
Scheduling light-weight parallelism in ArTCoP

J. Berthold1, A. Al Zain2, and H-W. Loidl3

1 Fachbereich Mathematik und Informatik
Philipps-Universität Marburg, D-35032 Marburg, Germany

berthold@mathematik.uni-marburg.de
2 School of Mathematical and Computer Sciences

Heriot-Watt University, Edinburgh EH14 4AS, Scotland
ceeatia@macs.hw.ac.uk

3 Institut für Informatik, Ludwig-Maximilians-Universität München, Germany
hwloidl@tcs.ifi.lmu.de

Abstract. We present the design and prototype implementation of the
scheduling component in ArTCoP (architecture transparent control of
parallelism), a novel run-time environment (RTE) for parallel execution
of high-level languages. A key feature of ArTCoP is its support for deep
process and memory hierarchies, shown in the scheduler by supporting
light-weight threads. To realise a system with easily exchangeable compo-
nents, the system defines a micro-kernel , providing basic infrastructure,
such as garbage collection. All complex RTE operations, including the
handling of parallelism, are implemented at a separate system level. By
choosing Concurrent Haskell as high-level system language, we obtain
a prototype in the form of an executable specification that is easier to
maintain and more flexible than conventional RTEs. We demonstrate the
flexibility of this approach by presenting implementations of a scheduler
for light-weight threads in ArTCoP, based on GHC Version 6.6.
Keywords: Parallel computation, functional programming, scheduling.

1 Introduction

In trying to exploit the computational power of parallel architectures ranging
from multi-core machines to large-scale computational Grids, we are currently
developing a new parallel runtime environment, ArTCoP, for executing parallel
Haskell code on such complex, hierarchical architectures. Central to the design
of ArTCoP is the concept of deep memory and deep process hierarchies. The
system uses different control mechanisms at different levels in the hierarchy.
Thus, data access and presence of parallelism can be transparent to the language
level. For the memory management this provides a choice of using explicit data
distribution or virtual shared memory. For the process management this means
that units of computation are very light-weight entities, and we explicitly control
the scheduling of these units. In this paper we focus on the scheduling component
of the system.

Our modular design defines a minimal micro-kernel . More complex oper-
ations are implemented in a high-level system language (Concurrent Haskell)

outside this kernel. As a result, this design provides an executable specifica-
tion and all code presented in this paper has been tested in the context of a
modified runtime-environment (RTE) of the Glasgow Haskell Compiler (GHC)
Version 6.6.

Immediate benefits of this design are the ease of prototyping and of replacing
key components of the RTE — issues of particular importance in complex parallel
systems such as computational grids [6], incorporating thousands of machines on
a global scale. Supporting such global architectures, as well as emerging multi-
core machines, requires support for deep memory and process hierarchies, which
use different implementations, depending on the underlying architecture or other
system features. Additionally the system needs to be adaptive in the sense that
it dynamically adapts its behaviour to dynamically changing characteristics of
the parallel machine.

In this sense, ArTCoP provides a generic and adaptive system for parallel
computation, combining features of our existing parallel RTEs for GpH [19] and
Eden [2, 3]. We present a prototype implementation of key concepts in such a
system in the form of an executable specification, amenable to formal reasoning.
We arrive at a system with a clear modular design, separating basic compo-
nents by their functionality and employing a hierarchy with increasing levels of
abstraction. The micro-kernel of this system is accessed via a narrow interface,
and most of the coordination of the system is realised in a functional language.
We demonstrate the flexibility of the system by refining a simple scheduler and
adding sophisticated work distribution policies.

2 Related Work

Work in the 80s on high-level languages for system-level programming mainly
focused on how to implement O/S concepts in a functional [8, 18, 14] or logic [17]
style. Most of these systems introduce specific primitives to deal with non-
determinism, whereas later approaches either insisted on maintaining determin-
istic behaviour [9] or used special data structures to control interactions between
concurrent threads (such as MVars in Concurrent Haskell [15]). Early implemen-
tations of functional operating systems are NEBULA [11] and KAOS [20]. More
recent functional systems are Famke [21] and Hello [4].

An early system that uses a micro-kernel (or substrate) approach in the RTE,
is the Scheme-based Sting [10] system. Sting defines a coordination layer on top
of Scheme, which is used as computation language. Genericity is demonstrated
by directly controlling concurrency and processor abstractions, via Scheme-level
policy managers, responsible for scheduling, migration etc. This general frame-
work supports a wide range of features, such as (first-order) light-weight threads,
thread pre-emption, and asynchronous garbage collection. Common paradigms
for synchronisation (e.g. master-slave parallelism, barrier communication etc)
are implemented at system level and demonstrate the possibility to easily de-
fine application-optimised synchronisation patterns. However, since Sting uses
Scheme as a system level language, it lacks the clear separation of pure and im-

pure constructs at system level as offered by Haskell. We also consider the static
type safety for system level code, provided by Haskell, an advantage.

Most closely related to our high-level language approach to O/S design is [7].
It defines a Haskell interface to low-level operations and uses a hardware monad
to express stateful computations. It focuses on safety of system routines, using
its own assertion language and Haskell’s strong type system. This interface has
been used to code entire O/S kernels (House, Osker) directly in Haskell, reporting
satisfying performance. In contrast to this proof-of-concept approach, we want to
improve maintainability by realising the more complex RTE routines in Haskell,
but still keeping a micro-kernel implemented in a low-level language.

Another related project, the Manticore [5] system, targets parallelism at mul-
tiple levels, and enables the programmer to combine task and data parallelism.
Manticore’s computation language is a subset of ML, a strict functional lan-
guage. The compiler and runtime system add NESL-like support for parallel
arrays and tuples, and a number of scheduling primitives. Similar in spirit to
our approach, only a small kernel is implemented in low-level C; other features
are implemented in external modules, in an intermediate ML-like language of the
compiler. A prototype implementation is planned for the end of 2007, and aims
to be a testbed for future Manticore implementations and language design. As
opposed to ArTCoP’s genericity in coordination support, Manticore explicitly
restricts itself to shared-memory multi-core architectures, and does not support
networked computing, nor location-awareness and monitoring features.

The Famke system [21] is implemented in Clean and explores the suitability
of Clean language features such as dynamic types and uniqueness typing for
O/S implementation. Using these features type-safe mobile processes and con-
currency are implemented. The latter uses a first class continuation approach
and implements scheduling at system level.

Most recently Peng Li et al [13] have presented a micro-kernel (substrate)
based design for the concurrent RTE of GHC, including support for software
transactional memory (STM). This complements our work, which focuses on
control of parallelism, and we intend to combine the design of our interface with
that currently produced for GHC.

3 Design Aims of a Generic Runtime-environment

3.1 Simplest Kernel

ArTCoP aims to provide support for parallel programming from the conceptual,
language designer perspective. A major goal of its design is to explore how many
of the coordination tasks can be specified at higher levels of abstraction, and to
identify the minimal and most general runtime support for parallel coordination.
Therefore, major parts of the RTE are implemented in a high-level language.
Following a functional paradigm has the advantage that specifications can more
or less be executed directly and that it facilitates theoretical reasoning such as
correctness proofs.

3.2 Genericity

Our study concentrates on identifying and structuring the general requirements
of parallel coordination, with the only assumption that concurrent threads are
executing a functionally specified computation, explicitly or implicitly coordi-
nated by functional-style coordination abstractions.

The genericity we aim at is two-fold: By providing only very simple actions as
primitive operations, our system, by design, is not tied to particular languages.
We avoid language-specific functionality whenever possible, thus ArTCoP sup-
ports a whole spectrum of coordination languages. Secondly, the coordination
system can be used in combination with different computation engines, and is
not restricted to a particular virtual machine. Furthermore, this coordination
makes minimal assumptions on the communication between processing elements
(PEs). ArTCoP thus concentrates key aspects of parallelism in one place, with-
out being tied to a certain parallelism model.

3.3 Multi-level System Architecture

High-level parallel programming manifests a critical trade-off: providing opera-
tional control of the execution while abstracting over error-prone details. In our
system, we separate these different concerns into different levels of a multi-level
system architecture. As shown in Figure 1, ArTCoP follows the concept of a
micro-kernel, proven useful in the domain of operating system design.

Fig. 1. Layer view of ArTCoP Fig. 2. Component view of ArTCoP

At Kernel level, the most generic support for parallelism is implemented. The
system offers explicit asynchronous data transfer between nodes, means to start
and stop computations, as well as ways to retrieve machine information at run-
time. Operations at this level are very simple and general. System Modules build
on the kernel to restrict and combine the basic actions to higher-level constructs,
i.e. the constructs of a proper parallel functional language. The runtime support
is necessarily narrowed to a special model at this level. The implemented parallel

coordination language is nothing else but the interface of the system level mod-
ules. At Library level and Application level, concrete algorithms, or higher-order
functions for common parallel algorithmic patterns (called skeletons [16]) can be
encoded using the implemented language.

Focusing more on functionality and modularity, the kernel can be divided ver-
tically into four interacting components, as shown in Figure 2: Parallel subtasks
are created and sent to other processing elements (PEs) for parallel execution
by the scheduling component, which controls the local executing units. Explicit
communication between several scheduler instances on different PEs is needed
to coordinate and monitor the parallel execution. The memory management
component is responsible for (de-)allocating dynamic data and distributing it
over the available machines, interacting in this task with the communication
component. Explicit message passing is possible, but not mandatory for data
communication, and it is possible to implement a shared address space instead.
In order to decide which PE is idle and suitable for a parallel job, static and
dynamic system information is provided by a monitoring component.

3.4 High Level Scheduler Control

The key issue in efficiently using a wide-area network infrastructure for parallel
computations is to control the parallel subtasks that contribute to the overall
program, and to schedule the most suitable task for execution, depending on the
current machine load and connectivity (whereas efficiently combining them is an
algorithmic issue). Likewise, modern multicore CPUs will often expose uneven
memory access times and synchronisation overhead. Parallel processes must be
placed with minimal data dependencies, optimised for least synchronisation, and
dynamically consider system load and connectivity. ArTCoP aims to be a com-
mon framework for different coordination concepts. Adaptive scheduling support
will thus be specified in the high-level language and not in the runtime system.

4 Implementation of ArTCoP

4.1 Configurable Scheduling Support

We propose a parallel RTE which allows system programmers and language de-
signers to define appropriate scheduling control at the system level in Haskell. In
our parallel system the scheduler is a monadic Haskell function using an internal
scheduler state, and monitors all computations on one machine. Subtasks are
activated and controlled by a separate manager thread, which can take into ac-
count properties of the subtask and static and dynamic machine properties. The
scheduler thread runs concurrently to the controlled computations and relies on
a low-level round-robin scheduler inside the RTE. To specify it, we use the state
monad and features of Concurrent Haskell, combining stateful and I/O-actions
by a monad transformer [12]. We briefly summarise main features and notation
in Fig. 3.

Monads and Concurrency in Haskell Monads, in one sentence, are Haskell’s way
to hide side-effects of a computation. If a computation is not referentially trans-
parent, e.g. depends on externals (IO) or a system State, it can be mathematically
described as a monadic evaluation. Likewise for side-effecting constructs, those which
modify an external “state”.
The IO monad in Haskell implements user interaction, and also encapsulates the
nondeterministism of Concurrent Haskell: forking and killing threads, yielding
(to the scheduler), and synchronised communication via MVars. The monad State

encapsulates and provides controlled and ordered access to an arbitrary state As a
(contrived) example, we define some functions which modify a simple counter, or
run stateful counting actions.

data Counter = Counter Int Int -- data type Int x Int (and constructor)

-- modifiers, stateful action on Counter
inc,dec,reset :: State Counter ()
-- modify the state by a given function (lambda-notation)
inc = modify (\(Counter n accesses) -> Counter (n+1)(accesses+1))
dec = modify (\(Counter n accesses) -> Counter (n-1)(accesses+1))
reset = do (Counter _ accesses) <- get -- read the state

put (Counter 0 (accesses+1)) -- set sth. as the new state

Do-notation, as shown in reset, is an intuitive notation for composing monadic
actions, and for binding new names to returned values for subsequent use.

Modern Haskell implementations come with a rich set of hierarchically organised
libraries, which provide these general monad operations, and specifics to certain
monads, e.g. for the State monad, to elegantly program and run complex stateful
computations. Exemplified here: evalState runs a stateful computation, sequence
sequences several monadic actions (all return the void type ()).

countTo :: Int -> Counter -- run stateful computation on start state,
countTo m = evalState -- and return final state

(sequence_ (replicate m inc ++ [reset])) -- actions
(Counter 0 0) -- start state

Monad transformers [12] can be used to combine two monads, in our case the IO and
the State monad. IO actions are embedded into the combined monad by liftIO.

Fig. 3. Summary: Monads and Concurrency in Haskell

Parallel tasks in a coordination language implemented by ArTCoP will ap-
pear as a new type of job at library level. Haskell’s type system allows to specify
the respective scheduler for a certain kind of parallelism by overloading instances
of a type class named ScheduleJob. The internal scheduler state type depends
on the concrete job type and forms another type class which provides a start
state and a termination check. A third type class ScheduleMsg relates Jobs and
State to messages between the active units and provides a message processing
function. Table 1 summarises the overloaded functions in the scheduler classes.
A trivial default scheduler schedule is provided (shown in Fig. 4), which only
starts the main computation, repeatedly checks for termination, and returns the
final scheduler state upon termination.

Thus, language designers do not deal with runtime system code, but simply
define the scheduling for such jobs at the system level. As a simple example, every

Table 1. Overview of class funtions (implemented at system level)

type StateIO s a = StateT s IO a type alias combining State and IO monad

class ScheduleState st where

startSt :: st the initial state of the scheduler
killAllThreads :: StateIO st () shutdown function
checkTermination :: StateIO st Bool check state, return whether to stop
checkHaveWork :: StateIO st Bool check state, return whether any local

work available

class ScheduleJob job st | job -> st where

runJobs :: [job] -> IO st run jobs with default start state
schedule :: [job] -> StateIO st st schedule jobs, return final state
forkJob :: job -> StateIO st () fork one job, modify state accordingly

class ScheduleMsg st msg | st -> msg where

processMsgs:: [msg] -> StateIO st Bool process a set of message for the scheduler,
modify state accordingly. Return True im-
mediately if a global stop is requested.

runJobs jobs = evalStateT (schedule jobs) startSt

schedule (job:jobs) = do forkJob job

schedule jobs

schedule [] = do liftIO kYield -- pass control

term <- checkTermination -- check state

if term then get -- return final state

else schedule ([]::[job]) -- repeat

Fig. 4. Default scheduler

machine could control a subset of the jobs, running one instance of the scheduler.
To model this behaviour, only a few simple operations need to be hard-wired
into the kernel. The basic kernel support can be grouped into scheduler control,
communication, and system information. All primitive operations provided by
the kernel (indicated by the leading k), and their types, are shown in Table 2.
For the example, the Kernel has to provide the number of available PEs (kNoPe),
and must support spawning asynchronous jobs on other PEs (kRFork), namely a
scheduler instance which runs the jobs assigned to the local PE.

4.2 Explicit Communication

If additional jobs are created dynamically, they may be transmitted to a suitable
PE, and received and activated by its scheduling loop. The scheduler instances
may also exchange requests for additional work and receive jobs as their answers.
This model requires communication between the scheduler instances. The kernel
supplies an infrastructure for explicit message passing between any two running
threads. It relies on typed stream channels, created from Haskell by kOpenPort,
and managed by the kernel internally. A kOpenPort returns a placeholder for
the stream, and a Haskell port representation to be used by senders for kSend.

Table 2. Overview of primitive operations (provided by the kernel)

Functionality at Kernel Level (primitive operations)

kRFork :: PE -> IO() -> IO() start a remote computation
kFork :: IO() -> IO ThreadId start a local thread (Conc. Haskell)
kYield :: IO() pass control to other threads (Conc. Haskell)

kOpenPort:: IO(ChanName’ [a],[a]) open a stream inport at receiver side, return
port handle and placeholder

kSend:: ChanName’ [a] -> a -> IO() basic communication primitive, send an ele-
ment of type a to a receiver (a port handle)

kThisPe,kNoPe :: IO Int get own node’s ID / no. of nodes
kThreadInfo :: ThreadId -> get current thread state

IO ThreadState (Runnable, Blocked, Terminated)
kPEInfo :: Int -> IO InfoVector info about a node in the system (cpu speed,

latency, load, location etc)

Sending data by kSend does not imply any evaluation; data has to be explicitly
evaluated to the desired degree prior to sending.

Stream communication between all scheduler instances, and startup synchro-
nisation, are easy to build on this infrastructure. The scheduler may also receive
messages from the locally running threads (e.g. to generate new jobs), which can
be sent via the same stream. Language designers define suitable message types,
accompanied by an instance declaration which provides the message processing
function in the class ScheduleMsg.

instance ScheduleJob MyJob MySchedulerState where

schedule (j:js) = do forkJob j

mapM_ addToPool js

schedule ([]::[MyJob])

schedule empty = do stop <- do { ms <- receiveMsgs ; processMsgs ms }

term <- checkTermination

if (term || stop)

then do { killAllThreads; get }

else do work <- checkHaveWork

if (not work)

then sendRequest

else liftIO kYield

schedule empty

Fig. 5. Scheduler for a parallel job-pool

Figure 5 sketches a scheduler for such a language, assuming the existence of a
globally managed job pool. If an instance runs out of work, it will send a request.
It will eventually receive an answer, and the next call to processMsgs will activate
the contained job. This example enables reasoning about appropriate workload

data PEInfo = PE { runQ_length :: Int, noOfSparks :: Int , -- system

clusterId :: Int , clusterPower:: Double,

cpuSpeed :: Int , cpuLoad :: Double, -- kernel

latency :: Double, pe_ip :: Int32,

timestamp:: ClockTime }

startup :: StateIO s ()

startup = do infos <- buildInfos -- startup, returns initial [PEInfo]

let ratios = zipWith (\lat str -> fromIntegral str / lat)

(map latency infos) (map cpuSpeed infos)

myVote = fromJust (findIndex (== maximum ratios) ratios)

votes <- allGather myVote

setMainPE (1 + hasMostVotes votes)

Fig. 6. System level code related to load information

distribution and the consequences and side conditions, while the scheduling loop
itself remains small and concise. All essential functionality is moved from the
scheduling loop into separate functions, e.g. we leave completely unspecified
how jobs are generated and managed in the job pool, and how a scheduler
instance decides that it needs work (in checkHaveWork). All these aspects can be
defined in helper functions, allowing a clear, structured view on the scheduling
implemented.

4.3 Monitoring Information

Programmable scheduling support at system level requires knowledge about
static and dynamic system properties at runtime. Our system kernel is geared
towards adaptive techniques developed for GridGum 2, GpH on computational
Grids [1], and provides the necessary information. For location awareness, we
have kNoPe for the total number of PEs in the parallel system, and kThisPe for
the own PE. Another primitive, peInfo :: PE -> IO InfoVector returns a vector
of data about the current system state of one PE. This information is continu-
ously collected by the kernel and held in local tables PEStatic and PEDynamic.

Load information at system level: A list of load information represented in a
Haskell data structure PEInfo is a self-suggesting component of the scheduler
state in many cases. The concrete selection, postprocessing and representation
of system information (provided by the kernel) depends on how the scheduler
at system level wants to use the information. An example of a Haskell type
PEInfo is shown in Fig. 6. It includes selected components of the scheduler state:
the number of threads controlled by the local scheduler, and how many sparks
(potential parallel computations) it holds.

As exemplified in the figure, the scheduler can do arbitrary computations on
PEInfo structures. For instance, to start the computation on a “strong” machine
with good connectivity, all PEs could elect the main PE by a strength/latency
ratio. Each PE votes for a relatively strong neighbour, where neighbourhood is

a function of latency, varying for different electing PEs. A collective (synchro-
nising) message-passing operation allGather is easily expressed using explicit
communication. Referential transparency guarantees that all PEs will then com-
pute the same value without further synchronisation.

5 Hierarchical Task Management and Adaptive Load
Distribution

5.1 Hierarchical Task Management

We now embed the scheduler of the GUM RTE [19], which implements the
GpH parallel extension of Haskell, into the generic framework presented in the
previous section. In short, GUM provides two concepts going beyond the design
of the simple scheduler in the previous section:

– hierarchical task management, distinguishing between potential parallelism
(“sparks”) and realised parallelism (“threads”); the former can be handled
cheaply and is the main representation for distributing load; the latter, rep-
resenting computation, is more heavy-weight and fixed to a processor;

– adaptive load distribution, which uses information on latency and load of
remote machines when deciding how to distribute work;

We will see that, in this high-level formulation of the scheduler, the code mod-
ifications necessary to realise these two features are fairly simple. Hereafter, we
first describe how to model the hierarchical task management in GUM. These
changes only affect the scheduling component. In tuning load distribution, we
then interact with the monitoring and communication components.

First we specify the machine state in the GUM RTE, consisting of: a) a
thread pool of all threads; these are active threads controlled by the scheduler,
each with its own stack, registers etc; b) a spark pool of all potential parallel
tasks; these are modeled as pointers into the heap; c) monitoring information
about load on other PEs; this information is kept, as a partial picture, in tables
on each processor;
We model this data structure as a triple:

data GumState = GSt Threadpool Sparkpool [PEInfo]

type Sparkpool = [GumJob]

type Threadpool = [ThreadId]

and we make GumState an instance of ScheduleState.
The code for the GUM scheduler is summarised in Figure 7. The arguments

to schedule are jobs to be executed. These jobs are forked using a kernel rou-
tine, and added to the thread pool (forkJob). The case of an empty argument list
describes how the scheduler controls the machine’s workload. First the sched-
uler checks for termination (1). Then the scheduler checks the thread pool for
runnable tasks, otherwise it tries to activate a local spark (2). If local work has

instance ScheduleJob GumJob GumState where

runJobs jobs = evalStateT (initLoad >> (schedule jobs)) startSt

forkJob (GJ job) = do tid <- liftIO (kFork job)

modify (addThread tid)

schedule (j:js) = do { forkJob j ; schedule js }

schedule empty = do

(runThrs, blThrs) <- updateThreadPool -- update and

term <- checkTermination -- (1) check local state

if term

then do { bcast GSTOP ; get } -- finished

else do localWork <- if runThrs > 0 -- (2) local work available?

then return True -- yes: runnable thread

else activateSpark -- no: look for spark

stop <- if localWork

then do reqs <- readMs

processMsgs reqs

else do sendFish -- (3) get remote work

waitWorkAsync

if stop then do { killAllThreads; get } -- finished

else do liftIO kYield -- (4) run some threads

schedule empty

-- essential helper functions:

activateSpark :: StateIO GumState Bool -- tries to find local work

sendFish :: StateIO GumState () -- sends request for remote work

waitWorkAsync :: StateIO GumState Bool -- blocks on receiving messages

updateThreadPool :: StateIO GumState (Int,Int)

updateThreadPool = do

(GSt threads sps lds) <- get

tStates <- liftIO (mapM kThreadInfo threads)

let list = filter (not . isFinished . snd) (zip threads tStates)

blocked = length (filter (isBlocked . snd) list)

runnable = length (filter (isRunnable . snd) list)

put (GSt (map fst list) sps lds)

return (runnable, blocked)

Fig. 7. GUM scheduler

been found, it will only read and process messages. The handlers for these mes-
sages are called from processMsgs, which belongs to the communication module.
If no local work has been found, a special FISH message is sent to search for
remote work (3). Finally, it yields execution to the micro-kernel, which will exe-
cute the next thread (4) unless a stop message has been received, in which case
the system will be shut down. The thread pool is modeled as a list of jobs, and
updateThreadPool retrieves the numbers of runnable and blocked jobs.

The above mechanism will work well on closely connected systems but, as
measurements show, it does not scale well on Grid architectures. To address

shortcomings of the above mechanism on wide-area networks, we make modifi-
cations to the thread management component for better load balancing, follow-
ing concepts of the adaptive scheduling mechanism for computational Grids [1].
The key concept in these changes is adaptive load distribution: the behaviour of
the system should adjust to both the static configuration of the system (taking
into account CPU speed etc.) and to dynamic aspects of the execution, such as
the load of the individual processors. One of the main advantages of our high-
level language approach to system-level programming is the ease with which such
changes can be made. The functions of looking for remote work (sendFish and its
counterpart in processMsgs) and picking the next spark (activateSpark) are the
main functions we want to manipulate in tuning scheduling and load balancing
for wide-area networks. Note that by using index-free iterators (such as filter)
we avoid dangers of buffer-overflow. Furthermore, the clear separation of stateful
and purely functional code makes it easier to apply equational reasoning.

5.2 Adaptive Load Distribution Mechanisms

The adaptive load distribution deals with: startup, work locating, and work re-
quest handling, and the key new policies for adaptive load distribution are that
work is only sought from relatively heavily loaded PEs, and preferably from
local cluster resources. Additionally, when a request for work is received from
another cluster, the receiver may add more than one job if the sending PE is
in a “stronger” cluster. The necessary static and dynamic information is either
provided by the kernel, or added and computed at system level, and propagated
by attaching load information to every message between PEs (as explained in
Section 4.3).

Placement of the main computation During startup synchronisation, a suitable
PE for the main computation is selected, as already exemplified in Section 4.3.
GridGum 2 starts the computation in the ’biggest’ cluster, i.e. the cluster with
the largest sum of CPU speeds over all PEs in the cluster, a policy which is
equally easy to implement.

Work Location Mechanism The Haskell code in Figure 8 shows how the target
PE for a FISH message is chosen adaptively by choosePE. A ratio between CPU
speed and load (defined as mkR) is computed for all PEs in the system. Ratios
are checked against the local ratio myRatio, preferring nearby PEs (with low
latency, sorted first), to finally target a nearby PE which recently exposed higher
load than the sender. This policy avoids single hot spots in the system, and
decreases the amount of communication through high-latency communication,
which improves overall performance.

Work Request Handling Mechanism To minimise high-latency communications
between different clusters, the work request handling mechanism tries to send
multiple sparks in a SCHEDULE message, if the work request has originated
from a cluster with higher relative power (see Figure 9). The relative power of

data GumMsg = FISH [PEInfo] Int -- steal work, share PEInfo on the way

| SCHEDULE [PEInfo] GumJob -- give away work (+ share PEInfo)

| GSTOP

| ... other (system) messages...

sendFish:: StateIO GumState ()

sendFish = do infos <- currentPEs -- refresh PE information

me <- liftIO kThisPe

pe <- choosePe me

liftIO (kSend pe (FISH infos me))

-- good neighbours for work stealing: low latency, highly loaded

choosePe :: Int -> StateIO GumState (ChanName’ [GumMsg])

choosePe me = do

(GSt _ _ lds) <- get

let mkR pe = (fromIntegral (cpuSpeed pe)) / (cpuLoad pe)

rList = [((i,mkR pe), latency pe) -- compute ’ratio’

| (i,pe) <- zip [1..] lds] -- keep latency and PE

cands = filter ((< myRatio) . snd) -- check for high load

(map fst -- low latencies first

(sortBy (\a b -> compare (snd a) (snd b)) rList))

myRatio = (snd . fst) (rList!!(me-1))

if null cands then return (port 1) -- default: main PE

else return (port ((fst . head) cands))

Fig. 8. GridGum 2 Work location algorithm

a cluster is the sum of the speed-load ratios over all cluster elements. If the
originating cluster is weaker or equally strong, the FISH message is served as
usual. In Figure 9, after updating the dynamic information (1), the sender cluster
is compared to the receiver cluster (2), and a bigger amount of sparks is retrieved
and sent if appropriate (3). In this case the RTE temporarily switches from
passive to active load distribution.

6 Conclusions

We have presented the scheduling component in ArTCoP, a hierarchical
runtime-environment (RTE) for parallel extensions of Haskell, which has been
implemented on top of GHC Version 6.6. Using a micro-kernel approach, most
features of the RTE, such as scheduling, are implemented in Haskell, which en-
ables rapid prototyping of easily replaceable modules. Thus we can support both
deep memory and deep process hierarchies. The latter is discussed in detail by
presenting a scheduler for light-weight tasks. The former is ongoing work in the
form of defining a virtual shared memory abstraction. Considering the daunting
complexity of global networks with intelligent, automatic resource management,
modular support for such deep hierarchies will gain increasing importance. In
particular, we are interested in covering the whole range of parallel architectures,

instance ScheduleMsg GumState GumMsg where

processMsgs ((FISH infos origin):rest) = do processFish infos origin

processMsgs rest

processMsgs ((SCHEDULE ...) :rest) = ...

processFish :: [PEInfo] -> Int -> StateIO GumState ()

processFish infos orig = do

updatePEInfo infos -- update local dynamic information (1)

me <- liftIO kThisPe

if (orig == me) then return () -- my own fish: scheduler will retry

else do

new_infos <- currentPEs -- compare own and sender cluster (2)

let info = new_infos!!(orig-1)

myInfo = new_infos!!(me-1)

amount = if (clusterPower info > clusterPower myInfo)

then noOfSparks myInfo ‘div‘ 2 -- stronger: many

else 1 -- weak or the same: one

sparks <- getSparks amount True -- get a set of sparks (3)

case sparks of

[] -> do target <- choosePe me -- no sparks: forward FISH

liftIO (kSend target (FISH new_infos orig))

some -> liftIO (sequence_ -- send sequence of SCHEDULE messages

(map ((kSend (port orig)).(SCHEDULE new_infos)) some))

Fig. 9. GridGum 2 work request handling algorithm

from multi-core, shared-memory systems to heterogeneous, wide-area networks
such as Grid architectures.

As one general result, we can positively assess the suitability of this class
of languages for system level programming. Realising computation patterns as
index-free iterator functions avoids the danger of buffer-overflows, and the ab-
sence of pointers eliminates a frequent source of errors. In summary, the lan-
guage features that have proven to be most useful are: higher-order functions,
type classes and stateful computation free of side effects (using monads).

Our prototype implementation realises all code segments shown in the paper,
using the GHC RTE as micro-kernel, and Concurrent Haskell as a system-level
programming language. This prototype demonstrates the feasibility of our micro-
kernel approach. The different variants of the scheduler, specialised to several
parallel Haskell implementations, show the flexibility of our approach.

While we cannot present realistic performance figures of this implementation
yet, we are encouraged by related work reporting satisfying performance for O/S
modules purely written in Haskell [7] and by recent performance results from a
micro-kernel-structured RTE for Concurrent Haskell [13]. We plan to combine
our (parallel) system with this new development by the maintainers of GHC and
to further extend the features of the parallel system.

References

1. A.D. Al Zain, P.W. Trinder, H-W. Loidl, and G. Michaelson. Managing Hetero-
geneity in a Grid Parallel Haskell. Scalable Computing: Practice and Experience,
7(3):9–26, 2006.

2. J. Berthold. Towards a Generalised Runtime Environment for Parallel Haskells. In
Computational Science (ICCS’04), LNCS 3038, page 297ff, Krakow, 2004. Springer.

3. J. Berthold and R. Loogen. Parallel coordination made explicit in a functional
setting. In Implementation of Functional Languages (IFL 2006), LNCS 4449, pages
73–90, Budapest, Hungary, 2007. Springer.

4. E. Biagioni and G. Fu. The Hello Operating System. Information at
http://www2.ics.hawaii.edu/˜esb/prof/proj/hello/.

5. M. Fluet, N. Ford, M. Rainey, J. Reppy, A. Shaw, and Y. Xiao. Status Report:
The Manticore Project. In Proceedings of the ACM SIGPLAN Workshop on ML,
pages 15–24, Freiburg, Germany, October 2007.

6. I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the Grid: Enabling scal-
able virtual organizations. International Journal of High Performance Computing
Applications, 15(3):200–222, 2001.

7. T. Hallgren, M.P. Jones, R. Leslie, and A.P. Tolmach. A Principled Approach to
Operating System Construction in Haskell. In Conf. on Functional Programming
(ICFP’05), pages 116–128, Tallinn, Estonia, September 26–28, 2005. ACM.

8. P. Henderson. Purely Functional Operating Systems. In Functional Programming
and its Applications. Cambridge University Press, 1982.

9. I. Holyer, N. Davies, and C. Dornan. The Brisk Project: Concurrent and Dis-
tributed Functional Systems. In Glasgow Workshop on Functional Programming,
Electronic Workshops in Computing, Ullapool, Scotland, July 1995. Springer.

10. S. Jagannathan and J. Philbin. A Customizable Substrate for Concurrent
Languages. In Conf. on Programming Language Design and Implementation
(PLDI’92), pages 55–67. ACM Press, July 1992. ACM SIGPLAN Notices 27(7).

11. K. Karlsson. Nebula, a Functional Operating System. Tech.Rep., Chalmers, 1981.
12. D.J. King and P. Wadler. Combining Monads. Tech.Report, Glasgow Univ, 1993.
13. Peng Li, A. Tolmach, S. Marlow, and S. Peyton Jones. Lightweight Concurrency

Primitives for GHC. In Haskell Workshop, Freiburg, Germany, Sept. 2007.
14. N. Perry. Towards a Functional Operating System. Technical report, Dept. of

Computing, Imperial College, London, UK, 1988.
15. S.L. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In POPL’96 —

Symp on Principles of Programming Languages. ACM Press, January 1996.
16. F. A. Rabhi and S. Gorlatch, editors. Patterns and Skeletons for Parallel and

Distributed Computing. Springer, 2002.
17. E. Shapiro. Systems Programming in Concurrent Prolog. In Symp. on Principles

of Programming Languages (POPL’84), Salt Lake City, Utah, 1984.
18. W.R. Stoye. A New Scheme for Writing Functional Operating Systems. Technical

Report 56, Computer Lab, Cambridge University, 1984.
19. P.W. Trinder, K. Hammond, J.S. Mattson, A.S. Partridge, and S.L. Peyton Jones.

GUM: A Portable Parallel Implementation of Haskell. In Conf. on Programming
Language Design and Implementation (PLDI96), pages 79–88, Philadelphia, 1996.

20. D. Turner. Functional Programming and Communicating Processes. In PARLE
II, LNCS 259, pages 54–74, Eindhoven, The Netherlands, 1987. Springer.

21. A. van Weelden and R. Plasmeijer. Towards a Strongly Typed Functional Oper-
ating System. In Implementation of Functional Languages (IFL02), LNCS 2670,
pages 45–72, September 2002.

