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Abstrat

Parallel and distributed languages speify omputations on multiple proessors and have a

omputation language to desribe the algorithm, i.e. what to ompute, and a oordination

language to desribe how to organise the omputations aross the proessors. Haskell

has been used as the omputation language for a wide variety of parallel and distributed

languages, and this paper is a omprehensive survey of implemented languages. We outline

parallel and distributed language onepts and lassify Haskell extensions using them.

Similar example programs are used to illustrate and ontrast the oordination languages,

and the omparison is failitated by the ommon omputation language. A lazy language is

not an obvious hoie for parallel or distributed omputation, and we address the question

of why Haskell is a ommon funtional omputation language.

1 Introdution

Parallel languages utilise additional proessors to redue program runtime. Dis-

tributed languages use state-transforming threads to manipulate global state, i.e.

the resoures of several proessors. A typial distributed appliation is a multiuser

game or learning environment where users on multiple mahines interat with eah

other in a ommon virtual world. The ombination of hardware redundany and

stateful omputation in a distributed language failitates the onstrution of reli-

able, i.e. fault tolerant, systems.

The potential of funtional languages for parallelism has been reognised for over

thirty years, long before Haskell existed e.g. (Wegner, 1971). Funtional languages

o�er good abstration mehanisms, a sophistiated type system, high-level ompu-

tation language and high-level oordination. However, the key advantage of a pure

funtional paradigm is that referential transpareny guarantees the implementation

onsiderable freedom of exeution order without hanging program semantis. This

is evident to the parallelism ommunity and many parallel languages use pure om-

putation languages, some of whih are subsets of impure languages, e.g. (Sholz,

1996; Mihaelson et al., 2001).

In omparison, the bene�ts of the funtional paradigm for distribution have been
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realised only reently. Like their parallel ounterparts, distributed funtional lan-

guages bene�t from good abstration mehanisms, a high-level omputation lan-

guage, and sophistiated type system, but most of all beause large and identi�able

parts of the program are referentially transparent. Referential transpareny grants

freedom of exeution order, e.g. failitating lazy ommuniation of data between

proessors and parallel exeution of parts of the program; moreover the pure om-

ponents are amenable to reasoning, e.g. optimisation or ompilation by transfor-

mation (Peyton Jones et al., 1993). Even with its limited referential transpareny,

Erlang has been used suessfully to demonstrate that a funtional paradigm signif-

iantly aids engineering large distributed systems. One suh example is the 525K-

line AXD301 ATM Swithing System distributed over up to 32 proessors (Blau &

Rooth, 1998).

Most parallel and distributed languages have a omputation language and a o-

ordination (sub)language. The omputation language is used to speify the algo-

rithm, i.e. to de�ne what value is to be omputed, and may be a sequential language

like C, SML or Haskell98. The oordination language desribes how the omputa-

tions are to be arranged on the virtual mahine, inluding aspets suh as thread

reation, plaement, and synhronisation. In the parallelism literature the term

oordination language usually refers to a language distint from the omputation

language, e.g. PCN oordinates Fortran or C omputations (Foster et al., 1992).

In ontrast, funtional languages typially extend the omputation language with

a few high-level oordination onstruts, and it is these that are rather loosely

termed the oordination language in this paper. The onstruts support some oor-

dination paradigm, and a wide range of paradigms and onstruts have been used.

Examples inlude data-parallelism supported by Data Field Haskell (Holmerin &

Lisper, 2000), or skeleton-based parallelism supported by parallel map, fold and

other skeletons (Herrmann & Lengauer, 2000).

Consistent with their high-level omputation language, most parallel and dis-

tributed funtional languages support high-level oordination with automati man-

agement of many oordination aspets. As with omputation, the great advantage

of high-level oordination is that it frees the programmer from speifying low-level

oordination details. The disadvantages are that automati oordination manage-

ment ompliates the operational semantis, makes the performane of programs

opaque, is hard to implement, and is frequently less e�etive than hand-rafted o-

ordination. Expliit oordination onstruts enourage programmers to onstrut

stati, simple or regular oordination, whereas more impliit onstruts enourage

more dynami and irregular oordination.

Low-level oordination may be managed solely by the ompiler as in

PMLS (Mihaelson et al., 2001), solely by the runtime system as in GpH (Trinder

et al., 1996), or by both as in Eden (Breitinger et al., 1997). Whihever mehanism

is hosen, the implementation of sophistiated automati oordination management

is arduous, and there have been many more parallel and distributed language de-

signs than well-engineered implementations. Haskell is a standard lazy funtional

researh language with a sophistiated type and lass system (Peyton Jones et al.,

1999). It has a relatively mature development environment inluding ompilers, in-
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terpreters, libraries and pro�ling tools. This paper surveys all implemented parallel

and distributed languages with Haskell as omputation language.

We start by addressing the question of why Haskell is a suitable omputation

language, and basis for a variety of oordination languages, in Setion 2. We de�ne

parallel and distributed language onepts, and lassify Haskell extensions using

them in Setion 3. Parallel Haskells are surveyed and related to other parallel fun-

tional languages in Setion 4, likewise distributed Haskells in Setion 5. The same

simple parallel or distributed program is expressed in eah language to illustrate

and enable omparison of oordination onstruts. Setion 6 summarises the oor-

dination onstruts in the languages and onludes by disussing open problems.

2 Why Haskell?

It is perhaps surprising to �nd a lazy language like Haskell as a popular funtional

omputation language, indeed Hains argues ogently that parallel funtional lan-

guages should be strit (Hains, 1994). The problem has the following two aspets.

Firstly lazy evaluation is sequential and performs minimum work, with redution

easing when the expression is in weak head normal form. In ontrast parallel and

distributed programs arrange omputations on multiple proessors and hene re-

quire some eager evaluation. Seondly, while in a strit language the omputational

behaviour of an expression is independent of the way the result is used | it depends

only on the operand values. In a lazy language the amount and order of evaluation

is often under the ontrol of the onsumer of the result. This onfers extra expres-

sive power | but makes it very hard to onstrut ost models, and means that the

programmer must speify the evaluation degree of an expression: namely how muh

evaluation should be performed (Klusik et al., 2000a; Trinder et al., 1998).

Properties of Haskell that make it attrative as a omputation language and a

basis for a oordination language are as follows. The individual properties are not

unique to Haskell: many are properties of other lazy funtional languages, or pure

subsets of strit funtional languages.

Referential Transpareny. A key advantage of a pure omputation language is

that it an be easily married to many di�erent oordination languages beause ref-

erential transpareny guarantees that exeution order is immaterial. The range of

oordination languages is amply illustrated by the languages outlined in Setions 4

and 5. A pure omputation language onveys a number of immediate pratial bene-

�ts. Parallel semantis are relatively easily developed, e.g. the operational semantis

for GpH and Eden (Baker-Finh et al., 2000; Hidalgo Herrero & Ortega Mall�en,

2000). The language is amenable to analyses, e.g. the non-determinism analysis in

Eden (Pena & Segura, 2000). Pure languages are amenable to program derivation,

ompilation by transformation, and transformations for optimising oordination are

easily introdued: the Eden ompiler is a good example (Pareja et al., 2000).

Laziness. A omputation language with non-strit evaluation naturally supports

highly-dynami oordination where evaluation is performed and data is ommuni-

ated on demand. Assuming that the exeution ost of the oordination is small

ompared with the omputation, the primary ost of non-strit oordination is ad-
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ditional ommuniation. For example where an eager language simply sends data

from produer to onsumer, a lazy language requires an additional message from the

onsumer to request the data. The bene�t gained by the additional ommuniation

in a lazy language is a natural throttling of both ommuniation and omputation.

An example of ommuniation throttling is a remote thread onsuming a small

part of a large data struture, where only that small part is ommuniated. Where

both strit funtional and dataow languages often su�er from the eager reation

of exess parallelism, a lazy language ameliorates these problems at the ost of

speifying how muh evaluation should be performed. Finally laziness failitates

the separation of onerns, e.g. evaluation strategies in GpH make essential use of

laziness to separate omputation and oordination (Trinder et al., 1998).

Abstration Mehanisms. High-level modular oordination failities are produed

using Haskell's data and ontrol abstrations inluding lasses, modules, higher-

order funtions, polymorphism and abstrat data types. Sine non-strit languages

separate the de�nition of a value from its evaluation, the programmer has the ad-

ditional exibility to deide where to speify the oordination. For example it is

possible to speify oordination when omposing funtions, by attahing a oor-

dination onstrut to the value passed between funtions, without breaking the

funtion abstration. In the same way that the demand on the result of a funtion

ontrols the evaluation degree from outside, oordination onstruts an ontrol the

parallelism from outside. More important for large systems, this abstration sales

to expressing oordination only at module interfaes (Loidl et al., 1999).

Polymorphi Strong Typing. The bene�ts of typing in omputation languages

are well-established, but the bene�ts of a typed oordination language are less

so. Strong typing ensures that oordination expressions are well-formed and re-

dues runtime errors, and typed oordination onstruts inlude proess types in

Eden (Breitinger et al., 1997), and plaement diretives in Caliban (Taylor, 1997).

Polymorphi types enable the onstrution of generi oordination onstruts. Ex-

amples inlude skeletons in Eden (Klusik et al., 2000b) and polymorphi data �elds

in Data Field Haskell (Holmerin & Lisper, 2000). Open distributed languages re-

quire dynami typing to enfore type orret interfaes to new programs, e.g. to a

new lient or applet. Unusually, some Haskell-based languages are losed, e.g. Brisk

and GdH, and hene an be statially typed.

Implementation Bene�ts. Due to the oroutine-like evaluation in lazy languages,

their implementations already have many of the mehanisms required by parallel

and distributed languages. For example Haskell implementations have mehanisms

for enapsulating suspended omputations for subsequent evaluation, and it is on-

venient to transfer work from proessor to proessor as a suspension. Similarly,

many lazy language implementations are based on graph redution, and the graph

is a onvenient and uniform struture for ommuniating both ode and data.

Pragmati Fators. There are many pratial reasons for seleting Haskell as

a omputation language: the language is standardised and ompilers are well-

developed, with good sequential optimisation and support important pratial fea-

tures like useful libraries and a foreign language interfae. The implementations are
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both open soure and modular, and hene relatively easily adapted. Moreover there

are tools like pro�lers available, and there is an ative and supportive ommunity.

Properties of Haskell that make it unattrative as a omputation language and

a basis for a oordination language are as follows.

Lazy Evaluation. As outlined above, lazy evaluation must frequently be over-

ome to obtain suÆient parallelism or distribution. Moreover, it is muh harder

to develop time and spae ost models for non-strit languages (Sands, 1990; Loidl,

1998).

Limited Module and Class Systems. More sophistiated systems than the

Haskell98 module and lass system would failitate the enapsulation and deriva-

tion of oordination onstruts. In GpH for example, it would be bene�ial to be

able to derive basi evaluation strategies for new abstrat data types, e.g. an rnf

strategy that redues values of the new type to root normal form (Trinder et al.,

1998).

Cumbersome State Manipulation. Distributed programs neessarily manipulate

state on multiple proessors. However, desribing stateful omputations in Haskell's

monadi onstruts is relatively verbose and hard to reason about.

Broadly speaking the properties that make Haskell a suitable omputation lan-

guage are braodly similar to the properties that make it a good sequential language:

namely its referential transpareny, sophistiated type system and good abstration

mehanisms as well as a number of pragmati fators. These attrations are suÆ-

ient to overome the additional oordination required to subvert the default lazy

evaluation.

3 Coordination Language Conepts

Computer hardware may be arranged in a large variety of ways, ranging from single

proessors, shared-memory and distributed-memory multiproessors to networks of

mahines. Parallel and distributed languages reet some of the underlying arhi-

teture, while other languages abstrat over it. In this setion we de�ne a number of

onepts to failitate parallel and distributed language lassi�ation. Beause of the

large number of onepts that distributed languages may or may not support it is

very hard to onstrut a simple yet aurate lassi�ation, although a number have

been given, e.g. (Skilliorn & Talia, 1998). Our de�nitions and lassi�ation are

neither new nor unusual, but are suitable for de�ning and lassifying the oordina-

tion in parallel and distributed funtional languages. The lassi�ation is intended

for small-sale systems omposed of programs written in the same language. In

ontrast, large-sale distributed systems are supported by standard interfaes like

CORBA (Siegel, 1997) or Mirosoft DCOM (Merrik, 1996) and may have ompo-

nents written in multiple languages, supplied by several vendors, be exeuted on a

heterogeneous olletion of platforms, and have elaborate fault tolerane.

Proessing Element (PE). A physial devie that performs omputation, typially

a proessor with memory and assoiated physial resoures suh as disk, sreen, et.

Thread. An independent sequene of exeuting instrutions. Sometimes also

known as a lightweight proess to indiate that a thread has minimal private re-
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soures. Threads may be expliit with onstruts for reation and termination;

semi-expliit being managed by diretives or annotations; or entirely impliit e.g.

being managed by a data-parallel or skeleton ompiler. A (semi-)expliit approah

is typially taken by distributed languages suh as Faile Antigua (Thomsen et al.,

1993) and GdH (Pointon et al., 2000), whereas parallel languages tend to favour

a more impliit approah, e.g. HDC (Herrmann & Lengauer, 2000) and High Per-

formane Fortran (HPF, 1993). An important distintion is between pure threads

that only return a value, and state-transforming threads that perform operations

on external state.

Thread Interation. The term used to desribe both ommuniation and syn-

hronisation between threads. Communiation is the exhange of data and syn-

hronisation is the oordination of ontrol. The two onepts are losely related

and typially intertwined together, e.g. ommuniation requires synhronisation to

safely pass data to another thread, and some form of ommuniation is neessary

to indiate that synhronisation has oured. In languages with impliit intera-

tions threads typially interat using shared data, freeing the programmer from

speifying the interations. For example GpH threads interat via shared variables,

and Java threads interat via shared objets using synhronised methods (Daonta

et al., 1998). In languages with expliit interations threads in the same loation

typially interat using shared loation resoures, e.g. a semaphore. If the threads

are in di�erent loations then interations our through some global resoure, e.g.

they may address a hannel or the mailbox of a thread.

Loation. A named bounded spae ontaining resoures, like memory and I/O

apabilities, and usually threads. A loation may reside on a PE or a group of

PEs. A loation is an abstration of the familiar proess onept, but is more

general beause a loation's threads may be exeuting di�erent programs, or it

may ontain no threads. A language is loation independent if loations are impliit,

e.g. enabling a �le to be aessed regardless of its loation. A language is loation

aware if loations are expliit, enabling the programmer to utilise the resoures of a

loation, e.g. forking a new thread onto a PE. Examples of abstrations for loation

inlude Faile Antigua (Thomsen et al., 1993) whih provides nodeid to identify a

partiular PE and GdH (Pointon et al., 2000) with PEId to name a loation.

Open/Closed Systems. There is no reason why ommuniating threads must be-

long to the same program, and often large systems onsist of many o-operating

programs. In a losed system there is a stati set of programs being exeuted and

all modes of inter-thread interation are known. Hene the interations an be stat-

ially heked, e.g. for type safety, deadlok et. An open system omprises multiple

exeuting programs interating using a prede�ned protool, for example in a lient-

server model. This requires some language support to initialise ommuniation to

onnet to other programs. Suh languages support a dynami model that is open

in that it an be extended to inlude new programs. However, the interations

between suh a dynami set of programs annot be statially heked.

Fault Tolerane. The ability of a program to detet, reover and ontinue after

enountering faults. Faults may either be internal to the proess, e.g. divide by zero,

or external, e.g. disk failure, user interrupt.
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3.1 Language Classi�ation

Languages an be lassi�ed by the oordination onepts they support as follows.

Sequential languages support a single thread and are very ommon, examples in-

lude Haskell98 (Peyton Jones et al., 1999) and SML (Milner et al., 1997). Con-

urrent languages support expliit interations between multiple threads, and ex-

amples inlude Conurrent Haskell (Peyton Jones et al., 1996) and CML (Reppy,

1992). Parallel languages support multiple PEs hosting multiple threads usually

with impliit interations and loation independene. They aim to redue program

exeution time. Parallel extensions of Haskell inlude Eden (Breitinger et al., 1997),

Nepal (Chakravarty et al., 2001), and many others overed in Setion 4. Distributed

languages support multiple PEs hosting multiple threads with expliit interations

and loation awareness. Distributed languages are also more likely to support open

systems and more sophistiated fault tolerane. Distributed Haskells inlude Haskell

with Ports (Huh & Norbisrath, 2000), GdH (Pointon et al., 2000), and the others

overed in Setion 5.

The remainder of the paper fousses on parallel and distributed funtional

languages, onurrent languages are omitted beause most exeute either at a

single loation or on low-lateny shared-memory arhitetures where loation is

relatively unimportant. Figure 1 lassi�es parallel and distributed Haskells, to-

gether with a few well-known languages, using thread interation, loation inde-

pendene/awareness and open/losed properties.

Haskell with Ports
Erlang

Explicit Interaction

Implicit Interaction

Eden
GpH

Parallel
GdH

Brisk

Distributed Haskell

Distributed

Nepal

5.2
5.3

5.3

5.3

5.1
5.3

Java

Closed System
Location Awareness Location Awareness

Open System
Location Independence

4.3
4.3

Caliban 4.4

Curry

HPF

Data Field Haskell
Data Parallel Haskell

HDC

4.2
4.2

4.1

4.2

Fig. 1. Parallel and Distributed Haskell Classi�ation.

4 Parallel Haskells

The goal of parallel programming is to ahieve higher performane, thereby reduing

runtime or inreasing the tratable problem size. This setion fousses on parallel
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oordination language onstruts and paradigms: it is not possible to give meaning-

ful performane omparisons of all the languages surveyed beause the languages

are implemented on a wide variety of parallel arhitetures, and few are available

on multiple platforms. We do, however, give diretly omparable measurements for

Eden and GpH in Setion 4.3.3. For the other languages we provide qualitative

performane measures and referene more detailed disussion. Substantial perfor-

mane omparisons of several programs implemented in Eden, GpH and PMLS, a

strit parallel funtional language, are reported in (Loidl et al., 2001a).

Adding oordination to a omputation language does not hange its expressive

power. Beause performane is intensional, i.e. not exposed in a standard semantis

of the language, many parallel Haskells make oordination substantially impliit.

Typially parallel languages are losed, provide little or no fault tolerane, and lim-

ited loation awareness. In a parallel language loation is only indiretly important

beause it may enable performane improvements to the program, e.g. improved

data loality.

Parallel Haskells are illustrated and ompared using the sumEuler program shown

in Figure 2. The program omputes the sum of a list of Euler totient values pro-

dued by the euler funtion, i.e. the number of integers that are relatively prime to

a given integer. It is also an instane of a ommon omputational struture, namely

a fold-of-map. More interestingly, sumEuler exposes several oordination issues.

Firstly, it is inherently data parallel beause of the independene of the euler om-

putations. Seondly, good performane an only be obtained by seleting a good

thread granularity. This is beause individual alls to euler are very heap and

hene several must be ombined into a single parallel thread to o�set thread man-

agement osts. This is ahieved by the splitAtN funtion, shown in Figure 3, that

partitions the input list into \hunks". Thirdly, the sum (fold) must be e�etively

parallelised and this is done by omputing the sum of the hunks of totient values,

before omputing the overall sum.

The remainder of this setion is strutured by oordination paradigm. We loosely

follow the lassi�ation given in (Loogen, 1999), whih also ontains a more de-

tailed disussion of non-Haskell parallel funtional languages. We relate the parallel

Haskells disussed in Setions 4.1, 4.2, 4.3, and 4.4 with other parallel funtional

languages in Setion 4.5, and summarise by disussing parallel language pragmatis

in Setion 4.6.

4.1 A Skeleton-based Haskell

Skeletons are a popular parallel oordination onstrut. Typially, a language has

a small set of prede�ned skeletons, where eah skeleton is a higher-order funtion

desribing a ommon oordination pattern with an eÆient parallel implementa-

tion (Cole, 1999). Rather than managing an unstrutured set of parallel threads,

the programmer need only use the higher-order funtions appropriately to introdue

parallelism. Often these higher-order funtions work over ompound data strutures

and onsequently the resulting parallel ode often resembles data parallel ode as

disussed in Setion 4.2.
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{ Top level funtion:

sumEuler :: Int ! Int

sumEuler n = sum [ euler i | i  [n,n-1..0℄ ℄

{ Euler totient funtion:

euler :: Int ! Int

euler n = length (filter (relprime n) [1..(n-1)℄)

{ Auxiliary funtions:

{ Determine whether x and y are relatively prime

relprime :: Int ! Int ! Bool

relprime x y = hf x y == 1

{ Find the highest ommon fator of x and y

hf :: Int ! Int ! Int

hf x 0 = x

hf x y = hf y (rem x y)

Fig. 2. Sequential Haskell98 version of sumEuler

splitAtN :: Int ! [a℄ ! [[a℄℄

splitAtN n [℄ = [℄

splitAtN n xs = ys : splitAtN n zs

where (ys,zs) = splitAt n xs

Fig. 3. A Clustering Funtion

4.1.1 HDC

HDC (Herrmann & Lengauer, 2000) is a stritly-evaluated subset of Haskell with

skeleton-based oordination. HDC programs are ompiled using a set of skeletons for

ommon higher-order funtions, like fold and map, and several forms of divide-and-

onquer. The urrent implementation supports two divide-and-onquer skeletons

and a parallel map, and the system relies on the use of these higher-order funtions

to generate parallel ode. Unlike Haskell, HDC does not implement type lasses,

and has strit semantis to failitate stati thread plaement. Language-level lists

are implemented as arrays internally. List omprehensions are ompiled to map and

filter, where map operates in parallel over these arrays. In summary, HDC has

purely impliit threads with impliit interation. It is loation independent, sine

parallelism is not expliit in the program at all.

In HDC it is possible to ahieve parallel exeution of the ode in Figure 2 without

any ode hanges. In tuning the performane of the parallel program, however, it

is often neessary to modify the ode, so as to weaken data dependenies or to in-

rease granularity. In this ase we an inrease the granularity, i.e. the omputation
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osts, of the individual threads by ombining several euler omputations into a

single thread and omputing the sum inside eah thread. The additional argument

 spei�es the size of these hunks of input data, and splitAtN is used to gener-

ate the hunks. The funtion seqmap produes the same result as map but enfores

sequential evaluation of the euler funtions.

sumEuler :: Int ! Int ! Int

sumEuler  n = sum [ (sum . seqmap euler) x | x  splitAtN  [n,n-1..0℄ ℄

Fig. 4. HDC Version of sumEuler

A partiular fous of the HDC system is the time and spae eÆient stati thread

plaement. The ompiler uses a library of skeletons to deompose a program into

parallel threads and plae the threads on the available PEs. In ontrast languages

suh as GpH and Eden, use more exible, but also more expensive, dynami resoure

management.

Reeting the fat that the HDC ompiler is still a prototype, only a set of fairly

small example programs has been ompiled to eÆient ode: a Karatsuba algorithm

for polynomial multipliation, n-queens, maximum independent sets and onvex hull

omputations. On a 1024-proessor Transputer-based Parsyte GCel-1024 mahine

salable three-digit speedups are reported for these programs in (Herrmann, 2000).

4.2 Data Parallel Haskells

Data parallel languages (O'Donnell, 1999) fous on the eÆient implementation

of the parallel evaluation of every element in a olletion. The fous on de�ning

parallelism over large data strutures makes this approah very appealing for the

parallelisation of data-intensive appliations. Haskell's powerful onstruts for bulk

data types, in partiular lists, provide a very useful basis for de�ning data-parallel

onstruts. Indeed, all of the languages disussed here use some parallel extension

of list omprehensions and impliitly parallel higher-order funtions suh as map.

Compared to other approahes to parallelism, the data parallel approah makes it

easier to develop good ost models, although, it is notoriously diÆult to develop

ost models for languages with a non-strit semantis. Typially data parallel lan-

guages use a losed system model and impliit parallelism. Loation awareness is not

required at the program level beause it is impliit in the data parallel exeution.

4.2.1 Data Field Haskell

Data Field Haskell (Holmerin & Lisper, 2000) extends Haskell with the new notion

of data �elds: generalisations of arrays, with parallel bulk data (olletion-oriented)

operations de�ned over them, as shown in Figure 5. In general, a data �eld de�nes

a partial funtion from index domain to value domain. Data �elds may speify

various multidimensional shapes, sparse or dense ontents, and �nite or in�nite
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lass Pord a . . .

type (Pord a, Ix a) ) Data�eld a b = . . .

type (Pord a, Ix a) ) Bounds a = . . .

{ operations over data�elds: onstrution and seletion

datafield :: (Pord a,Ix a) ) (a ! b) ! Bounds a ! Data�eld a b

(!) :: Data�eld a b ! a ! b

{ operations over bounds of a data�eld

bounds :: (Pord a,Ix a) :: Data�eld a b ! Bounds a

(<:>) :: (Ix a, Pord a) ) a ! a ! Bounds a

{ hyperstrit evaluation

hstritTab :: (Pord a, Ix a, Eval a) ) Data�eld a b ! Data�eld a b

{ forall abstration (language onstrut)

forall apat

1

... apat

n

! exp

Fig. 5. Basi Coordination Construts in Data Field Haskell

size. A rih set of funtions for manipulating bounds are de�ned, e.g. 1<:>n de�nes

a dense index domain of all integers between 1 and n. The omputation over a

data�eld is de�ned either as a forall-abstration, i.e. a funtion applied to the

index domain, or via a set of prede�ned higher-order funtions over data�elds, e.g. a

fold-like foldlDf. To express the extent to whih an expression should be evaluated

Data Field Haskell introdues funtions for strit and hyperstrit evaluation of

Haskell expressions, e.g. hstritTab. Data Field Haskell has been implemented as

an extension for Haskell 1.3 on top of the nh13 ompiler (R�ojemo, 1995). However,

no parallel implementation is available, yet.

sumEuler :: Int ! Int ! Int

sumEuler  n =sumDf ( forall i !

sumDf ( forall j ! euler (xs!i)!j))

where xs = mkField  n

mkField :: Int ! Int ! Data�eld Int (Data�eld Int Int)

mkField  n = datafield ( � i !

datafield ( � j ! min *i+j n ) (0<:>-1)

(0<:>n+-1 `div`  - 1)

sumDf :: (Pord a, Ix a, Num b) ) Data�eld a b ! b

sumDf = foldlDf (+) 0

Fig. 6. Data Field Haskell Version of sumEuler

The example ode in Figure 6 demonstrates how to implement sumEuler in Data
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Field Haskell. In mkField an expliit data�eld onstrutor is used to build a nested

data�eld. The outer �eld ranges over the hunks that are mapped onto proessors.

The inner �eld ranges over the values passed to the euler funtion on one proes-

sor. The urrent, sequential, implementation does not distinguish between the two

forall onstruts, but in the parallel implementation it is planned to enable par-

allel exeution by hoosing an appropriate, parallel, index domain. To avoid high

overhead when onverting lists into data�elds, most operations are performed on

the data�elds, even if there is little parallelism in the exeution of the ode.

So far only a small set of sequential programs has been implemented in Data Field

Haskell. The largest appliations inlude a partile simulation, a neural network

relaxation model, and an LU-fatorisation algorithm.

4.2.2 Nepal

The extension of Haskell developed in the Nepal projet (Chakravarty et al., 2001),

here alled Nepal for short, adds parallel arrays to Haskell. It provides speial syn-

tax suh as array omprehensions and parallel implementations of basi funtions

over these arrays. Similar in spirit to the NESL language (see Setion 4.5) data

parallelism an be nested, ahieving a high degree of exibility. A speial attening

transformation is used to transform nested into at data parallelism (Chakravarty

& Keller, 2000).

Using the new language onstruts for arrays the implementation of sumEuler

in Nepal is straightforward and shown in Figure 7. All standard operations on lists,

suh as length, filter, et, have orresponding versions over parallel arrays. The

euler funtion is modi�ed to use arrays as well, to make better use of the attening

transformation thereby ahieving a better data distribution. Array omprehensions

of the form [: : : : :℄ are analogous to Haskell's list omprehensions and are trans-

lated into alls to the funtions mapP and filterP, whih are in turn implemented

as alls to parallel ode. Nepal's attening transformation in ombination with a

type system that distinguishes loal from global values enables the ompiler to au-

tomatially transform from the ode in Figure 7 into a lustered version with better

granularity (Keller & Chakravarty, 1999). On the positive side, this approah of im-

pliit parallelism is onvenient for the programmer and leads to onise programs.

However, the downside is that lustering is outside the programmer's ontrol, whih

implies that it annot be easily modi�ed nor adapted dynamially.

sumEuler :: Int ! Int

sumEuler n = sumP [: euler i | i  [:n, n-1 .. 0:℄ :℄

euler :: Int ! Int

euler n = lengthP (filterP (relprime n) [:1 .. n-1:℄)

Fig. 7. Nepal Version of sumEuler
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Nepal is urrently being implemented as an extension of GHC with the follow-

ing main steps. The attening transformation maps nested array omputations to

at array omputations. Then the data parallel primitives are unfolded by deom-

posing them into loal omponents, with optimisations suh as array loop fusion

to improve granularity, and global omponents, introduing ommuniation. For

parallel exeution library routines of a strutured ommuniation library are used

to provide a high level of portability. Performane measurements of the urrent

sequential implementation show a high eÆieny of the array ode, signi�antly

outperforming both standard Haskell arrays and list-based implementations of test

programs suh as a Barnes-Hut algorithm. Parallel performane measurements of

a hand-translated Barnes-Hut algorithm ahieved promising speedups on up to 24

proessors on a Cray T3E multi-proessor (Chakravarty & Keller, 2000).

4.2.3 Data Parallel Haskell

An older system that used suh a data parallel approah was Data Parallel

Haskell (Hill, 1994). The entral idea of Data Parallel Haskell was to replae the

single \aim" of sequential omputation, namely omputing the result value, by a

series of aims of evaluation and to fore evaluation on all of them. Parallel per-

formane ould be improved by manipulating the aim, whih beomes a entral

omponent of Data Parallel Haskell's operational semantis, but remains hidden

from the programmer. The goal of this design was to ahieve data-parallel exeu-

tion without foring strit evaluation and thereby sari�ing the advantages of a

language with non-strit semantis.

As new language onstruts Data Parallel Haskell de�ned speial arrays alled

PODs (parallel data strutures), represented as one-dimensional sparse and po-

tentially in�nite index/value pairs. POD omprehensions were used to de�ne data

parallelism. These omprehensions were ompiled to parallel implementations of

the well-known map, fold and san funtions. The implementation used program

transformation to vetorise a funtional program. Data Parallel Haskell has been

implemented as a parallel extension of Haskell 1.2 on the GHC 0.16 ompiler, but

there is no urrent development.

4.3 Semi-Expliit Parallel Haskells

Semi-expliit parallel languages provide a few high-level onstruts for ontrolling

key oordination aspets, while automatially managing most oordination aspets

statially or dynamially. Historially, annotations were ommonly used for semi-

expliit oordination, but more reent languages provide ompositional language

onstruts. As a result, the distintion between semi-expliit oordination and o-

ordination languages is now rather blurred, but the key di�erene in the approah

is that semi-expliit languages aim for minimal expliit oordination.
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4.3.1 GpH

GpH (Trinder et al., 1998) is a modest extension of Haskell with parallel (par)

and sequential (seq) omposition as oordination primitives (see Figure 8). Deno-

tationally, both onstruts are projetions onto the seond argument. Operationally

seq auses the �rst argument to be evaluated before the seond and par indiates

that the �rst argument may be exeuted in parallel. The latter operation is alled

the \sparking" of parallelism and is used in di�erent variants in many parallel lan-

guages. The runtime-system, however, is free to ignore any available parallelism. In

this model the programmer only has to expose expressions in the program that an

usefully be evaluated in parallel. The runtime-system manages the details of the

parallel exeution suh as thread reation, ommuniation et. In summary, GpH

has a losed system model with semi-expliit parallelism and impliit ommunia-

tion, based on a virtual shared heap, and loation independene. GpH is publily

available from (GPH, 2001).

par :: a ! b ! b { parallel omposition

seq :: a ! b ! b { sequential omposition

type Strategy a = a ! () { type of evaluation strategy

using :: a ! Strategy a ! a { strategy appliation

rwhnf :: Strategy a { redution to weak head normal form

lass NFData a where { lass of reduible types

rnf :: Strategy a { redution to normal form

Fig. 8. Basi Coordination Construts in GpH

Experiene of implementing non-trivial programs in GpH shows that the un-

strutured use of par and seq operators an lead to rather obsure programs. This

problem an be overome with evaluation strategies : lazy, polymorphi, higher-

order funtions ontrolling the evaluation degree and the parallelism of a Haskell

expression. They provide a lean separation between oordination and omputation.

The driving philosophy behind evaluation strategies is that it should be possible to

understand the omputation spei�ed by a funtion without onsidering its oor-

dination. Figure 8 shows the basi operations over strategies. The using onstrut

applies a strategy to a Haskell expression. The basi strategy rwhnf redues an

expression to weak head normal form (WHNF), the default in Haskell. The over-

loaded strategy rnf redues an expression to normal form (NF), and is instantiated

for all major types.

In GpH it is possible to speify blok-wise evaluation over the input list with

hunk size  applying the parListChunk  rnf strategy to the list omprehension.

However, without hanging the omputational ode it is not possible to ompute

the sum of eah hunk. A version that does so is given in Figure 9. Again the
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sumEuler :: Int ! Int ! Int

sumEuler  n = sum ([ (sum . map euler) x | x  splitAtN  [n,n-1..0℄ ℄

`using` parList rnf)

Fig. 9. GpH Version of sumEuler

splitAtN funtion is used to split the list into hunks of size  for granularity

ontrol. The strategy parList de�nes data parallelism over these segments. Eah

thread generated by this strategy omputes the funtion sum . map euler. This

lustering tehnique an be generalised to arbitrary data strutures as disussed

in (Loidl et al., 2001b). In summary, the programmer has the hoie working purely

on strategy level, leaving the omputational ode of the program unhanged, or to

perform some simple transformations of the omputational ode to further tune

parallel performane.

GpH has been used to engineer several large programs, four of whih are disussed

in (Loidl et al., 1999). The largest program is Lolita, a natural language proessor

omprising tens of thousands of lines of ode, that has been parallelised for a shared

memory mahine. Naira is a parallelising ompiler for a subset of Haskell, based

on the dataow model of omputation. Blakspots is a data-intensive real-world

appliation to �nd blakspots in a database of traÆ aident reords. LinSolv is

an exat linear system solver. Performane results for all programs on worksta-

tion networks and a Sun SMP mahine are reported in (Loidl et al., 1999), and

performane omparisons with Eden are reported in Setion 4.3.3.

4.3.2 Eden

Eden (Breitinger et al., 1997) oordinates parallel omputations using expliit pro-

ess reation and interonnetion, enabling the programmer to de�ne arbitrary

proess networks. Thread interation an be either impliit, via shared variables

and funtion parameters on proess reation time, or expliit via ommuniating

parameters to proesses during proess life time. The language uses a losed system

model with loation independene. A prototype of the Eden system is available on

request.

Figure 10 summarises the basi oordination onstruts available in Eden. Pro-

ess abstrations with type Proess a b de�ne the behaviour of proesses with input

of type a and output of type b analogous to funtions of type a ! b de�ned by �-

abstrations. A proess abstration spei�es the mapping of data input in

1

: : :in

m

via inports to data output out

1

: : :out

m

via outports. Inports and outports onnet

(unidiretional) ommuniation hannels to proesses. Communiation hannels are

not autonomous objets, but tightly oupled with proesses. Proesses and their in-

teronneting hannels are reated by the evaluation of proess instantiations of the

form p # x whih applies the proess abstration p to the expression x, represent-

ing the input tuple. The result of a proess instantiation is the tuple of outgoing

data of the newly reated proess. Eden proesses use independent threads to pro-



16 P.W. Trinder and H-W. Loidl and R.F. Pointon

newtype Proess a b = : : :

{ proess abstration (language onstrut)

proess (in

1

,...,in

m

) ! (out

1

,...,out

n

) :: Proess (a

1

,...,a

m

) (b

1

,...,b

n

)

{ proess instantiation

(#) :: (Transmissible a, Transmissible b) ) Proess a b ! a ! b

{ non-deterministi merge proess

merge :: Proess [[a℄℄ [a℄

Fig. 10. Basi Coordination Construts in Eden

due their outputs. For eah output a separate thread is reated whih evaluates

the output expression to normal form and sends the result value via the orre-

sponding outport. Lists are transmitted as streams, i.e. element-wise. A prede�ned

non-deterministi proess merge is provided for many-to-one ommuniation, whih

is useful for speifying reative systems. It takes a list of input streams and merges

the values in the order in whih they arrive.

In Eden the programmer typially starts with a spei� proess network in mind

and models this network using expliit proesses. Evaluation strategies may also be

required. This may amount to a higher e�ort in implementing a parallel algorithm,

ompared to GpH or HDC, espeially when it is not possible to use one of a set

of prede�ned Eden skeletons for parallel exeution (Klusik et al., 2000b). It o�ers,

however, more possibilities for tuning the parallel performane.

sumEuler :: Int ! Int ! Int

sumEuler  n = sum ([ (proess z ! (sum . map euler) z) # x

| x  splitAtN  [n,n-1..0℄ ℄

`using` seqList r0)

Fig. 11. Eden Version of sumEuler

Figure 11 shows an Eden version of the sumEuler program. The list ompre-

hension de�nes parallelism over the hunks of input data by applying a proess

abstration to all hunks generated by splitAtN. The body of the proess abstra-

tion spei�es the sequential omputation performed by eah thread. The strategy

seqList r0 starts o� the evaluation of the parallel threads by enforing a spine

strit evaluation of the list.

The largest programs implemented in Eden are a ray traer of several hundred

lines of ode, a linear systems solver and a hekers program. Detailed measurements

of these programs an be found in (Klusik et al., 2001).
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4.3.3 Eden/GpH Performane Comparisons

Eden and GpH are available on the same platform and hene we are able to sum-

marise the following diret performane omparisons. The measurements have been

performed on a 32-node Beowulf luster (Ridge et al., 1997) onsisting of Linux Red-

Hat 6.2 workstations with a 533MHz Celeron proessor, 128kB ahe, 128MB of

DRAM, 5.7GB of IDE disk, onneted through a 100Mb/s fast Ethernet swith

with a lateny of 142�s, measured under PVM 3.4.2. For the sumEuler program

with a list length of 8000 and a luster size of 100, the relative speedups on 16

proessors are 13.1 for GpH and 12.4 for Eden.

Other programs that have been ompared inlude a raytraer based on an Id

program in the Impala benhmark suite (Impala, 2001). For this simple data parallel

program a stati mapping of threads to proessors proves to be most eÆient, with

GpH's dynami resoure management generating additional overhead. Overall, for

an input of 640 spheres and a 350�350 grid, and using lusters of 10 lines, Eden

ahieves a relative speedup of 13.3 on 16 proessors, ompared to 5.2 for GpH.

An exat linear system solver, originally developed in GpH and ported to Eden,

ahieved relative speedups of 6.9 (GpH) and 13.2 (Eden) for a sparse 14�14 matrix

with arbitrary preision integers as input. A detailed disussion of these results is

presented in (Loidl et al., 2001a) and the program soures are available online.

4.4 Haskell with a Coordination Language

Parallel oordination languages (Kelly & Taylor, 1999) are separate from the om-

putation language and thereby provide a lean distintion between oordination

and omputation. Historially, Linda (Carriero & Gelernter, 1989) and PCN (Fos-

ter et al., 1992) have been the most inuential oordination languages, and often a

oordination language an be ombined with many di�erent omputation languages,

typially Fortran or C. Other systems suh as SCL (Darlington et al., 1996) and

P3L (Bai et al., 1995) fous on a skeleton approah for introduing parallelism

and employ sophistiated ompilation tehnology to ahieve good resoure manage-

ment.

4.4.1 Caliban

The latest implementation of the Caliban oordination language uses Haskell

�

as

omputation language (Kelly, 1989; Taylor, 1997). Haskell

�

is a subset of Haskell,

mainly omitting modules and type lasses. Caliban has onstruts for expliit par-

titioning of the omputation into threads, and for assigning threads to (abstrat)

proessors in a stati proess network. Communiation between proessors works

on streams, i.e. eagerly evaluated lists, similar to Eden. In summary, Caliban uses

a losed system model with oordination via semi-expliit threads, ommuniation

via impliitly de�ned data dependenies, and loation independene.

Figure 12 summarises the basi oordination onstruts in Caliban. Eah entry

represents a omponent in the data struture Plaement ontrolling the evaluation

of a Haskell

�

expression. Sine Caliban's oordination onstruts are integrated
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NoPlae { null assertion

Bundle [x, y℄ { plae x and y on the same proessor

Annot x { extrat loation of x

Ar a b { doument a data dependeny between a and b

a And b { exeute subnets a and b on di�erent proessors

a With b { exeute subnets a with b on the same group of proessors

Fig. 12. Basi Coordination Construts in Caliban

into the host language, funtions produing plaement strutures, so alled net-

work forming operators (NFOs), an be de�ned exploiting the full power of the

host language. These NFOs are evaluated at ompile-time using partial evaluation

tehniques. The variables x and y are Haskell

�

variables of type Stream represent-

ing omputations, whereas a and b represent proess networks of type Plaement.

The Bundle assertion produes a proess network of o-loated omputations with

threads being generated for eah argument. The Annot diretive extrats plaement

information from a omputation. Ar is an assertion of a data dependeny between

two proess networks, whih is heked by the ompiler. Two omposition diretives

for proess networks are available. The And diretive indiates that the networks

exeute in parallel, whereas the With diretive indiates that two networks should

be exeuted on the same group of proessors.

sumEuler :: Int ! Int ! Int

sumEuler  n = res moreover fan res ress

where res = sum ress

ress = map (sum . map euler) hunks

hunks = splitAtN  [n,n-1..0℄

fan :: Stream ! [Stream℄ ! Plaement

fan s [℄ = NoPlae

fan s (x:xs) = (Bundle [x℄) And (Ar x s) And (fan s xs)

Fig. 13. Caliban Version of sumEuler

Figure 13 shows the implementation of sumEuler in Caliban. In the body of

sumEuler the oordination expression fan res ress is applied to res by using the

moreover lause, similar to GpH's using. The de�nition of fan itself spei�es the

parallel exeution of every list element in its seond argument by using And for

omposition. It orresponds to GpH's parList. Overall, this ode is similar to the

ode used in semi-expliit languages suh as GpH. However, sine Caliban desribes

stati proess networks it may employ more eÆient, though less exible, resoure

management.

A prototype implementation of Caliban with Haskell

�

as host language is avail-

able (Taylor, 1997). The largest appliations implemented in Caliban are a Jaobi
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relaxation algorithm and a ray traer, introdued in (Kelly, 1989). Although the

overall struture of this ray traer is similar to the one used in the omparison

of GpH with Eden, it should be noted that they are based on di�erent sequential

versions and that the input size as well as parallel arhiteture di�er. For an input

modelling a sene with 20 ubes and a grid size of 100�100 rays, and using bloks

of 40 rays for granularity ontrol in a task farm arhiteture, relative speedups of

up to 24 were ahieved on 35 proessors of a 128 proessor Fujitsu AP1000 based

on 25MHz Spar proessors (Taylor, 1997).

4.5 Other Parallel Funtional Languages

Other Parallel Haskells. Para-funtional programming (Hudak, 1986) is the general

approah of adding ontrol diretives to a funtional program to speify parallel exe-

ution. These ontrol diretives allow the programmer to desribe detailed exeution

shedules as well as the mapping of threads to proessors. A Haskell-based imple-

mentation of para-funtional programming on an SGI Challenge shared-memory

mahine is desribed in (Mirani & Hudak, 1995). This implementation fully inte-

grates the diretives into Haskell by de�ning �rst-lass shedules with a monadi

type. These shedules are used in a similar way to evaluation strategies in GpH and

moreover lauses in Caliban.

Haskell-Linda (Peterson et al., 2000) is an extension of Haskell providing a bind-

ing to basi operations de�ned in the Linda model (Carriero & Gelernter, 1989) for

desribing parallel exeution. It is an open system model with expliit parallelism

and impliit synhronisation. In the Linda model ommuniation between parallel

threads is based on operations on a shared tuple spae. The basi operations on this

tuple spae, whih is split into several regions, are read, write, and in (for read and

remove). Parallel threads, represented as proess tuples in the tuple spae, ommu-

niate by reading and writing tuples from/to the tuple spae. In reading from the

tuple spae a pattern an be spei�ed. If several tuples math the pattern the result

is non-deterministi. Haskell-Linda is urrently used to speify parallel funtional

reative programs (Parallel-FRP) suh as a web-based online autioning system.

Finally, several bindings of expliit message passing libraries, suh as PVM (PVM,

1993) and MPI (MPI, 1997), for Haskell have been developed (Breitinger et al.,

1998; Weber, 2000; Winstanley & O'Donnell, 1997). These languages use an open

system model of expliit parallelism with expliit thread interation. Sine the o-

ordination language is basially a stateful (imperative) language, monadi ode is

used on the oordination level. Although the high availability and portability of

these systems are appealing, the language models su�er from the rigid separation

between the stateful and purely funtional levels.

Other Non-strit Languages. The late 80s saw an inreasing interest in the parallel

implementation of non-strit funtional languages, whih is reeted in the imple-

mentation of several suh systems. The <�;G>-mahine (Augustsson & Johnsson,

1989) used LML with annotations for sparking and was implemented on a Sequent

Symmetry. The extension of Haskell with sparking annotations used on the paral-
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lel GRIP mahine (Peyton Jones et al., 1987) was a diret preursor of the GpH

language overed in Setion 4.3.1. The LML-like, lazy, impliitly-parallel funtional

language ALFL has been implemented on a distributed-memory Intel Hyperube

as well as on a shared-memory Enore mahine (Goldberg, 1988), with near-linear

speedups for small programs suh as nqueens on the latter arhiteture.

The HDG mahine (Kingdon et al., 1991) implemented a Miranda-like, impliitly-

parallel, lazy language on a Transputer network, by using the evaluation transformer

model (Burn, 1991) to extrat parallelism. The PAM mahine (Loogen et al., 1989)

implemented a simple non-strit, higher-order language with an expliit parallel

let onstrut, in addition to the evaluation transformer model, on a Transputer

network.

Conurrent Clean (Plasmeijr et al., 1999; N�oker et al., 1991) is a language with

lose similarity to Haskell, in partiular due to its non-strit semantis. Coordi-

nation is spei�ed using annotations, i.e. ompiler diretives in omments, similar

to, but more sophistiated than the diretives in GpH. Conurrent Clean has been

implemented on the Transputer-based ZAPP mahine (Goldsmith et al., 1993),

whih fousses on divide-and-onquer parallelism. Another implementation of Con-

urrent Clean on a Transputer network ahieved good absolute performane re-

sults (Kesseler, 1996).

The Duth Parallel Redution mahine projet (Barendregt et al., 1987; Hartel

et al., 1995) used a Miranda-like, lazy language with a speial \sandwih" anno-

tation for desribing fork-and-join parallelism. Although this annotation favours

divide-and-onquer parallelism, other paradigms suh as data parallelism an be

expressed by using program transformations. The largest appliation is a tidal pre-

dition program on a small distributed-memory mahine.

Other Strit Languages. Parallel extensions to Lisp have a long history:

QLisp (Goldman et al., 1989), Paralation Lisp (Di Napoli et al., 1996), based on the

general Paralation model (Sabot, 1988), EuLisp (Padget et al., 1993),

�

Lisp (Think-

ing Mahine Corporation, 1990), FX (Gi�ord et al., 1992), PaiLisp (Kawamoto,

1999), BaLinda Lisp (Feng et al., 1995), TS/Sheme (Jagannathan, 1993). Some

of the most prominent and most inuential systems are Multilisp (Halstead, 1985)

and its suessor MulT (Kranz et al., 1989). The thread reation onstrut in these

two languages is a future, whih hides the synhronisation between parallel threads

behind ordinary aess to variables in a shared address spae. In essene, it ats

like a par operator in GpH. To redue the overhead imposed by a huge number

of parallel threads, lazy task reation was invented by Mohr et al. (1991). This

tehnique allows the omputation of a potential hild thread to be subsumed by

the parent thread.

SAC (Single Assignment C) (Sholz, 1996) is a strit, �rst-order funtional lan-

guage with impliit parallelism and impliit thread interation, optimised for array

proessing. Its main appliation area is sienti� omputing with its fous on ar-

ray strutures, whih an be abstrated over shape and dimensionality, and rather

regular parallelism. Good performane results for a Jaobi relaxation algorithm are

reported on a shared-memory Sun Enterprise (Grelk, 1998).
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The UFO-Lite language (Sargeant, 1993) represents a �rst-order, hybrid fun-

tional objet-oriented language with impliit parallelism and impliit thread inter-

ation. Its prototype implementation on an SGI Origin fousses on the eÆient

handling of �ne grained parallelism.

Skeleton-based Languages. A well-engineered skeleton-based language is the

impliitly-parallel, strit funtional language PMLS (Mihaelson et al., 2001). It

is an automatially parallelising ompiler for a pure subset of SML. The exeu-

tion osts of funtions are pro�led by exeuting a strutural operational semantis.

Based on this information a ost model for the available skeletons, possibly nested,

is used to selet a deomposition and mapping of parallel threads. Measurements

on a range of parallel mahines inluding a Beowulf luster, a Fujitsu AP3000, an

IBM SP/2, and a Sun Enterprise SMP exhibit good speedups for programs suh as

matrix multipliation, a ray traer and a linear system solver (Saife et al., 2001).

Other well-developed systems using a skeleton-based approah for parallelism are

SCL (Darlington et al., 1996) and P3L (Bai et al., 1995). Both systems de�ne

a oordination language that an be freely ombined with an arbitrary omputa-

tion language. In pratie these systems often use C or Fortran as omputation

languages. As a ruial tehnique for the development of larger appliations these

languages allow the spei�ation of data re-distribution to ompose skeletons with

oniting data distributions.

Data Parallel Languages. One of the most suessful parallel funtional languages

is NESL (Blelloh, 1996). NESL is a strit, strongly-typed, data-parallel language

with impliit parallelism and impliit thread interation. It has been implemented

on a range of parallel arhitetures, inluding several vetor omputers. A wide

range of algorithms have been parallelised in NESL, inluding a Delaunay algorithm

for triangularisation (Blelloh & Narlikar, 1997), several algorithms for the n-body

problem (Blelloh et al., 1996), and several graph algorithms.

Fish (Jay & Stekler, 1998) is a higher-order polymorphi language with strit

semantis. Its main innovation is the introdution of shapely types that enode

information about the bounds of array-like objets in the type system of the lan-

guage. This extended type system enables shape analysis and provides additional

information to the ompiler, whih generates very eÆient sequential ode. The

data-parallel variant of this language, GoldFish, is still under development.

Dataow Languages. SISAL (Cann, 1992) is a �rst-order, strit funtional lan-

guage with impliit parallelism and impliit thread interation. Its implementation

is based on a dataow model and it has been ported to a range of parallel ar-

hitetures. Comparisons of SISAL ode with parallel Fortran ode show that its

performane is ompetitive with Fortran, without adding the additional omplexity

of expliit oordination (LANL, 2001).

The pHLuid system (Flanagan & Nikhil, 1996) is a parallel implementation of Id

on networks of workstations. It uses a dataow model of omputation to ahieve

impliit parallelism. The Id language is, despite many syntati di�erenes, losely
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related to Haskell. In (Hammes et al., 1995) a good language and performane om-

parison of Id with Haskell on a realisti benhmark program is given. Id is polymor-

phi, higher-order and has a non-strit semantis, implemented via lenient or par-

allel eager evaluation. Indeed, a fusion of Id and Haskell has been proposed (Nikhil

et al., 1995).

Derivational Approahes. The referentially transparent semantis of Haskell makes

it an attrative language for deriving parallel programs. In suh an approah

Haskell, or often BMF notation, is used as spei�ation language, and the pro-

gram is transformed, usually by hand, into a parallel program. The target language

is often C with MPI or PVM, but in some ases intermediate points of the transfor-

mation are already exeutable, e.g. as Haskell+MPI programs. The most prominent

of these approahes are abstrat parallel mahines (O'Donnell & R�unger, 2000), the

TwoL system (Rauber & R�unger, 1996), systems using BSP (Valiant, 1990) as par-

allel programming model e.g. (Loulergue, 2000), and several systems for deriving

skeleton-based parallel ode out of Haskell or BMF spei�ations (Pepper, 1993;

Bai et al., 1999).

4.6 Parallel Haskell Pragmatis

Tools and Environment. A ommon feature of the languages disussed in this se-

tion is their high-level and often dynami oordination. Sometimes the programmer

only has to identify expressions suitable for parallel exeution (GpH) in other ases

it suÆes to give a high-level desription of a proess network (Eden, Caliban). In

ontrast to detailed stati oordination, the parallel behaviour indued in a program

by high-level, dynami oordination is far from obvious. This opaity is unfortunate

beause the programmer must have a lear understanding of parallel behaviour to

tune performane. Therefore a set of dynami pro�ling and visualisation tools is

very important for many parallel funtional languages.

The best developed set of parallel pro�ling and visualisation tools exists for GpH.

It onsists of a highly-tunable simulator for parallel exeution (GranSim) and sev-

eral parallel pro�lers inluding GranCC and GranSP. The latter are post-mortem

tools operating on a log �le, and visualising multiple aspets of parallel exeution,

e.g. overall ativity of the mahine, per-proessor ativity or per-thread ativity. For

example, Figure 14 shows an overall ativity pro�le of the sumEuler program from

Setion 4.3.1 exeuting on a 20 proessor Beowulf, with exeution time on the x-axis

and the number of tasks on the y-axis. The tasks are separated into four lasses,

depending on their state: running if they are exeuting; runnable if they ould be

exeuted if a proessor were available; bloked if they await data under evaluation;

and fething if they are retrieving data from another proessor. These tools have

been ruial in the parallelisation of a set of large GpH programs (Loidl et al.,

1999). The Eden system supports Paradise, a GranSim-like simulator (Hernandez

et al., 1999), and Caliban provides similar but less sophistiated visualisation tools

for analysing parallel performane (Taylor, 1997).
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Fig. 14. A GpH Ativity Pro�le

Programming Methodology. Impliit parallelism, often promised in the ontext of

funtional languages, o�ers the entiing vision of parallel exeution without hanges

to the program. In reality, however, the program must be designed with parallelism

in mind to avoid unneessary sequentialisation. In theory, program analyses suh

as granularity, sharing, and usage analysis an be used to automatially generate

parallelism. In pratie, however, almost all urrent systems rely on some level of

programmer ontrol. The path from powerful and useful analyses, over the auto-

mati extration of the right amount of usable parallelism, to the dynami resoure

management required for these systems is a long one, and poses many researh

problems, espeially in the middle stage.

Current development methodologies have several interesting features. The om-

bination of languages with minimal expliit oordination and good pro�ling tools

failitates the prototyping of alternative parallelisations. Obtaining good oordina-

tion at an early stage of parallel software development avoids expensive re-designs.

In later development stages, detailed ontrol over small but ruial parts of the pro-

gram may be required, and pro�ling tools an help loate expensive parallel om-

putations. During performane tuning the high level of abstration may beome a

burden, hiding low level features that ould be usefully ontrolled by the program-

mer. Spei� oordination aspets, suh as evaluation degree and data plaement,

often have to be arefully spei�ed in some parts of a program, but they an only

be indiretly ontrolled in languages like HDC, GpH, and Eden.

Implementation Issues. Coordination onstruts an be added to an existing om-

putation language suh as Haskell in two ways: they may be built-in to the language,
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newPort :: IO (Port a)

writePort :: Port a ! a ! IO ()

readPort :: Port a ! IO a

mergePort :: Port a ! Port b ! IO (Port (Either a b))

registerPort :: Port a ! PortName ! IO ()

unregisterPort :: Port a ! IO ()

lookupPort :: PortHost ! PortName ! IO (Port a)

link :: Port a ! IO () ! IO Link

unlink :: Link ! IO ()

Fig. 15. Haskell with Ports Construts

as in GpH and Eden, or built-on the language as a library, as in Haskell+MPI. The

main advantage of integrating parallelism into the language is that it failitates

analysis and transformations of the program. Moreover, a tight oupling of paral-

lelism with the runtime-system failitates dynami resoure management.

On the other hand, providing a separate library for parallelism is in general easier

to implement, and ahieves a more modular design. It is no oinidene that there

are several systems extending Haskell with some form of standard ommuniation

library. However, the main problem of this approah is the mismath between the

delarative omputation language and a library of imperative oordination on-

struts. In pratie this means that monadi, and therefore serialised, ode must be

used extensively, whih both hampers the design of parallel algorithms and elimi-

nates many of the bene�ts of a purely funtional omputation language.

5 Distributed Haskells

Many programs are naturally distributed in nature, that is they omprise multiple

threads interating expliitly on multiple PEs. Examples inlude CASE tools, multi-

user simulations, multi-user distane learning environments. The following setions

desribe the two reent distributed Haskell implementations, and their relationship

to other distributed funtional languages.

5.1 Haskell with Ports

Haskell with Ports (Huh & Norbisrath, 2000) is a library for Conurrent Haskell

that takes an imperative approah to distribution: adding additional monadi om-

mands for ommuniation between PEs. The design of the library is inuened by

the Erlang language whih provides ommuniation via message passing with a

mailbox for every proess (Armstrong et al., 1996), and by onurrent onstraint

programming whih introdues the notion of a port with a single reader (Janson

et al., 1993).

Haskell with Ports has an open system model and threads interat using ports.
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{ Interfae {

data ServerMsg = Ping (Port ClientMsg)

data ClientMsg = Pong String

{ Server {

main = do

serverPort  newPort

registerPort serverPort "PingServer"

let pingServer = do

(Ping lientPort)  readPort serverPort

name  getEnv "HOST"

writePort lientPort (Pong name)

pingServer

pingServer

{ Client {

main = do

putStr "Host of ping server? "

host  getLine

serverPort  lookupPort host "PingServer"

lientPort  newPort

let

timePing p = do

putStr ("Pinging "++show p++" ... ")

(name,ms)  timeit (pingPong p)

putStrLn ("at "++name++" time="++show ms++"ms")

pingPong p = do

writePort p (Ping lientPort)

(Pong name)  readPort lientPort

return name

mapM timePing (repliate 4 serverPort)

return ()

Host of ping server? ushas

Pinging (pHost="137.195.52.186") ... at ushas time=60ms

Pinging (pHost="137.195.52.186") ... at ushas time=79ms

Pinging (pHost="137.195.52.186") ... at ushas time=40ms

Pinging (pHost="137.195.52.186") ... at ushas time=68ms

Fig. 16. Haskell with Ports Ping

Ports allow expliit and dynamially-typed ommuniation of �rst order values

inluding ports. Within a loation ommuniation is lazy, but between loations

ommuniation is strit, i.e. messages sent to loal threads are not stritly evaluated,

but any message to a remote thread is strit beause it is onverted to text using

show. A port may have multiple writers but only one reader, and Figure 15 lists

the distribution onstruts. A port is reated by newPort, and the reader must

be the port's reator and thus both port and reading thread reside on the same
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PE. Data is requested from the port by a bloking readPort. The mergePort

operation enables reading from multiple ports. Values are written to a port with a

non-bloking writePort, and hene ports are essentially FIFO queues.

A port is registered to make it visible to other PEs, using registerPort and

unregisterPort. One a port is registered it an be retrieved using the PE and port

names via the lookupPort operation. A separate proess, the postoÆe, exeutes

on eah PE and stores information about registered ports as well as performing

inter-PE ommuniation. Linking is the eager detetion of errors in a port, i.e.

atively wathing for errors, rather than handling them. By using link and unlink

an operation an be assoiated with port failure, e.g. a leanup routine an be

spei�ed when a port disonnets. Linking together with exeption handling on the

read and write operations provide a sound basis for fault tolerant programming.

Ping is an example program that performs a lookup on an environment variable

on a remote PE and then returns the resulting value to the original PE. The goal

is to determine the overall time for the round trip where ommuniation is the

dominating ost. For omparison, in our network the UNIX ping utility returns a

time of the order of 0.5ms. Figure 16 shows a pair of Haskell with Ports programs

that implement ping, together with their output. The server program reates and

registers a port PingServer, before looping waiting for messages and responding

to them. The lient program performs a lookup on the spei�ed server for the port

PingServer, then a monadi map, mapM, is used to all timePing four times. Within

timePing, the timeit funtion times the pingPong all whih sends a message to

the server and waits for a reply. The lient program reports relatively long times,

whih is unsurprising for several reasons. Communiation proeeds with a message

passing from lient, to loal postoÆe, to remote postoÆe, to server, and then

bak through this hain. All these omponents are implemented in Haskell and

the ommuniation is relatively high level, using sokets and the data is serialised,

i.e. manipulated as text using read and show funtions. The implementation is

urrently being optimised.

Other Haskell with Ports appliations inlude a hat program where users om-

muniate in a lient server mode, and a database where users ommuniate through

a lient to a entral database server to manipulate the data.

In summary, Haskell with Ports provides dynamially typed expliit ommunia-

tion of �rst order values and Ports using a new Ports onstrut. Communiation

is often strit with no sharing of data and therefore no synhronisation is nees-

sary within the ommuniated data. An open system model allows programs to

leave and join, while registering ports allows a onneting program loate spei�

resoures. Loation independene an be implemented but would require a major

reimplementation of existing libraries. Exeptions and linking support robust fault

tolerane. The library is publily available from (Haskell+Ports, 2001).

5.2 GdH

GdH (Pointon et al., 2000) is a modest onservative extension of Haskell98 and is

a strit superset of both Conurrent Haskell (Peyton Jones et al., 1996) and GpH.
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forkIO :: IO () ! IO ThreadId

myThreadId :: IO ThreadId

newEmptyMVar :: IO (MVar a)

takeMVar :: MVar a ! IO a

putMVar :: MVar a ! a ! IO ()

isEmptyMVar :: MVar a ! IO Bool

raiseInThread :: ThreadId ! Exeption ! a

throw :: Exeption ! a

athAllIO :: IO a ! (Exeption ! IO a) ! IO a

Fig. 17. Conurrent Haskell Construts

It supports two lasses of thread: pure threads and side-e�eting I/O threads. Pure

threads are inherited from GpH and intended for parallelism, interating via shared

variables, as desribed in Setion 4.3.1. Evaluation strategies are used in GdH to

oordinate pure threads, exatly as in GpH. The remaining disussion fousses on

the I/O threads inherited from Conurrent Haskell.

Conurrent Haskell supports expliit interleaved onurreny with named I/O

threads reated by a monadi forkIO ommand (Peyton Jones et al., 1999), and the

onstruts are summarised in Figure 17. I/O threads may interat impliitly, like

pure threads, or expliitly within the I/O monad using polymorphi semaphore

primitives, termed MVars. Multiple threads may share an MVar, giving rise to

non-deterministi semantis. I/O Threads and MVars an be abstrated over to

give bu�ers, FIFO hannels, merging, et. Conurrent Haskell supports both syn-

hronous and asynhronous exeptions to allow the exible handling of exeptional

or error situations.

myPEId :: IO PEId

allPEId :: IO [PEId℄

lass Immobile a where

owningPE :: a ! IO PEId

revalIO :: IO a ! a ! IO a

instane Immobile PEId

Fig. 18. GdH Construts

GdH supports distributed programming by extending the semantis of Conurrent

Haskell onstruts to multiple PEs and adding the new language onstruts for
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- loal thread reation -

forkIO :: IO () ! IO ThreadId

- remote thread reation -

rforkIO :: IO () ! PEId ! IO ThreadId

rforkIO job p = revalIO (forkIO job) p

Fig. 19. Remote Thread Plaement Using revalIO

loation awareness given in Figure 18. A GdH program is a losed system and

exeutes on a set of loations, eah labelled with a PEId. A thread's urrent loation

is obtained by myPEId, and the list of all available loations is returned by allPEId.

Stateful objets, suh as MVars, threads or �les, are unique and �xed at a loation,

although referenes to them are freely opied to other loations. Stateful objets

are instanes of the new Immobile lass and are loated by the owningPE method.

While GdH supports loation-awareness, signi�ant parts of a GdH program

may be loation independent. Pure and I/O threads interat impliitly regardless

of loation as in GpH. Loation independent manipulation of stateful objets is

supported by rewriting the relevant libraries, like those for MVars, to enapsulate

and hide the use of owningPE to determine the objet's loation.

Distributed state is manipulated using a remote evaluation funtion in the IO

monad: revalIO job p whih bloks the alling thread until the exeution of job

at loation p ompletes. That is, revalIO temporarily reloates the thread, rather

like Java RMI (Daonta et al., 1998). Loation independent properties of the remote

thread reated by revalIO are preserved, e.g. error handling remains una�eted so

that an exeption raised in the remote thread may propagate bak to a handler in

another loation. Stateful objet plaement an also be aomplished by revalIO,

for example Figure 19 shows its use to reate a distributed version of the Conurrent

Haskell forkIO ommand that plaes a thread on a spei�ed PE.

Partial distributed fault tolerane is supported in GdH by distributed exeptions

without requiring any new language onepts. The synhronous and asynhronous

exeptions supported by Conurrent Haskell are extended in a loation independent

manner, e.g. an exeption may be raised in a named I/O thread irrespetive of

whether it is loal or remote. The fault tolerane is limited beause it is not easy

to detet important failures inluding the failure of a PE and of a thread on a PE.

Handling these failure modes is ritial for the onstrution of robust systems and

an initial study has been onduted but not yet implemented (Trinder et al., 2000).

A GdH ping program is shown in Figure 20. A destination PE, dest, is seleted

from the list of PEs, and a monadi map, mapM alls timePing four times. Within

timePing, timeit times the pingPong funtion whih uses revalIO to perform

a trivial operation on the remote dest PE. Compared with the pair of Haskell

with Ports programs that ommuniate using expliit ports, the GdH program is

a single, relatively ompat program with all the ommuniation ourring within

the revalIO operation. Moreover, the GdH ping is relatively fast, returning values
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main = do

( :dest: )  allPEId

let

timePing p = do

putStr ("Pinging "++show p++" ... ")

(name,ms)  timeit (pingPong p)

putStrLn ("at "++name++" time="++show ms++"ms")

pingPong p = revalIO remote p

remote = getEnv "HOST"

mapM timePing (repliate 4 dest)

return ()

Pinging PE:524305 ... at n1708 time=3ms

Pinging PE:524305 ... at n1708 time=1ms

Pinging PE:524305 ... at n1708 time=1ms

Pinging PE:524305 ... at n1708 time=1ms

Fig. 20. GdH Ping

of the same order of magnitude as UNIX ping on our network. This is unsurprising

beause the GdH runtime system uses PVM with UDP as the underlying protool,

and C ode to serialise and pak the data.

Other GdH appliations inlude the following. A ooperative editor allows multi-

ple users on remote mahines to edit the same �le (Pointon et al., 2000). A Fatory

Chatroom allows multiple remote lients to interat via a TlHaskell interfae to a

entral server that maintains user pro�le and a shared fatory simulation (Pointon

et al., 2001). A distributed �le server and a multiuser geographial game have also

been onstruted (Pointon et al., 2001).

In summary, GdH provides statially typed expliit ommuniation of higher or-

der and stateful objets, e.g. funtions, suspensions, MVars. The Immobile lass

allows remote resoures to be manipulated and shared in a loation independent

manner. Furthermore impliit thread interation ours through shared data, with

ommuniation ourring at the onsumer's demand. Impliit thread interation

substantially lifts the burden of managing the ommuniation of, and synhronisa-

tion on, data strutures from the programmer (Pointon et al., 2001). Additionally

GdH is unusual in simultaneously supporting parallelism through pure threads, and

distribution through I/O threads. GdH is a losed system, and apitalises on this by

making all PEs visible so a program an manipulate any resoure in the distributed

state. Distributed exeption handling is provided to support limited fault-tolerane.

A more omplete desription of the design and implementation of GdH an be found

in (Pointon et al., 2000), and the implementation is bundled with publily available

Glasgow Haskell Compiler, version 5.00 onwards (GHC, 2001).
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5.3 Other Distributed Funtional Languages

Although the bene�ts of the funtional paradigm for distribution have been re-

alised only reently, ompared with parallelism, distributed funtional languages

have already ahieved greater ommerial suess in the form of Erlang (Arm-

strong et al., 1996; Blau & Rooth, 1998). This setion briey relates the distributed

Haskells above to other distributed funtional languages, inluding some Haskell-

based designs. Broadly speaking distributed oordination may be delarative, im-

perative, or proess algebra-based, and the languages disussed below are lassi�ed

by oordination paradigm.

Before disussing languages by paradigm, it is worth noting that numerous re-

ent language implementations ompile to generi platforms like the Java Virtual

Mahine (JVM) and Mirosoft .NET. Despite problems mapping funtional vir-

tual mahines onto the platforms various lasses of funtional language have taken

this route, inluding sequential, onurrent, parallel, distributed and mobile lan-

guages. An early JVM-based sequential Haskell was produed by Wakeling (1997)

and he has sine produed a mobile Haskell (Wakeling, 1998). A JVM-based paral-

lel Haskell similar to GpH has been implemented by Rauber du Bois (2001). There

is also a JVM-based implementation of the Curry language disussed below.

Delarative Coordination. Several reent distributed Haskell designs use delarative

oordination: Distributed Haskell (Chakravarty et al., 1998b) and Curry (Hanus,

1999) use logi-based oordination languages, while Brisk uses annotations, and an

elaborated semantis (Holyer et al., 1998). Distributed Haskell oordinates distri-

bution with a onstraint programming language. It evolved from the GoÆn parallel

programming language (Chakravarty et al., 1998b), and a full implementation has

not been onstruted (Chakravarty et al., 1998a). Conurrently exeuting proesses

are alled agents, and Distributed Haskell adds language onstruts for agent plae-

ment and introdues temporal onstraints to the language to deal with timeouts

and potentially provide fault tolerane. External ports are introdued for ommu-

niation between appliations and dynami typing ensures the type safety of the

messages.

Curry is similar to GoÆn in that it is a funtional-logi programming language in

whih ommuniation is a onstraint to be solved. To support distribution named

ports are added in the I/O monad similar to Haskell with Ports.

Brisk introdues deterministi onurreny using multiple threads within the

same shared heap, with impliit synhronisation on shared graph. The limitations

of deterministi onurreny are weakened by allowing ommuniation based on

merging with hierarhial timestamps (Spiliopoulou, 1999), but the oordination

language remains more restritive than others, e.g. inherently non-deterministi

programs like the dining philosophers annot be desribed. Brisk allows the om-

muniation of higher-order values between PEs in a lazy and dynami manner, it

also supports the ommuniation of ode for the mobility of running omputations,

using a remote annotation. As Brisk is urrently only partially implemented it is

not lear the extend to whih distribution will be expliit or impliit.
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A major advantage of delarative oordination is that it failitates reasoning

about oordination and omputation in a uni�ed framework. Languages with delar-

ative oordination typially have a losed systems model, and preserve referential

transpareny by making many oordination aspets impliit in the semantis. For

example in Brisk the independent soures of output, e.g. di�erent windows, or-

respond to independent soures of demand within the program. In onsequene

the implementations of these languages are often extremely elaborate, moreover

delarative oordination languages often lak expressive power, as illustrated for

Brisk above.

Imperative Coordination. Some oordination languages omprise expliit om-

mands to reate proesses, ommuniate et. Erlang is probably the most ommer-

ially suessful funtional language, and was developed in the teleommuniations

industry for onstruting distributed, real-time fault tolerant systems (Armstrong

et al., 1996; Wikstrom, 1994; Wikstrom, 1996). It has been used by a number of

teleommuniations ompanies inluding One-2-One, Erisson and NorTel to on-

strut a wide range of teleommuniations utilities (Tillman, 2000; Frithie, 2000;

Hinde, 2000), inluding some large multiproessor appliations like the AXD301

swith (Blau & Rooth, 1998): 525K lines of ode on 32 proessors. Compared with

Haskell, Erlang is strit, impure, weakly typed and relatively simple: omitting

features suh as urrying and higher-order funtions. However the language has a

number of extremely useful features, inluding the OTP libraries, hot loading of new

ode into running appliations, expliit time manipulation to support soft real time

systems, and message authentiation. Erlang systems are open, loation-aware

with expliit mailbox-based ommuniation. Sophistiated fault tolerane is pro-

vided by timeouts, exeption handlers with exeptions as values, and a mehanism

where a proess an monitor the termination of other proesses.

Distributed Poly/ML and Faile Antigua both extend ML with imperative o-

ordination onstruts (Matthews, 1989; Matthews, 1991; Thomsen et al., 1993). A

Distributed Poly/ML program reates proesses using fork and rfork primitives,

and is loation-aware as a PE an be spei�ed. Communiation is over hannels,

using send and reeive primitives. Unusually Distributed Poly/ML provides a

nondeterministi hoie primitive that selets the �rst of two proesses to ter-

minate. In addition to primitives similar to those in Distributed Poly/ML, Faile

Antigua provides a ping to asertain the liveness of a PE and kill to reset a PE.

Both languages have a losed system model and are loation-aware, with expliit

thread interation, and some support for fault tolerane.

OZ, the language of the MOZART system, is a multi-paradigm distributed lan-

guage ombining funtional, objet-oriented, and logi paradigms (Haridi et al.,

1997). It provides a variety of primitives for distribution and fault tolerane and

supports the ommuniation of higher order values inluding variables. It uses ex-

eptions for robust fault tolerane and distinguishes between lazy error detetion

by handlers for synhronous exeptions, and eager error detetion by wathers for

the management of asynhronous exeptions whih may be generated by remote

objets.
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Conurrent Clean (N�oker et al., 1991), introdued in setion 4.5, supports dis-

tribution using expliit message passing (Serrarens, 2001). It has Channels that

allow lazy normal form opying of data strutures. Moreover it provides primitives

for reating, sharing, and type-heking hannels between programs enabling the

onstrution of open systems. Exeption-based fault tolerane is also provided.

Imperative approahes are almost always expliit and loation aware. Compared

with proess algebra and delarative oordination languages, it is relatively easy

to onstrut a sophistiated imperative oordination model. The downside is that

while it is still easy to reason about the omputation parts of a program, it is hard

to reason about the entire program beause the imperative oordination restrits

referential transpareny. However, experiene with Erlang suggests that making

even part of a large distributed system delarative is of onsiderable bene�t.

Proess Algebra Coordination. The imperative oordination model for some lan-

guages is based on proess algebras like CCS (Milner, 1989) or CSP (Hoare, 1986).

Pit is a onurrent language based on asynhronous �-alulus (Turner, 1995), and

Nomadi Pit is an extension (Wojiehowski, 2000). The language has expliit o-

ordination ommands, e.g. proesses synhronise to send and reeive. Nomadi Pit

programs are loation aware: it is possible to migrate a proess to a PE.

Proess algebra languages make oordination expliit, and have the great ad-

vantage having a ready-made algebra for reasoning about oordination, timing et.

However, suh algebras are very di�erent from the equational approah used for

reasoning about the omputational parts of a program.

6 Disussion

To failitate diret omparison, Table 1 summarises the oordination onstruts of

parallel and distributed Haskells using the onepts from Setion 3. Some of the

distributed language implementations are not yet mature enough to allow om-

plete de�nitive lassi�ation: these are marked as 'Undef' in the table. Parallel

Haskells over all the major parallelism paradigms, and oordination ranges from

fully impliit like HDC, to relatively expliit like Caliban. In omparison to other

parallel language paradigms, all of the funtional languages are relatively impliit.

In omparison to other distributed languages paradigms, many distributed Haskells

are losed and do not have well-developed fault tolerane. Coordination of state-

transforming threads in distributed Haskells is almost always expliit, and the

amount of impliit oordination possible in real distributed appliations remains

an open question.

Parallel and distributed funtional programming the following wide range of hal-

lenges, and Haskell-based researh languages are likely to be suitable vehiles for

investigating many of them.

Reasoning about Coordination. A major hallenge is to develop high-level equiv-

alenes between expressions in the oordination language, espeially for extensible

languages desribing dynami oordination. Potentially oordination equivalenes

will aid the derivation and transformation of parallel and distributed programs,
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Language Threads

a

Loation Interation

a

System Fault-

model tolerane

Sequential:

Haskell98 N/A N/A N/A N/A No

Conurrent:

Conurrent Haskell Exp. N/A Imp. & Exp. N/A Yes

Parallel:

HDC Imp. Indep. Imp. Closed No

Data Parallel Haskell Imp. Indep. Imp. Closed No

Data Field Haskell Imp. Indep. Imp. Closed No

Nepal Imp. Indep. Imp. Closed No

GpH Semi-Exp. Indep. Imp. Closed No

Eden Semi-Exp. Indep. Imp. & Exp.

b

Closed No

Caliban Semi-Exp. Indep. Exp. Closed No

Distributed:

Haskell with Ports Exp. Aware Imp. & Exp.

b

Open Yes

GdH Exp. Aware Imp. & Exp. Closed Partial

Brisk Exp. Aware Imp. Closed Undef.

Distributed Haskell Exp. Aware Imp. & Exp. Undef. Undef.

Curry Exp. Aware Imp. & Exp.

b

Undef. Undef.

a

Imp - Impliit, Exp - Expliit.

b

Restritions exist on interations between loations.

Table 1. Haskell Coordination Language Summary

and may be inorporated into ompilers. The funtional programming ommunity

has well-developed equational tehniques for reasoning about the omputation lan-

guage, but reasoning about oordination is far less developed. Parallel ost models

statially predit the time and spae required to evaluate an expression, and parallel

ost models add a model identifying the expressions simultaneously under evalua-

tion to model oordination aspets suh as average parallelism, runtime, and total

spae usage. Good parallel ost models exist for some skeleton languages, e.g. (Skil-

liorn, 1990; Bai et al., 1995), and some data parallel languages, e.g. (Blelloh,

1996). However, there are few models for more dynami and extensible oordination,

and most are low-level, e.g. parallel operational semantis (Blelloh & Greiner, 1996;

Roe, 1991; Baker-Finh et al., 2000; Hidalgo Herrero & Ortega Mall�en, 2000). The

hallenge is greater for Haskell beause time and spae ost models are far harder

to develop for lazy languages than for strit (Sands, 1990; Loidl, 1998).

Higher-level Coordination. A major hallenge is to develop language onstruts,

stati analyses and dynami tehniques to automatially introdue and ontrol o-

ordination. Many parallel and distributed funtional language designers agree that

oordination should be as high-level, i.e. impliit, as possible. Current substantially-
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impliit languages like skeleton-based, data-parallel or distributed languages with

delarative oordination, have restrited oordination models as disussed above.

The key problem for parallel languages is that funtional programs have massive

amounts of �ne-grained parallelism. In lazy languages like Haskell expressions that

an safely be evaluated in parallel an be identi�ed by stritness analyses. Identify-

ing expressions that are worthwhile evaluating in parallel requires aurate parallel

ost models. It may also help the programmer if a visualisation of the oordination,

e.g. a proess network, an be produed statially.

Improved dynami oordination ontrol mehanisms redue the expliit oordi-

nation ontrol required in the language. This is espeially important for non-strit

parallel Haskells that naturally support highly-dynami oordination, and hal-

lenges inlude the following. An important new parallelism onept is arhiteture

independene: i.e. a program an be easily and systematially ported between arhi-

tetures while preserving good parallel performane. Runtime systems must make

good use of emerging arhiteture independent onepts. For example a runtime

system may be parameterised by important arhiteture harateristis to failitate

good performane on a variety of arhitetures. Alternately a runtime system may

measure key arhiteture harateristis and adapt itself. The massive �ne-grained

parallelism in funtional programs failitates adaptation to multiple arhitetures,

but better mehanisms are required to aggregate small tasks into larger tasks and

to manage threads heaply. There is also a need for improved load management

strategies to e�etively utilise all PEs, and alleviate heavily loaded PEs.

Language onstruts with appropriate semantis enable high-level oordination.

Languages like Eden and Brisk attempt to apture many oordination aspets in

the language semantis. Currently the oordination in these languages is limited,

and the high-level onstruts are augmented with additional oordination primi-

tives, e.g. Eden uses evaluation strategies in addition to the proess onstruts.

The hallenge is to develop a small set of adequately expressive high-level oor-

dination onstruts. Just as skeletons abstrat over ommon parallel oordination

patterns, it may be possible to onstrut distributed skeletons to abstrat over

ommon distributed oordination patterns, like lient-server.

Pragmati Challenges. An ongoing hallenge for parallel and distributed language

implementors is to make the best of new tehnologies. Developing and maintaining

the elaborate implementations required by parallel and distributed Haskells is a real

issue for researh groups. Development is aided by new arhiteture independent

parallel middleware, like the PVM and MPI libraries (PVM, 1993; MPI, 1997), and

it is not unusual to �nd a language available on half-a-dozen arhitetures. Similarly,

the languages gain from improvements in funtional ompilation tehnology (Peyton

Jones et al., 1993; SML, 1993; Leroy, 1996). Lastly, implementations must adapt to

new tehnologies, e.g. generi platforms like the JVM and .NET, or to make e�etive

use of the inreasingly heap and popular lusters of ommodity proessors (Ridge

et al., 1997).

Programming Methodology. The �nest programming language is useless without

an established methodology for developing programs systematially. Emerging par-

allel funtional programming methodologies have been disussed in Setion 4.6.
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Distributed funtional programming is far newer, and few systemati development

tehniques have been used, an exeption being (Karlsen, 1999). Spei� issues are

as follows. Better tools are required to support parallel and distributed program

development, inluding improved pro�lers with better visualisation. Funtional lan-

guages urrently lak dynami tools to visualise or ontrol parallel and distributed

programs during exeution. A standard suite of benhmarks, analogous to the no�b

suite (Partain, 1992) would failitate diret language and implementation ompari-

son. In priniple languages like Haskell are a good basis for arhiteture-independent

programming with their massive parallelism and dynami high-level oordination,

but further investigation is required to establish or refute this proposition.
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