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Abstra
t

Parallel and distributed languages spe
ify 
omputations on multiple pro
essors and have a


omputation language to des
ribe the algorithm, i.e. what to 
ompute, and a 
oordination

language to des
ribe how to organise the 
omputations a
ross the pro
essors. Haskell

has been used as the 
omputation language for a wide variety of parallel and distributed

languages, and this paper is a 
omprehensive survey of implemented languages. We outline

parallel and distributed language 
on
epts and 
lassify Haskell extensions using them.

Similar example programs are used to illustrate and 
ontrast the 
oordination languages,

and the 
omparison is fa
ilitated by the 
ommon 
omputation language. A lazy language is

not an obvious 
hoi
e for parallel or distributed 
omputation, and we address the question

of why Haskell is a 
ommon fun
tional 
omputation language.

1 Introdu
tion

Parallel languages utilise additional pro
essors to redu
e program runtime. Dis-

tributed languages use state-transforming threads to manipulate global state, i.e.

the resour
es of several pro
essors. A typi
al distributed appli
ation is a multiuser

game or learning environment where users on multiple ma
hines intera
t with ea
h

other in a 
ommon virtual world. The 
ombination of hardware redundan
y and

stateful 
omputation in a distributed language fa
ilitates the 
onstru
tion of reli-

able, i.e. fault tolerant, systems.

The potential of fun
tional languages for parallelism has been re
ognised for over

thirty years, long before Haskell existed e.g. (Wegner, 1971). Fun
tional languages

o�er good abstra
tion me
hanisms, a sophisti
ated type system, high-level 
ompu-

tation language and high-level 
oordination. However, the key advantage of a pure

fun
tional paradigm is that referential transparen
y guarantees the implementation


onsiderable freedom of exe
ution order without 
hanging program semanti
s. This

is evident to the parallelism 
ommunity and many parallel languages use pure 
om-

putation languages, some of whi
h are subsets of impure languages, e.g. (S
holz,

1996; Mi
haelson et al., 2001).

In 
omparison, the bene�ts of the fun
tional paradigm for distribution have been
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realised only re
ently. Like their parallel 
ounterparts, distributed fun
tional lan-

guages bene�t from good abstra
tion me
hanisms, a high-level 
omputation lan-

guage, and sophisti
ated type system, but most of all be
ause large and identi�able

parts of the program are referentially transparent. Referential transparen
y grants

freedom of exe
ution order, e.g. fa
ilitating lazy 
ommuni
ation of data between

pro
essors and parallel exe
ution of parts of the program; moreover the pure 
om-

ponents are amenable to reasoning, e.g. optimisation or 
ompilation by transfor-

mation (Peyton Jones et al., 1993). Even with its limited referential transparen
y,

Erlang has been used su

essfully to demonstrate that a fun
tional paradigm signif-

i
antly aids engineering large distributed systems. One su
h example is the 525K-

line AXD301 ATM Swit
hing System distributed over up to 32 pro
essors (Blau &

Rooth, 1998).

Most parallel and distributed languages have a 
omputation language and a 
o-

ordination (sub)language. The 
omputation language is used to spe
ify the algo-

rithm, i.e. to de�ne what value is to be 
omputed, and may be a sequential language

like C, SML or Haskell98. The 
oordination language des
ribes how the 
omputa-

tions are to be arranged on the virtual ma
hine, in
luding aspe
ts su
h as thread


reation, pla
ement, and syn
hronisation. In the parallelism literature the term


oordination language usually refers to a language distin
t from the 
omputation

language, e.g. PCN 
oordinates Fortran or C 
omputations (Foster et al., 1992).

In 
ontrast, fun
tional languages typi
ally extend the 
omputation language with

a few high-level 
oordination 
onstru
ts, and it is these that are rather loosely

termed the 
oordination language in this paper. The 
onstru
ts support some 
oor-

dination paradigm, and a wide range of paradigms and 
onstru
ts have been used.

Examples in
lude data-parallelism supported by Data Field Haskell (Holmerin &

Lisper, 2000), or skeleton-based parallelism supported by parallel map, fold and

other skeletons (Herrmann & Lengauer, 2000).

Consistent with their high-level 
omputation language, most parallel and dis-

tributed fun
tional languages support high-level 
oordination with automati
 man-

agement of many 
oordination aspe
ts. As with 
omputation, the great advantage

of high-level 
oordination is that it frees the programmer from spe
ifying low-level


oordination details. The disadvantages are that automati
 
oordination manage-

ment 
ompli
ates the operational semanti
s, makes the performan
e of programs

opaque, is hard to implement, and is frequently less e�e
tive than hand-
rafted 
o-

ordination. Expli
it 
oordination 
onstru
ts en
ourage programmers to 
onstru
t

stati
, simple or regular 
oordination, whereas more impli
it 
onstru
ts en
ourage

more dynami
 and irregular 
oordination.

Low-level 
oordination may be managed solely by the 
ompiler as in

PMLS (Mi
haelson et al., 2001), solely by the runtime system as in GpH (Trinder

et al., 1996), or by both as in Eden (Breitinger et al., 1997). Whi
hever me
hanism

is 
hosen, the implementation of sophisti
ated automati
 
oordination management

is arduous, and there have been many more parallel and distributed language de-

signs than well-engineered implementations. Haskell is a standard lazy fun
tional

resear
h language with a sophisti
ated type and 
lass system (Peyton Jones et al.,

1999). It has a relatively mature development environment in
luding 
ompilers, in-
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terpreters, libraries and pro�ling tools. This paper surveys all implemented parallel

and distributed languages with Haskell as 
omputation language.

We start by addressing the question of why Haskell is a suitable 
omputation

language, and basis for a variety of 
oordination languages, in Se
tion 2. We de�ne

parallel and distributed language 
on
epts, and 
lassify Haskell extensions using

them in Se
tion 3. Parallel Haskells are surveyed and related to other parallel fun
-

tional languages in Se
tion 4, likewise distributed Haskells in Se
tion 5. The same

simple parallel or distributed program is expressed in ea
h language to illustrate

and enable 
omparison of 
oordination 
onstru
ts. Se
tion 6 summarises the 
oor-

dination 
onstru
ts in the languages and 
on
ludes by dis
ussing open problems.

2 Why Haskell?

It is perhaps surprising to �nd a lazy language like Haskell as a popular fun
tional


omputation language, indeed Hains argues 
ogently that parallel fun
tional lan-

guages should be stri
t (Hains, 1994). The problem has the following two aspe
ts.

Firstly lazy evaluation is sequential and performs minimum work, with redu
tion


easing when the expression is in weak head normal form. In 
ontrast parallel and

distributed programs arrange 
omputations on multiple pro
essors and hen
e re-

quire some eager evaluation. Se
ondly, while in a stri
t language the 
omputational

behaviour of an expression is independent of the way the result is used | it depends

only on the operand values. In a lazy language the amount and order of evaluation

is often under the 
ontrol of the 
onsumer of the result. This 
onfers extra expres-

sive power | but makes it very hard to 
onstru
t 
ost models, and means that the

programmer must spe
ify the evaluation degree of an expression: namely how mu
h

evaluation should be performed (Klusik et al., 2000a; Trinder et al., 1998).

Properties of Haskell that make it attra
tive as a 
omputation language and a

basis for a 
oordination language are as follows. The individual properties are not

unique to Haskell: many are properties of other lazy fun
tional languages, or pure

subsets of stri
t fun
tional languages.

Referential Transparen
y. A key advantage of a pure 
omputation language is

that it 
an be easily married to many di�erent 
oordination languages be
ause ref-

erential transparen
y guarantees that exe
ution order is immaterial. The range of


oordination languages is amply illustrated by the languages outlined in Se
tions 4

and 5. A pure 
omputation language 
onveys a number of immediate pra
ti
al bene-

�ts. Parallel semanti
s are relatively easily developed, e.g. the operational semanti
s

for GpH and Eden (Baker-Fin
h et al., 2000; Hidalgo Herrero & Ortega Mall�en,

2000). The language is amenable to analyses, e.g. the non-determinism analysis in

Eden (Pena & Segura, 2000). Pure languages are amenable to program derivation,


ompilation by transformation, and transformations for optimising 
oordination are

easily introdu
ed: the Eden 
ompiler is a good example (Pareja et al., 2000).

Laziness. A 
omputation language with non-stri
t evaluation naturally supports

highly-dynami
 
oordination where evaluation is performed and data is 
ommuni-


ated on demand. Assuming that the exe
ution 
ost of the 
oordination is small


ompared with the 
omputation, the primary 
ost of non-stri
t 
oordination is ad-
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ditional 
ommuni
ation. For example where an eager language simply sends data

from produ
er to 
onsumer, a lazy language requires an additional message from the


onsumer to request the data. The bene�t gained by the additional 
ommuni
ation

in a lazy language is a natural throttling of both 
ommuni
ation and 
omputation.

An example of 
ommuni
ation throttling is a remote thread 
onsuming a small

part of a large data stru
ture, where only that small part is 
ommuni
ated. Where

both stri
t fun
tional and data
ow languages often su�er from the eager 
reation

of ex
ess parallelism, a lazy language ameliorates these problems at the 
ost of

spe
ifying how mu
h evaluation should be performed. Finally laziness fa
ilitates

the separation of 
on
erns, e.g. evaluation strategies in GpH make essential use of

laziness to separate 
omputation and 
oordination (Trinder et al., 1998).

Abstra
tion Me
hanisms. High-level modular 
oordination fa
ilities are produ
ed

using Haskell's data and 
ontrol abstra
tions in
luding 
lasses, modules, higher-

order fun
tions, polymorphism and abstra
t data types. Sin
e non-stri
t languages

separate the de�nition of a value from its evaluation, the programmer has the ad-

ditional 
exibility to de
ide where to spe
ify the 
oordination. For example it is

possible to spe
ify 
oordination when 
omposing fun
tions, by atta
hing a 
oor-

dination 
onstru
t to the value passed between fun
tions, without breaking the

fun
tion abstra
tion. In the same way that the demand on the result of a fun
tion


ontrols the evaluation degree from outside, 
oordination 
onstru
ts 
an 
ontrol the

parallelism from outside. More important for large systems, this abstra
tion s
ales

to expressing 
oordination only at module interfa
es (Loidl et al., 1999).

Polymorphi
 Strong Typing. The bene�ts of typing in 
omputation languages

are well-established, but the bene�ts of a typed 
oordination language are less

so. Strong typing ensures that 
oordination expressions are well-formed and re-

du
es runtime errors, and typed 
oordination 
onstru
ts in
lude pro
ess types in

Eden (Breitinger et al., 1997), and pla
ement dire
tives in Caliban (Taylor, 1997).

Polymorphi
 types enable the 
onstru
tion of generi
 
oordination 
onstru
ts. Ex-

amples in
lude skeletons in Eden (Klusik et al., 2000b) and polymorphi
 data �elds

in Data Field Haskell (Holmerin & Lisper, 2000). Open distributed languages re-

quire dynami
 typing to enfor
e type 
orre
t interfa
es to new programs, e.g. to a

new 
lient or applet. Unusually, some Haskell-based languages are 
losed, e.g. Brisk

and GdH, and hen
e 
an be stati
ally typed.

Implementation Bene�ts. Due to the 
oroutine-like evaluation in lazy languages,

their implementations already have many of the me
hanisms required by parallel

and distributed languages. For example Haskell implementations have me
hanisms

for en
apsulating suspended 
omputations for subsequent evaluation, and it is 
on-

venient to transfer work from pro
essor to pro
essor as a suspension. Similarly,

many lazy language implementations are based on graph redu
tion, and the graph

is a 
onvenient and uniform stru
ture for 
ommuni
ating both 
ode and data.

Pragmati
 Fa
tors. There are many pra
ti
al reasons for sele
ting Haskell as

a 
omputation language: the language is standardised and 
ompilers are well-

developed, with good sequential optimisation and support important pra
ti
al fea-

tures like useful libraries and a foreign language interfa
e. The implementations are
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both open sour
e and modular, and hen
e relatively easily adapted. Moreover there

are tools like pro�lers available, and there is an a
tive and supportive 
ommunity.

Properties of Haskell that make it unattra
tive as a 
omputation language and

a basis for a 
oordination language are as follows.

Lazy Evaluation. As outlined above, lazy evaluation must frequently be over-


ome to obtain suÆ
ient parallelism or distribution. Moreover, it is mu
h harder

to develop time and spa
e 
ost models for non-stri
t languages (Sands, 1990; Loidl,

1998).

Limited Module and Class Systems. More sophisti
ated systems than the

Haskell98 module and 
lass system would fa
ilitate the en
apsulation and deriva-

tion of 
oordination 
onstru
ts. In GpH for example, it would be bene�
ial to be

able to derive basi
 evaluation strategies for new abstra
t data types, e.g. an rnf

strategy that redu
es values of the new type to root normal form (Trinder et al.,

1998).

Cumbersome State Manipulation. Distributed programs ne
essarily manipulate

state on multiple pro
essors. However, des
ribing stateful 
omputations in Haskell's

monadi
 
onstru
ts is relatively verbose and hard to reason about.

Broadly speaking the properties that make Haskell a suitable 
omputation lan-

guage are braodly similar to the properties that make it a good sequential language:

namely its referential transparen
y, sophisti
ated type system and good abstra
tion

me
hanisms as well as a number of pragmati
 fa
tors. These attra
tions are suÆ-


ient to over
ome the additional 
oordination required to subvert the default lazy

evaluation.

3 Coordination Language Con
epts

Computer hardware may be arranged in a large variety of ways, ranging from single

pro
essors, shared-memory and distributed-memory multipro
essors to networks of

ma
hines. Parallel and distributed languages re
e
t some of the underlying ar
hi-

te
ture, while other languages abstra
t over it. In this se
tion we de�ne a number of


on
epts to fa
ilitate parallel and distributed language 
lassi�
ation. Be
ause of the

large number of 
on
epts that distributed languages may or may not support it is

very hard to 
onstru
t a simple yet a

urate 
lassi�
ation, although a number have

been given, e.g. (Skilli
orn & Talia, 1998). Our de�nitions and 
lassi�
ation are

neither new nor unusual, but are suitable for de�ning and 
lassifying the 
oordina-

tion in parallel and distributed fun
tional languages. The 
lassi�
ation is intended

for small-s
ale systems 
omposed of programs written in the same language. In


ontrast, large-s
ale distributed systems are supported by standard interfa
es like

CORBA (Siegel, 1997) or Mi
rosoft DCOM (Merri
k, 1996) and may have 
ompo-

nents written in multiple languages, supplied by several vendors, be exe
uted on a

heterogeneous 
olle
tion of platforms, and have elaborate fault toleran
e.

Pro
essing Element (PE). A physi
al devi
e that performs 
omputation, typi
ally

a pro
essor with memory and asso
iated physi
al resour
es su
h as disk, s
reen, et
.

Thread. An independent sequen
e of exe
uting instru
tions. Sometimes also

known as a lightweight pro
ess to indi
ate that a thread has minimal private re-
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sour
es. Threads may be expli
it with 
onstru
ts for 
reation and termination;

semi-expli
it being managed by dire
tives or annotations; or entirely impli
it e.g.

being managed by a data-parallel or skeleton 
ompiler. A (semi-)expli
it approa
h

is typi
ally taken by distributed languages su
h as Fa
ile Antigua (Thomsen et al.,

1993) and GdH (Pointon et al., 2000), whereas parallel languages tend to favour

a more impli
it approa
h, e.g. HDC (Herrmann & Lengauer, 2000) and High Per-

forman
e Fortran (HPF, 1993). An important distin
tion is between pure threads

that only return a value, and state-transforming threads that perform operations

on external state.

Thread Intera
tion. The term used to des
ribe both 
ommuni
ation and syn-


hronisation between threads. Communi
ation is the ex
hange of data and syn-


hronisation is the 
oordination of 
ontrol. The two 
on
epts are 
losely related

and typi
ally intertwined together, e.g. 
ommuni
ation requires syn
hronisation to

safely pass data to another thread, and some form of 
ommuni
ation is ne
essary

to indi
ate that syn
hronisation has o

ured. In languages with impli
it intera
-

tions threads typi
ally intera
t using shared data, freeing the programmer from

spe
ifying the intera
tions. For example GpH threads intera
t via shared variables,

and Java threads intera
t via shared obje
ts using syn
hronised methods (Da
onta

et al., 1998). In languages with expli
it intera
tions threads in the same lo
ation

typi
ally intera
t using shared lo
ation resour
es, e.g. a semaphore. If the threads

are in di�erent lo
ations then intera
tions o

ur through some global resour
e, e.g.

they may address a 
hannel or the mailbox of a thread.

Lo
ation. A named bounded spa
e 
ontaining resour
es, like memory and I/O


apabilities, and usually threads. A lo
ation may reside on a PE or a group of

PEs. A lo
ation is an abstra
tion of the familiar pro
ess 
on
ept, but is more

general be
ause a lo
ation's threads may be exe
uting di�erent programs, or it

may 
ontain no threads. A language is lo
ation independent if lo
ations are impli
it,

e.g. enabling a �le to be a

essed regardless of its lo
ation. A language is lo
ation

aware if lo
ations are expli
it, enabling the programmer to utilise the resour
es of a

lo
ation, e.g. forking a new thread onto a PE. Examples of abstra
tions for lo
ation

in
lude Fa
ile Antigua (Thomsen et al., 1993) whi
h provides nodeid to identify a

parti
ular PE and GdH (Pointon et al., 2000) with PEId to name a lo
ation.

Open/Closed Systems. There is no reason why 
ommuni
ating threads must be-

long to the same program, and often large systems 
onsist of many 
o-operating

programs. In a 
losed system there is a stati
 set of programs being exe
uted and

all modes of inter-thread intera
tion are known. Hen
e the intera
tions 
an be stat-

i
ally 
he
ked, e.g. for type safety, deadlo
k et
. An open system 
omprises multiple

exe
uting programs intera
ting using a prede�ned proto
ol, for example in a 
lient-

server model. This requires some language support to initialise 
ommuni
ation to


onne
t to other programs. Su
h languages support a dynami
 model that is open

in that it 
an be extended to in
lude new programs. However, the intera
tions

between su
h a dynami
 set of programs 
annot be stati
ally 
he
ked.

Fault Toleran
e. The ability of a program to dete
t, re
over and 
ontinue after

en
ountering faults. Faults may either be internal to the pro
ess, e.g. divide by zero,

or external, e.g. disk failure, user interrupt.
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3.1 Language Classi�
ation

Languages 
an be 
lassi�ed by the 
oordination 
on
epts they support as follows.

Sequential languages support a single thread and are very 
ommon, examples in-


lude Haskell98 (Peyton Jones et al., 1999) and SML (Milner et al., 1997). Con-


urrent languages support expli
it intera
tions between multiple threads, and ex-

amples in
lude Con
urrent Haskell (Peyton Jones et al., 1996) and CML (Reppy,

1992). Parallel languages support multiple PEs hosting multiple threads usually

with impli
it intera
tions and lo
ation independen
e. They aim to redu
e program

exe
ution time. Parallel extensions of Haskell in
lude Eden (Breitinger et al., 1997),

Nepal (Chakravarty et al., 2001), and many others 
overed in Se
tion 4. Distributed

languages support multiple PEs hosting multiple threads with expli
it intera
tions

and lo
ation awareness. Distributed languages are also more likely to support open

systems and more sophisti
ated fault toleran
e. Distributed Haskells in
lude Haskell

with Ports (Hu
h & Norbisrath, 2000), GdH (Pointon et al., 2000), and the others


overed in Se
tion 5.

The remainder of the paper fo
usses on parallel and distributed fun
tional

languages, 
on
urrent languages are omitted be
ause most exe
ute either at a

single lo
ation or on low-laten
y shared-memory ar
hite
tures where lo
ation is

relatively unimportant. Figure 1 
lassi�es parallel and distributed Haskells, to-

gether with a few well-known languages, using thread intera
tion, lo
ation inde-

penden
e/awareness and open/
losed properties.

Haskell with Ports
Erlang

Explicit Interaction

Implicit Interaction

Eden
GpH

Parallel
GdH

Brisk

Distributed Haskell

Distributed

Nepal

5.2
5.3

5.3

5.3

5.1
5.3

Java

Closed System
Location Awareness Location Awareness

Open System
Location Independence

4.3
4.3

Caliban 4.4

Curry

HPF

Data Field Haskell
Data Parallel Haskell

HDC

4.2
4.2

4.1

4.2

Fig. 1. Parallel and Distributed Haskell Classi�
ation.

4 Parallel Haskells

The goal of parallel programming is to a
hieve higher performan
e, thereby redu
ing

runtime or in
reasing the tra
table problem size. This se
tion fo
usses on parallel
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oordination language 
onstru
ts and paradigms: it is not possible to give meaning-

ful performan
e 
omparisons of all the languages surveyed be
ause the languages

are implemented on a wide variety of parallel ar
hite
tures, and few are available

on multiple platforms. We do, however, give dire
tly 
omparable measurements for

Eden and GpH in Se
tion 4.3.3. For the other languages we provide qualitative

performan
e measures and referen
e more detailed dis
ussion. Substantial perfor-

man
e 
omparisons of several programs implemented in Eden, GpH and PMLS, a

stri
t parallel fun
tional language, are reported in (Loidl et al., 2001a).

Adding 
oordination to a 
omputation language does not 
hange its expressive

power. Be
ause performan
e is intensional, i.e. not exposed in a standard semanti
s

of the language, many parallel Haskells make 
oordination substantially impli
it.

Typi
ally parallel languages are 
losed, provide little or no fault toleran
e, and lim-

ited lo
ation awareness. In a parallel language lo
ation is only indire
tly important

be
ause it may enable performan
e improvements to the program, e.g. improved

data lo
ality.

Parallel Haskells are illustrated and 
ompared using the sumEuler program shown

in Figure 2. The program 
omputes the sum of a list of Euler totient values pro-

du
ed by the euler fun
tion, i.e. the number of integers that are relatively prime to

a given integer. It is also an instan
e of a 
ommon 
omputational stru
ture, namely

a fold-of-map. More interestingly, sumEuler exposes several 
oordination issues.

Firstly, it is inherently data parallel be
ause of the independen
e of the euler 
om-

putations. Se
ondly, good performan
e 
an only be obtained by sele
ting a good

thread granularity. This is be
ause individual 
alls to euler are very 
heap and

hen
e several must be 
ombined into a single parallel thread to o�set thread man-

agement 
osts. This is a
hieved by the splitAtN fun
tion, shown in Figure 3, that

partitions the input list into \
hunks". Thirdly, the sum (fold) must be e�e
tively

parallelised and this is done by 
omputing the sum of the 
hunks of totient values,

before 
omputing the overall sum.

The remainder of this se
tion is stru
tured by 
oordination paradigm. We loosely

follow the 
lassi�
ation given in (Loogen, 1999), whi
h also 
ontains a more de-

tailed dis
ussion of non-Haskell parallel fun
tional languages. We relate the parallel

Haskells dis
ussed in Se
tions 4.1, 4.2, 4.3, and 4.4 with other parallel fun
tional

languages in Se
tion 4.5, and summarise by dis
ussing parallel language pragmati
s

in Se
tion 4.6.

4.1 A Skeleton-based Haskell

Skeletons are a popular parallel 
oordination 
onstru
t. Typi
ally, a language has

a small set of prede�ned skeletons, where ea
h skeleton is a higher-order fun
tion

des
ribing a 
ommon 
oordination pattern with an eÆ
ient parallel implementa-

tion (Cole, 1999). Rather than managing an unstru
tured set of parallel threads,

the programmer need only use the higher-order fun
tions appropriately to introdu
e

parallelism. Often these higher-order fun
tions work over 
ompound data stru
tures

and 
onsequently the resulting parallel 
ode often resembles data parallel 
ode as

dis
ussed in Se
tion 4.2.
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{ Top level fun
tion:

sumEuler :: Int ! Int

sumEuler n = sum [ euler i | i  [n,n-1..0℄ ℄

{ Euler totient fun
tion:

euler :: Int ! Int

euler n = length (filter (relprime n) [1..(n-1)℄)

{ Auxiliary fun
tions:

{ Determine whether x and y are relatively prime

relprime :: Int ! Int ! Bool

relprime x y = h
f x y == 1

{ Find the highest 
ommon fa
tor of x and y

h
f :: Int ! Int ! Int

h
f x 0 = x

h
f x y = h
f y (rem x y)

Fig. 2. Sequential Haskell98 version of sumEuler

splitAtN :: Int ! [a℄ ! [[a℄℄

splitAtN n [℄ = [℄

splitAtN n xs = ys : splitAtN n zs

where (ys,zs) = splitAt n xs

Fig. 3. A Clustering Fun
tion

4.1.1 HDC

HDC (Herrmann & Lengauer, 2000) is a stri
tly-evaluated subset of Haskell with

skeleton-based 
oordination. HDC programs are 
ompiled using a set of skeletons for


ommon higher-order fun
tions, like fold and map, and several forms of divide-and-


onquer. The 
urrent implementation supports two divide-and-
onquer skeletons

and a parallel map, and the system relies on the use of these higher-order fun
tions

to generate parallel 
ode. Unlike Haskell, HDC does not implement type 
lasses,

and has stri
t semanti
s to fa
ilitate stati
 thread pla
ement. Language-level lists

are implemented as arrays internally. List 
omprehensions are 
ompiled to map and

filter, where map operates in parallel over these arrays. In summary, HDC has

purely impli
it threads with impli
it intera
tion. It is lo
ation independent, sin
e

parallelism is not expli
it in the program at all.

In HDC it is possible to a
hieve parallel exe
ution of the 
ode in Figure 2 without

any 
ode 
hanges. In tuning the performan
e of the parallel program, however, it

is often ne
essary to modify the 
ode, so as to weaken data dependen
ies or to in-


rease granularity. In this 
ase we 
an in
rease the granularity, i.e. the 
omputation
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osts, of the individual threads by 
ombining several euler 
omputations into a

single thread and 
omputing the sum inside ea
h thread. The additional argument


 spe
i�es the size of these 
hunks of input data, and splitAtN is used to gener-

ate the 
hunks. The fun
tion seqmap produ
es the same result as map but enfor
es

sequential evaluation of the euler fun
tions.

sumEuler :: Int ! Int ! Int

sumEuler 
 n = sum [ (sum . seqmap euler) x | x  splitAtN 
 [n,n-1..0℄ ℄

Fig. 4. HDC Version of sumEuler

A parti
ular fo
us of the HDC system is the time and spa
e eÆ
ient stati
 thread

pla
ement. The 
ompiler uses a library of skeletons to de
ompose a program into

parallel threads and pla
e the threads on the available PEs. In 
ontrast languages

su
h as GpH and Eden, use more 
exible, but also more expensive, dynami
 resour
e

management.

Re
e
ting the fa
t that the HDC 
ompiler is still a prototype, only a set of fairly

small example programs has been 
ompiled to eÆ
ient 
ode: a Karatsuba algorithm

for polynomial multipli
ation, n-queens, maximum independent sets and 
onvex hull


omputations. On a 1024-pro
essor Transputer-based Parsyte
 GCel-1024 ma
hine

s
alable three-digit speedups are reported for these programs in (Herrmann, 2000).

4.2 Data Parallel Haskells

Data parallel languages (O'Donnell, 1999) fo
us on the eÆ
ient implementation

of the parallel evaluation of every element in a 
olle
tion. The fo
us on de�ning

parallelism over large data stru
tures makes this approa
h very appealing for the

parallelisation of data-intensive appli
ations. Haskell's powerful 
onstru
ts for bulk

data types, in parti
ular lists, provide a very useful basis for de�ning data-parallel


onstru
ts. Indeed, all of the languages dis
ussed here use some parallel extension

of list 
omprehensions and impli
itly parallel higher-order fun
tions su
h as map.

Compared to other approa
hes to parallelism, the data parallel approa
h makes it

easier to develop good 
ost models, although, it is notoriously diÆ
ult to develop


ost models for languages with a non-stri
t semanti
s. Typi
ally data parallel lan-

guages use a 
losed system model and impli
it parallelism. Lo
ation awareness is not

required at the program level be
ause it is impli
it in the data parallel exe
ution.

4.2.1 Data Field Haskell

Data Field Haskell (Holmerin & Lisper, 2000) extends Haskell with the new notion

of data �elds: generalisations of arrays, with parallel bulk data (
olle
tion-oriented)

operations de�ned over them, as shown in Figure 5. In general, a data �eld de�nes

a partial fun
tion from index domain to value domain. Data �elds may spe
ify

various multidimensional shapes, sparse or dense 
ontents, and �nite or in�nite



Parallel and Distributed Haskells 11


lass Pord a . . .

type (Pord a, Ix a) ) Data�eld a b = . . .

type (Pord a, Ix a) ) Bounds a = . . .

{ operations over data�elds: 
onstru
tion and sele
tion

datafield :: (Pord a,Ix a) ) (a ! b) ! Bounds a ! Data�eld a b

(!) :: Data�eld a b ! a ! b

{ operations over bounds of a data�eld

bounds :: (Pord a,Ix a) :: Data�eld a b ! Bounds a

(<:>) :: (Ix a, Pord a) ) a ! a ! Bounds a

{ hyperstri
t evaluation

hstri
tTab :: (Pord a, Ix a, Eval a) ) Data�eld a b ! Data�eld a b

{ forall abstra
tion (language 
onstru
t)

forall apat

1

... apat

n

! exp

Fig. 5. Basi
 Coordination Constru
ts in Data Field Haskell

size. A ri
h set of fun
tions for manipulating bounds are de�ned, e.g. 1<:>n de�nes

a dense index domain of all integers between 1 and n. The 
omputation over a

data�eld is de�ned either as a forall-abstra
tion, i.e. a fun
tion applied to the

index domain, or via a set of prede�ned higher-order fun
tions over data�elds, e.g. a

fold-like foldlDf. To express the extent to whi
h an expression should be evaluated

Data Field Haskell introdu
es fun
tions for stri
t and hyperstri
t evaluation of

Haskell expressions, e.g. hstri
tTab. Data Field Haskell has been implemented as

an extension for Haskell 1.3 on top of the nh
13 
ompiler (R�ojemo, 1995). However,

no parallel implementation is available, yet.

sumEuler :: Int ! Int ! Int

sumEuler 
 n =sumDf ( forall i !

sumDf ( forall j ! euler (xs!i)!j))

where xs = mkField 
 n

mkField :: Int ! Int ! Data�eld Int (Data�eld Int Int)

mkField 
 n = datafield ( � i !

datafield ( � j ! min 
*i+j n ) (0<:>
-1)

(0<:>n+
-1 `div` 
 - 1)

sumDf :: (Pord a, Ix a, Num b) ) Data�eld a b ! b

sumDf = foldlDf (+) 0

Fig. 6. Data Field Haskell Version of sumEuler

The example 
ode in Figure 6 demonstrates how to implement sumEuler in Data
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Field Haskell. In mkField an expli
it data�eld 
onstru
tor is used to build a nested

data�eld. The outer �eld ranges over the 
hunks that are mapped onto pro
essors.

The inner �eld ranges over the values passed to the euler fun
tion on one pro
es-

sor. The 
urrent, sequential, implementation does not distinguish between the two

forall 
onstru
ts, but in the parallel implementation it is planned to enable par-

allel exe
ution by 
hoosing an appropriate, parallel, index domain. To avoid high

overhead when 
onverting lists into data�elds, most operations are performed on

the data�elds, even if there is little parallelism in the exe
ution of the 
ode.

So far only a small set of sequential programs has been implemented in Data Field

Haskell. The largest appli
ations in
lude a parti
le simulation, a neural network

relaxation model, and an LU-fa
torisation algorithm.

4.2.2 Nepal

The extension of Haskell developed in the Nepal proje
t (Chakravarty et al., 2001),

here 
alled Nepal for short, adds parallel arrays to Haskell. It provides spe
ial syn-

tax su
h as array 
omprehensions and parallel implementations of basi
 fun
tions

over these arrays. Similar in spirit to the NESL language (see Se
tion 4.5) data

parallelism 
an be nested, a
hieving a high degree of 
exibility. A spe
ial 
attening

transformation is used to transform nested into 
at data parallelism (Chakravarty

& Keller, 2000).

Using the new language 
onstru
ts for arrays the implementation of sumEuler

in Nepal is straightforward and shown in Figure 7. All standard operations on lists,

su
h as length, filter, et
, have 
orresponding versions over parallel arrays. The

euler fun
tion is modi�ed to use arrays as well, to make better use of the 
attening

transformation thereby a
hieving a better data distribution. Array 
omprehensions

of the form [: : : : :℄ are analogous to Haskell's list 
omprehensions and are trans-

lated into 
alls to the fun
tions mapP and filterP, whi
h are in turn implemented

as 
alls to parallel 
ode. Nepal's 
attening transformation in 
ombination with a

type system that distinguishes lo
al from global values enables the 
ompiler to au-

tomati
ally transform from the 
ode in Figure 7 into a 
lustered version with better

granularity (Keller & Chakravarty, 1999). On the positive side, this approa
h of im-

pli
it parallelism is 
onvenient for the programmer and leads to 
on
ise programs.

However, the downside is that 
lustering is outside the programmer's 
ontrol, whi
h

implies that it 
annot be easily modi�ed nor adapted dynami
ally.

sumEuler :: Int ! Int

sumEuler n = sumP [: euler i | i  [:n, n-1 .. 0:℄ :℄

euler :: Int ! Int

euler n = lengthP (filterP (relprime n) [:1 .. n-1:℄)

Fig. 7. Nepal Version of sumEuler
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Nepal is 
urrently being implemented as an extension of GHC with the follow-

ing main steps. The 
attening transformation maps nested array 
omputations to


at array 
omputations. Then the data parallel primitives are unfolded by de
om-

posing them into lo
al 
omponents, with optimisations su
h as array loop fusion

to improve granularity, and global 
omponents, introdu
ing 
ommuni
ation. For

parallel exe
ution library routines of a stru
tured 
ommuni
ation library are used

to provide a high level of portability. Performan
e measurements of the 
urrent

sequential implementation show a high eÆ
ien
y of the array 
ode, signi�
antly

outperforming both standard Haskell arrays and list-based implementations of test

programs su
h as a Barnes-Hut algorithm. Parallel performan
e measurements of

a hand-translated Barnes-Hut algorithm a
hieved promising speedups on up to 24

pro
essors on a Cray T3E multi-pro
essor (Chakravarty & Keller, 2000).

4.2.3 Data Parallel Haskell

An older system that used su
h a data parallel approa
h was Data Parallel

Haskell (Hill, 1994). The 
entral idea of Data Parallel Haskell was to repla
e the

single \aim" of sequential 
omputation, namely 
omputing the result value, by a

series of aims of evaluation and to for
e evaluation on all of them. Parallel per-

forman
e 
ould be improved by manipulating the aim, whi
h be
omes a 
entral


omponent of Data Parallel Haskell's operational semanti
s, but remains hidden

from the programmer. The goal of this design was to a
hieve data-parallel exe
u-

tion without for
ing stri
t evaluation and thereby sa
ri�
ing the advantages of a

language with non-stri
t semanti
s.

As new language 
onstru
ts Data Parallel Haskell de�ned spe
ial arrays 
alled

PODs (parallel data stru
tures), represented as one-dimensional sparse and po-

tentially in�nite index/value pairs. POD 
omprehensions were used to de�ne data

parallelism. These 
omprehensions were 
ompiled to parallel implementations of

the well-known map, fold and s
an fun
tions. The implementation used program

transformation to ve
torise a fun
tional program. Data Parallel Haskell has been

implemented as a parallel extension of Haskell 1.2 on the GHC 0.16 
ompiler, but

there is no 
urrent development.

4.3 Semi-Expli
it Parallel Haskells

Semi-expli
it parallel languages provide a few high-level 
onstru
ts for 
ontrolling

key 
oordination aspe
ts, while automati
ally managing most 
oordination aspe
ts

stati
ally or dynami
ally. Histori
ally, annotations were 
ommonly used for semi-

expli
it 
oordination, but more re
ent languages provide 
ompositional language


onstru
ts. As a result, the distin
tion between semi-expli
it 
oordination and 
o-

ordination languages is now rather blurred, but the key di�eren
e in the approa
h

is that semi-expli
it languages aim for minimal expli
it 
oordination.
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4.3.1 GpH

GpH (Trinder et al., 1998) is a modest extension of Haskell with parallel (par)

and sequential (seq) 
omposition as 
oordination primitives (see Figure 8). Deno-

tationally, both 
onstru
ts are proje
tions onto the se
ond argument. Operationally

seq 
auses the �rst argument to be evaluated before the se
ond and par indi
ates

that the �rst argument may be exe
uted in parallel. The latter operation is 
alled

the \sparking" of parallelism and is used in di�erent variants in many parallel lan-

guages. The runtime-system, however, is free to ignore any available parallelism. In

this model the programmer only has to expose expressions in the program that 
an

usefully be evaluated in parallel. The runtime-system manages the details of the

parallel exe
ution su
h as thread 
reation, 
ommuni
ation et
. In summary, GpH

has a 
losed system model with semi-expli
it parallelism and impli
it 
ommuni
a-

tion, based on a virtual shared heap, and lo
ation independen
e. GpH is publi
ly

available from (GPH, 2001).

par :: a ! b ! b { parallel 
omposition

seq :: a ! b ! b { sequential 
omposition

type Strategy a = a ! () { type of evaluation strategy

using :: a ! Strategy a ! a { strategy appli
ation

rwhnf :: Strategy a { redu
tion to weak head normal form


lass NFData a where { 
lass of redu
ible types

rnf :: Strategy a { redu
tion to normal form

Fig. 8. Basi
 Coordination Constru
ts in GpH

Experien
e of implementing non-trivial programs in GpH shows that the un-

stru
tured use of par and seq operators 
an lead to rather obs
ure programs. This

problem 
an be over
ome with evaluation strategies : lazy, polymorphi
, higher-

order fun
tions 
ontrolling the evaluation degree and the parallelism of a Haskell

expression. They provide a 
lean separation between 
oordination and 
omputation.

The driving philosophy behind evaluation strategies is that it should be possible to

understand the 
omputation spe
i�ed by a fun
tion without 
onsidering its 
oor-

dination. Figure 8 shows the basi
 operations over strategies. The using 
onstru
t

applies a strategy to a Haskell expression. The basi
 strategy rwhnf redu
es an

expression to weak head normal form (WHNF), the default in Haskell. The over-

loaded strategy rnf redu
es an expression to normal form (NF), and is instantiated

for all major types.

In GpH it is possible to spe
ify blo
k-wise evaluation over the input list with


hunk size 
 applying the parListChunk 
 rnf strategy to the list 
omprehension.

However, without 
hanging the 
omputational 
ode it is not possible to 
ompute

the sum of ea
h 
hunk. A version that does so is given in Figure 9. Again the
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sumEuler :: Int ! Int ! Int

sumEuler 
 n = sum ([ (sum . map euler) x | x  splitAtN 
 [n,n-1..0℄ ℄

`using` parList rnf)

Fig. 9. GpH Version of sumEuler

splitAtN fun
tion is used to split the list into 
hunks of size 
 for granularity


ontrol. The strategy parList de�nes data parallelism over these segments. Ea
h

thread generated by this strategy 
omputes the fun
tion sum . map euler. This


lustering te
hnique 
an be generalised to arbitrary data stru
tures as dis
ussed

in (Loidl et al., 2001b). In summary, the programmer has the 
hoi
e working purely

on strategy level, leaving the 
omputational 
ode of the program un
hanged, or to

perform some simple transformations of the 
omputational 
ode to further tune

parallel performan
e.

GpH has been used to engineer several large programs, four of whi
h are dis
ussed

in (Loidl et al., 1999). The largest program is Lolita, a natural language pro
essor


omprising tens of thousands of lines of 
ode, that has been parallelised for a shared

memory ma
hine. Naira is a parallelising 
ompiler for a subset of Haskell, based

on the data
ow model of 
omputation. Bla
kspots is a data-intensive real-world

appli
ation to �nd bla
kspots in a database of traÆ
 a

ident re
ords. LinSolv is

an exa
t linear system solver. Performan
e results for all programs on worksta-

tion networks and a Sun SMP ma
hine are reported in (Loidl et al., 1999), and

performan
e 
omparisons with Eden are reported in Se
tion 4.3.3.

4.3.2 Eden

Eden (Breitinger et al., 1997) 
oordinates parallel 
omputations using expli
it pro-


ess 
reation and inter
onne
tion, enabling the programmer to de�ne arbitrary

pro
ess networks. Thread intera
tion 
an be either impli
it, via shared variables

and fun
tion parameters on pro
ess 
reation time, or expli
it via 
ommuni
ating

parameters to pro
esses during pro
ess life time. The language uses a 
losed system

model with lo
ation independen
e. A prototype of the Eden system is available on

request.

Figure 10 summarises the basi
 
oordination 
onstru
ts available in Eden. Pro-


ess abstra
tions with type Pro
ess a b de�ne the behaviour of pro
esses with input

of type a and output of type b analogous to fun
tions of type a ! b de�ned by �-

abstra
tions. A pro
ess abstra
tion spe
i�es the mapping of data input in

1

: : :in

m

via inports to data output out

1

: : :out

m

via outports. Inports and outports 
onne
t

(unidire
tional) 
ommuni
ation 
hannels to pro
esses. Communi
ation 
hannels are

not autonomous obje
ts, but tightly 
oupled with pro
esses. Pro
esses and their in-

ter
onne
ting 
hannels are 
reated by the evaluation of pro
ess instantiations of the

form p # x whi
h applies the pro
ess abstra
tion p to the expression x, represent-

ing the input tuple. The result of a pro
ess instantiation is the tuple of outgoing

data of the newly 
reated pro
ess. Eden pro
esses use independent threads to pro-
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newtype Pro
ess a b = : : :

{ pro
ess abstra
tion (language 
onstru
t)

pro
ess (in

1

,...,in

m

) ! (out

1

,...,out

n

) :: Pro
ess (a

1

,...,a

m

) (b

1

,...,b

n

)

{ pro
ess instantiation

(#) :: (Transmissible a, Transmissible b) ) Pro
ess a b ! a ! b

{ non-deterministi
 merge pro
ess

merge :: Pro
ess [[a℄℄ [a℄

Fig. 10. Basi
 Coordination Constru
ts in Eden

du
e their outputs. For ea
h output a separate thread is 
reated whi
h evaluates

the output expression to normal form and sends the result value via the 
orre-

sponding outport. Lists are transmitted as streams, i.e. element-wise. A prede�ned

non-deterministi
 pro
ess merge is provided for many-to-one 
ommuni
ation, whi
h

is useful for spe
ifying rea
tive systems. It takes a list of input streams and merges

the values in the order in whi
h they arrive.

In Eden the programmer typi
ally starts with a spe
i�
 pro
ess network in mind

and models this network using expli
it pro
esses. Evaluation strategies may also be

required. This may amount to a higher e�ort in implementing a parallel algorithm,


ompared to GpH or HDC, espe
ially when it is not possible to use one of a set

of prede�ned Eden skeletons for parallel exe
ution (Klusik et al., 2000b). It o�ers,

however, more possibilities for tuning the parallel performan
e.

sumEuler :: Int ! Int ! Int

sumEuler 
 n = sum ([ (pro
ess z ! (sum . map euler) z) # x

| x  splitAtN 
 [n,n-1..0℄ ℄

`using` seqList r0)

Fig. 11. Eden Version of sumEuler

Figure 11 shows an Eden version of the sumEuler program. The list 
ompre-

hension de�nes parallelism over the 
hunks of input data by applying a pro
ess

abstra
tion to all 
hunks generated by splitAtN. The body of the pro
ess abstra
-

tion spe
i�es the sequential 
omputation performed by ea
h thread. The strategy

seqList r0 starts o� the evaluation of the parallel threads by enfor
ing a spine

stri
t evaluation of the list.

The largest programs implemented in Eden are a ray tra
er of several hundred

lines of 
ode, a linear systems solver and a 
he
kers program. Detailed measurements

of these programs 
an be found in (Klusik et al., 2001).



Parallel and Distributed Haskells 17

4.3.3 Eden/GpH Performan
e Comparisons

Eden and GpH are available on the same platform and hen
e we are able to sum-

marise the following dire
t performan
e 
omparisons. The measurements have been

performed on a 32-node Beowulf 
luster (Ridge et al., 1997) 
onsisting of Linux Red-

Hat 6.2 workstations with a 533MHz Celeron pro
essor, 128kB 
a
he, 128MB of

DRAM, 5.7GB of IDE disk, 
onne
ted through a 100Mb/s fast Ethernet swit
h

with a laten
y of 142�s, measured under PVM 3.4.2. For the sumEuler program

with a list length of 8000 and a 
luster size of 100, the relative speedups on 16

pro
essors are 13.1 for GpH and 12.4 for Eden.

Other programs that have been 
ompared in
lude a raytra
er based on an Id

program in the Impala ben
hmark suite (Impala, 2001). For this simple data parallel

program a stati
 mapping of threads to pro
essors proves to be most eÆ
ient, with

GpH's dynami
 resour
e management generating additional overhead. Overall, for

an input of 640 spheres and a 350�350 grid, and using 
lusters of 10 lines, Eden

a
hieves a relative speedup of 13.3 on 16 pro
essors, 
ompared to 5.2 for GpH.

An exa
t linear system solver, originally developed in GpH and ported to Eden,

a
hieved relative speedups of 6.9 (GpH) and 13.2 (Eden) for a sparse 14�14 matrix

with arbitrary pre
ision integers as input. A detailed dis
ussion of these results is

presented in (Loidl et al., 2001a) and the program sour
es are available online.

4.4 Haskell with a Coordination Language

Parallel 
oordination languages (Kelly & Taylor, 1999) are separate from the 
om-

putation language and thereby provide a 
lean distin
tion between 
oordination

and 
omputation. Histori
ally, Linda (Carriero & Gelernter, 1989) and PCN (Fos-

ter et al., 1992) have been the most in
uential 
oordination languages, and often a


oordination language 
an be 
ombined with many di�erent 
omputation languages,

typi
ally Fortran or C. Other systems su
h as SCL (Darlington et al., 1996) and

P3L (Ba

i et al., 1995) fo
us on a skeleton approa
h for introdu
ing parallelism

and employ sophisti
ated 
ompilation te
hnology to a
hieve good resour
e manage-

ment.

4.4.1 Caliban

The latest implementation of the Caliban 
oordination language uses Haskell

�

as


omputation language (Kelly, 1989; Taylor, 1997). Haskell

�

is a subset of Haskell,

mainly omitting modules and type 
lasses. Caliban has 
onstru
ts for expli
it par-

titioning of the 
omputation into threads, and for assigning threads to (abstra
t)

pro
essors in a stati
 pro
ess network. Communi
ation between pro
essors works

on streams, i.e. eagerly evaluated lists, similar to Eden. In summary, Caliban uses

a 
losed system model with 
oordination via semi-expli
it threads, 
ommuni
ation

via impli
itly de�ned data dependen
ies, and lo
ation independen
e.

Figure 12 summarises the basi
 
oordination 
onstru
ts in Caliban. Ea
h entry

represents a 
omponent in the data stru
ture Pla
ement 
ontrolling the evaluation

of a Haskell

�

expression. Sin
e Caliban's 
oordination 
onstru
ts are integrated
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NoPla
e { null assertion

Bundle [x, y℄ { pla
e x and y on the same pro
essor

Annot x { extra
t lo
ation of x

Ar
 a b { do
ument a data dependen
y between a and b

a And b { exe
ute subnets a and b on di�erent pro
essors

a With b { exe
ute subnets a with b on the same group of pro
essors

Fig. 12. Basi
 Coordination Constru
ts in Caliban

into the host language, fun
tions produ
ing pla
ement stru
tures, so 
alled net-

work forming operators (NFOs), 
an be de�ned exploiting the full power of the

host language. These NFOs are evaluated at 
ompile-time using partial evaluation

te
hniques. The variables x and y are Haskell

�

variables of type Stream represent-

ing 
omputations, whereas a and b represent pro
ess networks of type Pla
ement.

The Bundle assertion produ
es a pro
ess network of 
o-lo
ated 
omputations with

threads being generated for ea
h argument. The Annot dire
tive extra
ts pla
ement

information from a 
omputation. Ar
 is an assertion of a data dependen
y between

two pro
ess networks, whi
h is 
he
ked by the 
ompiler. Two 
omposition dire
tives

for pro
ess networks are available. The And dire
tive indi
ates that the networks

exe
ute in parallel, whereas the With dire
tive indi
ates that two networks should

be exe
uted on the same group of pro
essors.

sumEuler :: Int ! Int ! Int

sumEuler 
 n = res moreover fan res ress

where res = sum ress

ress = map (sum . map euler) 
hunks


hunks = splitAtN 
 [n,n-1..0℄

fan :: Stream ! [Stream℄ ! Pla
ement

fan s [℄ = NoPla
e

fan s (x:xs) = (Bundle [x℄) And (Ar
 x s) And (fan s xs)

Fig. 13. Caliban Version of sumEuler

Figure 13 shows the implementation of sumEuler in Caliban. In the body of

sumEuler the 
oordination expression fan res ress is applied to res by using the

moreover 
lause, similar to GpH's using. The de�nition of fan itself spe
i�es the

parallel exe
ution of every list element in its se
ond argument by using And for


omposition. It 
orresponds to GpH's parList. Overall, this 
ode is similar to the


ode used in semi-expli
it languages su
h as GpH. However, sin
e Caliban des
ribes

stati
 pro
ess networks it may employ more eÆ
ient, though less 
exible, resour
e

management.

A prototype implementation of Caliban with Haskell

�

as host language is avail-

able (Taylor, 1997). The largest appli
ations implemented in Caliban are a Ja
obi
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relaxation algorithm and a ray tra
er, introdu
ed in (Kelly, 1989). Although the

overall stru
ture of this ray tra
er is similar to the one used in the 
omparison

of GpH with Eden, it should be noted that they are based on di�erent sequential

versions and that the input size as well as parallel ar
hite
ture di�er. For an input

modelling a s
ene with 20 
ubes and a grid size of 100�100 rays, and using blo
ks

of 40 rays for granularity 
ontrol in a task farm ar
hite
ture, relative speedups of

up to 24 were a
hieved on 35 pro
essors of a 128 pro
essor Fujitsu AP1000 based

on 25MHz Spar
 pro
essors (Taylor, 1997).

4.5 Other Parallel Fun
tional Languages

Other Parallel Haskells. Para-fun
tional programming (Hudak, 1986) is the general

approa
h of adding 
ontrol dire
tives to a fun
tional program to spe
ify parallel exe-


ution. These 
ontrol dire
tives allow the programmer to des
ribe detailed exe
ution

s
hedules as well as the mapping of threads to pro
essors. A Haskell-based imple-

mentation of para-fun
tional programming on an SGI Challenge shared-memory

ma
hine is des
ribed in (Mirani & Hudak, 1995). This implementation fully inte-

grates the dire
tives into Haskell by de�ning �rst-
lass s
hedules with a monadi


type. These s
hedules are used in a similar way to evaluation strategies in GpH and

moreover 
lauses in Caliban.

Haskell-Linda (Peterson et al., 2000) is an extension of Haskell providing a bind-

ing to basi
 operations de�ned in the Linda model (Carriero & Gelernter, 1989) for

des
ribing parallel exe
ution. It is an open system model with expli
it parallelism

and impli
it syn
hronisation. In the Linda model 
ommuni
ation between parallel

threads is based on operations on a shared tuple spa
e. The basi
 operations on this

tuple spa
e, whi
h is split into several regions, are read, write, and in (for read and

remove). Parallel threads, represented as pro
ess tuples in the tuple spa
e, 
ommu-

ni
ate by reading and writing tuples from/to the tuple spa
e. In reading from the

tuple spa
e a pattern 
an be spe
i�ed. If several tuples mat
h the pattern the result

is non-deterministi
. Haskell-Linda is 
urrently used to spe
ify parallel fun
tional

rea
tive programs (Parallel-FRP) su
h as a web-based online au
tioning system.

Finally, several bindings of expli
it message passing libraries, su
h as PVM (PVM,

1993) and MPI (MPI, 1997), for Haskell have been developed (Breitinger et al.,

1998; Weber, 2000; Winstanley & O'Donnell, 1997). These languages use an open

system model of expli
it parallelism with expli
it thread intera
tion. Sin
e the 
o-

ordination language is basi
ally a stateful (imperative) language, monadi
 
ode is

used on the 
oordination level. Although the high availability and portability of

these systems are appealing, the language models su�er from the rigid separation

between the stateful and purely fun
tional levels.

Other Non-stri
t Languages. The late 80s saw an in
reasing interest in the parallel

implementation of non-stri
t fun
tional languages, whi
h is re
e
ted in the imple-

mentation of several su
h systems. The <�;G>-ma
hine (Augustsson & Johnsson,

1989) used LML with annotations for sparking and was implemented on a Sequent

Symmetry. The extension of Haskell with sparking annotations used on the paral-
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lel GRIP ma
hine (Peyton Jones et al., 1987) was a dire
t pre
ursor of the GpH

language 
overed in Se
tion 4.3.1. The LML-like, lazy, impli
itly-parallel fun
tional

language ALFL has been implemented on a distributed-memory Intel Hyper
ube

as well as on a shared-memory En
ore ma
hine (Goldberg, 1988), with near-linear

speedups for small programs su
h as nqueens on the latter ar
hite
ture.

The HDG ma
hine (Kingdon et al., 1991) implemented a Miranda-like, impli
itly-

parallel, lazy language on a Transputer network, by using the evaluation transformer

model (Burn, 1991) to extra
t parallelism. The PAM ma
hine (Loogen et al., 1989)

implemented a simple non-stri
t, higher-order language with an expli
it parallel

let 
onstru
t, in addition to the evaluation transformer model, on a Transputer

network.

Con
urrent Clean (Plasmeijr et al., 1999; N�o
ker et al., 1991) is a language with


lose similarity to Haskell, in parti
ular due to its non-stri
t semanti
s. Coordi-

nation is spe
i�ed using annotations, i.e. 
ompiler dire
tives in 
omments, similar

to, but more sophisti
ated than the dire
tives in GpH. Con
urrent Clean has been

implemented on the Transputer-based ZAPP ma
hine (Goldsmith et al., 1993),

whi
h fo
usses on divide-and-
onquer parallelism. Another implementation of Con-


urrent Clean on a Transputer network a
hieved good absolute performan
e re-

sults (Kesseler, 1996).

The Dut
h Parallel Redu
tion ma
hine proje
t (Barendregt et al., 1987; Hartel

et al., 1995) used a Miranda-like, lazy language with a spe
ial \sandwi
h" anno-

tation for des
ribing fork-and-join parallelism. Although this annotation favours

divide-and-
onquer parallelism, other paradigms su
h as data parallelism 
an be

expressed by using program transformations. The largest appli
ation is a tidal pre-

di
tion program on a small distributed-memory ma
hine.

Other Stri
t Languages. Parallel extensions to Lisp have a long history:

QLisp (Goldman et al., 1989), Paralation Lisp (Di Napoli et al., 1996), based on the

general Paralation model (Sabot, 1988), EuLisp (Padget et al., 1993),

�

Lisp (Think-

ing Ma
hine Corporation, 1990), FX (Gi�ord et al., 1992), PaiLisp (Kawamoto,

1999), BaLinda Lisp (Feng et al., 1995), TS/S
heme (Jagannathan, 1993). Some

of the most prominent and most in
uential systems are Multilisp (Halstead, 1985)

and its su

essor MulT (Kranz et al., 1989). The thread 
reation 
onstru
t in these

two languages is a future, whi
h hides the syn
hronisation between parallel threads

behind ordinary a

ess to variables in a shared address spa
e. In essen
e, it a
ts

like a par operator in GpH. To redu
e the overhead imposed by a huge number

of parallel threads, lazy task 
reation was invented by Mohr et al. (1991). This

te
hnique allows the 
omputation of a potential 
hild thread to be subsumed by

the parent thread.

SAC (Single Assignment C) (S
holz, 1996) is a stri
t, �rst-order fun
tional lan-

guage with impli
it parallelism and impli
it thread intera
tion, optimised for array

pro
essing. Its main appli
ation area is s
ienti�
 
omputing with its fo
us on ar-

ray stru
tures, whi
h 
an be abstra
ted over shape and dimensionality, and rather

regular parallelism. Good performan
e results for a Ja
obi relaxation algorithm are

reported on a shared-memory Sun Enterprise (Grel
k, 1998).
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The UFO-Lite language (Sargeant, 1993) represents a �rst-order, hybrid fun
-

tional obje
t-oriented language with impli
it parallelism and impli
it thread inter-

a
tion. Its prototype implementation on an SGI Origin fo
usses on the eÆ
ient

handling of �ne grained parallelism.

Skeleton-based Languages. A well-engineered skeleton-based language is the

impli
itly-parallel, stri
t fun
tional language PMLS (Mi
haelson et al., 2001). It

is an automati
ally parallelising 
ompiler for a pure subset of SML. The exe
u-

tion 
osts of fun
tions are pro�led by exe
uting a stru
tural operational semanti
s.

Based on this information a 
ost model for the available skeletons, possibly nested,

is used to sele
t a de
omposition and mapping of parallel threads. Measurements

on a range of parallel ma
hines in
luding a Beowulf 
luster, a Fujitsu AP3000, an

IBM SP/2, and a Sun Enterprise SMP exhibit good speedups for programs su
h as

matrix multipli
ation, a ray tra
er and a linear system solver (S
aife et al., 2001).

Other well-developed systems using a skeleton-based approa
h for parallelism are

SCL (Darlington et al., 1996) and P3L (Ba

i et al., 1995). Both systems de�ne

a 
oordination language that 
an be freely 
ombined with an arbitrary 
omputa-

tion language. In pra
ti
e these systems often use C or Fortran as 
omputation

languages. As a 
ru
ial te
hnique for the development of larger appli
ations these

languages allow the spe
i�
ation of data re-distribution to 
ompose skeletons with


on
i
ting data distributions.

Data Parallel Languages. One of the most su

essful parallel fun
tional languages

is NESL (Blello
h, 1996). NESL is a stri
t, strongly-typed, data-parallel language

with impli
it parallelism and impli
it thread intera
tion. It has been implemented

on a range of parallel ar
hite
tures, in
luding several ve
tor 
omputers. A wide

range of algorithms have been parallelised in NESL, in
luding a Delaunay algorithm

for triangularisation (Blello
h & Narlikar, 1997), several algorithms for the n-body

problem (Blello
h et al., 1996), and several graph algorithms.

Fish (Jay & Ste
kler, 1998) is a higher-order polymorphi
 language with stri
t

semanti
s. Its main innovation is the introdu
tion of shapely types that en
ode

information about the bounds of array-like obje
ts in the type system of the lan-

guage. This extended type system enables shape analysis and provides additional

information to the 
ompiler, whi
h generates very eÆ
ient sequential 
ode. The

data-parallel variant of this language, GoldFish, is still under development.

Data
ow Languages. SISAL (Cann, 1992) is a �rst-order, stri
t fun
tional lan-

guage with impli
it parallelism and impli
it thread intera
tion. Its implementation

is based on a data
ow model and it has been ported to a range of parallel ar-


hite
tures. Comparisons of SISAL 
ode with parallel Fortran 
ode show that its

performan
e is 
ompetitive with Fortran, without adding the additional 
omplexity

of expli
it 
oordination (LANL, 2001).

The pHLuid system (Flanagan & Nikhil, 1996) is a parallel implementation of Id

on networks of workstations. It uses a data
ow model of 
omputation to a
hieve

impli
it parallelism. The Id language is, despite many synta
ti
 di�eren
es, 
losely
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related to Haskell. In (Hammes et al., 1995) a good language and performan
e 
om-

parison of Id with Haskell on a realisti
 ben
hmark program is given. Id is polymor-

phi
, higher-order and has a non-stri
t semanti
s, implemented via lenient or par-

allel eager evaluation. Indeed, a fusion of Id and Haskell has been proposed (Nikhil

et al., 1995).

Derivational Approa
hes. The referentially transparent semanti
s of Haskell makes

it an attra
tive language for deriving parallel programs. In su
h an approa
h

Haskell, or often BMF notation, is used as spe
i�
ation language, and the pro-

gram is transformed, usually by hand, into a parallel program. The target language

is often C with MPI or PVM, but in some 
ases intermediate points of the transfor-

mation are already exe
utable, e.g. as Haskell+MPI programs. The most prominent

of these approa
hes are abstra
t parallel ma
hines (O'Donnell & R�unger, 2000), the

TwoL system (Rauber & R�unger, 1996), systems using BSP (Valiant, 1990) as par-

allel programming model e.g. (Loulergue, 2000), and several systems for deriving

skeleton-based parallel 
ode out of Haskell or BMF spe
i�
ations (Pepper, 1993;

Ba

i et al., 1999).

4.6 Parallel Haskell Pragmati
s

Tools and Environment. A 
ommon feature of the languages dis
ussed in this se
-

tion is their high-level and often dynami
 
oordination. Sometimes the programmer

only has to identify expressions suitable for parallel exe
ution (GpH) in other 
ases

it suÆ
es to give a high-level des
ription of a pro
ess network (Eden, Caliban). In


ontrast to detailed stati
 
oordination, the parallel behaviour indu
ed in a program

by high-level, dynami
 
oordination is far from obvious. This opa
ity is unfortunate

be
ause the programmer must have a 
lear understanding of parallel behaviour to

tune performan
e. Therefore a set of dynami
 pro�ling and visualisation tools is

very important for many parallel fun
tional languages.

The best developed set of parallel pro�ling and visualisation tools exists for GpH.

It 
onsists of a highly-tunable simulator for parallel exe
ution (GranSim) and sev-

eral parallel pro�lers in
luding GranCC and GranSP. The latter are post-mortem

tools operating on a log �le, and visualising multiple aspe
ts of parallel exe
ution,

e.g. overall a
tivity of the ma
hine, per-pro
essor a
tivity or per-thread a
tivity. For

example, Figure 14 shows an overall a
tivity pro�le of the sumEuler program from

Se
tion 4.3.1 exe
uting on a 20 pro
essor Beowulf, with exe
ution time on the x-axis

and the number of tasks on the y-axis. The tasks are separated into four 
lasses,

depending on their state: running if they are exe
uting; runnable if they 
ould be

exe
uted if a pro
essor were available; blo
ked if they await data under evaluation;

and fet
hing if they are retrieving data from another pro
essor. These tools have

been 
ru
ial in the parallelisation of a set of large GpH programs (Loidl et al.,

1999). The Eden system supports Paradise, a GranSim-like simulator (Hernandez

et al., 1999), and Caliban provides similar but less sophisti
ated visualisation tools

for analysing parallel performan
e (Taylor, 1997).
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sumEulerS_mp 5 5000 100 +RTS -qP -qPg -qg1 -qh0 -sstderr  

running runnable fetching blocked
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 ms5777Runtime = 

Average Parallelism = 10.8GUM

Fig. 14. A GpH A
tivity Pro�le

Programming Methodology. Impli
it parallelism, often promised in the 
ontext of

fun
tional languages, o�ers the enti
ing vision of parallel exe
ution without 
hanges

to the program. In reality, however, the program must be designed with parallelism

in mind to avoid unne
essary sequentialisation. In theory, program analyses su
h

as granularity, sharing, and usage analysis 
an be used to automati
ally generate

parallelism. In pra
ti
e, however, almost all 
urrent systems rely on some level of

programmer 
ontrol. The path from powerful and useful analyses, over the auto-

mati
 extra
tion of the right amount of usable parallelism, to the dynami
 resour
e

management required for these systems is a long one, and poses many resear
h

problems, espe
ially in the middle stage.

Current development methodologies have several interesting features. The 
om-

bination of languages with minimal expli
it 
oordination and good pro�ling tools

fa
ilitates the prototyping of alternative parallelisations. Obtaining good 
oordina-

tion at an early stage of parallel software development avoids expensive re-designs.

In later development stages, detailed 
ontrol over small but 
ru
ial parts of the pro-

gram may be required, and pro�ling tools 
an help lo
ate expensive parallel 
om-

putations. During performan
e tuning the high level of abstra
tion may be
ome a

burden, hiding low level features that 
ould be usefully 
ontrolled by the program-

mer. Spe
i�
 
oordination aspe
ts, su
h as evaluation degree and data pla
ement,

often have to be 
arefully spe
i�ed in some parts of a program, but they 
an only

be indire
tly 
ontrolled in languages like HDC, GpH, and Eden.

Implementation Issues. Coordination 
onstru
ts 
an be added to an existing 
om-

putation language su
h as Haskell in two ways: they may be built-in to the language,



24 P.W. Trinder and H-W. Loidl and R.F. Pointon

newPort :: IO (Port a)

writePort :: Port a ! a ! IO ()

readPort :: Port a ! IO a

mergePort :: Port a ! Port b ! IO (Port (Either a b))

registerPort :: Port a ! PortName ! IO ()

unregisterPort :: Port a ! IO ()

lookupPort :: PortHost ! PortName ! IO (Port a)

link :: Port a ! IO () ! IO Link

unlink :: Link ! IO ()

Fig. 15. Haskell with Ports Constru
ts

as in GpH and Eden, or built-on the language as a library, as in Haskell+MPI. The

main advantage of integrating parallelism into the language is that it fa
ilitates

analysis and transformations of the program. Moreover, a tight 
oupling of paral-

lelism with the runtime-system fa
ilitates dynami
 resour
e management.

On the other hand, providing a separate library for parallelism is in general easier

to implement, and a
hieves a more modular design. It is no 
oin
iden
e that there

are several systems extending Haskell with some form of standard 
ommuni
ation

library. However, the main problem of this approa
h is the mismat
h between the

de
larative 
omputation language and a library of imperative 
oordination 
on-

stru
ts. In pra
ti
e this means that monadi
, and therefore serialised, 
ode must be

used extensively, whi
h both hampers the design of parallel algorithms and elimi-

nates many of the bene�ts of a purely fun
tional 
omputation language.

5 Distributed Haskells

Many programs are naturally distributed in nature, that is they 
omprise multiple

threads intera
ting expli
itly on multiple PEs. Examples in
lude CASE tools, multi-

user simulations, multi-user distan
e learning environments. The following se
tions

des
ribe the two re
ent distributed Haskell implementations, and their relationship

to other distributed fun
tional languages.

5.1 Haskell with Ports

Haskell with Ports (Hu
h & Norbisrath, 2000) is a library for Con
urrent Haskell

that takes an imperative approa
h to distribution: adding additional monadi
 
om-

mands for 
ommuni
ation between PEs. The design of the library is in
uen
ed by

the Erlang language whi
h provides 
ommuni
ation via message passing with a

mailbox for every pro
ess (Armstrong et al., 1996), and by 
on
urrent 
onstraint

programming whi
h introdu
es the notion of a port with a single reader (Janson

et al., 1993).

Haskell with Ports has an open system model and threads intera
t using ports.
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{ Interfa
e {

data ServerMsg = Ping (Port ClientMsg)

data ClientMsg = Pong String

{ Server {

main = do

serverPort  newPort

registerPort serverPort "PingServer"

let pingServer = do

(Ping 
lientPort)  readPort serverPort

name  getEnv "HOST"

writePort 
lientPort (Pong name)

pingServer

pingServer

{ Client {

main = do

putStr "Host of ping server? "

host  getLine

serverPort  lookupPort host "PingServer"


lientPort  newPort

let

timePing p = do

putStr ("Pinging "++show p++" ... ")

(name,ms)  timeit (pingPong p)

putStrLn ("at "++name++" time="++show ms++"ms")

pingPong p = do

writePort p (Ping 
lientPort)

(Pong name)  readPort 
lientPort

return name

mapM timePing (repli
ate 4 serverPort)

return ()

Host of ping server? ushas

Pinging (pHost="137.195.52.186") ... at ushas time=60ms

Pinging (pHost="137.195.52.186") ... at ushas time=79ms

Pinging (pHost="137.195.52.186") ... at ushas time=40ms

Pinging (pHost="137.195.52.186") ... at ushas time=68ms

Fig. 16. Haskell with Ports Ping

Ports allow expli
it and dynami
ally-typed 
ommuni
ation of �rst order values

in
luding ports. Within a lo
ation 
ommuni
ation is lazy, but between lo
ations


ommuni
ation is stri
t, i.e. messages sent to lo
al threads are not stri
tly evaluated,

but any message to a remote thread is stri
t be
ause it is 
onverted to text using

show. A port may have multiple writers but only one reader, and Figure 15 lists

the distribution 
onstru
ts. A port is 
reated by newPort, and the reader must

be the port's 
reator and thus both port and reading thread reside on the same
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PE. Data is requested from the port by a blo
king readPort. The mergePort

operation enables reading from multiple ports. Values are written to a port with a

non-blo
king writePort, and hen
e ports are essentially FIFO queues.

A port is registered to make it visible to other PEs, using registerPort and

unregisterPort. On
e a port is registered it 
an be retrieved using the PE and port

names via the lookupPort operation. A separate pro
ess, the postoÆ
e, exe
utes

on ea
h PE and stores information about registered ports as well as performing

inter-PE 
ommuni
ation. Linking is the eager dete
tion of errors in a port, i.e.

a
tively wat
hing for errors, rather than handling them. By using link and unlink

an operation 
an be asso
iated with port failure, e.g. a 
leanup routine 
an be

spe
i�ed when a port dis
onne
ts. Linking together with ex
eption handling on the

read and write operations provide a sound basis for fault tolerant programming.

Ping is an example program that performs a lookup on an environment variable

on a remote PE and then returns the resulting value to the original PE. The goal

is to determine the overall time for the round trip where 
ommuni
ation is the

dominating 
ost. For 
omparison, in our network the UNIX ping utility returns a

time of the order of 0.5ms. Figure 16 shows a pair of Haskell with Ports programs

that implement ping, together with their output. The server program 
reates and

registers a port PingServer, before looping waiting for messages and responding

to them. The 
lient program performs a lookup on the spe
i�ed server for the port

PingServer, then a monadi
 map, mapM, is used to 
all timePing four times. Within

timePing, the timeit fun
tion times the pingPong 
all whi
h sends a message to

the server and waits for a reply. The 
lient program reports relatively long times,

whi
h is unsurprising for several reasons. Communi
ation pro
eeds with a message

passing from 
lient, to lo
al postoÆ
e, to remote postoÆ
e, to server, and then

ba
k through this 
hain. All these 
omponents are implemented in Haskell and

the 
ommuni
ation is relatively high level, using so
kets and the data is serialised,

i.e. manipulated as text using read and show fun
tions. The implementation is


urrently being optimised.

Other Haskell with Ports appli
ations in
lude a 
hat program where users 
om-

muni
ate in a 
lient server mode, and a database where users 
ommuni
ate through

a 
lient to a 
entral database server to manipulate the data.

In summary, Haskell with Ports provides dynami
ally typed expli
it 
ommuni
a-

tion of �rst order values and Ports using a new Ports 
onstru
t. Communi
ation

is often stri
t with no sharing of data and therefore no syn
hronisation is ne
es-

sary within the 
ommuni
ated data. An open system model allows programs to

leave and join, while registering ports allows a 
onne
ting program lo
ate spe
i�


resour
es. Lo
ation independen
e 
an be implemented but would require a major

reimplementation of existing libraries. Ex
eptions and linking support robust fault

toleran
e. The library is publi
ly available from (Haskell+Ports, 2001).

5.2 GdH

GdH (Pointon et al., 2000) is a modest 
onservative extension of Haskell98 and is

a stri
t superset of both Con
urrent Haskell (Peyton Jones et al., 1996) and GpH.
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forkIO :: IO () ! IO ThreadId

myThreadId :: IO ThreadId

newEmptyMVar :: IO (MVar a)

takeMVar :: MVar a ! IO a

putMVar :: MVar a ! a ! IO ()

isEmptyMVar :: MVar a ! IO Bool

raiseInThread :: ThreadId ! Ex
eption ! a

throw :: Ex
eption ! a


at
hAllIO :: IO a ! (Ex
eption ! IO a) ! IO a

Fig. 17. Con
urrent Haskell Constru
ts

It supports two 
lasses of thread: pure threads and side-e�e
ting I/O threads. Pure

threads are inherited from GpH and intended for parallelism, intera
ting via shared

variables, as des
ribed in Se
tion 4.3.1. Evaluation strategies are used in GdH to


oordinate pure threads, exa
tly as in GpH. The remaining dis
ussion fo
usses on

the I/O threads inherited from Con
urrent Haskell.

Con
urrent Haskell supports expli
it interleaved 
on
urren
y with named I/O

threads 
reated by a monadi
 forkIO 
ommand (Peyton Jones et al., 1999), and the


onstru
ts are summarised in Figure 17. I/O threads may intera
t impli
itly, like

pure threads, or expli
itly within the I/O monad using polymorphi
 semaphore

primitives, termed MVars. Multiple threads may share an MVar, giving rise to

non-deterministi
 semanti
s. I/O Threads and MVars 
an be abstra
ted over to

give bu�ers, FIFO 
hannels, merging, et
. Con
urrent Haskell supports both syn-


hronous and asyn
hronous ex
eptions to allow the 
exible handling of ex
eptional

or error situations.

myPEId :: IO PEId

allPEId :: IO [PEId℄


lass Immobile a where

owningPE :: a ! IO PEId

revalIO :: IO a ! a ! IO a

instan
e Immobile PEId

Fig. 18. GdH Constru
ts

GdH supports distributed programming by extending the semanti
s of Con
urrent

Haskell 
onstru
ts to multiple PEs and adding the new language 
onstru
ts for
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- lo
al thread 
reation -

forkIO :: IO () ! IO ThreadId

- remote thread 
reation -

rforkIO :: IO () ! PEId ! IO ThreadId

rforkIO job p = revalIO (forkIO job) p

Fig. 19. Remote Thread Pla
ement Using revalIO

lo
ation awareness given in Figure 18. A GdH program is a 
losed system and

exe
utes on a set of lo
ations, ea
h labelled with a PEId. A thread's 
urrent lo
ation

is obtained by myPEId, and the list of all available lo
ations is returned by allPEId.

Stateful obje
ts, su
h as MVars, threads or �les, are unique and �xed at a lo
ation,

although referen
es to them are freely 
opied to other lo
ations. Stateful obje
ts

are instan
es of the new Immobile 
lass and are lo
ated by the owningPE method.

While GdH supports lo
ation-awareness, signi�
ant parts of a GdH program

may be lo
ation independent. Pure and I/O threads intera
t impli
itly regardless

of lo
ation as in GpH. Lo
ation independent manipulation of stateful obje
ts is

supported by rewriting the relevant libraries, like those for MVars, to en
apsulate

and hide the use of owningPE to determine the obje
t's lo
ation.

Distributed state is manipulated using a remote evaluation fun
tion in the IO

monad: revalIO job p whi
h blo
ks the 
alling thread until the exe
ution of job

at lo
ation p 
ompletes. That is, revalIO temporarily relo
ates the thread, rather

like Java RMI (Da
onta et al., 1998). Lo
ation independent properties of the remote

thread 
reated by revalIO are preserved, e.g. error handling remains una�e
ted so

that an ex
eption raised in the remote thread may propagate ba
k to a handler in

another lo
ation. Stateful obje
t pla
ement 
an also be a

omplished by revalIO,

for example Figure 19 shows its use to 
reate a distributed version of the Con
urrent

Haskell forkIO 
ommand that pla
es a thread on a spe
i�ed PE.

Partial distributed fault toleran
e is supported in GdH by distributed ex
eptions

without requiring any new language 
on
epts. The syn
hronous and asyn
hronous

ex
eptions supported by Con
urrent Haskell are extended in a lo
ation independent

manner, e.g. an ex
eption may be raised in a named I/O thread irrespe
tive of

whether it is lo
al or remote. The fault toleran
e is limited be
ause it is not easy

to dete
t important failures in
luding the failure of a PE and of a thread on a PE.

Handling these failure modes is 
riti
al for the 
onstru
tion of robust systems and

an initial study has been 
ondu
ted but not yet implemented (Trinder et al., 2000).

A GdH ping program is shown in Figure 20. A destination PE, dest, is sele
ted

from the list of PEs, and a monadi
 map, mapM 
alls timePing four times. Within

timePing, timeit times the pingPong fun
tion whi
h uses revalIO to perform

a trivial operation on the remote dest PE. Compared with the pair of Haskell

with Ports programs that 
ommuni
ate using expli
it ports, the GdH program is

a single, relatively 
ompa
t program with all the 
ommuni
ation o

urring within

the revalIO operation. Moreover, the GdH ping is relatively fast, returning values
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main = do

( :dest: )  allPEId

let

timePing p = do

putStr ("Pinging "++show p++" ... ")

(name,ms)  timeit (pingPong p)

putStrLn ("at "++name++" time="++show ms++"ms")

pingPong p = revalIO remote p

remote = getEnv "HOST"

mapM timePing (repli
ate 4 dest)

return ()

Pinging PE:524305 ... at n

1708 time=3ms

Pinging PE:524305 ... at n

1708 time=1ms

Pinging PE:524305 ... at n

1708 time=1ms

Pinging PE:524305 ... at n

1708 time=1ms

Fig. 20. GdH Ping

of the same order of magnitude as UNIX ping on our network. This is unsurprising

be
ause the GdH runtime system uses PVM with UDP as the underlying proto
ol,

and C 
ode to serialise and pa
k the data.

Other GdH appli
ations in
lude the following. A 
ooperative editor allows multi-

ple users on remote ma
hines to edit the same �le (Pointon et al., 2000). A Fa
tory

Chatroom allows multiple remote 
lients to intera
t via a T
lHaskell interfa
e to a


entral server that maintains user pro�le and a shared fa
tory simulation (Pointon

et al., 2001). A distributed �le server and a multiuser geographi
al game have also

been 
onstru
ted (Pointon et al., 2001).

In summary, GdH provides stati
ally typed expli
it 
ommuni
ation of higher or-

der and stateful obje
ts, e.g. fun
tions, suspensions, MVars. The Immobile 
lass

allows remote resour
es to be manipulated and shared in a lo
ation independent

manner. Furthermore impli
it thread intera
tion o

urs through shared data, with


ommuni
ation o

urring at the 
onsumer's demand. Impli
it thread intera
tion

substantially lifts the burden of managing the 
ommuni
ation of, and syn
hronisa-

tion on, data stru
tures from the programmer (Pointon et al., 2001). Additionally

GdH is unusual in simultaneously supporting parallelism through pure threads, and

distribution through I/O threads. GdH is a 
losed system, and 
apitalises on this by

making all PEs visible so a program 
an manipulate any resour
e in the distributed

state. Distributed ex
eption handling is provided to support limited fault-toleran
e.

A more 
omplete des
ription of the design and implementation of GdH 
an be found

in (Pointon et al., 2000), and the implementation is bundled with publi
ly available

Glasgow Haskell Compiler, version 5.00 onwards (GHC, 2001).
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5.3 Other Distributed Fun
tional Languages

Although the bene�ts of the fun
tional paradigm for distribution have been re-

alised only re
ently, 
ompared with parallelism, distributed fun
tional languages

have already a
hieved greater 
ommer
ial su

ess in the form of Erlang (Arm-

strong et al., 1996; Blau & Rooth, 1998). This se
tion brie
y relates the distributed

Haskells above to other distributed fun
tional languages, in
luding some Haskell-

based designs. Broadly speaking distributed 
oordination may be de
larative, im-

perative, or pro
ess algebra-based, and the languages dis
ussed below are 
lassi�ed

by 
oordination paradigm.

Before dis
ussing languages by paradigm, it is worth noting that numerous re-


ent language implementations 
ompile to generi
 platforms like the Java Virtual

Ma
hine (JVM) and Mi
rosoft .NET. Despite problems mapping fun
tional vir-

tual ma
hines onto the platforms various 
lasses of fun
tional language have taken

this route, in
luding sequential, 
on
urrent, parallel, distributed and mobile lan-

guages. An early JVM-based sequential Haskell was produ
ed by Wakeling (1997)

and he has sin
e produ
ed a mobile Haskell (Wakeling, 1998). A JVM-based paral-

lel Haskell similar to GpH has been implemented by Rauber du Bois (2001). There

is also a JVM-based implementation of the Curry language dis
ussed below.

De
larative Coordination. Several re
ent distributed Haskell designs use de
larative


oordination: Distributed Haskell (Chakravarty et al., 1998b) and Curry (Hanus,

1999) use logi
-based 
oordination languages, while Brisk uses annotations, and an

elaborated semanti
s (Holyer et al., 1998). Distributed Haskell 
oordinates distri-

bution with a 
onstraint programming language. It evolved from the GoÆn parallel

programming language (Chakravarty et al., 1998b), and a full implementation has

not been 
onstru
ted (Chakravarty et al., 1998a). Con
urrently exe
uting pro
esses

are 
alled agents, and Distributed Haskell adds language 
onstru
ts for agent pla
e-

ment and introdu
es temporal 
onstraints to the language to deal with timeouts

and potentially provide fault toleran
e. External ports are introdu
ed for 
ommu-

ni
ation between appli
ations and dynami
 typing ensures the type safety of the

messages.

Curry is similar to GoÆn in that it is a fun
tional-logi
 programming language in

whi
h 
ommuni
ation is a 
onstraint to be solved. To support distribution named

ports are added in the I/O monad similar to Haskell with Ports.

Brisk introdu
es deterministi
 
on
urren
y using multiple threads within the

same shared heap, with impli
it syn
hronisation on shared graph. The limitations

of deterministi
 
on
urren
y are weakened by allowing 
ommuni
ation based on

merging with hierar
hi
al timestamps (Spiliopoulou, 1999), but the 
oordination

language remains more restri
tive than others, e.g. inherently non-deterministi


programs like the dining philosophers 
annot be des
ribed. Brisk allows the 
om-

muni
ation of higher-order values between PEs in a lazy and dynami
 manner, it

also supports the 
ommuni
ation of 
ode for the mobility of running 
omputations,

using a remote annotation. As Brisk is 
urrently only partially implemented it is

not 
lear the extend to whi
h distribution will be expli
it or impli
it.
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A major advantage of de
larative 
oordination is that it fa
ilitates reasoning

about 
oordination and 
omputation in a uni�ed framework. Languages with de
lar-

ative 
oordination typi
ally have a 
losed systems model, and preserve referential

transparen
y by making many 
oordination aspe
ts impli
it in the semanti
s. For

example in Brisk the independent sour
es of output, e.g. di�erent windows, 
or-

respond to independent sour
es of demand within the program. In 
onsequen
e

the implementations of these languages are often extremely elaborate, moreover

de
larative 
oordination languages often la
k expressive power, as illustrated for

Brisk above.

Imperative Coordination. Some 
oordination languages 
omprise expli
it 
om-

mands to 
reate pro
esses, 
ommuni
ate et
. Erlang is probably the most 
ommer-


ially su

essful fun
tional language, and was developed in the tele
ommuni
ations

industry for 
onstru
ting distributed, real-time fault tolerant systems (Armstrong

et al., 1996; Wikstrom, 1994; Wikstrom, 1996). It has been used by a number of

tele
ommuni
ations 
ompanies in
luding One-2-One, Eri
sson and NorTel to 
on-

stru
t a wide range of tele
ommuni
ations utilities (Tillman, 2000; Frit
hie, 2000;

Hinde, 2000), in
luding some large multipro
essor appli
ations like the AXD301

swit
h (Blau & Rooth, 1998): 525K lines of 
ode on 32 pro
essors. Compared with

Haskell, Erlang is stri
t, impure, weakly typed and relatively simple: omitting

features su
h as 
urrying and higher-order fun
tions. However the language has a

number of extremely useful features, in
luding the OTP libraries, hot loading of new


ode into running appli
ations, expli
it time manipulation to support soft real time

systems, and message authenti
ation. Erlang systems are open, lo
ation-aware

with expli
it mailbox-based 
ommuni
ation. Sophisti
ated fault toleran
e is pro-

vided by timeouts, ex
eption handlers with ex
eptions as values, and a me
hanism

where a pro
ess 
an monitor the termination of other pro
esses.

Distributed Poly/ML and Fa
ile Antigua both extend ML with imperative 
o-

ordination 
onstru
ts (Matthews, 1989; Matthews, 1991; Thomsen et al., 1993). A

Distributed Poly/ML program 
reates pro
esses using fork and rfork primitives,

and is lo
ation-aware as a PE 
an be spe
i�ed. Communi
ation is over 
hannels,

using send and re
eive primitives. Unusually Distributed Poly/ML provides a

nondeterministi
 
hoi
e primitive that sele
ts the �rst of two pro
esses to ter-

minate. In addition to primitives similar to those in Distributed Poly/ML, Fa
ile

Antigua provides a ping to as
ertain the liveness of a PE and kill to reset a PE.

Both languages have a 
losed system model and are lo
ation-aware, with expli
it

thread intera
tion, and some support for fault toleran
e.

OZ, the language of the MOZART system, is a multi-paradigm distributed lan-

guage 
ombining fun
tional, obje
t-oriented, and logi
 paradigms (Haridi et al.,

1997). It provides a variety of primitives for distribution and fault toleran
e and

supports the 
ommuni
ation of higher order values in
luding variables. It uses ex-


eptions for robust fault toleran
e and distinguishes between lazy error dete
tion

by handlers for syn
hronous ex
eptions, and eager error dete
tion by wat
hers for

the management of asyn
hronous ex
eptions whi
h may be generated by remote

obje
ts.
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Con
urrent Clean (N�o
ker et al., 1991), introdu
ed in se
tion 4.5, supports dis-

tribution using expli
it message passing (Serrarens, 2001). It has Channels that

allow lazy normal form 
opying of data stru
tures. Moreover it provides primitives

for 
reating, sharing, and type-
he
king 
hannels between programs enabling the


onstru
tion of open systems. Ex
eption-based fault toleran
e is also provided.

Imperative approa
hes are almost always expli
it and lo
ation aware. Compared

with pro
ess algebra and de
larative 
oordination languages, it is relatively easy

to 
onstru
t a sophisti
ated imperative 
oordination model. The downside is that

while it is still easy to reason about the 
omputation parts of a program, it is hard

to reason about the entire program be
ause the imperative 
oordination restri
ts

referential transparen
y. However, experien
e with Erlang suggests that making

even part of a large distributed system de
larative is of 
onsiderable bene�t.

Pro
ess Algebra Coordination. The imperative 
oordination model for some lan-

guages is based on pro
ess algebras like CCS (Milner, 1989) or CSP (Hoare, 1986).

Pi
t is a 
on
urrent language based on asyn
hronous �-
al
ulus (Turner, 1995), and

Nomadi
 Pi
t is an extension (Woj
ie
howski, 2000). The language has expli
it 
o-

ordination 
ommands, e.g. pro
esses syn
hronise to send and re
eive. Nomadi
 Pi
t

programs are lo
ation aware: it is possible to migrate a pro
ess to a PE.

Pro
ess algebra languages make 
oordination expli
it, and have the great ad-

vantage having a ready-made algebra for reasoning about 
oordination, timing et
.

However, su
h algebras are very di�erent from the equational approa
h used for

reasoning about the 
omputational parts of a program.

6 Dis
ussion

To fa
ilitate dire
t 
omparison, Table 1 summarises the 
oordination 
onstru
ts of

parallel and distributed Haskells using the 
on
epts from Se
tion 3. Some of the

distributed language implementations are not yet mature enough to allow 
om-

plete de�nitive 
lassi�
ation: these are marked as 'Undef' in the table. Parallel

Haskells 
over all the major parallelism paradigms, and 
oordination ranges from

fully impli
it like HDC, to relatively expli
it like Caliban. In 
omparison to other

parallel language paradigms, all of the fun
tional languages are relatively impli
it.

In 
omparison to other distributed languages paradigms, many distributed Haskells

are 
losed and do not have well-developed fault toleran
e. Coordination of state-

transforming threads in distributed Haskells is almost always expli
it, and the

amount of impli
it 
oordination possible in real distributed appli
ations remains

an open question.

Parallel and distributed fun
tional programming the following wide range of 
hal-

lenges, and Haskell-based resear
h languages are likely to be suitable vehi
les for

investigating many of them.

Reasoning about Coordination. A major 
hallenge is to develop high-level equiv-

alen
es between expressions in the 
oordination language, espe
ially for extensible

languages des
ribing dynami
 
oordination. Potentially 
oordination equivalen
es

will aid the derivation and transformation of parallel and distributed programs,
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Language Threads

a

Lo
ation Intera
tion

a

System Fault-

model toleran
e

Sequential:

Haskell98 N/A N/A N/A N/A No

Con
urrent:

Con
urrent Haskell Exp. N/A Imp. & Exp. N/A Yes

Parallel:

HDC Imp. Indep. Imp. Closed No

Data Parallel Haskell Imp. Indep. Imp. Closed No

Data Field Haskell Imp. Indep. Imp. Closed No

Nepal Imp. Indep. Imp. Closed No

GpH Semi-Exp. Indep. Imp. Closed No

Eden Semi-Exp. Indep. Imp. & Exp.

b

Closed No

Caliban Semi-Exp. Indep. Exp. Closed No

Distributed:

Haskell with Ports Exp. Aware Imp. & Exp.

b

Open Yes

GdH Exp. Aware Imp. & Exp. Closed Partial

Brisk Exp. Aware Imp. Closed Undef.

Distributed Haskell Exp. Aware Imp. & Exp. Undef. Undef.

Curry Exp. Aware Imp. & Exp.

b

Undef. Undef.

a

Imp - Impli
it, Exp - Expli
it.

b

Restri
tions exist on intera
tions between lo
ations.

Table 1. Haskell Coordination Language Summary

and may be in
orporated into 
ompilers. The fun
tional programming 
ommunity

has well-developed equational te
hniques for reasoning about the 
omputation lan-

guage, but reasoning about 
oordination is far less developed. Parallel 
ost models

stati
ally predi
t the time and spa
e required to evaluate an expression, and parallel


ost models add a model identifying the expressions simultaneously under evalua-

tion to model 
oordination aspe
ts su
h as average parallelism, runtime, and total

spa
e usage. Good parallel 
ost models exist for some skeleton languages, e.g. (Skil-

li
orn, 1990; Ba

i et al., 1995), and some data parallel languages, e.g. (Blello
h,

1996). However, there are few models for more dynami
 and extensible 
oordination,

and most are low-level, e.g. parallel operational semanti
s (Blello
h & Greiner, 1996;

Roe, 1991; Baker-Fin
h et al., 2000; Hidalgo Herrero & Ortega Mall�en, 2000). The


hallenge is greater for Haskell be
ause time and spa
e 
ost models are far harder

to develop for lazy languages than for stri
t (Sands, 1990; Loidl, 1998).

Higher-level Coordination. A major 
hallenge is to develop language 
onstru
ts,

stati
 analyses and dynami
 te
hniques to automati
ally introdu
e and 
ontrol 
o-

ordination. Many parallel and distributed fun
tional language designers agree that


oordination should be as high-level, i.e. impli
it, as possible. Current substantially-
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impli
it languages like skeleton-based, data-parallel or distributed languages with

de
larative 
oordination, have restri
ted 
oordination models as dis
ussed above.

The key problem for parallel languages is that fun
tional programs have massive

amounts of �ne-grained parallelism. In lazy languages like Haskell expressions that


an safely be evaluated in parallel 
an be identi�ed by stri
tness analyses. Identify-

ing expressions that are worthwhile evaluating in parallel requires a

urate parallel


ost models. It may also help the programmer if a visualisation of the 
oordination,

e.g. a pro
ess network, 
an be produ
ed stati
ally.

Improved dynami
 
oordination 
ontrol me
hanisms redu
e the expli
it 
oordi-

nation 
ontrol required in the language. This is espe
ially important for non-stri
t

parallel Haskells that naturally support highly-dynami
 
oordination, and 
hal-

lenges in
lude the following. An important new parallelism 
on
ept is ar
hite
ture

independen
e: i.e. a program 
an be easily and systemati
ally ported between ar
hi-

te
tures while preserving good parallel performan
e. Runtime systems must make

good use of emerging ar
hite
ture independent 
on
epts. For example a runtime

system may be parameterised by important ar
hite
ture 
hara
teristi
s to fa
ilitate

good performan
e on a variety of ar
hite
tures. Alternately a runtime system may

measure key ar
hite
ture 
hara
teristi
s and adapt itself. The massive �ne-grained

parallelism in fun
tional programs fa
ilitates adaptation to multiple ar
hite
tures,

but better me
hanisms are required to aggregate small tasks into larger tasks and

to manage threads 
heaply. There is also a need for improved load management

strategies to e�e
tively utilise all PEs, and alleviate heavily loaded PEs.

Language 
onstru
ts with appropriate semanti
s enable high-level 
oordination.

Languages like Eden and Brisk attempt to 
apture many 
oordination aspe
ts in

the language semanti
s. Currently the 
oordination in these languages is limited,

and the high-level 
onstru
ts are augmented with additional 
oordination primi-

tives, e.g. Eden uses evaluation strategies in addition to the pro
ess 
onstru
ts.

The 
hallenge is to develop a small set of adequately expressive high-level 
oor-

dination 
onstru
ts. Just as skeletons abstra
t over 
ommon parallel 
oordination

patterns, it may be possible to 
onstru
t distributed skeletons to abstra
t over


ommon distributed 
oordination patterns, like 
lient-server.

Pragmati
 Challenges. An ongoing 
hallenge for parallel and distributed language

implementors is to make the best of new te
hnologies. Developing and maintaining

the elaborate implementations required by parallel and distributed Haskells is a real

issue for resear
h groups. Development is aided by new ar
hite
ture independent

parallel middleware, like the PVM and MPI libraries (PVM, 1993; MPI, 1997), and

it is not unusual to �nd a language available on half-a-dozen ar
hite
tures. Similarly,

the languages gain from improvements in fun
tional 
ompilation te
hnology (Peyton

Jones et al., 1993; SML, 1993; Leroy, 1996). Lastly, implementations must adapt to

new te
hnologies, e.g. generi
 platforms like the JVM and .NET, or to make e�e
tive

use of the in
reasingly 
heap and popular 
lusters of 
ommodity pro
essors (Ridge

et al., 1997).

Programming Methodology. The �nest programming language is useless without

an established methodology for developing programs systemati
ally. Emerging par-

allel fun
tional programming methodologies have been dis
ussed in Se
tion 4.6.
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Distributed fun
tional programming is far newer, and few systemati
 development

te
hniques have been used, an ex
eption being (Karlsen, 1999). Spe
i�
 issues are

as follows. Better tools are required to support parallel and distributed program

development, in
luding improved pro�lers with better visualisation. Fun
tional lan-

guages 
urrently la
k dynami
 tools to visualise or 
ontrol parallel and distributed

programs during exe
ution. A standard suite of ben
hmarks, analogous to the no�b

suite (Partain, 1992) would fa
ilitate dire
t language and implementation 
ompari-

son. In prin
iple languages like Haskell are a good basis for ar
hite
ture-independent

programming with their massive parallelism and dynami
 high-level 
oordination,

but further investigation is required to establish or refute this proposition.
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