99.

Kim, H-Y. and Park, H-J. (2013) ‘An efficient gaming user oriented load balancing scheme for
MMORPGs’ Wireless Personal Communications, 73(2), 289-297.

Kirschenbaum, M. (2011) War; what is it good for? Learning from wargaming [online], available:
http://www.playthepast.org/?p=1819 [accessed 9 February 2015].

Knutsson, B. et al. (2004) ‘Peer-to-peer support for massively multiplayer games’, in INFOCOM 2004:
Proceedings of the 23rd Annual Joint Conference of the IEEE Computer and Communications Societies:
Volume 1, Los Alamitos: IEEE Computer Society, 96-107.

Lankosk, P. and Björk, S. (2008) ‘Character-driven game design: Characters, conflict, and gameplay’,
paper for GDTW 2008: the 6th International Game Design and Technology Workshop and

http://www.gamasutra.com/view/feature/132563/infinite_space_an_argument_for_.php?print=1
http://www.playthepast.org/?p=1819

103 | P a g e

Conference, Liverpool [online], available: http://www.academia.edu/175264/Character-
Driven_Game_Design_Characters_Conflict_and_Gameplay [accessed 9 February 2015]

Llopis, N. (2009) Data-oriented design (or why you might be shooting yourself in the foot with OOP)
[online], available: http://gamesfromwithin.com/data-oriented-design [accessed 5 April 2014].

Martin, A. (2007) Entity Systems are the future of MMOG development – part 3 [online], available:
http://t-machine.org/index.php/2007/12/22/entity-systems-are-the-future-of-mmog-development-
part-3/ [accessed 5 April 2014].

McKnight, C. et al. (2012) ‘Multi-server MMO middleware: Unlocked’, in 3PGCIC 2012: Proceedings
of the 7th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, Los
Alamitos: IEEE Computer Society, 218-225.

Muhammad, Y. (2011) Evaluation and Implementation of Distributed NoSQL Database for MMO
Gaming Environment, MSc dissertation Uppsala University, unpublished.

Nicole, D. (1996) Medieval warfare source book: Volume I: Warfare in western Christendom, London:
BCA.

Nofi, A.A. and Dunnigan, J.F. (1997) Medieval life & The Hundred Years War [online], available:
http://www.macs.hw.ac.uk/~hwloidl/hundredyearswar.com/Books/History/1_help_c.htm [accessed
9 February 2015].

Oman, C.W.C. (1885) The art of war in the Middle Ages: A.D. 378-1515, Oxford: B.H. Blackwell

Radoff, John (2007) Anatomy of an MMORPG [online], available:
http://radoff.com/blog/2008/08/22/anatomy-of-an-mmorpg/ [accessed 5 April 2014].

Ross, S.J. (2013) Medieval demographics made easy [online], available:
http://www222.pair.com/sjohn/blueroom/demog.htm [accessed 5 April 2014].

Sicart, M. (2008) ‘Defining game mechanics’, Game Studies: The International Journal of Computer
Game Research [online], 8(2), December 2008, available:
http://gamestudies.org/0802/articles/sicart [accessed 5 April 2014].

Steele, L.J. (2012) Fief: A look at medieval society from its lower rungs, 2nd ed., Austin: Cumberland
Games & Diversions.

Steele, L.J. (2010) Town: A city-dweller’s look at thirteenth to fifteenth century Europe, Austin:
Cumberland Games & Diversions.

Sumption, J. (1990) The Hundred Years War: Volume I: Trial by battle, London: Faber and Faber.

Sumption, J. (1999) The Hundred Years War: Volume II: Trial by fire, London: Faber and Faber.

Sumption, J. (2009) The Hundred Years War: Volume III: Divided houses, London: Faber and Faber.

Tuchman, B.W. (1979) A distant mirror: The calamitous 14th century, Harmondsworth: Penguin.

http://www.academia.edu/175264/Character-Driven_Game_Design_Characters_Conflict_and_Gameplay
http://www.academia.edu/175264/Character-Driven_Game_Design_Characters_Conflict_and_Gameplay
http://gamesfromwithin.com/data-oriented-design
http://t-machine.org/index.php/2007/12/22/entity-systems-are-the-future-of-mmog-development-part-3/
http://t-machine.org/index.php/2007/12/22/entity-systems-are-the-future-of-mmog-development-part-3/
http://www.macs.hw.ac.uk/~hwloidl/hundredyearswar.com/Books/History/1_help_c.htm
http://radoff.com/blog/2008/08/22/anatomy-of-an-mmorpg/
http://www222.pair.com/sjohn/blueroom/demog.htm
http://gamestudies.org/0802/articles/sicart

104 | P a g e

Van Geel, I. (2013) MMOData.net: Keeping track of the MMORPG scene [online], available:
http://mmodata.blogspot.co.uk/ [accessed 5 April 2014].

Von Clausewitz, C. (1997) On war, Ware: Wordsworth Editions Limited.

Von Reiswitz, G.H.R. (1824) Instructions for the representation of tactical maneuvers under the guise
of a wargame, s.l.: s.n.

West, M. (2007) Evolve your hierarchy: Refactoring game entities with components [online],
available: http://cowboyprogramming.com/2007/01/05/evolve-your-heirachy/ [accessed 5 April
2014].

White, W. et al. (2009) ‘Better scripts, better games’, Communications of the ACM: Being Human in
the Digital Age, 52(3), March 2009, 42-47.

Yee, N. (2006) ‘Motivations of Play in Online Games’, CyberPsychology & Behavior, December 2006,
9(6), 772-775.

Yonekura, T. et al. (2004) ‘Peer-to-peer networked field-type virtual environment by using AtoZ’, in
CW 2004: Proceedings: 2004 International Conference on Cyberworlds, Los Alamitos: IEEE Computer
Society, 241-248.

Zeigler, B. (2006) Why SQL sucks for MMORPGs [online], available:
http://doublebuffered.com/2006/10/30/why-sql-sucks-for-mmorpgs/ [accessed 5 April 2014].

http://mmodata.blogspot.co.uk/
http://cowboyprogramming.com/2007/01/05/evolve-your-heirachy/
http://doublebuffered.com/2006/10/30/why-sql-sucks-for-mmorpgs/

105 | P a g e

APPENDIX A: DIAGRAMS

Figure 13: Class entity relationship diagram showing main JominiEngine classes

106 | P a g e

Figure 14: Class diagram showing the Character and Trait classes

107 | P a g e

Figure 15: Class diagram showing the PlayerCharacter class

108 | P a g e

Figure 16: Class diagram showing the NonPlayerCharacter class

109 | P a g e

Figure 17: Class diagram showing the Fief class

110 | P a g e

Figure 18: Class diagram showing the Place and Kingdom classes

111 | P a g e

Figure 19: Class diagram showing the Province and OwnershipChallenge classes

112 | P a g e

Figure 20: Class diagram showing the Army class

113 | P a g e

Figure 21: Class diagram showing the Siege class

114 | P a g e

Figure 22: Class diagram showing Form1 class

115 | P a g e

Figure 23: Class diagram showing Form1_army and Form1_siege_pillage_rebellion partial classes

116 | P a g e

Figure 24: Class diagram showing Form1_battle partial class

Figure 25: Class diagram showing Form1_birth and Form1_marriage partial classes

117 | P a g e

Figure 26: Class diagram showing Form1_character and Form1_fief partial classes

Figure 27: Class diagram showing Form1_household and Form1_journal partial classes

118 | P a g e

Figure 28: Class diagram showing Form1_movement and Form1_meetingPlace partial classes

Figure 29: Class diagram showing Form1_royal_overlord and Form1_sysAdmin partial classes

119 | P a g e

Figure 30: Class diagram showing GameClock class

Figure 31: Class diagram showing HexMapGraph class

120 | P a g e

Figure 32: Class diagram showing Journal and JournalEntry classes

121 | P a g e

Figure 33: Class diagram showing Language and BaseLanguage classes

Figure 34: Class diagram showing Nationality and Terrain classes

122 | P a g e

Figure 35: Class diagram showing the Rank, TitleName and Position classes

123 | P a g e

Figure 36: Class diagram showing the Trait and Ailment classes

Figure 37: Class diagram showing the VictoryData class

124 | P a g e

Figure 38: Activity diagram showing the flow of activities involved in the death and inheritance mechanic

125 | P a g e

Figure 39: Entity Relationship Diagram showing the way in which the various components of the fief
management mechanic influence each other

126 | P a g e

Figure 40: Sequence diagram showing the communication involved in the in-game event messaging mechanic

127 | P a g e

APPENDIX B: FORMULAS

The following formulas and game logic were used in the JominiEngine. Method names are supplied,
where appropriate.

B.1 Armies and combat

Leadership Value (LV)

• Method: Character.GetLeadershipValue
• Uses: leader’s combat (cbt), stature (stat), management (mgt), traits
• LV = (cbt + mgt + stat) / 3
• LV = LV + (LV * traits modifier)
• Note: LV of army with no leader = 4

Army combat modifier (CM)

• Method: Form1.CalculateBattleValue
• Uses: leader’s Leadership Value (LV)
• CM = highest army LV / lowest army LV

Character combat value (CCV):

• Method: Character.GetCombatValue
• Uses: PC/NPC combat (cbt), health (hea), nationality (nat)
• CCV = (cbt + hea) / 2
• If (nat == ‘Eng’) then CCV = CCV + 5
• CCV = CCV + 5

o The added 5 takes into account armour of PCs/NPCs
• Note: the above is totalled for all PCs/NPCs accompanying the army

Troop combat value (TCV):

• Method: Army.CalculateCombatValue
• Uses: troop combat (cbt), number (num)
• TCV = (cbt * num)
• Note: the above is totalled for all troop types in the army
• Note: in a siege round, each keep level is worth 1000 troops (foot) to the defending army

Army battle value (ABV):

• Method: Form1.CalculateBattleValue
• Uses: character combat value (CCV), troop combat value (TCV), army combat modifier (CM)
• ABV = CCV + TCV
• [For army with highest LV]: ABV = ABV + (ABV * CM)

Chance of bringing enemy army to battle:

• Method: Form1.BringToBattle
• Uses: army battle value (ABV) of both armies
• Note: this calculation is also affected by the defending army’s standing orders

Condition Chance of battle
Compare ABV of attacking vs defending army:
Attacking ABV <= defending ABV 10%
Attacking ABV = (defending ABV * 2) 30%

128 | P a g e

Attacking ABV = (defending ABV * 3) 50%
Attacking ABV = (defending ABV * 4) 70%
Attacking ABV = (defending ABV * 5) 80%
Attacking CVA >= (defending CVA * 6) 90%

Table 10: Chance of bringing an enemy army to battle

Chance of winning a battle:

• Method: Form1.CalcVictoryChance
• Uses: army battle value (ABV) of both armies
• % chance of friendly victory = (friendly ABV / (friendly ABV + enemy ABV)) * 100

Battle casualty modifiers (CasM):

• Method: Form1.CalculateBattleCasualties
• Uses: army battle value (ABV) of both armies: maxABV, minABV
• Case 1: army with minABV wins

 Victorious army CasM range = 0.1 to ((maxABV / (maxABV + minABV))) / 2
 Losing army CasM = victorious army CasM * (0.8 to 1.2)

• Case2: army with maxABV wins
 Victorious army CasM = (1 + ((minBV * minBV) / (maxBV * maxBV))) / 2
 Losing army CasM range = 0.1 to (maxABV / (maxABV + minABV))

• Application of CasM: troop number = troop number – (troop number * CasM)

Retreat from battle:

• Method: Form1.CheckForRetreat and Form1.ProcessRetreat
• An army will retreat if:

 Specified by standing orders and not brought to battle
 It is the loser in battle and suffers >= 20% casualties
 It has unsuccessfully attempted to quell a rebellion

• Retreat length:
 If due to casualties, retreat is random 1-2 hexes
 Otherwise, retreat is 1 hex

• Note: The retreating army will try to retreat into friendly fiefs

Chance of siege storm/negotiation success:

• Method: Form1.CalcVictoryChance and Form1.SiegeNegotiationRound
• Uses: army battle value (ABV) of both armies
• % chance of storm success = (attacker ABV / (attacker ABV + defender ABV)) * 100
• % chance of negotiated success = as above / 2

Siege effects (casualties and keep level):

• Method: Form1.SiegeStormRound and Form1.SiegeReductionRound
• Uses: fief keep level (keepLvl), army battle value (ABV) of both armies
• For each non-storm siege round:

 keepLvl = keepLvl * 0.92
 Defending casualty modifier = 0.01
 % chance of defender leader injury: 1

• For each storm siege round (in addition to above):
 keepLvl = keepLvl * 1 - (0.1 + 0.015 * (attacker ABV / defender ABV))
 Defender casualty modifier (CasM) = 0.01 * (attacker ABV / defender ABV)
 Attacker CasM = 0.01 * (defender ABV / attacker ABV)

129 | P a g e

 Case 1: storm success
 Attacker CasM += 0.005 * keepLvl

 Case 2: storm failure
 Attacker CasM += 0.01 * keepLvl

Recruitment:

• Method: Fief.CallUpTroops
• Uses: fief population (pop), status (stat)
• Maximum troops (maxTrp) available in fief = pop * 0.05
• Number recruited (numRaised): maxTrp * (random between 0-1) [both can be specified]
• If stat = ‘U’: numRaised = numRaised / 2
• Cost:

 Non-ancestral fiefs: 2,000 per man
 Ancestral fiefs: 500 per man
 Funds come from home treasury

• Conditions:
 Fief must be owned by player
 Can only recruit once per season in a fief
 If fief speaks different major language, can only recruit if fief loyalty >= 7
 Cannot raise troops if fief in rebellion

Size of defending army (garrison + militia) in pillage/siege:

• Method: Form1.CreateDefendingArmy
• Uses: fief population (pop), garrison spend (gSpend)
• Maximum troops (maxTrp) available in fief = pop * 0.05
• Militia size = maxTrp * (random between 0.33 and 0.66)
• Garrison size = gSpend / 1000
• Defending army size = garrison + militia
• Note: national recruitment ratios determine exact numbers of each troop type
• Note: garrison consists of entirely professional troops (no rabble)

Chance of defending (fief) army giving battle prior to pillage:

• Method: Form1.BringToBattle
• Uses: army battle value (ABV) of both armies
• Note: chances are less than with field battle to reflect the unprepared state of defending

forces

Condition Chance of battle
Defending ABV <= attacking ABV 10%
Defending ABV = (attacking ABV * 2) 20%
Defending ABV = (attacking ABV * 3) 30%
Defending ABV = (attacking ABV * 4) 40%
Defending ABV = (attacking ABV * 5) 50%
Defending ABV >= (attacking ABV * 6) 60%

Table 11: Chance of bringing an enemy army to battle prior to pillage

Chance of quelling rebellion:

• Method: Fief.Quell_checkSuccess

130 | P a g e

• Uses: fief population (pop), fief’s ancestral owner (ancOwner), army size (aSize), army
leader’s leadership value (LV), army owner (armOwner), army owner stature (stat)

• Chance of success (quellChance) = aSize / (pop / 1000)
• quellChance = quellChance + LV
• If ancOwner = armOwner: quellChance = quellChance + (quellChance * (stat * 2.22))
• Note: maximum quellChance = 99

Pillage (or successful siege storm) results:

• Method: Form1.ProcessPillage
• Uses: fief population (pop), GDP (gdp), loyalty (loy), treasury (treas), fields (fld), industry

(ind), pillaging army size, pillaging army leader stature (stat), no. of days pillaging
• Pillage multiplier (pillMult) = pillaging army size / (pop / 1000)
• Pop = pop – (pop * ((0.007 * pillMult) / 100) [min 0.01, max 0.2]
• Treas = treas - (treas * ((0.2 * pillMult) / 100) [min 0.01, max 0.8]
• Loy = loy - (loy * ((0.33 * pillMult) / 100) [min 0.01, max 0.2]
• Fld = fld - (fld * ((0.01 * pillMult) / 100) [min 0.01, max 0.2]
• Ind = ind - (ind * ((0.01 * pillMult) / 100) [min 0.01, max 0.2]
• Money pillaged (monPill) = gdp * ((0.032 * pillMult) / 100) [min 0.01, max 0.5]

 For each day pillaging > 7: monPill = monPill + (monPill * 0.05)
 30% chance (jackpot!): monPill = monPill * 3-10 (random)

• Army leader money pillaged = monPill * (0.05 * stat) ProcessPillage

General siege effects:

• Fief management:
 All expenditure reduced to 0 except for garrison
 Tax rate remains unchanged but is reduced to 0 for the purposes of calculating

income (i.e. income = 0).
 Expenses for family members in besieged keep are reduced by 50%.

• Armies:
 Defending armies cannot move (restriction applies to leader, as this is how armies

move).
 Players can’t recruit from a fief under siege.
 Players can’t pillage a fief under siege.

• Household:
 Marriages postponed if one of the couple is trapped in a besieged keep, and the

other isn’t.
 The above also applies to pregnancy attempts.

PC/NPC injury in battle or siege (storm only):

• Method: Character.CalculateCombatInjury
• Uses casualty modifier of friendly army (CasM), character combat (cbt), character health

(hea)
• Base % chance of injury (iChance) = CasM * 100
• iChance = iChance + (5 - cbt) [min 1, max 80]
• Effect of injury: Ailment with 1-5 effect (random)

 If (hea – ailment effect) <= 0: character death
• If (ailment effect = 5): ailment minimumEffect = 1

Army attrition:

• Method: Army.CalcAttrition

131 | P a g e

• Uses fief population (pop), army size (aSize), leader’s management (man) and stature (stat)
• % chance of occurrence (attChance) = ((aSize / pop) * 100) – (stat + man / 2)

 If winter/spring: attChance = attChance + 20
 Minimum attChance = 10

• Casualty modifier (CasM) = (aSize / pop) / 10
 If winter/spring: CasM = CasM * 3

• When attrition occurs:
 Every time army moves into new fief (using new fief’s pop)
 For every 7 days in place:

 left at end of season
 camped
 spent organising transfer
 etc.

 Siege:
 Besieging army: yes
 Defending army: If (no. of days in siege > (bailiff man * 60))

Army maintenance:

• Method: Army.MantainArmy
• Cost: 500 per man per season
• Maintained armies don’t suffer attrition

Standing orders:
• Based on aggression level and Combat Odds value.
• Aggression:

o 0: If outside keep, will attempt to retreat from the fief if attacked. If inside keep,
aggression changes to 1, to allow participation in siege defence.

o 1: If outside keep, will check Combat Odds; if enemy vs friendly odds are <= specified
level, will defend when attacked; if not, will attempt to retreat. Will NOT attempt to
proactively prevent siege/pillage. If inside keep, will check Combat Odds; if friendly
vs enemy odds are >= specified level, will sally and attack.

o 2: If outside keep, will not allow siege/pillage until driven from field and will always
give battle when attacked. If inside keep, will check Combat Odds; if friendly vs
enemy odds are >= specified level, will sally and attack.

• Combat Odds: Required odds before will attempt an attack (or defence, if aggression is 1).
I.e. 1 = even odds, 2 = 2-to-1 odds, etc.

• Note: odds are always calculated as attacker to defender
• Note: If army leaderless, will revert to aggression of 1 and odds of 6.

Estimating enemy army size:

• Method: Character.GetEstimateVariance
• Uses: observer’s leadership value (LV), army size (aSize)
• Base estimate variance (EV) = 0.05
• EV = base EV + ((10 – LV) * 0.05)
• Estimate = aSize +/- (aSize * EV)

B.2 Fiefs

Default settings if no bailiff:

• Average characteristics of 3

132 | P a g e

Calculation of GDP:

• Method: Fief.CalcNewGDP
• Uses: fief fileds (fld), industry (ind), population (pop)
• GDP = ((fields x 8997) + (industry x pop)

Rate of population increase:

• Method: Fief.CalcNewPopulation
• Uses: fief population (pop)
• Pop = pop + (pop * 0.005)
• Note: this is performed once per season (2% per year)

Calculation of effect of tax rate on loyalty:

• Method: Fief.CalcNewLoyalty
• Uses: fief current tax rate (tx), next season’s tax rate (txNxt), loyalty (loy)
• loy = loy + loy * ((txNxt - tx) / 100) * -1)

Effect of bailiff stats on fief loyalty:

• Method: Fief.CalcBaseFiefLoyMod
• Uses: bailiff language (bLang), management (man), stature (stat), fief language (fLang),

loyalty (loy)
• Bailiff loyalty modifier (loyMod) = ((man + stat / 2) -1)
• If bLang != fLang: loyMod = loyMod – 3
• loyMod = loyMod * 0.0125
• Applied: loy = loy + (loy * loyMod)

Effect of bailiff on income:

• Method: Fief.CalcFiefIncMod
• Uses bailiff management (man), fief income (inc)
• Bailiff income modifier (incMod) = man - 1 * 0.025
• Applied: inc = inc + (inc * incMod)

Effect of officials expenditure on loyalty & income:

• Method: Fief.CalcOffLoyMod and Fief.CalcOffIncMod
• Uses: fief population (pop), loyalty (loy), income (inc), officials expenditure (offSpend)
• Max offSpend per 1 pop = 4
• ‘Neutral’ offSpend per 1 pop = 2
• Loyalty modifier (loyMod) = ((offSpend - (pop * 2)) / (pop * 2)) / 10
• Income modifier (incMod) = ((offSpend - (pop * 2)) / (pop * 2)) / 10
• Applied: loy = loy + (loy * loyMod)
• Applied: inc = inc + (inc * incMod)
• Note: Effects loy & inc in range of -10% to 10%, depending on offSpend

Effect of garrison expenditure on loyalty:

• Method: Fief.CalcGarrLoyMod
• Uses: fief population (pop), loyalty (loy), garrison expenditure (gSpend)
• Max gSpend per 1 pop = 14
• ‘Neutral’ gSpend per 1 pop = 7
• Loyalty modifier (loyMod) = ((gSpend - (pop * 7)) / (pop * 7)) / 10
• Applied: loy = loy + (loy * loyMod)

133 | P a g e

• Note: Effects loy in range of -10% to 10%, depending on gSpend

Effect of bailiff (owner/owner’s spouse in home fief) on family expenses:

• Method: Fief.CalcFamExpenseMod
• Uses: character management (man), fief family expenses (famExp)
• Family expenses modifier (famExpMod) = (((man - 1) * 2.5) / 100) * -1
• Applied: famExp = famExp + (famExp * famExpMod)
• Note: Range of decrease 0%-20%

Effect of unrest or rebellion on income:

• Method: Fief.CalcStatusIncmMod
• Uses: fief income (inc), status (stat)
• If stat = ‘U’: Income modifier (incMod) = 0.5
• If stat = ‘R’: incMod = 0
• Applied: inc = inc * incMod

Calculation of chance of rebellion or unrest:

• Method: Fief.CheckFiefStatus
• Uses: fief tax rate (tx), income (inc), surplus (surp), loyalty (loy)
• Method 1: If tx > 20 and surp > (inc * 0.1), then % chance of rebellion = tx - 20
• Method 2: If loy > 3 and <=4, then 10% chance for unrest and 2% chance for rebellion

o If loy > 2 and <=3, then 30% chance unrest and 14% rebellion
o If loy > 1 and <=2, then 50% chance unrest and 26% rebellion
o If loy > 0 and <=1, then 70% chance unrest and 38% rebellion
o If loy 0, then 90% chance unrest and 50% rebellion

Effect of surplus size on fief loyalty:

• Method: Fief.CalcNewLoyalty
• Uses: fief income (inc), surplus (surp), loyalty (loy)
• loy = loy – (surp/ inc)

Effect of infrastructure expenditure on field level:

• Method: Fief.CalcNewFieldLevel
• Uses: fief fields (fld), infrastructure expenditure (infSpend)
• fld = fld + (infSpend / 500000)
• Note: If infSpend = 0: fld = fld – (fld / 100)
• Note: Max infSpend per 1 pop = 6

Effect of infrastructure expenditure on industry level:

• Method: Fief.CalcNewIndustryLevel
• Uses: fief industry (ind), infrastructure expenditure (infSpend)
• ind = ind + (infSpend / 1500000)
• Note: If infSpend = 0: ind = ind – (ind / 100)
• Note: Max infSpend per 1 pop = 6

Effect of keep expenditure on keep level:

• Method: Fief.CalcNewKeepLevel
• Uses: fief keep level (keepLvl), keep expenditure (kpSpend)
• keepLvl = keepLvl + (kpSpend / 400000)
• Note: If kpSpend = 0: keepLvl = keepLvl – 0.15

134 | P a g e

• Note: Max spend per 1 pop = 13

B.3 Characters

Traits:

• Method: Character.CalcTraitEffect
• Applied:
 Trait base modifiers are a multiplier effect between 0.05 and 0.4 (+ or -).
 The character’s trait level is applied to the base modifier to derive the final modifier:

 Trait modifier = (level * 0.111) * base modifier
 Example: a character with a level 6 ‘Command’ trait, would have a ‘battle’

modifier of 0.2664: (6 * 0.111) * 0.4
 Trait modifiers are applied to the combination of characteristics used in that particular

operation; e.g. the modifier would be applied to the leadership value (LV) rather than
the separate combat, management and stature characteristics.

Note: Red shows negative effects and green shows positive effects

Command:

• + Battle orders (LV in battle) (+0.4)
• + Siege success (LV in siege) (+0.4)
• + NPC hire (+0.2)

Chivalry

• + Family expenses (+0.2)
• + Fief expenses (total expenses – family expenses) (+0.1)
• + Fief loyalty (+0.2)
• + NPC hire (+0.1)
• + Siege success (LV in siege) (+0.1)

Abrasiveness

• + Battle orders (LV in battle) (+0.15)
• + Death probability (+0.05)
• - Fief expenses (total expenses – family expenses) (-0.05)
• + Family expenses (+0.05)
• - Time efficiency (days per turn) (+0.05)
• - Siege success (LV in siege) (-0.1)

Accountancy:

• + Time efficiency (days per turn) (+0.1)
• - Fief expenses (total expenses – family expenses) (-0.2)
• - Family expenses (-0.2)
• - Fief loyalty (-0.05)

Stupidity

• - Battle orders (LV in battle) (-0.4)
• + Death probability (+0.05)
• + Family expenses (+0.2)
• + Fief expenses (total expenses – family expenses) (+0.2)

135 | P a g e

• - Fief loyalty (-0.1)
• - NPC hire (-0.1)
• - Time efficiency (days per turn) (-0.1)
• - Siege success (LV in siege) (-0.4)

Robust

• + Virility (+0.2)
• + NPC hire (+0.05)
• + Fief loyalty (+0.05)
• - Death probability (-0.2)

Pious

• + Fief loyalty (+0.1)
• + NPC hire (+0.1)
• - Time efficiency (days per turn) (-0.1)
• - Virility (-0.2)

Hiring NPCs:

• Method: NonPlayerCharacter.CalcSalary_BaseOnTraits and CalcSalary_BaseOnCurrent
• Uses NPC management (man), combat (cbt), stature (npcStat), and current salary (currSal);

PC stature (pcStat); employer stature (emplStat)
• Part 1: Based on skills

 Base salary (baseSal) = 1500
 NPC fief management rating (fiefMgt) = (man + npcStat) / 2
 Trait effects: fiefMgt = fiefMgt + (fiefMgt * (fiefLoyalty + (-1 * fiefExpenses)))
 NPC leadership value (LV) = man + npcStat + cbt / 3
 Trait effects: LV = LV + (LV * (battle + siege))
 Final salary (finSal) = baseSal * (highest of fiefMgt or LV)
 Flexibility bonus: finSal = finSal + (baseSal * (lowest of fiefMgt and LV / 2)

• Part 2: Based on currSal (if employed)
 Final salary (finSal) = (currSal + (currSal * 0.05))
 finSal = finSal + (finSal * 0.11)

• Use highest finSal derived from both methods
• Get PC/employer stature modifier (statMod)

 If pcStat > 4: PC modifier (pcMod) = (pcStat – 4) * 0.04
 If emplStat > 4: employer modifier (emplMod) = ((emplStat – 4) * 0.04) * -1)
 statMod = 1 – (pcMod + emplMod)

• finSal = finSal * statMod
• Apply PC npcHire traits effect to chance of offer being accepted (not salary)

Calculation of stature:

• Method: Character.CalculateStature
• Uses: character stature (stat)
• Base stature:

 Rank
 Rank 1-3 (Popes and Kings): stat = (stat + 6)
 Rank 4-7 (Prince-Bishops and Dukes)): stat = (stat + 5)
 Rank 8-9 (Princes)): stat = (stat + 4)
 Rank 10-12 (Marquis and Counts)): stat = (stat + 3)
 Rank 13-15 (Viscount and Barons)): stat = (stat + 2)

136 | P a g e

 Rank 16-17 (just about everyone else)): stat = (stat + 1)
 Age

 => 61: stat = (stat + 5)
 51-60: stat = (stat + 4)
 41-50: stat = (stat + 3)
 31-40: stat = (stat + 2)
 21-30: stat = (stat + 1)
 11-20: stat = (stat + 0.5)

 Sex:
 If female: stat = (stat - 6)

• Stature modifiers (applied to Character.statureModifer):
 If win battle: stat = stat + (0.8 *(enemy army size / 10000))
 If lose battle: stat = stat - (0.5 *(enemy army size / 10000))
 If win siege by negotiation: stat = stat + (0.2 *(fief pop / 10000))
 If win siege by storm: stat = stat + (0.1 *(fief pop / 10000))
 If storm keep during siege and lose: stat = stat - (0.2 *(fief pop / 10000))
 If daughters, granddaughters, etc. marry into family of higher rank: stat = stat + (0.4

*(higher rank – your rank))
 If fief rebels: stat = stat - 0.1
 If pillage fief (of same base language): stat = stat - 0.2
 If pillage fief (of same base language & dialect): stat = stat - 0.3

Chance of pregnancy:

• Method: Character.GetSpousePregnant
• Uses wife’s (wAge) and virility (wVir); husband’s virility (hVir)
• Base % pregnancy chance (pregChance):

 If wAge = 14-17: pregChance = 8%
 If wAge = 18-24: pregChance = 10%
 If wAge = 25-29: pregChance = 8%
 If wAge = 30-34: pregChance = 6%
 If wAge = 35-39: pregChance = 5%
 If wAge = 40-44: pregChance = 4%
 If wAge = 45-49: pregChance = 2%
 If wAge = 50-55: pregChance = 1%

• If wAge <= 55: pregChance = pregChance + pregChance * (((hVir + wVir) / 2) -5) / 10

Calculation of health:

• Method: Character.CalculateHealth
• Uses character maximumHealth (maxHea) and age
• Age modifier (ageMod):

o If age = 0: ageMod = 0.25
o If age = 1-4: ageMod = 0.5
o If age = 5-9: ageMod = 0.8
o If age = 10-19: ageMod = 0.9
o If age = 20-34: ageMod = 1.0
o If age = 35-39: ageMod = 0.95
o If age = 40-44: ageMod = 0.9
o If age = 45-49: ageMod = 0.85
o If age = 50-54: ageMod = 0.75
o If age = 55-59: ageMod = 0.65
o If age = 60-69: ageMod = 0.55

137 | P a g e

o If age > 70: ageMod = 0.35
• Health = (maxHea * ageMod)

Base chance of death:

• Method: Character.CheckForDeath
• Uses character health (hea) and sex
• Death modifier (deathMod) for Men: 2.8
• deathMod for Women: 2.5
• Base chance of death = (10 – hea) * deathMod

Chance of death in childbirth:

• Method: Character.CheckForDeath
• Uses character base death chance (baseChance)
• % chance of baby death (babyChance) = (baseChance * 1.5)
• % chance of mother death (mumChance) = (baseChance * 1.5)

 If baby stillborn: mumChance = (baseChance * 2)

Calculation of child characteristics:

• Method: Form1.GenerateKeyCharacteristics
• % chance for each characteristic:

 35% = parental avg
 17.5% = (parental avg - 1)
 17.5% = (parental avg + 1)
 10% = (parental avg - 2)
 10% = (parental avg + 2)
 5% = (parental avg - 3)
 5% = (parental avg + 3)

Calculation of family expenses:

• Method: Fief.CalcFamilyExpenses
• Uses: bailiff salary (bailSal), total non-bailiff salary (emplSal), total family member

allowances (famAllow), family member age
• Non-home fiefs: family expenses (famExp) = bailSal / no. of fiefs in which is bailiff
• Home fief: famExp = emplSal + famAllow + (bailSal / no. of fiefs in which is bailiff)
• Family allowances (per season):

 Age modifier (ageMod):
 If age <=7: ageMod = 0.25
 If age <=14: ageMod = 0. 5
 If age <=21: ageMod = 0.75
 If age > 21: ageMod = 1

 Wife = £30,000 * ageMod
 Eldest son (heir) = £40,000 * ageMod
 Other son = £20,000 * ageMod
 Daughter = £15,000 * ageMod
 Other family member = £15,000 * ageMod

• Note: Either player or spouse (whoever has highest management rating) acts as ‘bailiff’ for
home family expenses.

B.4 Time taken for actions (in days)

138 | P a g e

Movement:
• Method: Form1.getTravelCost, GameClock.CalcSeasonTravMod, and

Army.CalcMovementModifier
• Uses: army size (aSize)
• Terrain modifier (terrMod):

 Plains: terrMod = 1
 Hills: terrMod = 1.5
 Forrest: terrMod = 1.5
 Mountain: terrMod = 15
 Impassable mountain: terrMod = 91

• Army modifier (arMod):
 % chance of army incurring movement penalty: aSize / 1000
 arMod = 3

• Season modifier (seaMod):
 Winter: seaMod = 2
 Spring: seaMod = 1.5
 Other: seaMod = 1

• Cost = (((old fief terrMod + new fief terrMod) / 2) + arMod) * seaMod

Fight a battle:

• Cost: 1

Siege:

• Non-storm round cost: 10
• Storm: 1
• Raise: 1

Pillage:

• Cost: 7-15 (random)

Examination of army:

• Cost: 1-3 (random)

Recruit army:

• Cost: 1-5 (random)

Troop exchange:

• Cost: 10-30 (random) for both drop off and pick up

Pregnancy attempt:

• Cost: 1

B.5 Victory conditions

Individual points victory, based on:

• Method: Globals_Game.GetCurrentScores, VictoryData.CalcStatureScore,
VictoryData.CalcPopulationScore, VictoryData.CalcFiefScore, VictoryData.CalcMoneyScore

• Stature score = currentStature + (currentStature - startingStature)
• Fiefs score = (current % fiefs + (current % fiefs – starting % fiefs) / 10)
• Population score = (current % pop + (current % pop – starting % pop) / 10)

139 | P a g e

• Money score = (current % mon + (current % mon – starting % mon) / 10)

Team victory, based on historical outcome (not implemented):

• Kingdom 1 victory based on ejecting Kingdom 2 from its historical lands
• Kingdom 2 victory based on maintaining occupation of some Kingdom 2 lands
• Degree of victory depends on proportion of lands occupied

Team victory, based on total victory:

• All fiefs owned by players of one kingdom

Individual victory based on:

• Who is king after specified period of game play

6. When attributes/values are updated

At start/end of turn:

• Clock:
 Advance season (and year if required)

• Feif:
 Fief loyalty
 Unrest/rebellion
 Keep level
 GDP
 Fields
 Industry
 Treasury loss/gains
 Population

• Army
 Attrition due to remaining days
 Disband if < 100 troops

• PC/NPC:
 Ailments
 Death by ‘normal’ causes
 Childbirth
 Death due to childbirth (mother and/or new-born)
 Marriage
 Movement of unemployed NPCs (1 hex)
 If goTo.count > 0: resume unfinished movement
 Extra days used up in fief = may contribute towards Fief.bailiffDaysInFief

Immediately:

• Fief
 Keep level loss due to siege
 Population loss due to pillage/siege
 Fields level loss due to pillage/siege
 Industry level loss due to pillage/siege
 Treasury loss due to pillage/siege
 Loyalty loss due to pillage/siege

• Army
 Casualties due to combat

140 | P a g e

 Disband due to combat
 Movement/location (including retreat)
 Combat/pillage
 Attrition due to any of above

• PC/NPC
 Health loss due to injury, possibly resulting in death
 Stature loss/gain due to battles, sieges, pillages, marriages
 Pregnancy of spouse
 Engagement
 Movement/location

141 | P a g e

APPENDIX C: OVERVIEW OF FILES AND CONTENT

The JominiEngine currently consists of the following files (listed alphabetically):

Ailment.cs: contains the Ailment class for modelling ailments affecting character health.

Army.cs: contains the Army class.

Character.cs: contains the Character, PlayerCharacter and NonPlayerCharacter classes, and
associated classes for serialisation.

Fief.cs: contains the Fief class, and associated class for serialisation.

Form1.cs: contains the Form1 class used for the test client.

The following Form1 partial classes contain methods associated with specific areas of functionality,
to facilitate their future removal to other game classes.

• Form1_army.cs
• Form1_battle.cs
• Form1_birth.cs
• Form1_character.cs
• Form1_CSVimport.cs
• Form1_databaseRead.cs
• Form1_databaseWrite.cs
• Form1_fief.cs
• Form1_household.cs
• Form1_journal.cs
• Form1_marriage.cs
• Form1_meetingPlace.cs
• Form1_movement.cs
• Form1_royal_overlord.cs
• Form1_siege_pillage_rebellion.cs
• Form1_sysAdmin.cs

GameClock.cs: contains the GameClock class which keep track of the game season and year.

Globals_Client.cs: contains the Globals_Client class, used to share objects required by the client.

Globals_Game.cs: contains the Globals_Game class, used to share game-specific objects required by
the server. Also contains the OwnershipChallenge and VictoryData classes.

Globals_Server.cs: contains the Globals_Server class, used to share cross-game objects required by
the server.

HexMapGraph.cs: contains the HexMapGraph class, used to associate fief objects with each other to
form a game-world hexagon map.

Interfaces.cs: contains the interfaces used for the Observer pattern (used for game event
communication).

142 | P a g e

Journal.cs: contains the Journal and JournalEvent classes, used for game event messaging.

Kingdom.cs: contains the Kingdom class, and associated class for serialisation.

Language.cs: contains the Language and BaseLanguage classes, and associated classes for
serialisation.

Nationality.cs: contains the Nationality class.

Place.cs: contains the Place class, and associated class for serialisation.

Program.cs: contains the Program class, used to initiate the application.

Province.cs: contains the Province class, and associated class for serialisation.

Rank.cs: contains the Rank and Position classes, and associated class for serialisation. Also the
TitleName struct for use with the Position class.

SelectionForm.cs: contains the SelectionForm class, used in the user interface for viewing and
selecting game objects.

Siege.cs: contains the Siege class.

Trait.cs: contains the Trait class.

Terrain.cs: contains the Terrain class.

Utility_Methods.cs: contains the Utility_Methods class, used for sharing useful methods of general
application.

143 | P a g e

APPENDIX D: TESTING

Thorough series of tests were carried out, involving both play testing and object constructor testing.
Constructor tests were carried out mainly through the use of CSV import methods, but in some cases
(where a CSV import method did not exist for that object type) tests were carried out by creating
objects in code. The test table for the play tests are included below.

Action or circumstance Expected outcome Actual outcome
Fief management
Officials, garrison, keep, or
infrastructure expenditure
adjusted

Expenditure is adjusted As expected

Auto-adjust used to reduce
expenditure

Expenditure is adjusted until it is
below the amount in the treasury

As expected

Auto-adjust used to reduce
expenditure

Expenditure is adjusted in proportion
with original expenditure

As expected

Officials, garrison, keep, or
infrastructure expenditure
adjusted above the maximum
amount permitted

Each individual amount checked and
adjusted to max if necessary

As expected

Officials expenditure adjusted Fief loyalty adjusted -10% to +10%,
depending on expenditure

As expected

Officials expenditure adjusted Fief income adjusted -10% to +10%,
depending on expenditure

As expected

Garrison expenditure adjusted Fief loyalty adjusted -10% to +10%,
depending on expenditure

As expected

Keep expenditure adjusted Keep level increased by (expenditure
/ 400000)

As expected

Keep expenditure set to 0 Keep level reduced by 0.15 As expected
Infrastructure expenditure
adjusted

Fief fields level increased by
(spend/500000)

As expected

Infrastructure expenditure
adjusted

Fief industry level increased by
(spend/1500000)

As expected

Infrastructure expenditure set
to 0

Fief fields level decreased by 1% As expected

Infrastructure expenditure set
to 0

Fief industry level decreased by 1% As expected

Tax rate adjusted Fief loyalty adjusted in direct
proportion to change in tax rate

As expected

Expenditure adjusted to ensure
a surplus

Fief loyalty adjusted in direct
proportion to size of surplus in
comparison to income

As expected

Funds transferred between a
fief and the home fief

Funds deducted from donating
treasury and added to receiving
treasury

As expected

Funds transferred between two
players

Funds deducted from donating
player's home treasury and added to
receiving player's home treasury

As expected

Nationality barred Nationality ID added to fief’s As expected

144 | P a g e

barredNationalities
Nationality unbarred Nationality ID removed from fief’s

barredNationalities
As expected

Character barred Character ID added to fief’s
barredCharacters

As expected

Character unbarred Character ID removed from fief’s
barredCharacters

As expected

Appoint NPC as bailiff NPC appointed As expected
Remove NPC from bailiff NPC removed As expected
Appoint PC (self) as bailiff PC (self) appointed As expected
Set fief status to ‘U’ (unrest) Fief income reduced to 50% when

calculating surplus
As expected

Set fief status to ‘R’ (rebellion) Fief income reduced to 0% when
calculating surplus

As expected

Set fief status to ‘R’ (rebellion) -0.1 added to owning PC's
statureModifier

As expected

Change in fief status occurs JournalEntry created and dispatched As expected
Did not appoint a bailiff Auto-bailiff implemented (assumes

management and stature values of 3)
As expected

Ensured bailiff spent < 30 days
in fief

Auto-bailiff implemented (see above) As expected

Ensured bailiff had different
language from fief

Auto-bailiff implemented when
calculating effect on fief loyalty

As expected

Performed fief update Fief population increases by 0.5% As expected
Performed fief update Fief GDP calculated correctly (using

fields and industry revenue)
As expected

Performed fief update Fief income calculated correctly
(using GDP & tax rate, with bonuses
for bailiff stats and officials
expenditure)

As expected

Performed fief update Overlord taxes calculated correctly
(using income and overlord tax rate)

As expected

Performed fief update Family expenses calculated correctly
in non-home fief (bailiff wages)

As expected

Performed fief update Family expenses calculated correctly
in home fief (bailiff wages + non-
bailiff wages + family allowances)

As expected

Performed fief update Fief surplus calculated correctly: using
income (modified by bailiff stats),
expenses (modified by bailiff traits),
family expenses (modified by bailiff
stats & traits), overlord taxes

As expected

Bailiff appointed and 30 days in
fief

Fief loyalty adjusted (1.25% increase
in loyalty per bailiff's stature and
management average above 1)

As expected

Bailiff appointed and 30 days in
fief

Fief income adjusted (2.5% increase
in income per management level
above 1)

As expected

Bailiff appointed and 30 days in
fief

Fief family expenses adjusted (2.5%
decrease in family expenses per
management level above 1)

As expected

145 | P a g e

Bailiff appointed, 30 days in fief
and has fiefLoyalty trait

Fief loyalty adjusted according to
bailiff’s trait effects (positive or
negative)

As expected

Bailiff appointed, 30 days in fief
and has famExpenses trait

Fief family expenses adjusted
according to bailiff’s trait effects
(positive or negative)

As expected

Bailiff appointed, 30 days in fief
and has fiefExpenses trait

Fief expenses (not including family
expenses) adjusted according to
bailiff’s trait effects (positive or
negative)

As expected

Fief owner has higher
management rating than
spouse

Fief owner’s management rating used
to effect home fief family expenses

As expected

Fief owner’s spouse has higher
management rating than fief
owner

Spouse’s management rating used to
effect home fief family expenses

As expected

Transferred fief title to NPC Title added to NPC’s myTitles As expected
Remove fief title from NPC Title removed from NPC’s myTitles As expected
Transferred ancestral fief title
to NPC

Transfer not permitted

Performed fief update Fief tax rate adjusted as specified As expected
Performed fief update Fief fields level adjusted As expected
Performed fief update Fief industry level adjusted As expected
Performed fief update Fief loyalty level adjusted As expected
Performed fief update Fief population level adjusted As expected
Performed fief update Fief keep level adjusted As expected
Performed fief update Fief expenditures auto-adjusted if

necessary
As expected

Performed fief update Fief isPillaged reset As expected
Performed fief update Fief hasRecruited reset As expected
Performed fief update Fief bailiffDaysInFief reset As expected
Performed fief update Bailiff’s spare days added to

bailiffDaysInFief if appropriate
As expected

Performed fief update Fief status check performed As expected
Performed fief update Fief treasury adjusted As expected
Performed fief update Overlord taxes added to overlord’s

home fief treasury
As expected

Performed fief update in fief
under occupation

Overlord taxes NOT added to
overlord’s home fief treasury

As expected

Performed fief update Fief keyStatsCurrent updated As expected
Performed fief update Fief keyStatsPrevious updated As expected
Performed fief update Attrition applied to any troop

detachments in fief
As expected

Performed fief update Troop detachments in fief had days
reset

As expected

Province management
Adjusted tax rate Tax rate is adjusted As expected
A fief in the province is
occupied by the enemy

Occupation detected As expected

Army management

146 | P a g e

Recruit troops PC exits keep As expected
Recruit troops New army created if PC not currently

leading one
As expected

Recruit troops If PC currently leading an army,
troops are added to it

As expected

Attempt to recruit troops over
fief manpower limit

Troops recruited reduced accordingly As expected

Attempt to recruit troops in fief
with unrest

Troops recruited reduced by 50% As expected

Recruit troops Troop type ratios are in accordance
with nationality recruitment ratios

As expected

Recruit troops Days used between 1-5 As expected
Recruit troops PC and army days adjusted As expected
Recruit troops Fief hasRecruited adjusted As expected
Recruit troops in ancestral fief Cost of each man is 500 As expected
Recruit troops in non-ancestral
fief

Cost of each man is 2000 As expected

Recruit troops Cost deducted from PC’s home fief
treasury

As expected

Attempt to recruit troops in fief
where PC and fief languages are
different, fief has loyalty >= 7

Recruitment proceeds As expected

Attempt to recruit troops in fief
where PC and fief languages are
different, fief has loyalty < 7

Recruitment cancelled As expected

Attempt to recruit troops in fief
where PC is not the owner

Recruitment cancelled As expected

Attempt to recruit troops in fief
where hasRecruited = true

Recruitment cancelled As expected

Attempt to recruit troops in fief
under siege

Recruitment cancelled As expected

Attempt to recruit troops when
PC has < 1 days

Recruitment cancelled As expected

Attempt to recruit troops when
PC has less days than days
taken for recruitment

Recruitment cancelled As expected

Attempt to recruit troops when
PC has less funds than are
required for a single man

Recruitment cancelled As expected

Attempt to recruit troops when
PC has less funds than are
required for specified number

Number requested is reduced
accordingly

As expected

Attempt to recruit troops from
fief in rebellion

Recruitment cancelled As expected

Appoint PC (self) as leader PC (self) appointed (PC.armyID and
Army.leader adjusted)

As expected

Appoint NPC as leader NPC appointed (see above) As expected
Appoint PC/NPC as leader when
are leader of another army

Warning displayed, removed from
leadership of other army

As expected

Move army Army and leader location changed As expected

147 | P a g e

Move army Army and leader days adjusted As expected
Move army over 1000 in size Travel cost adjusted if necessary As expected
Move army Attrition check performed As expected
Camp army Army and leader days adjusted As expected
Camp army for >= 7 days Attrition check performed As expected
Army takes part in siege round
as attacker

Attrition check performed As expected

Army takes part in siege round
as defender

Attrition check only performed if
siege days > (bailiff management *
60)

As expected

Attrition check performed
during winter or spring

Chance of attrition += 20 As expected

Attrition check performed
during winter or spring

Attrition losses * 3 As expected

Attrition check performed Chance of attrition reduced by
average of leader’s management +
stature

As expected

Army has isMaintained = true Attrition checks NOT performed As expected
Army is maintained Army isMaintained is adjusted As expected
Army is maintained Cost deducted from owning PC’s

home treasury
As expected

Troops transfer performed Troops removed from donating army As expected
Troops transfer pickup
performed

Troops added to collecting army As expected

Troops transfer pickup
attempted by PC that is not
donating or specified collecting
PC

Pickup cancelled As expected

PC or NPC observes non-owned
army

Estimated numbers based on
observer leadership (av of
man/com/stat) & 'battle' skill effect

As expected

PC or NPC observes non-owned
army

PC/NPC days adjusted As expected

PC or NPC with < 1 days
attempts observation of non-
owned army

Observation cancelled As expected

Army aggression level adjusted Army aggression level updated As expected
Army combatOdds level
adjusted

Army combatOdds level updated As expected

Army aggression level set to > 2 Army aggression level adjusted to 2 As expected
Army aggression level set to < 0 Adjustment cancelled As expected
Army combatOdds set to < 0 Adjustment cancelled As expected
Enemy army attacks an army
with aggression = 0 which is
outside keep

Army attempts to retreat As expected

Army with aggression = 0
enters keep

Army aggression level adjusted to 1 As expected

Enemy army attempts siege or
pillage in fief where an army
with aggression = 0 which is

Siege or pillage permitted As expected

148 | P a g e

outside keep
Enemy army attempts siege or
pillage in fief where an army
with aggression = 1 which is
outside keep

Siege or pillage permitted As expected

Enemy army attacks an army
with aggression = 1 which is
outside keep

Army will defend if battle odds <=
combatOdds, otherwise attempts to
retreat

As expected

Enemy army performs siege
round in fief with an army with
aggression = 1 which is inside
keep

Army will sally and attack if battle
odds >= combatOdds

As expected

Enemy army attempts siege or
pillage in fief where an army
with aggression = 2 which is
outside keep

Siege or pillage cancelled As expected

Enemy army attacks an army
with aggression = 2 which is
outside keep

Army will defend As expected

Enemy army performs siege
round in fief with an army with
aggression = 2 which is inside
keep

Army will sally and attack if battle
odds >= combatOdds

As expected

Seasonal update performed Attrition check performed for every 7
army days remaining (unless
maintained)

As expected

Seasonal update performed Army disbanded if has < 100 troops As expected
Seasonal update performed Army and leader days reset As expected
Seasonal update performed Army isMaintained reset As expected
Battle
Battle occurs JournalEntry created and dispatched As expected
Battle occurs Chance of bringing defending army to

battle correctly calculated (using
appropriate battleProbabilities)

As expected

Battle occurs Army leadership value (LV) correctly
calculated

As expected

Battle occurs Leader trait effects correctly applied
to LV

As expected

Battle occurs Army combat value correctly
calculated

As expected

Battle occurs Character combat values correctly
calculated

As expected

Battle occurs Army battle value modifier correctly
calculated

As expected

Battle occurs Battle odds correctly calculated As expected
Battle occurs Calculation of victory correctly

calculated
As expected

Battle occurs Chance of victory correctly calculated As expected
Battle occurs Casualties correctly calculated As expected
Battle occurs and casualties are Casualties removed from army troop As expected

149 | P a g e

incurred numbers
Battle occurs Chance of retreat correctly

calculated, taking into account
casualties and standing orders

As expected

Retreat occurs Retreat number of hexes 1-2 As expected
Retreat occurs Army will attempt to retreat into

friendly fiefs where possible
As expected

Battle occurs Army owners’ statureModifier
adjusted accordingly

As expected

Battle occurs Army and leader days adjusted As expected
Army disbanded Army removed from fief

(armiesInFief), owner (myArmies),
leader (armyID) and siege

As expected

Besieging army disbanded Siege ended As expected
Battle occurs Character chance of injury correctly

calculated (including effect of
character health and combat rating)

As expected

Injury occurs JournalEntry created and dispatched As expected
Injury occurs If ailment effect > 4, ailment

minimumEffect set to 1
As expected

Siege, pillage and rebellion
Siege starts JournalEntry created and dispatched As expected
Siege starts Garrison size correctly calculated

(based on garrison expenditure and
fief population)

As expected

Siege starts Garrison troop types correctly
apportioned (based on nationality
recruit ratios)

As expected

Siege storm round occurs Army battle values correctly
calculated, including effect of keep
level

As expected

Siege storm round occurs Chance of success correctly calculated As expected
Siege negotiation round occurs Chance of success correctly calculated As expected
Siege round occurs JournalEntry created and dispatched As expected
Siege round occurs Casualties correctly calculated and

army troop numbers adjusted
As expected

Siege round occurs Keep level reduction correctly
calculated, fief keep level adjusted

As expected

Siege storm round successful Fief pillage occurs As expected
Siege storm round successful Captives are taken (only defending

PC, his NPCs and other enemy PCs)
As expected

Captives taken Ransom correctly calculated (% of PC
GDP, non-family NPC wage, family
NPC allowance)

As expected

Captives taken Ransom removed from captive’s
home treasury and added to victor’s
home treasury

As expected

Siege successful Fief ownership transferred As expected
Siege successful Fief title transferred As expected
Siege successful Fief loyalty altered by +10%/-10% if As expected

150 | P a g e

new/old owner is ancestral owner
Siege successful Fief bailiff removed and

bailiffDaysInFief reset
As expected

Siege successful Fief status check performed As expected
Siege successful New owner, his NPCs and nationality

unbarred
As expected

Siege storm round successful Victor’s statureModifier adjusted by
(0.1 * population/10000)

As expected

Siege storm round fails Victor’s statureModifier adjusted by
(-0.1 * population/10000)

As expected

Siege negotiation round
successful

Victor’s statureModifier adjusted by
(0.2 * population/10000)

As expected

Siege successful Siege ended As expected
Siege ended JournalEntry created and dispatched As expected
Siege ended Defending garrison disbanded As expected
Siege ongoing All fief expenditure except garrison

reduced to 0
As expected

Siege ongoing Fief income reduced to 0 As expected
Siege ongoing Fief family expenses (except bailiff

salary) reduced by 50%
As expected

Seasonal update performed If besieging army disbanded, siege
ended

As expected

Seasonal update performed Days of all siege objects reset and
synchronised

As expected

Pillage occurs JournalEntry created and dispatched As expected
Pillage occurs Pillage multiplier correctly calculated

(based on number troops per 1000
population)

As expected

Pillage occurs Fief population adjusted As expected
Pillage occurs Fief loyalty adjusted As expected
Pillage occurs Fief fields adjusted As expected
Pillage occurs Fief industry adjusted As expected
Pillage occurs Fief treasury adjusted As expected
Pillage occurs Fief isPillaged adjusted As expected
Pillage occurs Pillaging army and leader days

adjusted
As expected

Pillage occurs Amount of money pillaged correctly
calculated (based on fief GDP,
number of days taken, jackpot)

As expected

Pillage occurs Proportion of money taken by
pillaging army owner correctly
calculated (based on owner’s stature)

As expected

Pillage occurs Proportion of money taken by
pillaging army transferred to his
home treasury

As expected

Pillage occurs in fief that speaks
same BaseLanguage or
language as pillaging army
owner

Pillaging army owner’s stature
adjusted negatively

As expected

Quelling of rebellion attempted Chance of success correctly calculated As expected

151 | P a g e

(taking into account quelling army
leader’s LV and quelling army owner’s
ancestral ownership)

Quelling of rebellion failed Quelling army retreats 1 hex As expected
Quelling of rebellion failed JournalEntry created and dispatched As expected
Quelling of rebellion succeeds Quelling army owner assumes

ownership of fief
As expected

Quelling of rebellion succeeds Fief status set to ‘C’ As expected
Quelling of rebellion succeeds JournalEntry created and dispatched As expected
Household
Household information is
displayed

NPC responsibilities correctly derived:
shows combination of bailiff duties
(multiple), army duties or
'unspecified'

As expected

Household information is
displayed

NPC function correctly derived: shows
‘employee’, specific family role or
‘family member’

As expected

Household: Marriage
Proposal is made Correct conditional checks performed

(bride & groom age >= 14, bride =
female, groom = male, bride & groom
not married or engaged, bride
daughter of played PC, groom son of
played PC or played PC themselves,
bride & groom not in same family)

As expected

Proposal replied to Original proposal message amended
to show reply

As expected

Proposal accepted JournalEntry created and dispatched As expected
Proposal accepted Marriage added to scheduled events As expected
Proposal accepted Bride & groom fiancée adjusted As expected
Proposal accepted Marriage NOT added to scheduled

events
As expected

Season update performed
when bride & groom separated
by siege

Marriage postponed As expected

Bride or groom die during
season update

Marriage cancelled As expected

Head of family dies during
season update and is no heir

Marriage cancelled As expected

Marriage cancelled JournalEntry created and dispatched As expected
Season update performed Marriage processed As expected
Marriage processed JournalEntry created and dispatched As expected
Marriage processed Bride & groom fiancée adjusted As expected
Marriage processed Bride & groom spouse adjusted As expected
Marriage processed Bride familyID adjusted As expected
Marriage processed Bride added to new head of family’s

myNPCs and removed from old head
of family’s myNPCs

As expected

Marriage processed Bride’s location adjusted As expected
Marriage processed and bride’s New head of family’s statureModifier As expected

152 | P a g e

family is of higher rank than
groom’s

adjusted (0.4 per difference in rank)

Household: Pregnancy and childbirth
Pregnancy attempted Correct conditional checks performed

(husband and wife spouse = each
other, spouse in same fief, spouse not
separated by siege, spouse not
pregnant, husband and wife have
enough days)

As expected

Pregnancy attempted Husband and wife inKeep
synchronised, and days adjusted

As expected

Pregnancy attempted Chance of success correctly calculated
(taking into account wife age and
husband and wife virility)

As expected

Pregnancy success JournalEntry created and dispatched As expected
Birth processed JournalEntry created and dispatched As expected
Birth processed New NPC successfully generated.

[JournalEntry created and dispatched]
As expected

Birth processed New NPC’s attributes based on that
of parents (maxHealth, virility,
management, combat, traits)

As expected

Birth processed Mother and baby undergo death
check, using specific childbirth
conditions

As expected

Household: Inheritance
Death occurs (PC with heir) PC’s heir is promoted to PC status and

inherits PC’s properties and position
As expected

NPC inherits Deceased’s titles transferred to heir
NPC inherits Deceased’s owned fiefs transferred to

heir

NPC inherits Deceased’s owned provinces
transferred to heir

NPC inherits Deceased’s myNPCs transferred to
heir

NPC inherits Heir replaces his old NPC in fief
NPC inherits Heir’s myNPCs all have familyID

changed to heir’s ID

NPC inherits Deceased’s ancestral ownerships
transferred to heir

NPC inherits Deceased’s armies and sieges
transferred to heir

NPC inherits Deceased’s OwnershipChallenges
transferred to heir

NPC inherits Deceased’s VictoryData entry
amended to show heir’s ID

Death occurs (PC without heir) King inherits PC’s properties and
position

As expected

king inherits Deceased’s armies are disbanded and
sieges ended

king inherits Deceased’s NPC’s inEntourage set to

153 | P a g e

false
king inherits Deceased’s non-family NPC’s

transferred to king

king inherits Deceased’s family NPC’s cast out
(salary set to 0, familyID set to null,
inKeep set to false, titles transferred
to king, marriages and births
cancelled)

king inherits Deceased’s OwnershipChallenges
deleted

king inherits Deceased’s VictoryData entry
removed

Household: Hiring and firing
Prospective employee details
displayed

NPC potential salary correctly
calculated (taking into account fief
management rating, leadership
rating, current salary, hiring PC
stature, current employer stature)

As expected

Employment offer made Chance of success correctly calculated
(taking into account hiring PC’s
npcHire traits)

As expected

Employment offer made An offer > 10% higher than potential
salary will always be accepted

As expected

Employment offer made An offer > 10% lower than potential
salary will always be rejected

As expected

Employment offer made An offer lower than the previous offer
will always be rejected

As expected

NPC hired NPC added to employer’s myNPCs As expected
NPC hired NPC’s employer attribute updated As expected
NPC hired NPC’s salary attribute updated As expected
NPC hired NPC’s lastOffer attribute cleared As expected
NPC hired NPC removed from previous

employer
As expected

NPC fired NPC removed from employer’s
myNPCs

As expected

NPC fired NPC’s employer attribute set to null As expected
NPC fired NPC’s salary attribute set to null As expected
NPC fired NPC removed from bailiff positions As expected
NPC fired NPC removed from army leader

positions
As expected

NPC fired NPC’s inEntourage attribute set to
false

As expected

NPC fired NPC’s titles transferred to employer As expected
NPC fired NPC’s goTo attribute cleared As expected
Character
Character performs an action
that can be affected by their
traits

Trait effect is correctly applied
(battle, famExpense, fiefLoyalty,
fiefExpense, siege, time, death,
npcHire)

As expected

Character involved in action Base stature correctly calculated As expected

154 | P a g e

that requires use of stature (based on highest rank, sex and age)
Character involved in action
that requires use of stature

Base stature correctly modified by
character’s statureModifier

As expected

Character involved in action
that requires use of health

Base health correctly calculated
(based on maxHealth and age)

As expected

Character involved in action
that requires use of health

Base health correctly modified by
character’s ailments

As expected

Season update performed Character’s days reset As expected
Season update performed Character’s ailments processed

(removing any that have effect = 0)
As expected

Season update performed Unemployed non-family NPCs moved
1 hex (randomly chosen)

As expected

Season update performed Death check performed As expected
Death check performed Chance of death correctly calculated

(based on death multiplier and
health, influenced by ‘death trait)

As expected

Death occurs (character) JournalEntry created and dispatched
if appropriate

As expected

Death occurs (character) Character isAlive set to false As expected
Death occurs (character) Character removed from fief’s

charactersInFief
As expected

Death occurs (character) Character removed from spouse’s
spouse attribute

As expected

Death occurs (character) Character removed from bailiff and
leader positions

As expected

Death occurs (character) Character childbirth and marriage
events removed from scheduled
events (and is removed from fiancee’s
fiancée attribute)

As expected

Death occurs (NPC) NPC removed from head of family or
employer’s myNPCs

As expected

Death occurs (NPC) NPC’s titles returned to owner As expected
Death occurs (non-family NPC) NPC re-spawned in random fief of

same language
As expected

Death occurs (PC) PC removed as holder of any
positions

As expected

Movement
Character moves single hex Movement cost correctly calculated:

(source fief cost + target fief cost) / 2
(amended by season and army size
modifiers)

As expected

Character moves single hex Character removed from old fief’s
charactersInFief and added to new
fief,s charactersInFief

As expected

Character moves single hex Character’s location attribute
updated

As expected

Character moves using ‘take
exact route’ method

Character moves to specified fiefs in
correct order

As expected

Character moves using ‘take
exact route’ method without

Movement is halted and resumes
after the season update

As expected

155 | P a g e

sufficient days to finish move
Character attempts to use ‘take
exact route’ method but
incorrect direction entry is
entered

Movement instructions curtailed at
incorrect entry; movement
performed

As expected

Character moves using ‘move
to’ method

Movement performed by taking route
of least cost

As expected

Character moves using ‘move
to’ method without sufficient
days to finish move

Movement is halted and resumes
after the season update

As expected

Character attempts to use
‘move to’ method but incorrect
fief ID is entered

Movement cancelled As expected

Character uses camp to remain
in place

Camped days are counted towards
fief bailiffDaysInFief if appropriate

As expected

Character uses camp to remain
in place when leading a
besieging army

The days of all siege objects are
synchronised with the character

As expected

Character attempts to enter
keep from which he has been
barred

Keep entry cancelled As expected

Character attempts to enter
keep from which his nationality
has been barred

Keep entry cancelled As expected

Character leading a friendly
army attempts to enter keep in
containing another friendly
army

Keep entry cancelled As expected

Character leading a non-
friendly army attempts to enter
keep

Keep entry cancelled As expected

PC attempts to enter keep from
which the nationality of one of
his entourage has been barred

PC and entourage have inKeep set to
true (PC ‘vouches’ for his entourage)

As expected

PC attempts to enter keep from
which one of his entourage has
been barred

PC can enter but not the member of
the entourage who has been banned

As expected

PC exits keep PC and entourage all have inKeep set
to false

As expected

Title and positions
Fief owner grants title to NPC Title removed from PC’s myTitles and

added to NPC’s myTitles.
[JournalEntry created and dispatched]

As expected

Fief owner grants title to NPC Fief’s titleholder attribute amended As expected
Fief owner attempts to grant
title of highest ranking fief to
NPC

Transfer cancelled As expected

Fief owner attempts to grant
title of fief for which he is
ancestral owner to NPC

Transfer cancelled As expected

King attempts to grant title of Transfer processed normally As expected

156 | P a g e

fief for which he is ancestral
owner to NPC
King grants province title to
played PC

Title removed from king’s myTitles
and added to PC’s myTitles.
[JournalEntry created and dispatched]

As expected

King grants province title to
played PC

Province’s titleholder attribute
amended

As expected

King grants province title
already held by another played
PC

Title removed from other PC’s
myTitles

As expected

King grants position to played
PC

Province’s officeholder attribute
amended.
[JournalEntry created and dispatched]

As expected

King grants position to played
PC

PC’s statureModifier adjusted
accordingly

As expected

King grants position already
held by another played PC

Old holder’s statureModifier adjusted
accordingly

As expected

Ownership challenges
PC lodges ownership challenge
for province or kingdom

New OwnershipChallenge created
and added to ownershipChallenges.
[JournalEntry created and dispatched]

As expected

PC attempts to lodge
ownership challenge for
province he owns

Challenge cancelled As expected

PC attempts to lodge
ownership challenge for
province that is already the
subject of a challenge

Challenge cancelled As expected

Season update preformed Ownership challenges processed As expected
Ownership challenge processed
and challenger satisfies criteria

Challenge counter incremented As expected

Ownership challenge processed
and challenger does not satisfy
criteria

Challenge removed from
ownershipChallenges.
[JournalEntry created and dispatched]

As expected

Ownership challenge processed
and counter reaches 4

Ownership of place transferred from
old owner to new owner, including
title.
[JournalEntry created and dispatched]

As expected

Successful challenge for
ownership of kingdom

King attribute of old owner
transferred to new owner .
[JournalEntry created and dispatched]

As expected

Table 12: Tests performed during play testing

157 | P a g e

CSV import specification
 Test tables?
List of containers used in UI (Form1 and SelectionForm)

	David Alexander Bond

