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Abstract

We describe a newautomatic static analysis for determining
upper-bound functions on the use of quantitative resoufoes
strict, higher-order, polymorphic, recursive programaliigy with
possibly-aliased data. Our analysis is a variant of Tesjamnual
amortised cost analysigchnique. We use a type-based approach,
exploiting linearity to allow inference, and place a new &angs
on the number of references to a data object. The bounds e inf
depend on the sizes of the various inputs to a program. They th
expose the impact of specific inputs on the overall cost ebav
The key novel aspect of our work is that it deals directly with
polymorphic higher-order functionsithout requiring source-level
transformations that could alter resource usaye thus obtain
safeand accurate compile-time bounds. Our work igenericin
that it deals with a variety of quantitative resources. Westrate
our approach with reference to dynamic memory allocatibee/
locations, stack usage, and worst-case execution timeg uséet-
rics taken from a real implementation on a simple micro-culer
platform that is used in safety-critical automotive apations.

Categories and Subject Descriptors  F.3.2 Logics and Meanings
of Program$: Semantics of Programming Languages—Program
analysis

General Terms Languages, Reliability, Performance, Theory.
Keywords Functional Programming, Resource Analysis, Types.

1. Introduction

Automatically obtaining good quality information abousoeirce
usage (e.g. space/time behaviour) is important to a nunibar- o
eas including real-time embedded systems, parallel sgstamd
safety-critical systems. While there has been significaokvon
automatic analyses for first-order programs, to date thasebken
correspondingly little work on analyses foigher-orderprograms.
Developing such analyses is important both to enable thiogep
ment of functional programming languages, and to assisirthe
creasing number of conventional programming approaclat sty
on higher-order information (e.gspect orientation
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This paper introduces a neautomaticstatic analysis for de-
termining upper-bound functions on the resource usageriot,st
higher-order, polymorphic, recursive functional progsariRe-
source” may here refer to amuantifiableresource. In particular,
we discuss and analyse worst-case execution time, stade &s-
age, and heap-memory consumption. The bounds that we alr&ain
simple linear expressions that depend on the input sizesy ffus
expose the impact of the size of each input on overall exacuti
cost. These bounds can be inferred both easily and effigientl

This is the first automatic amortised analysis that can deter
mine costs for higher-order functiodfrectly rather than relying on
program transformations such dsfunctionalisatior33] to trans-
form higher-order programs into first-order ones. Suchsfiama-
tions are not acceptable for several reasons. Firstly, tisenally
changetime and space properties. This is unacceptable in any con-
text where the preservation of costs is important, such asrth
creasingly important class of resource-aware applicatidfore-
over, they may also change which prograrasbe costed (e.g. by
making linear programs non-linear, etc.), and they carrdgshe
programmers’ intuitions about cost. Unlike transformatioethods
such as defunctionalisation, our approach is fubmpositional
This is important, since compositionality enhangesdularity Our
technique can produce usage-dependent upper-boundduscn
costs for closed-source libraries of (possibly highereoydunc-
tions. In order to analyse a program that uses such a libitasy,
only necessary to know the previously inferred annotateé for
any function that is exported, and not its definition.

Our automatic analysis is a variant of theortised cost analy-
sisthat was first described by Tarjan [37]. Amortised cost asialy
is a manual technique, which works as follows: using inggnui
one devises a mapping from all possible machine states tm-a no
negative rational number, henceforth referred to agptientialof
that state. This map must be constructed in such a way thatcthe
tual cost of each machine operation is amortised by therdiffee
in potentials before and after the execution of the opeamator ex-
ample, for heap space an operation that allocatezemory units
must always lead to states whose potential is then decrégsed
It follows that the cost of each operation, including entaeps or
complete recursive calls, becomes zero, and the overatlitre
cost is then equal to the potential of the initial state.

There are two main problems to be overcome. Firstly, degiain
useful mapping from each machine state to the number reginege
its potential is a difficult task. Secondly, Okasaki notext {B1]:

“As we have seen, amortized data structures are often

tremendously effective in practice. [...] traditional rhet

ods of amortization break in presence of persistence”

Our type-basedsariant solves both of these issues: i) we can au-
tomatically determine the abstraction through efficienedir pro-
gramming; and ii) we can deal with the persistent data sirast
that are commonly found in a functional setting by assigrng
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vars ::
expr :

(varid; , varid, )
const| varid | varid vars| conid vars
Avarid. expr
if varid then expr, else expr,
case varid of conid vars-> expr, | expr,
case! varid of conid vars-> expr, | expr,
let varid = expr, in expr,
LET varid = expr, IN expr,
{varid1 = expr, ; }
| letrec R in expr
varid,
Figure 1. Schopenhauer Syntax
tential on aper-referencebasis, rather than resorting to a lazy-
evaluation strategy as Okasaki does [31]. The price we pthais
our method is currently limited to linear cost formulas (strietion

which is not inherent to amortised cost analysis). Howewerpe-
lieve that an efficient automatic analysis that can be rupatsaly

expr,

i) we distinguish between identifiers for variables and éhésr
data constructors; ii) all expressions arelét-normal form i.e.
most sub-expressions are variables; iii) we have two lestacts
that have identical meaning, but differing costs (see thieviing
paragraph); iv) pattern matches are not nested and alloyvteval
branches; v) pattern matching comes in two variants — redd-o
and destructive. None of these peculiarities are actuefiyired,
but they have been chosen to simplify the presentation ofvouk.
For example, our implementation readily deals with nestetepn
matches with an arbitrary number of branches. Note thatehe r
cursivelet-rec form allows not only the construction of recursive
functions, but also that of aliased circular data.

The use of let-normal form means that the threading of re-
sources is limited to let-expressions. This simplificatmroids
the need to replicate large parts of the soundness proofefer |
expressions in the proofs for the other cases shown in $ebtio
However, a transformation to let-normal form could, obwlyual-
ter execution costs. We avoid this by adding a sed@®Tdconstruct

at the press of a button is a major advantage over a cumbersomenhat is used only for transformed expressions. By assigaiti¢fer-

and error-prone manual analysis requiring some human uityen

It is important to realise that the implementation of our noet
is indeed quite simple, being based on a standard type syatemmn
mented by a small set of linear constraints that are collieaseeach
type rule is applied. We do not need to count referencessitffs
cient to examine the points in the rules where new aliasesaice
duced. Furthermore, the automatically-inferred potént@ppings
always allow the initial potential to be determined simog&eausly
for large classes of inputs. These mappings can thus bddrares
into simple closed cost formulas.

Contributions: We present a type system for a compile-time anal-
ysis that infers input-dependent upper bounds on prograeauex
tion costs for various resource metrics on strict, highreleg poly-
morphic programs. We prove that the type system is sound with
respect to a given operational semantics. We also preseaisto-
ciated fully-automatic type inference, which has been engnted
using a standard external linear programming solver. Ounma
novel contributions are to extend previous work [19, 25]:

a) by analysing the resource usage higher-order functions,
which may be both polymorphic and mutually recursive, in
a cost-preserving way;

b) by dealing with polymorphism, also in a cost-preservirayw

c) by considering theesource parametricityof (polymorphic)
higher-order functions, so allowing a function to have dedif
ent cost behaviour for its different uses, without re-asialy
the function.

Other notable advances over our earlier work [19] are:

a) the handling of arbitrary (recursive) algebraic datas/possi-
bly containing functions;

b) the use of a storeless semantics instead of the (awkwhed) “
nign sharing” condition from [19];

¢) a unified, generic approach that presents a single sossdne
proof for several resource metrics and for several diffeogn
erational models, including dynamic memory, stack alliocet
and worst-case execution time (specifically for the Renesas
M32C/85U embedded system microcontroller).

These are discussed in more depth in a companion paper [25].

2. The Schopenhauer Notation

We illustrate our approach using the simple Schopenhauer la
guage, which acts as a compiler intermediate language. yithe s
tax of Schopenhauer (Figure 1) is mostly conventional, jgixtreat:

ent cost to this construct (generally zero), we can make dmstor-
mation to let-normal form entirely cost-neutral. THET-construct
also allows us to construct an accurate cost metric for stpake
usage despite the fact that we have chosen to bgg-stepseman-
tics. We explain the rationale for this choice in Section®.1

Since non-monotone cost metrics are interesting to dedl, wit
Schopenhauer includes a primitive for deallocation, whielcom-
bine with pattern matching:ése! ). We do not deal with theafety
of deallocations, since this is an orthogonal and compleblpm
that deserves its own treatment (see, for example, WalleMam-
risett’s alias types[40], or thebunched implication logiof Ish-
tiaq and O’Hearn [23]). We encapsulate this problem by adgpt
essentially astoreless semantid84, 24]. While we do deal with
explicit memory addresses, these should be consideredrdmsy
handles, as used, for example, in early versions of the JViea-
located memory address is then simply overwritten with ezl
tagBad. This prevents its reuse and so guarantees that evaluation
halts when dereferencing any stale pointer. As a consequeve
can prove that the required resource bounds are maintained.

3. Schopenhauer Operational Semantics

We now state how Schopenhauer programs are executed, and de-
fine the cost for a specific execution sequence, thereby fiaing
(resource-aware) operational semantics. The Schopenitgoe
rules in Section 4 govern how potential is associated wighrtim-
time values of a particular type. The operational semaigiagsle-
pendent of the type rules. Evaluation may, however, geksforc
untypable programs.

An environmentV is a partial map from variables to loca-
tions £. Our semantics is therefore based on a boxed heap model.
By varying the cost parameters explained below, we can, how-
ever, also capture evaluation costs for an unboxed heaplmode
A heapX is a partial map from locations to labelled values
H[¢ — w] denotes a heap that magsto value w and oth-
erwise acts asH. All values are labelled for simplicity, eg.
(bool, tt), (int, 7), (constre, £1, ..., 4n), (Ax.e, V*). HereInd(¢)
is a special value modelling an indirection. To follow such i
directions we define nefi(, ¢) ¢ if 3(¢) = Ind(¢) and
next(H, £) = ¢ otherwise. These indirections are needed to model
recursive definitions, which we explain with an example & th
end of this section. As discussed above, deallocated towatare
overwritten with the tag8ad to prevent stale pointers.

Our operational semantics is fairly standard, except thi i
instrumented by a resource counter, whildfineshe cost of each
operation. The cost counter is usedntteasureexecution costs. If
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n ez
v, 90 PSS 0 3¢[e v (int,n)]
w = (bool, tt /1f) £ ¢ dom(H)

m/ 4 KmkBool
v, H ! true/false ~ £, H[{ — w]

(OP ConsTBOOL)

£ ¢ dom(H)

(OP CONSTINT)

next(J, V(z)) = £

& Kpushar & Kaext (OP \AR)
m us. ar nex
v, K | —— z o~ 0, H
V= w = (Az.e, V* & dom(H
WFV(e,)\cv 5 ) ¢ ( ) (OP ABS)
m’ + KmkFun(|V
vV, H m Az.e ~> £, H [l — w]
next(¢, V(y)) = £ J{(A) (Az.e, V*)
— Ka
V* [z — V(zo)], H T e~ 4,
m’ + Kapp (OP APP

V,?C'J;nK/n—eXt yxg ~ £, H
next(}c Vi) =1  H@) = (bool, tt)
T e e O

m’' + KifT
K
V, H = +m/neXt if z then et else ey ~ £/, H'
(OP CONDITIONAL TRUE)
next(i}{ V( )) 7 (@) = (bool, ff)
— KifF
m' + kige' ef ~ £

m + Knext
V, H ' if 2 then e; else ep ~ £/, H'
(OP CONDITIONAL FALSE)

k>0 ¢ € Constrs £ ¢ dom(Hy)
w = (constre, V(z1), . .., V(zk))
" +Kall
Vv, H m -t 72/ ecle c{x1,. .., &) ~ £, H[l — w]

(OP CONSTRUCTOR

next{, V(z)) = 7 H(C) £ (constre, £, ...

m — KcaseF(c

7£k)

v, H m’ + KcaseF'(¢) €27 ¢, 30
m + Knext
v, H m case z of ¢ (y1,...,yk) > e1lea ~ €, F

(OP CaseEFAIL)

next(H, V(z)) =0  H(0) = (constre, 1, ..., L)
m — KcaseT(c ,
’V[y1i—>€17...7yk'—>ék},9{ m’-l—KcaseT’(c) el’\”ev}c

m + Knext
v, H ! case x of ¢ (y1, ...

> ejles ~ 4, H
(OP CASE SUCCEED

7yk>

next(H, V(z)) =0  H(¢) = (constre, £1, ..., £)
Ve =Yy = L, Yk ]
[I’Q . Bad] I m_— KcaseT(c) + Kcealloc(c) o1~ 0,5

m’ + KcaseT’ (e)

m + Knext
vV, H ! casel z of ¢ (y1,...

> e1leg ~ £, H
(OP CaSE! SUCCEED

7yk>

— Kletl
Y, H P el 0,50 = V[z — 6]

mo — Klet2
Vly Hy m’ + Klet3 €2 ~> é27 Ho

(OP LET)
vV, H Z/ letz = ej ineg ~» f2, Ha
m = mq + Krecl 4+ nKnext V¥ =V[z1— l1,...,xn — Ly]
Ho = H[¢1 — Bad, ..., ¢, — Bad]
H = Ho[by — Ind(f1), . .., 0o — Ind(Z,))]
Vie{l,...,n}.4; ¢ dom(H) A £; = nex{Hy, 1))
i — K 2
Vie {1,...,n}. V5, 3G PSS e 0, 06
" , LMntl — Krec3
v, H m’ + Krec4 e~ £, 3

vV, H 2/ let rec {z1 = e1; ..

.3%Tn = entine~ £,
(OP ReQ)

Figure 2. Schopenhauer Operational Semantics

this counter becomes negative, then program executionnieso
stuck. We are interested in finding the smallest number fohea
input that safely allows execution. The purpose of the aiglin
Section 4 is to provide an upper bound on this number for large
classes of inputs, without evaluating the program in any. way

The judgement, H % e ~ £,H' means that under the ini-
tial environmentV and headH, the expression evaluates to loca-
tion ¢, containing the result value, and post-hé&afy provided that
there are at least € N units of the selected resource available be-
fore the computation. Furthermore, € N units will be available
after the computation. We writé, K - e ~ £, H’ to denote that
e evaluates td using an unknown, but finite, amount of resources.

For example,V, H l% e ~ £,H’ means that three resource
units are sufficient to allow to be evaluated, and that exactly one
resource unit is unused after the computation. This unwesamlirce
unit might or might not have been used temporarily. Note thigt
tracks both the overall net resource costs as well as themimi
number of free resources that are necessary for the coriggutat
be started. These two numbers may be different if there isesom
temporary resource usage, as with stack space usage.

Lemma 3.1. For all & > 0, if V,H I—Z/ e ~ £, H' holds, then
+k
bothm’ > 0 andV, H b e~ £, %’ hold.
The operational semantics rules for Schopenhauer are shown

Figurel 2. Two rules are omitted because they are almosticdént
to other rules: OP @sE! FAIL is similar to OP QsE FaIL; and

OP LET (which cover&ET x = e; IN eg), isidentical to OP ET
if the cost metric parametekdet1,Klet2 andKlet3 are replaced
by KLET1, KLET2 andKLET3, respectively.

The rules exploit a number of constant cost parameters.arhis
lows us to deal with several different cost metrics withcarging
the operational model. Since our analysis uses the saméaotss
regardless of the metric, our soundness proof is complétell-
pendent of the cost metric and so does not require to be peetbr
anew for each new cost metric. These parameters must benchose
carefully so that the costs of the operational semanticshmia-
ality. For example, the constakihkInt denotes the cost of con-
structing an integer constant. So, if we are interested ap ta-
location and an integer occupies two heap units, as in ouedox
heap model, then we set this constant to two. In an unboxegl hea
model, however, it is set to zero, since the integer is cdeditectly
in the stack. Likewise for stack usagenkInt is either the size of
a pointer (in the boxed model) or the actual size of an intéiger
the unboxed model); and for worst-case execution time (WCET
we set it to the greatest number of clock cycles needed tdecaea
integer constant. For example, the commeraial WCET analyser
(http://www.absint.com) determines this to be 83 cycles on the
Renesas M32/85U microcontroller.

Recursive let-bindings usmdirections An indirection never
points to another indirection, since indirections are ontyoduced
in rule OP Recto locations which have been followed. This prop-
erty is formalised in Definition 5.1, which serves as the fiava
ant for our soundness theorem. This also allows a constastt co
bound Knext) when dereferencing an indirection.
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Let us see, for example, hoket rec {x = cons(x)} in z is
evaluated in the empty heap and store (whenes € Constrs is
assumed). We omit resource annotations. Wéfwt= [¢1—Bad]
andV* = [z+—¢;] and have

V*, Ho I cons(z) ~ ¢4, [(1—Bad, £;—(cons, {1)]

Now we have nextHi, ¢}) = ¢;. Defining the new heafi{’ =
[(1—Ind(¢}), £1—(cons, £1)] we get

0,0 F= 1et rec {z = cons(z)} in z ~» £1, H’
yielding the expected cyclic data structure with indireti

4. Schopenhauer Type Rules

We usen, 3, v to denote type variables. LEV be an infinite set of
resource variablesanging overQ™, usually denoted by, p, r, s,
being disjoint from the identifier sets for variables and staunc-
tors Var, Constrs. Sets of type and resource variables are referred
to using the vector notation, e.g, 4. All other decorations stand
for different entities. We us&, ¢, £ to range over sets of linear
inequalities over non-negative rational constants anolireg vari-
ables, plus special terms involving type variables thatnaapped
to linear inequalities when the type variables are sulistituvith
closed type terms. Aaluationv is a two-fold mapping, that maps
resource variables t@ " and type variables to closed types. We
write » = ¢ if v satisfies all constraints i, andy) = ¢ to denote
thaty entailsg, i.e. that all valuations that satisty also satisfy all
constraints inp.

The annotated type®f Schopenhauer are then given by the
following grammar:

T : int | bool | &

— —
pae{ ci)(thl Yool eri(qe, Tk ) }
Ve T 5~ T'

Va:. T

where¢; € Constrs are constructor labels and@ stands for
(T1 ... T, ) wheren > 0*. Algebraic datatypes are defined as
usual, except that each constructor also carries a resuvarable
in addition to the usual type information.

The types contain two different universal-quantifiers: doe
resource variables, and one for type variables. For exantipte
type of a function counting the length of a list could be:

Va:0.V{z,y,u,v}€d.uB.{Cons:(u, (o, 3))} INil:(v)}%’ int

with ¢ = {z > 156 + y,u > 940}. So the type tells us that this
length function can be applied to lists of any typex(.). Further-
more, it admits several resource behaviours, siffeg y, u, v}€¢.
tells us that we can renamevy, u, v to independent resource vari-
ables. Of course, the constrairtsnust be substituted accordingly.
The admissible valuation = 156,y = 0,u 940,v = 0
would then indicate that evaluating the function requiresnast
156 resource units (in this castck cycley plus at most 940 re-
source units pe€ons constructor in the input. In other words, if
n is the length of the input list, the execution cost is bounbgd
940n + 156. However, the connection between the actual cost of
running a program and its annotated type, such as the one abov
only guaranteed by Theorem 1.

Continuing with the annotated type example, we also see that

the above function can be called with more resources avajlab
since the valuatiom: = 256,y = 100,u = 999 is also admis-
sible, leading to the bour@gb9n + 256. Of these resources, at least

* Note that all operators are extended pointwise when usedrnijuiction
with the vector notation and are only defined if both vectaegehthe same

. = —
length, i.e.A = B stands fovi. A; = B;.

100 can be recovered after the call (the valueydf So list types
having extra potential may be accepted, but their additipaten-
tial would be lost. This isafe since it increases the upper bound
on resource usage, but of course we will usually avoid suciss |

The free resource variables of the type and constraint sets a
denoted byFV,(-). We also define a mappirg from annotated
types to standard unannotated types, which simply erabes-al
notations. Fohfae/;.f)g—/’ T', we require thaty C FVO(T)) U
{p,p'} UFV,(T") holds, but not thaF'V, (1)) is a subset ofx.
Any intermediate variables which would then only occurirtan
be eliminated by projecting theolytopedescribed by to the rel-
evant dimensions. This ensures that subtyping remainsalaei.

The type rules for Schopenhauer govern how potential isc&sso
ated with each particular runtime value through its type.défeote
the part of the potential associated with a runtime valus type A
by @4, (w : A) (see Definition 5.4). Intuitively, this is defined as the
sum of the weights of all constructors that are reachable fiiq
where the weight of each constructor in the sum is determiayed
the typeA. A single constructor at a certain location may contribute
to this sum several times, if there is more than one referenitelt
is natural to extend this definition to environments and existby
summation, i.e®j(V : I') is the sum ofb5 (V(z) : T'(x)) over all
variablesz in T'. Since the potential depends on the state, (static)
type rules do not have access to this number, but only gobern t
relative changes. Note that we never actually need to caerthet
potential (apart from the initial state), so the potentiaimly serves
as an invariant in our soundness proof.

We now formulate the type rules for Schopenhauer. These dif-
fer from standard Hindley-Milner typing judgements onlytiat
they also refer to cost and resource variables. Note tharevaat
concerned with type inference itself (a generally solvezbfam),
but only with the inference of our new type annotations. Lete-
note a typing context mapping identifiers to annotated Sehop
hauer types. The Schopenhauer typing judgement

q
F'Te:A|¢>

then reads “for all valuations that satisfy all constraints in, the
expressiore has Schopenhauer typéA) under context (T'); fur-
thermore, evaluating under environmenr¥ and heagH requires a
potential of at most (¢) + ®5.(V : I') and leaves a potential of at
leastv (¢') + @5, (¢ : A) available afterwards, whefds the result
value and}’ the post-heap”. In Section 5, we will formalise this
statement as Theordm 1 (our main theorem), which requires as
precondition that the context, environment and heap aéegr

We use a compressed notation that makes the following two
formulations equivalent fop = {q1 = g2 +c1, ¢2' = ¢i + c2}:

2

F'Z_zeQ:A2|¢ Fq{i@ ex:As | ¢

ThHren: A | oUW PHE A | 6
The constraintg) that were explicitly introduced in the left-hand
form have thus become implicit in the compressed notation on
the right. We believe that, with a little practice, the coegwed
notation is actually easier to read. Itis also closer to mpiémen-
tation, which avoids the introduction of unnecessary mttiate
variables. Note that we do not simplify constraints aftaytare
generated, since the LP-solver is much faster if we do notodo s

Basic Expressions. Roushy (VAR)
x:A puso arm:A|(Z)
ez € {true, fal
n (INT) e € {true,false} (Boov)

KmkInt KmkBool
o m:int|0 & 0 e:A|D
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Since primitive terms such as integersi) or variables (MR) al-
ways have fixed evaluation costs, a fixed initial potentiad an
returned potential of zero suffices. The restriction to gnymn-
texts and the use of explicit weakening, ruleE¥Ak below, just
serves to simplify our soundness proof by removing reduciéan
For our prototype implementation, we have merged theawand
RELAX rules into all terminal rules.

Structural rules. We use explicit structural rules for weakening
and sharing (contraction), while exchange is built-inshécessary
to track pointers that are discarded £Ak) or duplicated (8ARE),
since such operations may affect resource consumption.déin a
tional structural rule (RLAX) allows potential to be discarded both
before or after a term, as well as allowing a constant amaoiym-o
tential to bypass a term.

In our system, unlike in a strictly linear type system, valés
can be used several times. However, the sum of all the patenti
bestowed by each type of all the existing references muséxot
ceed the potential that was originally attached to the tgseciated
with the entity when it was created. It is the job of theARE rule
to track multiple occurrences of a variable; and it is the gblthe
Y-function to apportion potential appropriately.

The application of these rules is straightforward. For eulam
where there are multiple uses of a variable, sharing is usgdad
the latest point; VEAK is applied before each terminal rule; and
RELAX is built-in throughout the rules with an additional slack
variable that is punished in the objective function, so disaging
the LP-solver from using relaxations.

F'%e:A )
- (RELAX)
rbretAl¢u{g>pag—p>dqd -1}
F'q_/ :C =
¢ ° q' ¥ 9= (WEAK)
F,x:A|_/e'C | ¢
T z:Aq,y:A 'q_ c
TiA1,Y A2 e: |¢ (SHARE)

T, zA b ele/a,2/yl : C | $UY(A|AL As)

The ternary functiony(A |B, C') returns a set of constraints that
enforce the property that each resource variablé is equal to the
sum of its counterparts i® andC. This function is only defined
for structurally identical typesl, B, C, i.e. types that differ at most
in the names of their resource variables. For example, we hav

A = puX {Nil:(a,())|Cons:(d, (int, X))}

B = pX {Nil:(b, ()) I Cons:(e, (int, X))}

C = uX.{Nil:(c, {)) |Cons:(f, (int, X))}

Y(A|B7C):{a:b+c7 d:€-|—f}

For type variables we simply recoid « |51, B2 ) within the con-

straints, and replace it by the according constraints upexiali-

sation. The crucial property of sharing is expressed in Larbii.
Function Abstraction & Application.

dom(T) =FV(e)\a B=A7"C ¢UP=¢E

q
DaAbre:C ¢ ¢= Upeuanr Y(PID,D)
7 ¢ FV,(T) UFV,(¢)

KmkF I
p PRl o v B | ¢

Since the potential stored in the function closure beconvad-a
able for each function application, in order to allow theinonied
repeated application of functions, we must restrict theeipibdl
stored in a function closure to zero. This is achieved by ialgus
the sharing operatoy. Here,Y(D |D, D) just generates the con-
straintx = = + «x for each resource variable iR, forcing them

(ABS)

all to zero. All the potential required during the executiminthe
function body must therefore be provided by its argumentsejet
for a constant amount.

This, relatively minor, restriction only affects functi®that re-
curse over a captured free variable, but not over one of ithgirts.
We have not yet encountered an interesting program exaniygeawv
this restriction would be an issue. In order to deal with sfuzic-
tions, potential could be allowed within the closure, pded that
a static bound on the number of calls to such functions coald b
determined. We plan to experiment with uséimes functions in
future work, if this restriction turns out to be a real issAterna-
tively, knowing the sizes of potential-bearing entitieptcaed in
a closure would allow us to recharge their potential at eadh ¢
Combining our work with a “sized-type” analysis (e.g. [38jight
thus also avoid this limitation.

Each function body is only analysed once, associating afset o
constraints with the function. At each application, thesestraints
are copied from the type. All resource variables that onlguoc
in the function’s type and constraints, but nowhere elsegaren
fresh names for each application. Thus, although each iamct
is only analysed once, the LP-solver may still choose a miffe
solution for each individual application of the function.

o : ¥ — CV a substitution to fresh resource variables
o(By=Aq~ C
+ K +K t
x:A, yVFey.B w yx:C | o(¥)

Kapp

(APP)

Note that theLET-construct can be used to specialise the func-
tion before application. This is required anyway, if we éwll the
convention suggested in Section 6.1.1 that normal subesgmms
should always be unique variables, and that these are inteadby
aLET-construct immediately before their single use.

Algebraic Datatypes and Conditionals.
q — KifT q — KifF
r q + KifT’ ee: Al @ r q’ + KifF’ er: Al

q + Knext
I, x:bool 7 if ztheneselseef: A | pUY
(CONDITIONAL)

¢ € Constrs C=upuXA{ -le:(p,(B1,...,Br))l -}
Ai=Bi[C /| X] (fori=1,...,k)
p + Kalloc(c)
Ao Ay ez, a) C |0
(CONSTR

The ConsTRrule plays a crucial role in our annotated type system,
since this is where available potential may be associatddaniew
data structure. Potential cannot be used while it is asteatigith
data; it can only be used once it has been released usingabe C
rule that forms the dual to thedNsTRrule. A successful match re-
leases the potential associated with the correspondinstremtor.

¢ € Constrs A=pXA{ - lc: (p,(B1,...,Bg))---}
A =yi:Bi[A/X], ... yx:Be[A/X]
g + p + Kdealloc(c) — KcaseT(c)
F:A : q +KcaseT’(c) 1:C | d)
LA qucaseF .C
y Lt q +KcaseF |'¢)
+ Keof
T z:A 1 q/eo case! x of c(yh..lyk) >eilex: C|oUY
(Casg))

The CasE rule for the read-onlcase pattern-match is identi-
cal to Case!l, except that it doesn't include the cost parameter
Kdealloc(c), the (possibly negative) cost of deallocating construc-
tor constrc.
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Let-bindings.
F'melthhp A7CC2A1|%€22A2|¢

q1 + Kletl
F,Alm letx=ei1ines : A2 | YU
The type rule for the alternative form of let-expressi@T ... IN

(LET), is almost identical, except it substitutes the casistants
KLET1, KLET2, KLET3 for Klet1, Klet2, Klet3, respectively.

(LeT)

Rec-bindings. A=A oA
! qi _ K:e‘c2n
Vi € {1,...,n}.Fi,A 'T e; A | ’(/)Z
gn+1 — Krec3
Foy1, A q +Kreca €° Cl¢

¢ = § U Ui:l,m,n wl U UBGran(A) Y(B |B7 B)
¢ = {q > q1 +Krecl + n -Knext}

iTn=én}tine:C | ¢

(REQ)
Our recursivelet rec construct allows circular data to be con-
structed. In contrast to non-circulatiased data, which may be
created carrying per-reference potential, as usual, leir@data is
ill-suited for bounding recursion since its type-basedptial must
be either infinite or zero. The EC rule therefore enforces zero po-
tential by abusing the sharing operatgrin the same manner as
the ABs rule. As previously noted, function types are always as-
signed zero potential, and so are not affected, since thenpat
that is required to execute the body of a function must cormme fr
the arguments to the function.

q
Fl,...,Fn+1 q 1etrec{x1=61;...

Polymorphism.
d¢dom(T) a¢y Thre:C|lyug
I Hre:vag.c | ¢ (GENERALISE
TEre:vaeC | ¢ ¢=¢Ug[B/dl

(SPECIALISE)

rtre:clB/dl| ¢
We use the standard Hindley-Milner rules for polymorphism:
GENERALISE is used to generalise a type; an@ERIALISE al-
lows a polymorphic type to be specialised to any valid type, a
defined by the other type rules.

Subtyping. The type rules for subtyping depend on another in-
ductively defined relatiog - A <: B between two typesl and B,
defined below, which is relative to a constraint &et

TaBhre: Cl¢ vHA<B

7 (SUPERTYPB
TaAbre:C | puy

rbre:D|¢ vFD<C
rbre.C|ouy

(SUBTYPE)

For any fixed constraint s€t the following relation is botheflexive
andtransitive but not necessarilginti-symmetric

EFA<A
— —
foralli holds¢ = {p; > ¢;} andé - A; <: B;

— —

€ pXLo lei(pi A -} <ipX{oo- e B -}

o : §— CV asubstitution

EUgp=0() U= {olp)<q o) >q}
EUdF D<:0(C) EUdptFo(A)<:B

£FV5ey.C g A<:Vieg.D o~ B

H() = (int,n) neZ FH(¢) = (bool, tt /ff)
HE, L:int H E, £:bool
(WFINT) (WFBoOL)
FH(€) = (constre, L1, ..., 0k

C:,MX.{"'|C:(q7<Blv""7§k>)|"'}

Vie{l,...,k} . H[¢ — Bad] F, {;:B;[C | X]
K. 1.0 (WFconN)
HE, L:A d¢. NpHA<:B
il AL = (WFsuBTYPE

HE, ¢:B

H) = (M\z.e, V) There existd", p, p’, ¢ such that:
x

H[e—Bad]k, VI  okE¢ Thrdze:F|¢
HE, L:F
~ (WFFUN)
H(¢) = Ind(0)
H(¢) = Bad H(?) # Ind(k)
TF, A (WFBAD) HE DA
THE. A (WFINDIRECT)

Figure 3. Derivation rules for “well-formed” environments.

o:d — [asubstitution U@ = o(v)
EFVan.A <: VG3:4.B
The inference itself follows straightforwardly from thegpe rules.
First, a standard typing derivation is constructed, anc dgpe
occurrence is annotated with fresh resource variables. néérti
the structural rules as outlined above and then traverseyfie
derivation preciselypnceto gather all the constraints. Because all
types have been annotated with fresh resource variabletypsag
is required throughout, but this will always succeed andilt w
generate the necessary inequalities. We illustrate tlisgss in
more detail with a simple example in Section 6.1.2.

In the final step, the constraints that have been gathered are
solved by a standard LP-solver [4]. In practice, we have doun
that the sparse LPs that are generated can be easily sobmg, p
because they have a simple structure [19]. Furthermoretmber
of constraints that are generated is linear in the size catiadysed
program without resource parametricity; and at most quednéth
resource parametricity. Since only a single pass over tbgram
code is needed to construct these constraints, this leadbighly
efficient analysis. An online demo of our analysis is avddadit
http://wuw.embounded.org/software/cost/cost.cgi.

EFo(A)<:B

5. Soundness of the Analysis

We now sketch the most important steps for formulating ouinma
soundness theorem. We first formalise the notion of a “well-
formed” environment, writted{ =, V:I", which simply states that
for each variable, the type assigned by the typing conteseesy
with the actual value found in the heap location that is amsigo
that variable by the environment. This is an essential iamafor
our soundness proof.

Definition 5.1. A memory configuration consisting of hegpand
stackV is well-formedwith respect to context' and valuationv,
written H F, V :T, if and only if for all variablesz € T the
statement{ F, V(x):I'(x) can be derived by the rules in Figure 3.

Lemmab.2. If K E, V:I"thenforall¢ alsoH[¢ — Bad] F, VI

It is an obvious requirement that evaluation must maintaive-
formed memory configuration.
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Lemma5.3. f H F, VI andV,HFe~ £, H thenH' F,VT.

We remark that one might wish to prove an extended statermant t
the result of the valuation is also well-formed if the expression
was typable. Unfortunately such a statement cannot be prome
its own and must be interwoven into Theorem 1.

Definition 5.4 (Potential) If H F, ¢:A holds, then theotential
of location ¢ for type A in heap3 under valuationv, written
i (L:A), is recursively defined for recursive datatypes by

e (6:A) = wla) + D P5e(lisB[A/X])

when bothA = puX.{ - lc:(q,(B1,...,Bg))l---} and also
FH(next(H, £)) = (constre, ¢4, ..., L) holds, and zero in all other
cases. We extend this definition to contexts by

@;C(v:y(r)): 3 @”;C(V(:c):v(l“(m)))

z€dom(T")
Subtyping must respect the well-formed environments ard th
amount of potential associated with any value of that type.

Lemma55. If H F, £:Aand¢ - A<:B holds andv is a
valuation satisfyingp, thend £, ¢:B and @3 (¢:A) > @5 (¢:B)

If a reference is duplicated, then the type of each duplicatst be
a subtype of the original type.

Lemma5.6. If Y(A|B,C) = ¢ holds then als@ - A <: B.

The potential attached to any value of a certain type is away
shared linearly among types introduced by sharing. In otleds,
the SHARE rule does not increase the total available potential.

Lemma 5.7. If H k, £:AandY(A|B,C) = ¢ holds andv
satisfiesp then®j, (¢:A) = @5 (£:B) + ®5,(¢:C). Moreover, for
A = BandA = C, it follows that®5, (£: A) = 0 also holds.
Lemma 5.8(Inversion) If " % Az.e : B | ¢ holds, then there
existsA, &, Vsey. A Z—ﬂ C such that all of the following hold

o+ (Ve A C)<:B  AzmAbre:C|¢
ACT dom(A) =FV(e)\ z §¢ FV.(A)UFV,(¢)
ouv=¢ ¢=J Y(DID,D) ¢=p>p'+KnkFun(|Al)

Deran A

We can now formulate the main theorem, as described inglytiv
in Section 4.

Theorem 1(Soundness)Fix a well-typed Schopenhauer program.
Letr € Q' be fixed, but arbitrary. If the following statements hold

q
rbredlo (1.A)
V,HFen~s 6,3 (1.B)
HE, V(D) (1.0)
» : avaluation satisfying (¢) (1.D)
then for allm € N such that
mZv(q)—&-(I)”H(V:v(F))-&-T (LE)
there existsn’ € N satisfying
V, 3 b e~ 0,5 (L1
m' > o(q) + Bhe (m(A)) +r (L.11)
H' E, Lw(A) (2.1

The proof is by induction on the lengths of the derivation§loB)
and (1.A) ordered lexicographically, with the derivatidritee eval-
uation taking priority over the typing derivation. This isquired
since an induction on the length of the typing derivationnalo
would fail for function applications, since in this case waend
the length of the typing derivation by the typing judgment ttoe
body, using the invariant for well-formed environments. e
other hand, the length of the derivation for the term evadnatever
increases, but may remain unchanged where the last steg of th
typing derivation was obtained by a structural rule. In gheases,
the length of the typing derivation decreases, allowingnauction
over lexicographically-ordered lengths of both derivasio

The proof is complex but unsurprising for most rules. The-arb
trary valuer is required to carry over excess potential, which may
be required in the second sub-expression of a let-expresisid
left untouched by the first sub-expression. We sketch sorperim
tant cases:

(ABS) In the case that the last step of the derivation for (1.A)
was derived by rule As, we also know that the last step for
(1.B) must have been performed according to rule Gf3.A
We haveH'(¢) = (Az.e, V*). Fix r € Q" and choose
anym € N such thatm > v(q) + ®5(V:T") + r. By the
definition of ABs and the observation th&thas no potential by
Lemma 5.7, we havey > KmkFun(|T'|) +r. Furthermoren >
KnkFun(|V*|) + 7 since[l'| = [V*| by V* = Vlpy (), from
OP ABs anddom(I") = FV(e)\ « from ABs. By OP Ass
and Lemma 3.1 we thus obtain’ = m — KmkFun(|V*|) + r
which satisfiesn’ > r as required, since the potential 6f
is zero by Definition 5.4. This leaves us to prove (1.111), ethi
follows in this case directly from WiFUN, since all existentially
quantified requirements are among our premises, except for
H'[¢ — Bad] F, V :T which follows by Lemmas 5.2 and
5.3from[1.C).

(APP) From OP fep we haveH (V(y)) = (Az.e, V*) and
from (1.111) through WFUN we obtain the existence of a
typing judgement for the function body. By the inversion
Lemmal 5.8, we obtain all the required properties to derive

KmkFun(|T'|) . .

T 0 Az.e : VFew.B | ¢ through the application
of the ABstype rule. This allows us now to apply the induction
hypothesis, together with the premiseof (1.B) for the bofly o
the function. The application of the induction hypothesigis-
tified despite the increased type derivation, since theuavian
was shortened by one step. Again, note that the potentiBll of
is zero. This follows from Lemmas 5.5 and 5.7. Lemma 5.5 is
also important for deriving the necessary inequalitiesveen

m andm’ and their counterparts from the induction hypothesis.
Conclusion[(1.111) follows from the induction hypothesiaca
the first part of Lemma 5.7.

(RELAX) Let 7 € Q% be fixed but arbitrary. We observe that
m > v(p)+ P4 (V:I')+r = v(q)+ P4 (V:I')+7'if we choose
r" = r+ v(p) — »(q) for applying the induction hypothesis.
We can do this since(p) — »(¢g) > 0 holds by the constraints
of the RELAX rule. We thus obtaim:” with

m' > v(q") + @5 (V) +
=2(¢) + @3 (V:T) +7’+v(p) —v(q)
> v(q") + @5 (VD) + 7+ 2(p) — 2(d)
=o(p') + @5 (V:T) +

which follows byz (p) — »(q) > »(p’) — »(q’) from the other
constraint added in RLAX.
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g N34 © g N3 © g N33 © g N34 © g N3 ©
§ 8 E| 8§ 8 El § 8 El § 8 £l § 8 E
I %) — I [%3) ~ I %) — I [%3) — I [%3) ~
sum (see Fig 4)
Analysis 16 39 3603 24 39 5615 32 39 7627 40 39 9639 48 39 11651
Measured| 16 34 3066| 24 34 4606| 32 34 6146| 40 34 7686| 48 34 9226
Ratio 1.00 1.15 1.18| 1.00 1.15 1.22| 1.00 1.15 1.24| 1.00 1.15 1.25| 1.00 1.15 1.26
flatten (see Fig 6)
Analysis 21 34 4485 38 60 8732 55 66 12979 72 82 17226 89 98 21473
Measured| 21 34 4275| 38 50 7970 55 50 11665| 72 66 15360 89 66 19055
Ratio 1.00 1.00 1.05| 1.00 1.20 1.10| 1.00 1.32 1.11) 1.00 1.24 1.12| 1.00 1.49 1.13
repmin
Analysis 17 42 5020 35 69 10991 53 96 16962 71 123 22933 89 150 28904
Measured| 17 42 4633 35 52 9395 53 61 14157 71 62 18919| 89 71 23681
Ratio 1.00 1.00 1.08( 1.00 1.33 1.17( 1.00 1.57 1.20( 1.00 1.98 1.21f 1.00 211 1.22

Table 1. Measurement and analysis results for list- and tree-psirng$unctions

6. Example Cost Analysis Results

In this section, we compare the bounds inferred by our aiwlys
against concrete measurements. Our measurement restétshve
tained from an instrumented version of the underlying alo$tma-
chine that counts resources used during the execution.

For readability, the programs in this section use a more eatnp
functional notation than Schopenhauer, expression-téueie [14],
without a restriction to let-normal form. This Haskell4gtyno-
tation uses multiple rules with pattern matching insteadopf
level, asymmetric case expressions. The basic type ofardeg
parametrised with its bit-size precision. We use the fanitiota-
tion of [] for Nil and_: _ for Cons in the pre-definedist type:
data [a] = Nil | Cons a [al]. This notation is automatically
translated to the Schopenhauer code that is actually athlys

The examples chosen in this section focus on the main laeguag
features that are of interest in this paper: higher-ordactfons,
polymorphism and destructive pattern matching. The exaspte
deliberately kept small to demonstrate the applicabilitpur ap-
proach to these language features, without being sid&edaby
previously-solved problems. For example, the varianthesum-
of-squaregunction demonstrate how our analysis faithfully reflects
the increased performance that is achieved when turningma co
position of higher order functions into direct recursiomeTfinal

evaluatorexample is interesting because it modifies the argument

function as it is passed through the recursive calls.

6.1 List-sum

Our first example computes the sum of a list of integers (Figr

In order to demonstrate the use of our analysis on highesrord
functions, we define theum function as an instance of the standard
(left-) fold function. A bound on the heap usage for tiem
function is given by the following enriched type, whereepresents
the u-type, i.e.list, with the constructorSons andNil.

type num = int 16;

add :: num -> num -> num;
add x y = x + y;

fold :: (num -> num -> num) -> num -> [num] -> num;
fold £ n [] = n;

fold f n (x:xs) = fold f (f x n) xs;
sum :: [num] -> num;

sum xs = fold add 0 xs;

Figure 4. Source code of list-sum

SCHOPENHAUER typing for HeapBoxed:
list[Cons<2>:int,#|Nil] -(6/0)-> int

The argument type includes annotations for each constrisapa-
rated by|. This shows that at most two units of heap are needed for
everyCons constructor in the input list (shown by the annotation
Cons<2>). In addition to this input-dependent part, tsen func-
tion needs at mogt heap units, shown by the first annotation to the
function type € (6/0)->). As shown by the second annotation (the
zero) and the absence of annotations in the result type,rthie a
ysis could not find a guarantee that any portion of the regdest
heap memory is unused after execution. In total, given antinp
list of lengthn, the heap consumption of this function is therefore
bounded by2n + 6.

This bound can be seen to be exact by direct inspection of the
source code in Figurie 4. In theum function, a constant o? is
needed to allocate the initial integer valuetofAnother constant
of 4 is needed to create a closure for t#d function (a closure
includes a tag, a function pointer, plus counts of expectetsap-
plied arguments). In theold function, a new integer value is cre-
ated in each iteration through the applicationfok n. This re-
quires two heap cells per iteration. This value is there&atached
to theCons constructor of the input.

The bound on the stack consumption $am, shown below, is a
constant for this tail-recursive program. The absence ndtations
to theCons constructor indicates that the bound is independent of
the size of the input list.

SCHOPENHAUER typing for StackBoxed:
list[Cons:int,#|Nil] -(27/17)-> int

Finally, we can infer an upper bound on the time consumption o
this function using our worst-case execution costs in clogites
for the Renesas M32C/85U processor. As expected, time ngnsu
tion is linear in the length of the input list}, namely1714n+909.

SCHOPENHAUER typing for TimeM32:
list[Cons<1714>:int,#|Nil<225>] -(684/0)-> int

The first block in Table 1 compares the analysis bounds abibe w
our measured results, applyirgn to the initial segments of the
input list [1,2,3,4,5] of lengthsN = 1...5. Since we analyse
and measure the entire code, including the costs for gengiiie
test input, the absolute values given in the table are $igiigher
than the values calculated from the function types above.r@tio

of inferred to measured costs is used to assess the qualdyrof
bounds against actual behaviour. We can see that the prddieap
consumption is exact in all cases. For stack usage, the mezhsu
costs for this tail-recursive program are const&d)(The inferred
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fold £ n 1 = LET 11 = 1 IN

case 11 of [] ->LET nl =n IN ni;
| (x:xs) -> LET xsl = xs IN
LET n1 =n IN
LET x1 = x IN
LET z1 = f x1 nl1 IN
LET f1 = f£ IN

fold f1 z1 xsi;

Figure 5. Intermediate code form of functiafvld.

bounds are also constant but not exact in this case. Fioalhfjime
predictions are a close match to actual execution timesdigige
an estimate that is betwed8% and26% higher than the actual
cost. In general, we expect less accurate bounds for tinoayise
the entries in the cost table are already worst-case boumdbd
primitive operations of the abstract machine.

6.1.1 Let-normal form

Recall from the introduction that in order to remove anngyin
redundancies from the proof of Theorem 1, we require progtam
be in let-normal form. Programs can automatically be tramséd
into let-normal form without altering their (cost) behawfausing

a second.ET-construct that simply has zero costs assigned to it.
Another advantage of tHe&ET-construct is that we can keep our big-
step semantics for measuring worst-case execution timetac#
space usage, for which small-step semantics are usuallyreedq
This is achieved by adopting the policy that each sub-eswes
must be a unique variable and that this variable is introdune
theLET-construct immediately before its (single) use. For exampl
thefold function from Figuré 4 would be transformed into the let-
normal form of Figuré 5.

Under this policy, the rule for function calls can expectt thih
arguments are available on the stack. The cost for pushimgolas
on the top of the stack or creating constants was already ltedde
by the ordinary MR, INT and BooL rules. It follows that only the
cost of popping the arguments from the stack, after retgrfriom
the call, must be included in rules®. An additional benefit is that
the order in which the arguments are placed on the stackds als
made explicit in the code by the order of theT bindings. Al-
though our prototype implementation always adheres todthave
refrained from strictly enforcing this policy in Schopenlea be-
cause it is notintrinsic to our analysis method, and it iscedrable
that other cost models might not require such a strict caimen

6.1.2 Manual amortised cost analysis demonstration

We now illustrate how the type rules are applied and perform a
manual analysis for a simplified version of one branch of the. f

case 1 of (x:xs) -> LET z1 = f x n IN fold f zl1 xs;

The first step is to enrich the type for tlie1d function with fresh
variables, representing the as yet unknown annotations.

(inta—> H U—> H c—) H e_) li H w_} H
b int 7, int) 57 int 7 list(int, p) 7 int

wherelist(int, p) is a convenient shorthand for the simplified list
type pa.{Cons:(p, (int,a))INil:(0)}. For the sake of simplic-
ity, we immediately set the variablesb, ¢, d, e and f to the zero
value, since they are non-essential in this example.

We then follow the standard type derivation tree for the ¢ode
gathering constraints as we go. We must also reconstrudgtrthe
plicit inequalities hidden by our compressed type rule tiota
However, this is very simple, if we adopt the view that thareabn
top of the turnstile represents the “currendlyailable resources”
before executing the term and the one below the “guarameed

mainingresources” after. In that sense, we start withesources
available, since we are in the body of the fully applied fiorct

The outermost term constructor is a case distinction, s8eC
applies. On top of the turnstile in the conclusion we haveKeof.
Hence we gather the implicit inequality > ¢ + Keof. We
follow the branch of the type derivation for the successfaltch
of the Cons-constructor, which according to theaSE rule now
hasq: + p — KcaseT resources available.

Next, the LET rule applies. Matching the available resosirce
yields the second inequaligy + p — KcaseT > ¢» + KLET1, and
according to the first premise we haygeresources available for the
callf x n.

According to the Aptype rule, a call to functiod requires us
to payKapp + Knext. Hence we have the inequality > v +
Kapp + Knext. In addition, we must apply subtyping to match the
annotations of the argument types and the functions. Haweee
constraints are generated here, since both are unannatatestic
types. Furthermore, any constraints that are directlychéd to
function £ are also added now. The inference renames all bound
variables in these constraints, probably includingnd w, but
again, for simplicity, we ignore this here. The renamingal
different possible resource usages for each function egin, as
described in Section 6.6.1.

Since Appis a terminal rule, we are left withv — Kapp’
resources. Note that we always applye¥dk before any terminal
rule, to allow excess resources to be carried over. Againgnae
this in this example.

We have now returned to the second premise of rule LET and
can obtain the constraint — Kapp’ > ¢3 + KLET2, leaving us
with g3 resources for the body of the LET-expression, a recursive
call. The application of VEAK is crucial in this case, so we obtain
g3 > qs andqs — q2 > g¢ — g5, Whereqs andgg are fresh, and
gs represents the remaining resources after applyirg &gain.
This in turn yields the constraints, > x + Kapp + Knext and
y — Kapp’ > ¢s. We are therefore left withs after the weakening.

Matching ¢ against the remaining resources guaranteed by
LET then yieldsgs — KLET3 > ¢7. Finally, using Q\SE we obtain
g7 — KcaseT’' > yin a similar way.

Let ¢ denote the set containing these constraints. If we instan-
tiate the resource parameters according to the desiredroumiz|
and specify that all variables must be non-negativesould now
be solved by an LP-solver, yielding an annotated type fofuhe-
tion. However, if this function definition is part of a biggaogram,
we do not solve the constraints at this point, but rather emtto
improve the type of the function to

— . 0 . v . 0 . 0 . . z .
Viey. (int 5 int 3~ int) 5~ int 5 list(int, p) 5 int

where 7" = {p7 q1,42,43,44,95,96,97,V, W, T, y}! so that the

function may be used with differing resource behaviours.
Simplifying ¥ by eliminating the intermediate variableg;)

and summing the constant cost parameters to give some lsuitab

constantC; can help make the constraint set more comprehensible

for human readers. These constraints in fact reduce to:

z+p>v+Ch w >z + Co

It is possible to spot the recursive naturefefld in these con-
straints, since: occurs both on the left and right hand side, i.e. the
cost must be paid in full by. This is justified, since each recursive
step introduces a newons-constructor, bearing a potential pf
Both z andy can have arbitrary values, which is sound since we
ignored the terminating case branch in this example. Foffute
fold function, we need to similarly examine the branch dealing
with [], This produces the constraint> y+ C's, restrictingz and

y, as expected.
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data tree = Leaf num | Node tree tree; N=10
n Q =< [}
= 8 g £
dfsAcc ::(num -> [num] -> [num]) -> tree -> [num] -> [num]; 8 % N (=
dfsAcc g (Leaf x) acc = g x acc; sum-of-squares (variant 1: direct recursion)
dfsAcc g (Node t1 t2) acc = let acc’ = dfsAcc g tl acc Analysis 22 114 30 18091
in dfsAcc g t2 acc’; Measured| 22 108 30 16874
cons :: num -> [num] -> [num]; Ratio 1.00 1.06 1.00 1.07,

cons X XS = X:XS; sum-of-squares (variant 2: with map and foldl)
Analysis 56 200 114 53612
revApp :: [num] -> [num] -> [num]; Measured| 56 200 112 42252
revApp [] acc = acc; Ratio 1.00 1.00 1.02 1.27
revApp (y:ys) acc = revApp ys (y:acc); sum-of-squares (variant 3: also unfold)
Analysis 71 272 181 77437
flatten :: tree -> [num]; Measured| 71 272 174 59560,
flatten t = revApp (dfsAcc cons t [1) [1; Ratio 1.00 1.00 1.04 1.30

Figure 6. Source code of tree-flatteninglatten) Table 2. Results for three variants of the sum-of-squares function

6.2 Tree operations - common code

The next two examples operate over trees. The first is a tree fla 53 2 = n*n;  add m n = mén;

tening function, using a higher-order depth-first-trasecf a tree - map’F(leit_) fold o lszts a]re(itaful“_iard ive)
structure that is parametrised by the operation that isegpt the enumbromio m n generates im..n] itali-recursive
leaves of the tree. The source code is given in Figure 6.

Again, the bounds for heap, stack, and time consumption are
linear in the number of leave$) @nd nodess) in the input struc-
ture: the heap consumption & + 8, the stack consumption is
10l + 16n + 14, and the time consumption 28501 + 938n + 821.

-- variant 1: direct recursion
sum_sqs’ nm s = if (m>n)

then s

else sum_sqs’ (n-1) m (s+(sq n));
sum_sqs n = sum_sqgs’ n 1 0;

SCHOPENHAUER typing for HeapBoxed: —- variant 2: uses h-o fcts fold and map

(tree[Leaf<8>:int|Node:#,#]) -(8/0)-> sum xs = fold add O xs;
list[Cons:int,#|Nil] sum_sqs n = sum (map sq (enumFromTo 1 n));
SCHOPENHAUER typing for StackBoxed: - -

(tree[Leaf<10>:int|Node<16>:#,#]) -(14/23)-> -- variant 3: uses h-o fcts unfold, fold and map
1ist[Cons:int,#|Nil] data maybenum = Nothing | Just num;

SCHOPENHAUER typing for TimeM32:
(tree[Leaf<2850>:int |Node<938>:#,#]) -(821/0)->
list[Cons:int,#|Nil]

unfoldr :: (num -> maybenum) -> num -> [num];
unfoldr f z = case £ z of Nothing -> []
| (Just z’) -> z’:(unfoldr f z’);
num -> maybenum;
if (m<1) then Nothing else Just (m-1);

The second block in Table 1 compares analysis and measuremencountdown : :
results for the tree-flattening example. Again the bound$éap
are exact. For stack, the analysis delivers a linear bouhéreas

countdown m =

the measured costs are logarithmic in general. Here, wel emd- enum :: num -> [num] ; -- this generates [n,n-1..1]
fully apply a further extension of the amortised cost basedyais. enun n = if (n<1) then [] else n:(unfoldr countdown n);
Campbell [6] has developed methods for associating patentie-

sum_sqgs :: num -> num;

lation to the depth of data structures. This is more suittvlstack-
space usage. It also allows temporary “borrowing” of pasnthe
time bounds give very good predictions, with an over-estintd
at most13% for the range of inputs shown here.

The second operation on trees is ttgpmin function which
replaces all leaves in a tree with the element with the mihislae.
This function is implemented in two phases, both using highe
order functions: the first phase computes the minimal eléomsing
a tree-fold operation; the second phase fills in this miniehednent
using a tree-map function.

The third block in Figure 1 compares analysis and measuremen
results for therepmin example. Again the bounds for heap are
exact. For stack, we observe a linear bound but with a more pro
nounced difference between the measured and analysed Toists
is due to the two tree traversals. The time bounds, howeliew s
a good match against the measured costs, with an over-¢éstirha
at most22%.

sum_sgs n = sum (map sq (enum n));

Figure 7. Source code of sum-of-squares (3 variants)

construct any intermediate list structures. The seconidmvauses
the higher-order functiongap andfold to compute the squares
over all list elements and to sum the result, respectiveye third
version additionally uses the higher-order functiaifold to gen-
erate the initial list of numbers fromto n.

Tablel 2 summarises analysis and measurement results for all
three variants. As expected, the higher-order versionk®tbde
exhibit significantly higher resource consumption, notabk the
second and third variants which generate two intermediats. |
These additional costs are accurately predicted by ouysisaln
particular, the heap costs are exactly predicted and tlo& stzsts
are almost exact. The time results are with@¥ of the measured
costs. We consider this to be a very good worst-case estifmate
higher-order code.

As discussed before, our inference engine is largely irmldge

6.3 Sum-of-squares
In this section, we study 3 variants of the classic sum-ofasgs

example (Figure 7). This function takes an integesis input and
calculates the sum of all squares ranging frbta n. The first vari-
ant is a first-order program using direct recursion, whicasdoot

of the actual resource being inferred. We can therefordyeadapt
our analysis to other resources simply by replacing thechasst
table that is used to model the program execution costs. eiex
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this capability here to infer bounds on the total number otfion type pred = num -> num -> bool;
calls in a program expression. This metric is of particutaeriest

for higher-order programs (this is discussed in more detd80]). insert :: pred -> num :> [num] -> [num];

The results for this resource are given in the second colufn o insert cmp x zs = case! zs of

Table 2. The first variant exhibits the lowest number of fiorct 0 ->x:0

calls, since all three phases of the computation are coV®reme | (y:ys) —> if cmp x y then x : y : ys
recursive function. Thus, we have one function call to thease else y:insert cmp x ys;
function and one recursive call for each integer value. Aodidally, sort :: pred -> [mllm] -> [num];

we have one call to the top level function: sort cmp zs = Ca?;’- is [;f

SCHOPENHAUER typing for CallCount: (int<2>) -(2/1)-> int | (x:xs) -> insert cmp x (sort cmp xs);
The second variant separates the phases of generating @fist leq :: pred;

puting the squares and summing them. The generation pmase, i 1€ * ¥ = x<=y;
plemented using direct recursion, needs one call per iberathe )
other two phases each need two calls per iteration: one for th isort :: pred -> [num] -> [nun];

higher-order function, and one for the function being agliln isort xs = sort leq xs;
total we haveésn + 6 calls, as encoded by the following type:
SCHOPENHAUER typing for CallCount: (int<5>) -(6/0)-> int Figure 8. Source code of in-place insertion sort
The third variant again has three phases. Now all three phese
Rllgher-horderIantlons, V_‘I’_'rt]h the %num?ratllf)nthbelnfg impeted The heap bound below shows that only constant heap space is
X r;)ug 1a '(I:'% me°1°(lj' d g Qﬁmf ?Ir 0 _cats Erefore INCreases  needed for thereverse function. A constant heap space dfis
0 7n + 1. This is encoded by the Tollowing type: needed for the initiali1 constructor passed te@vApp. Due to the
SCHOPENHAUER typing for CallCount: (int<7>) -(1/0)-> int destructive nature of the pattern matches évapp, the list cells
) ) of the input list can be re-used. Similarly, tNel constructor of
6.4 Polymorphic functions the input-list can be re-used for the result. Thus, the s&@oim

the function type indicates that two resources are givek béter
completion of therevApp function. In total, the heap usage after
execution is the same as before.

As an example of a simple polymorphic function we examine the
resource consumption of theice andquad functions:

type afct = a -> a;
twice :: afct -> afct;
twice £ x = £ (f x);

SCHOPENHAUER typing for HeapUnboxed:
list[Nil|Cons:int,#] -(2/2)-> 1list[Nil|Cons:int,#]

q . . The stack and time consumption, however, are both linear:
quad :: afct -> afct;

quad f x = let f’ = twice f in twice f’ x; SCHOPENHAUER typing for StackBoxed:
. . . 1list[Nil<1>|Cons<3>:int,#] -(11/11)->
We obtain the following polymorphic type as heap bounddiosd: List [Nil|Cons<i>:int,#]
SCHOPENHAUER typing for HeapBoxed: SCHOPENHAUER typing for TimeM32:
(a -(0/0)-> a) -(0/0)-> a -(5/0)-> a list [Nil<225>|Cons<858>:int,#] -(481/0)->

. . . list[Nill|Cons:int,#]
The resource consumption fgtiad is expressed by the annotation

on the top level function type: five heap cells are requirealitd a A more interesting example is in-place insertion sort, peatised
closure fortwice £, which contains one fixed argument. The zeros over the comparison function (Figure 8). Thesert function uses
for the function argument are provisional, the LP-solves sianply destructive pattern-matching to re-use the current cethefinput
chosena possible solution. When applied to a concrete function, list when constructing the result list. The destructiveigrat match
the merged constraints will need to be solved once againlyimp in sort ensures that the call thnsert has one list cell to start
the successor functiosucc, which has a fixed cost of four heap  with. Using an unboxed heap model, which does not allocag he
units, then yields the correct typing of: space for the comparison operations, we can show that tinisicun

) ) . does not require any additional heap space:
SCHOPENHAUER typing for HeapBoxed: int -(21/0)-> int
Using a call count metric for the number of calls to the functi
succ in the expressiomquad succ 1, we obtain the following
bound. This accurately indicates thaicc is called precisely four
times.

SCHOPENHAUER typing for CallCount: 4, int ,0

SCHOPENHAUER typing for HeapUnboxed:
(list[Cons:int,#INil]) -(0/0)-> list[Cons:int,#|Nil]

6.6 An evaluator for expressions

Our final example is an evaluator function for a small subget o
the Schopenhauer language itself, using only integer tymes
6.5 Destructive pattern matching without function calls. Even this loop-free version of tleaguage

A primary motivation for our analysis is to prove boundecrese is interesting, since it uses a function to model the envirent,
consumption on resource constrained hardware, such azidetbe ~ and the evaluation of a let-expression modifies this functithe

systems. Itis, therefore, important that our analysis caerctech- code for the evaluation function is shown in Figure 9.
niques that are frequently employed to produce programis avit The analysis of theval function produces the following heap
small resource footprint. We address this issue here, amatisub- bound for an unboxed heap model:

sequent examples, by i) testing our analysis on progrants deit
structive pattern matching, and ii) by using a more spafieieft,
unboxed representation of the heap. Due to the flexible desfig
our inference engine, both aspects can be modelled withodt-m
fying the engine itself: only the cost tables need to be chen@ur |LetOp<9>:int,#,#

first example to test these features is in-place list reversa |Un0p?(iné _((’)/ANY)_> int<ANY>) #

revApp acc zs = case! zs of [] -> acc |BinOp: (int -> int -(0/ANY)-> int<ANY>),#,#]-(0/0)->int
| (x:xs) -> revApp (x:acc) xs;
reverse xs = revApp [] xs;

SCHOPENHAUER typing for HeapUnboxed:
(int -(0/0)-> int) -(0/0)-> exp[Const:int
|VarOp:int
|If0p:int,#,#

Most notably the analysis distinguishes between diffecent
structors when examining an expression. For constantsiables,
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type num = int 16; type val = num;
type var = int 16; type env = var -> val;
data exp = Const val | VarOp var

| If0p var exp exp |
| UnOp (val->val) exp
| BinOp (val->val->val) exp exp;

LetOp var exp exp

_true = 1; _false = 0;

eval :: env -> exp -> val;

eval rho (Const n) = n;

eval rho (VarOp v) = rho v;

eval rho (IfOp v el e2) = if (rho v)==_false

then eval rho e2
else eval rho el;

eval rho (LetOp v el e2) = let x = eval rho el ;
rho’ v’ = if v==v’
then x

else rho v’
in eval rho’ e2;
f (eval rho el);
f (eval rho el) (eval rho e2);

eval
eval

rho (UnOp £ m)
rho (BinOp f m n)

Figure 9. Source code of the evaluator example

no heap costs are incurred, since the result value is retunmé¢he
stack. For an if-expression, the total costs comprise tifimsthe
sub-expressions, representedtan the type. No further costs are
added for the variable lookup. For a let-expression, a nmextldin-
vironment is defined. This amounts to the construction obawdle
with two fixed variables in the heap peap cells in total). Finally,
the primitive unary and binary operators do not use any helip, ¢
since the result value will be produced directly on the stack

6.6.1 Resource parametric recursion

Interestingly, theval function cannot be analysed under the boxed
heap cost model — analysing this function would reqpiog/mor-
phic recursion[15, 26], which we do not support. The second re-
cursive call in the case dealing witkt0p requires a different type,
since the annotated type of the firstargument has changadtié
rho’ is more expensive to execute thaho, because adding the
equality operation allocates a boolean value in the boxeg best
model, and this cannot be amortised against the inputa®f. In
future, we intend to investigate whether the considerattecase

in complexity brought about by polymorphic recursion migplet
warranted by the possible gain in expressivity.

7. Related Work

Our discussion of related work focuses on analyses fortstric
higher-order programs. A discussion of analyses for firdeopro-
grams is given in another paper [25].

7.1 Amortised Analysis

The focus of most previous work on automatic amortised cost
analyses has been on determining the costs of first-ordeerrat
than higher-order programs. For example, Hofmann'’s ligear
typed functional programming language LFPL [17] uses linea
types to determine resource usage in terms of the numbemef co
structors used by a program. First-order LFPL definitions loa
computed in bounded space, even in the presence of geneunal re
sion. Adding higher-order functions to LFPL raises the espive
power in terms of complexity theory from linear space (LFRL)
exponential time| [18]. Hofmann and Jost subsequently deestr
an automaticinferencemechanism for heap-space consumption
in a functional, first-order language [19], using an amedisost

model. This work uses a deallocation mechanism similaraowle
have used here, but is built on a difference metric similathtd
of Crary and Weirich [9]. The latter, however, only checksibds,
and does not infer them, as we do.

Taha et al.'s GeHB [36}tagednotation automatically generates
first-order, heap-bounded LFPL programs from higher-osgeci-
fications, but likewise requires the use of non cost-présgtvans-
formations. We are not aware of any other work targetingraata
amortised analysis for higher-order definitions. Howeamp-
bell [6] has studied how the Hofmann/Jost approach can hiéedpp
to stack analysis for first-order programs, using “giveiianno-
tations to return potential. This improves the quality a&f #nalysis
results that can be obtained for stack-like metrics. Wiiilerder
to keep the presentation clear, we have not done so here,itheo
technical reason why “give-back” potential cannot also jyeliad
to the higher-order analysis that we have described. Rewerk
has aimed to overcome the linearity restriction when aivadys
first-order programs. For example, Shkaravska et al. aimtend
the amortised cost approach to non-linear bounds usisgurce
functionsin the constraints, rather than simple variables [35].

7.2 Sized Types

Sized type$22] express bounds on data structure sizes. They are
attached to types in the same way as the weights we have used
here. The difference is that sized types express boundseosizb

of the underlying data structure, whereas our weights ateifs of

a linear resource bound. Hughes, Pareto and Sabry [22hatigi
described atype checkingalgorithm for a simple higher-order,
non-strict functional language to determipgressin a reactive
system. This work was subsequently developed to descrimeesp
usage in Embedded ML [21], a strict functional language gisin
regions to control memory usage. Abel [1] extended higitdeio
sized types to allow higher-kinded types with embeddedtfanc
spaces. He used this system to formalise termination chgdiat

did not tackle resource consumption in general. A comhomati
of sized types and regions is also being developed by Pedia an
Segura[32], building on information provided by ancillatyalyses

on termination and safe destruction. The focus of this werkn
determining safety properties rather than resource usagever.
Chin and Khoo [7] introduced a type inference algorithm tisat
capable of computing size information from high-level pag
source. Chin et al. [8] presented a heap and a stack anatysis f
a low-level (assembler) language with explicit (de-)adibon. By
inferring path-sensitive information and using symbolialeation
they are able to infer exact stack bounds for all but one elamp
program.

Vasconcelos and Hammond have independently developed au-
tomatic inferences that are capable of deriving cost egositfor
abstract time- and heap-consumption from unannotatedramog
source expressions based on the inference of sized types-for
cursive, polymorphic, and higher-order programs [39].cdnge-
los’ PhD thesis [38] extended these previous approachesibg u
abstract interpretation techniques to automaticallyritifeear ap-
proximations of the sizes of recursive data types and thek stad
heap costs of recursive functions. By including user-defiiees,
it is possible to infer sizes for algorithms on non-lineatadstruc-
tures, such as binary trees.

Finally, Danielsson [10] has recently introduced a librafy
functions that he claims makes the analysis of a number @lyur
functional data structures and algorithms almost fullynfat. He
does this by using a dependent type system to encode informat
about execution time, and then by combining individual sasto
an overall cost using an annotated monad.
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7.3 Abstract Interpretations

While having the attraction of being very general, one mdjsr
advantage of abstract interpretations is that analysigtsagsually
depend on the existence of concrete data values. Where émey ¢
be applied, impressive results can, however, be obtained for
large commercial applications. For example, AbslaiEtool [11],
and Cousot et al.'s ASTREE system [5] have both been deployed
in the design of the software of Airbus Industrie’s Airbus883
Typically, such tools are limited to non-recursive progsdnand
may require significant programmer effort to use effecyivéle are
aware of very little work that considers user-defined higgtreler
programs, though Le Métayer’'s work [28] can handle preeefin
higher-order functions with known costs, and Benzinger&rky
on worst-case complexity analysis for NuPrl [3] similarlypports
higher-order functions if the complexity information isopided
explicitly. Huelsbergen, Larus and Aiken [20] have definadab-
stract interpretation of a higher-order, strict languamedietermin-
ing computation costs that dependent on the size of datetgtas.
This static analysis is combined with run-time size infotiora to
deliver dynamic granularity estimates.

Gulwani, Mehra and Chilimbi's SPEED system |[13] uses a
symbolic evaluation approach to calculate non-linear derity
bounds for C/C++ procedures using an abstract interpoetati
based invariant generation tool. Precise loop bounds dcalated
for 50% of the production loops that have been studied. @rdikr
work, they target only first-order programs. Also unlike awork,
they consider only time bounds. They do, however, consider n
linear bounds and disjunctive combination of cost infoliorat

The COSTA system [2] performs a fully automatic resource
analysis for an object-oriented bytecode language. Itywes a
closed-form upper bound function over the size of the inpuatike
our system, however, data-dependencies cannot be exgpiresse

Finally, Gobmez and Liu [12] have constructed an abstreetin
pretation for determining time bounds on higher-order paots.
This executes an abstract version of the program that eaésil
cost parameters, but which otherwise mirrors the normajnaro
execution strategy. Unlike our type-based analysis, tisé aiothis
analysis therefore depends directly on the complexity @ual
values) of the input data and the number of iterations trepar-
formed, does not give a general cost metric for all possitpeits,
and will fail to terminate when applied to non-terminatingpp
grams.

8. Conclusions and Further Work

By developing a new type-based, resource-generic analyss
have been able to automatically infer linear bounds on tigad;
heap usage, stack usage and number of function calls fat, stri
higher-order functional programs. The useamfortised costsil-
lows us to determine upper bound cost functions on the dveral
resource cost of running a program, which take the sizes®f pr
gram arguments as their inputs. We have extended previots wo
on amortised-cost-based inference [19, 25] by considériglger-
order and polymorphic programs, and by constructing a gener
treatment of resource usage through resource tables thhecgpe-
cialised to different cost metrics and execution modelshisiway

we achieve a clean separation of the mechanics of inferenoe f
the concrete cost metrics that we use. We have demonsttagted t
flexibility of the resource table approach by building anlgsia to
determine the number of function calls in a higher-ordegpam.
Another key advantage of this separation is that our basiodo
ness proof applies regardless of the cost metric that we use.

 There is, however, significant recent work on determinirgplbounds for
iterative programs as part of a worst-case execution tima¢ysis, e.g. [29].

Our results for a range of higher-order programs demorestrat
the high quality of the bounds that we can infer. For heapespae
can generally achieve an exact prediction. For worst-ceseuion
time, the bounds we achieve are with30% of the measured
costs. For stack, we generally achieve good results, bastmeally
obtain bounds that are linear where the measured costsrzstaot
This is not inherent to our analysis. For example, Campbadl h
studied how to improve stack bounds for amortised analgis [

Crucial to the usability of our inference is its high degréefti-
ciency, its full automation and the absence of mandatorgnaro-
mer annotations. Being built on a high-performance lineagmm
solver our inference is very efficient: for the examples thathave
used in this paper, the sizes of the constraint sets varydesttv
and 350 constraints, with the analysis runtime never exceeding
second, including constraint solving. However, the regtm to a
linear constraint system does impose limits on the ranger@f p
grams whose costs can be analysed. Precisely classifyengrth
grams that can be analysed is an interesting theoreticatiqndor
all forms of cost analysis. While it would be possible to domst
a restrictive classification on source-level programs #ould ei-
ther exclude many programs that are, in fact, analysablachrde
many programs that were not analysable. This does not,ftinere
seem to be a constructive activity. The most precise claatin is
that our analysis will succeed exactly where the cost egusatiave
a linear bound. While the inclusion of tail-call optimisats and
other cost-simplifying optimisations can actually extehd range
of programs that can be costed, the restriction to lineaeitgains
both a theoretical and practical limitation.

8.1 Further Work

Incorporating Sized Types. As we have seen, sized-type systems
provide information about data structure sizes. Althouwgytcan

be used to provide cost information when combined with aablgt
constraint inference algorithm [39], they are complementa the
amortised cost approach described here, in that our wefghts
data structures are multiples of input data structure si@emed
type systems should allow these sizes to be inferred sigtfoaa
number of common data structures.

Non-Linear Constraints. An extension of the amortised cost
based approach to polynomial bounds for a first-order laggua
is ongoing work [16]. We have also begun to investigate wéreth
combining our approach with a sized-type analysis migha als
low the inference of super-linear bounds, while still usafficient
LP-solver technology (multiple times).

Non-Strictness.  Our work is restricted to strict programming lan-
guages. An extension of our work to non-strict programmang |
guages, such as Haskell, requires the solution of two teahpiob-
lems: firstly, we must identify when computations are needed,
secondly, we must have a formal operational semantics ebtrist
evaluation that will allow us to identify resource usagelia way

we have done here. We are in the process of producing a cosi mod
and analysis based on Launchbury’s semantics for graptcredu
tion [27], which incorporates notions of evaluation- ana@ritg-
contexts to determine where potentials may be used.
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