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Abstract

We introduce a reasoning infrastructure for proving statements on resource consumption in
an abstract fragment of the Java Virtual Machine Language (JVML). The infrastructure is
based on a small hierarchy of program logics, with increasing levels of abstraction: at the
top there is a type system for a high-level language that encodes resource consumption. The
infrastructure is designed to be used in a proof-carrying code (PCC) scenario, where mobile
programs can be equipped with formal evidence that they have good resource behaviour.

This article presents the core logic in our infrastructure, a VDM-style program logic for
partial correctness, that can make statements about resource consumption in a general form.
We establish some important results for this logic, including soundness and completeness
with respect to a resource-aware operational semantics for the JVML. We also present a
second logic built on top of the core logic, which is used to express termination; it is also
shown to be sound and complete. The entire infrastructure has been formalised in the the-
orem prover Isabelle/HOL, both to enhance confidence in the meta-theoretical results, and
to provide a prototype implementation for PCC. We give examples to show the usefulness
of this approach, including proofs of resource bounds on code resulting from compiling
high-level functional programs.

Key words: Program Logic, Proof-carrying-code, Object-oriented Languages, Java Virtual
Machine Language, Cost Modelling, Quantitative Type-Systems, Lightweight Verification

∗ Corresponding author
Email addresses: da@inf.ed.ac.uk (David Aspinall), lenb@inf.ed.ac.uk (Lennart

Beringer), mhofmann@informatik.uni-muenchen.de (Martin Hofmann),
hwloidl@informatik.uni-muenchen.de (Hans-Wolfgang Loidl),
amomigl1@inf.ed.ac.uk (Alberto Momigliano).

Preprint submitted to Elsevier Science 15 July 2005



1 Introduction

When we receive a program from another party, we want to know that it serves its
intended purpose. Apart from having correct functional behaviour, it is important
that a program meets non-functional requirements such as reasonable resource con-
sumption. Indeed, non-functional requirements of application programs can often
be more important than functional ones, as they impact the overall security and ro-
bustness of a system. For example, a game to be run on a mobile telephone should
not make expensive network demands or drain the handset batteries excessively;
this is more important to the user and network operator than, say, that the game
calculates the correct score.

We want to equip mobile code with guarantees that resource constraints are satis-
fied, following the proof-carrying code paradigm (PCC, (1)). PCC has emerged as
a powerful means to guarantee type-correct behaviour or the adherence to various
security policies. Low-level code is sent together with a certificate which contains
a formal logical proof that the program adheres to a given safety or security policy.

The bedrock of PCC is the logic for low-level code used to state and prove proper-
ties of interest. The logic must satisfy several crucial requirements. First, it must be
expressive enough to state and prove the policies required for the programs of inter-
est. Second, it must be sound: proofs in the logic must be honest to the behaviour of
the code on the target machine. Third, we must meet engineering requirements for
implementing proof-carrying code: we must have some way of effectively gener-
ating proofs in the logic and transmitting them in proof certificates, and efficiently
checking them on receipt.

In this paper we present a program logic for low-level languages designed to meet
these requirements, as part of a prototype proof-carrying code infrastructure fo-
cused on certifying resource usage of Java bytecode programs (this is part of our
work on the Mobile Resource Guarantees project (2), see (3) for an overview).
Our program logic is expressive enough to describe arbitrary cost metrics which
are calculated by a resource-annotated semantics for a fragment of the Java Virtual
Machine Language. The semantics is big-step operational formalisation which we
take to define our fragment of the JVM and its resource behaviour; its correctness
is self-evident and the resource annotations are in principle further justifiable by
empirical evaluation of specific JVM behaviour.

The main part of the program logic is a VDM-style logic for partial correctness
which, with respect to the annotated operational semantics, is provably sound and
complete (relative to the underlying assertion language). Using the logic instead of
the operational semantics directly has the added value of providing direct support
for reasoning with invariants for recursive methods and loops (represented as tail
recursive functions). To prove that a method satisfies some specification it suffices
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to show that its body satisfies it assuming that any recursive call does so. Proving
this principle sound for the operational semantics requires some effort which would
otherwise have to be spent with each individual verification.

The program logic has two components: as well as the core logic of partial cor-
rectness, it has a logic for termination built on top, that is treated separately. The
separation allows us to establish resource properties under the assumption of termi-
nation (partial correctness) following one approach, and establish termination using
another approach and only where it is necessary (for example, on a case-by-case
basis for individual methods).

The main part of the paper is concerned with the definition and meta-theoretical
properties of the core logic and termination logic. Towards the end of the paper we
will return to the original motivation of proof-carrying code, and describe how the
logics can be fitted into a larger infrastructure, addressing the necessary engineering
requirements.

This work represents a significant contribution to research in generalising proof-
carrying code scenario to richer policies and richer languages; to our knowledge it
represents one of the first applications of PCC for resources to Java bytecode. It also
provides advances in program logics for low-level code; we believe that our logic
has a number of advantages over many existing related approaches, not least includ-
ing its good meta-theoretical properties, separate treatment of (partial) correctness
and termination, and the functional treatment of iteration and local variables. The
body of the paper and an extensive comparison at the end describes these and other
advantages in detail. The entire infrastructure has been formalised in the theorem
prover Isabelle/HOL, both to enhance confidence in the meta-theoretical results,
and to provide a prototype implementation for PCC.

1.1 Outline

The structure of this paper is as follows. Section 2 presents the Grail language for
which we build these logics. Grail is a subset of the Java Virtual Machine (JVM)
language, written using a functional notation. The operational semantics of Grail
is annotated with a mechanism for calculating resource costs, using operators for
each expression former.

Section 3 presents the core VDM-style program logic for partial correctness for
Grail. It allows an expressive form of assertion that facilitates compositional rea-
soning, and powerful rules for mutual recursion. Proofs of soundness and com-
pleteness for this logic are given, based on a full formalisation in Isabelle/HOL.
Examples demonstrate the use of this logic for proving resource properties, making
use of special rules for mutually recursive program fragments and method invoca-
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tions with argument adaptation.

Section 4 builds a termination logic on top of the partial correctness logic, and thus
arrives at a total correctness logic. For this termination logic proofs of soundness
and completeness are given. An earlier example is picked up to demonstrate use-
fulness.

In Section 5 we return to the big picture and describe how our program logics are
used in the Mobile Resource Guarantees architecture. Section 6 discusses related
work on program logics and their theorem prover formalisations; finally, Section 7
summarises the main results of our work and sketches directions for further work.

2 The Grail language

Rather than working with JVML directly, we use a reformulation called the Guaran-
teed Resource Aware Intermediate Language (Grail). The version of Grail studied
in this paper covers the most important features of the JVML, including boolean
and integer values, reference values and objects, mutable fields (allowing aliasing),
static and instance methods. We do not cover exceptions, arrays, or threads at this
point.

The design of Grail was motivated by the following goals:

(1) Suitability as a target for a resource-transparent compiler from a functional
high-level language;

(2) Proximity to standard mobile code formats, so that executability and code
mobility using existing wire formats are obtained;

(3) Suitability as a basis for attaching resource assertions;
(4) Amenability to formal proofs about resource usage.

Grail uses a functional notation that abstracts from some JVM specific details such
as the use of numerical variable names as locals, and it has the operational se-
mantics of an impure functional language: mutable object fields, immutable local
variables, and tail recursive functions instead of iteration. This makes it ideally suit-
able for compilation of high-level functional languages such as Camelot, which is
a variant of OCaml with a resource-aware type system (4).

Code in Grail remains close to standard formats; it can be reversibly expanded into
a subset of virtual machine languages including JVML used by Java, the JCVML
of JAVACARD, or the MSIL used by .NET 1

1 At present, our tools cover only JVML.
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Because the translation mechanism into a virtual machine language is fixed (5), the
resource usage of Grail programs can be captured by considering the cost of exe-
cution of the translated form, and those costs can be used to instantiate a resource
model which is part of the operational semantics.

Finally, we will demonstrate that Grail is amenable to formal proof by presenting
our program logic and its implementation in Sections 3 and 4.

2.1 Syntax

At the level of classes and methods, the Grail representation of code retains the
syntactic structure of Java bytecode. Method bodies, in contrast, are represented
as collections of mutually tail-recursive A-normalised functions (6). In particular,
only primitive operations (no let-expressions) can occur as e1 in let-expressions
let x=e1 in e2. Similar to the λ-JVM (7) and other functional intermediate lan-
guages (8), primitive instructions model arithmetic operations, object manipulation
(object creation, field access) and the invocation of methods. Strengthening the syn-
tactic conditions of ANF, actual arguments in function calls are required to coincide
syntactically with the formal parameters of the function definitions. This condition
allows function calls to be interpreted as immediate jump instructions; register shuf-
fling at basic block boundaries is performed by the calling code rather than being
built into the function application rule. As a result, the consumption of resources at
virtual machine level may be expressed in a functional semantics for Grail: the ex-
pansion into bytecode does not require register allocation or the insertion of gluing
code (9). In contrast to the aim of λ-JVM, Grail does not aim to represent arbitrary
bytecode. Instead, the translation of raw bytecode into Grail is only defined on the
image of our expansion – and on this subset, it is the reversal of the code expansion.
As each Grail instruction form expands to a sequence of bytecode instructions that
leaves the operand stack empty, the emitted code is highly structured. In particu-
lar, it satisfies all conditions identified by Leroy (10) as being required for efficient
bytecode verification on Smartcards and other resource-constrained devices.

For the purpose of this paper, the syntactic restrictions of Grail may be largely
ignored, since their significance concerns the relationship between Grail and ac-
tual bytecode rather than the program logic, whose correctness does not require
them. The formal syntax treated in the remainder of this article therefore com-
prises a single category of expressions expr that is defined over mutually disjoint
sets M of method names, C of class names, F of function names (i.e. labels of
basic blocks), T of (static) field names and X of variables. These categories are,
respectively, ranged over by m, c, f , t, and x. In addition, i ranges over immediate
values (integers, and booleans true and false) and op over primitive operation of
type V ⇒ V ⇒ V such as arithmetic operations or comparison operators, where
V is the semantic category of values. Values are ranged over by v and comprise
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immediate values, references r, and the special symbol ⊥, which stands for the ab-
sence of a value. References are either null or of the form Ref l where l ∈ L is a
location.

The syntax is given by the grammar below, which defines expressions expr and
method arguments args. We write a to stand for lists of arguments.

e ∈ expr ::= null | imm i | var x | prim op x x | new c [t1 := x1, . . . , tn := xn] |
x.t | x.t:=x | c� t | c� t:=x | let x=e in e | e ; e |
if x then e else e | call f | x ·m(a) | c.m(a)

a ∈ args ::= var x | null | i

This syntax is intentionally somewhat verbose, for example, by including the in-
jections var and imm which might ordinarily be omitted using meta-syntactic con-
ventions for names. We hope that the reader will forgive the additional verbosity in
return for the reassurance that the following rules, programs and example verifica-
tions have all been formalised precisely as they are written here.

Expressions e∈ expr represent basic blocks and are built from operators, constants,
and previously computed values (names). Expressions correspond to primitive se-
quences of bytecode instructions that may, as a side effect, alter the heap. For ex-
ample, x.t and x.t:=y represent (non-static) getfield and putfield instructions,
while c� t and c� t:=y denote their static counterparts. The binding let x=e1 in e2
is used if the evaluation of e1 returns a value on top of the JVM stack while e1 ; e2
represents purely sequential composition, used for example if e1 is a field update
x.t:=y. Object creation includes the initialisation of the object fields according to
the argument list: the content of variable xi is stored in field ti. Function calls (call)
follow the Grail calling convention (i.e. correspond to immediate jumps) and do not
carry arguments. The instructions x ·m(a) and c.m(a) represent virtual (instance)
and static method invocation, respectively.

A formal type system can be imposed on Grail programs to rule out bad programs
by reflecting typing conditions enforced by the underlying virtual machine; our
operational semantics and program logic are more general, although we always
consider well-typed programs.

In the theoretical development, we assume that all method declarations employ
distinct names for identifying inner basic blocks. A program P consists of a table
FT mapping each function identifiers to an expression, and a table MT associating a
list of method parameters (i.e. variables) and an expression (the initial basic block)
to class names and method identifiers. We use the notations bodyf and bodyc,m to
denote the bodies of function f and method c.m, respectively, and parsc,m to denote
the formal parameters of c.m. The variable self is a reserved name.

Figure 1 shows an example method for appending the list represented by argument
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method LIST LIST.append(l1, l2) = call f

f 7→ let v3 = l1.TAG in

let b=prim (λ z y. if z = 2 then true else false) v3 v3 in

if b then var l2 else call f1

f1 7→ let v3 = l1.HD in let v2 = l1.TL in

let l1 =LIST.append([var v2,var l2]) in let tg=imm 3 in

new LIST [TAG := tg,HD := v3;TL := l1]


Fig. 1. Code of method append

l2 to the list l1. The code represents the pretty-printed output of a compiler that
translates code written in the high-level functional language Camelot into Grail. It
shows a method containing two functions whose bodies are shown; the body of the
method itself is the term call f . 2

2.2 Resource algebras

To admit reasoning about allocation and consumption of different computational
resources, our operational semantics is annotated with a resource counting mecha-
nism based on a general cost model provided by a notion of resource algebra. A re-
source algebra provides a basis for quantitative measurements such as (instruction)
counters, but can also be used to monitor cost-relevant events like the allocation
of fresh memory, calls to specific (native) methods, or the maximal height of the
frame stack encountered during the execution of a program.

Definition 1 A resource algebra R consists of a set R, together with operations:

• R null,R imm
i ,R var

x ,R prim
op,x,y,R getf

x,t ,R putf
x,t,y,R

gets
c,t ,R puts

c,t,y,R new
c,x1,...,xn

of type R, and
• R if

x ,R call
f ,R invs

c,m,a and R invv
x,m,a of type R → R,

• R let
x ,R comp of type (R×R)→ R.

Resource algebras simply collect together constant costs and operations on costs
for each expression former in the syntax. Our operational semantics and logics are
then based on an arbitrary resource algebra. 3

2 In later examples, we do simplify notation somewhat, using some hopefully obvious
shorthands from our implementation for standard primitive operations and omitting the
prim tag, for example let b= iszero v3 in . . ..
3 More can be said about the algebraic structure of resources and their operations and
indeed more abstractly, somewhat in the spirit of (11; 12). This is pursued elsewhere (13).
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An alternative way of cost accounting used elsewhere is by instrumenting the origi-
nal code, i.e. by inserting additional program variables and instructions to maintain
resource counters, but without otherwise changing the underlying program. Then
the costs of executing the original program are obtained by reasoning about (or
executing, or executing symbolically, or performing static analysis on) the instru-
mented program (14; 15; 16). Although highly flexible, instrumentation has certain
disadvantages. Most obviously, if the instrumented code is executed at run-time,
there will be extra costs associated in book-keeping and resource usage patterns
themselves may change compared with the uninstrumented code (risking a change
in program behaviour due to race conditions). Compared with static approaches,
when run-time monitors are employed to enforce a security policy, we risk wasting
computational resources by terminating offending computations. Fundamentally,
instrumentation limits the costs one may consider to quantities where the domain
and the modifying operations are expressible in the programming language, and the
interaction between resource-counting and “proper” variables may become difficult
to reason about. Our approach avoids these problems by including structured costs
in the operational semantics; it retains flexibility by being parametrised on the form
of the costs.

2.3 Resource algebra examples

A few motivating examples of resource algebras are collected in Figure 2.

The first algebra, R Count, represents a simple cost model of the JVM with four
metrics, and was already presented in (17). The first component of a tuple mod-
els an instruction counter that approximates execution time. Charging all JVM in-
structions at the same rate, this counter is incremented roughly by the number of
bytecode instructions each expression may be expanded to. For example, a field
modification x.t:=y typically expands to a bytecode sequence of length three, com-
prising two load operations that copy the contents of variables x and y onto the
operand stack, and one putfield operation. In the rules for method invocations,
we charge for pushing all arguments onto the operand stack, the invocation, and the
returning instruction, plus, in the case of a virtual invoke, for loading the object ref-
erence and the virtual method lookup. The second and third components represent
more specific instruction counters, for function calls (jumps), and method invoca-
tions, respectively. A similar counter for the instruction new that would monitor the
dynamic allocation of objects has been omitted since this information may be in-
ferred from the operational semantics by comparing the (size of the) initial and final
heaps. Naturally, more fine-grained instruction counters can easily be defined, for
example by counting the invocation of different methods separately or by charging
complex instructions at an increased rate. Finally, the fourth component monitors
the maximal frame stack height observed during a computation. This value is non-
zero exactly for the frame-allocating instructions x ·m(a) and c.m(a).
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R Count R InvTr R PVal(C,M,P) R HpTr

R N ×N ×N ×N expr B H

R null 〈1 0 0 0〉 [ ] true [h]

R imm
i 〈1 0 0 0〉 [ ] true [h]

R var
x 〈1 0 0 0〉 [ ] true [h]

R prim
op,x,y 〈3 0 0 0〉 [ ] true [h]

R new
c,x1,...,xn

〈(n+1) 0 0 0〉 [ ] true [h]

R getf
x,t 〈2 0 0 0〉 [ ] true [h]

R putf
x,t,y 〈3 0 0 0〉 [ ] true [h]

R gets
c,t 〈2 0 0 0〉 [ ] true [h]

R puts
c,t,y 〈3 0 0 0〉 [ ] true [h]

R let
x (p,q) 〈1 0 0 0〉⊕ (p uq) p@q p∧q p@q

R comp(p,q) puq p@q p∧q p@q

R if
x (p) 〈2 0 0 0〉⊕ p p true p

R call
f (p) 〈1 1 0 0〉⊕ p p true p

R invv
x,m,a(p) 〈(4+ |a|) 0 1 1〉⊕ p (x ·m(a)) :: p p p

R invs
c,m,a(p) 〈(2+ |a|) 0 1 1〉⊕ p (c.m(a)) :: p

((c = C∧m = M)

−→ P(a))∧ p
p

Fig. 2. Four example resource algebras

The definition of R Count uses two binary operations, ⊕ and u, to combine costs.
The former one represents pointwise addition in all four components, while the
latter one performs pointwise addition in the first three components, and the max
operation in the fourth component. Note that we could have formulated the counters
as four separate resource algebras and obtained R Count as their product.

The second resource algebra, R InvTr, ranges over expression sequences and collects
the (static or virtual) method invocations in the (dynamic) program order. Here,
the value for each axiom is the empty list; branches and function invocations take
the value of sub-executions; invocations prefix the respective method calls to the
expression sequence (notation :: in the meta-logic), and the operations for binary
program composition R let

x and R comp append (denoted @) the sequences in the
order of evaluation of the sub-expressions.

The last two resource algebras, R PVal(C,M,P) and R HpTr, concern a slight gen-
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eralisation of the formal setup, where, in addition to pieces of syntax, values of
resource algebras may also depend upon other components of the operational se-
mantics (to be defined shortly), such as environments E and heaps h. This allows us
to formulate policies that depend on the dynamic evaluation of syntactic items. The
parameter values algebra R PVal(C,M,P) can be parametrised by a class name C, a
method name M, and a parameter policy P which may refer to the environment and
heap. The resource value in this algebra maintains a flag which acts as a monitor
to ensure that each invocation of C.M(a) satisfies the policy P(a). For example, for
each k ∈ N , the policy

Pk(a)≡ ∃ x n X . a = [var x] ∧ h |=list(n,X) E〈x〉 ∧ n ≤ k

stipulates that a consists of a single variable that represents a list of length 4 at most
k. Value-constraining policies like this may can be used in the domain of embedded
systems, where calls to external actuators must obey strict parameter limitations.
See (3) for more motivation and a detailed example.

In general, resource algebras that depend on semantic components are sufficiently
powerful to collect diagnostic traces along the chosen path of computation – the
final example, R HpTr simply collects all intermediate heaps (the category H of
heaps will be defined shortly). Like a syntactic trace originating from the algebra
R InvTr, the resulting word may be constrained by further policies, specified for
example by security automata (18) or formulae from logics over linear structures
(which can be encoded in our higher-order assertion language).

When not considering specific examples, we understand R to represent a fixed, but
arbitrary resource algebra, and identify R with its carrier set.

2.4 Operational Semantics

The formal basis of the program logic is a big-step operational semantics that mod-
els an (impure) functional interpretation of Grail. Judgements relate expressions
e to environments E ∈ E (maps from variables to values), initial and final heaps
h,h′ ∈ H , result values v ∈ V and costs p ∈ R . Heaps consist of two compo-
nents, an object heap and a class heap. The object heap is a finite map of type
L →fin C × (T →fin V ), i.e. an object consists of a class name and a field ta-
ble. The class heap stores the content of static fields and is represented by a map

4 The formal definition of datatype representation predicates such as h |=list(n,X) E〈x〉 is
postponed until Section 3.5.1.
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C →fin T →fin V . The following operations are used for heaps:

h(l).t field lookup of value at t in object at l,

h[l.t 7→ v] field update of t with v at l,

h(l) class name of object at l,

dom h domain of the heap h,

freshloc(h) a location l chosen so that l /∈ dom h.

A judgement E ` h,e ⇓ h′,v, p reads “in variable environment E and initial heap h,
code e evaluates to the value v, yielding the heap h′ and consuming p resources”.
The rules defining our semantics are formulated relative to a fixed program P,
whose components are accessed in the rules for functional calls and method in-
vocations. The following rules use further notation which is explained in the com-
mentary below.

E ` h,null ⇓ h,null,R null
(NULL)

E ` h,imm i ⇓ h, i,R imm
i

(IMM)

E ` h,var x ⇓ h,E〈x〉,R var
x

(VAR)

E ` h,prim op x y ⇓ h,op (E〈x〉) (E〈y〉),R prim
op,x,y

(PRIM)

E〈x〉= Ref l

E ` h,x.t ⇓ h,h(l).t,R getf
x,t

(GETF)
E〈x〉= Ref l

E ` h,x.t:=y ⇓ h[l.t 7→ E〈y〉],⊥,R putf
x,t,y

(PUTF)

E ` h,c� t ⇓ h,h(c).t,R gets
c,t

(GETS)
E ` h,c� t:=y ⇓ h[c.t 7→ E〈y〉],⊥,R puts

c,t,y
(PUTS)

l = freshloc(h)

E ` h,new c [ti := xi] ⇓ h[l 7→ (c,{ti := E〈xi〉})],Ref l,R new
c,x1,...,xn

(NEW)

E〈x〉= true E ` h,e1 ⇓ h1,v, p

E ` h,if x then e1 else e2 ⇓ h1,v,R if
x (p)

(IFTRUE)

E〈x〉= false E ` h,e2 ⇓ h1,v, p

E ` h,if x then e1 else e2 ⇓ h1,v,R if
x (p)

(IFFALSE)

11



E ` h,e1 ⇓ h1,w, p w 6=⊥ E〈x := w〉 ` h1,e2 ⇓ h2,v,q

E ` h,let x=e1 in e2 ⇓ h2,v,R let
x (p,q)

(LET)

E ` h,e1 ⇓ h1,⊥, p E ` h1,e2 ⇓ h2,v,q

E ` h,e1 ; e2 ⇓ h2,v,R comp(p,q)
(COMP)

E ` h,bodyf ⇓ h1,v, p

E ` h,call f ⇓ h1,v,R call
f (p)

(CALL)

Env(self :: parsc,m,null :: a,E) ` h,bodyc,m ⇓ h1,v, p

E ` h,c.m(a) ⇓ h1,v,R invs
c,m,a(p)

(SINV)

E〈x〉= Ref l h(l) = c Env(self :: parsc,m,x :: a,E) ` h,bodyc,m ⇓ h1,v, p

E ` h,x ·m(a) ⇓ h1,v,R invv
x,m,a(p)

(VINV)

The first nine rules are rather straightforward — the costs are simply obtained by
applying the corresponding components of the resource algebra to the syntactic
components of the operation in question. In rules PUTF and PUTS, the return values
are set to ⊥, in accordance with the fact that the corresponding virtual machine
codes do not leave a value on the operand stack. In rule NEW, the allocated object
is initialised by assigning the content of variable xi to field ti, for all fields.

The two rules for conditionals contain no surprises either — the resources con-
sumed during the execution of the respective branch are promoted to the conclu-
sion, adjusted by the operation R if

x . Similarly, the rules for program composition,
LET and COMP, combine the costs of the constituent expressions.

In the rules CALL, SINV and VINV, the function and method bodies, and the method
parameters, are retrieved from the (implicit) program P. As discussed earlier, func-
tion calls occur in tail position and correspond to jump instructions, hence the body
is executed in the same environment. The costs of the function call are taken into
account at the end of the execution. In contrast, method calls can occur in non-
tail positions, hence the rules for static and virtual method invocations execute the
method body in an unaltered heap, but in an environment that represents a new
frame. The semantic function Env(x,a,E) constructs a fresh environment that maps
parameter xi to the result of evaluating ai in environment E, i.e. to E〈x〉 if ai = x
and to ai otherwise. The content of the self variable is set to the location of the
invoking object in the case of rule VINV, and to the null value in rule SINV.
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3 Program logic for partial correctness

The basis for reasoning and certificate generation is a general-purpose program
logic for Grail where assertions are boolean functions over all semantic components
occurring in the operational semantics, i.e. evaluation environments, pre- and post-
heaps, result values, and values from a resource algebra. In this section, we define a
logic of partial correctness (i.e. in particular, non-terminating programs satisfy any
assertion), which is complemented by a termination logic in Section 4.

3.1 Assertions and validity

Deviating from the syntactic separation into pre- and post-conditions typical for
Hoare-style and VDM-style program logics (19; 20), a judgement in our logic re-
lates a Grail expression e to a single assertion A

Γ� e : A

dependent on a context

Γ = {(e1,A1), . . . ,{en,An)}

that stores verification assumptions for recursive program structures. 5

Following the so-called “shallow embedding” style, we encode assertions as predi-
cates in the formal higher-order meta-logic. Assertions range over the components
of the operational semantics, namely the input environment E and initial heap h,
and the post heap h′, the result value v, and the resources consumed p. An assertion
A thus belongs to the type

A ≡ E → H → H → V → R → B

where B is the set of propositional booleans. We use the notation of Isabelle/HOL
for writing logical connectives and predicates, in particular, using λ-notation to
define predicates:

A = λE h h′ v p. · · ·
and curried function application to denote their application to particular semantic
values:

A E1 h1 h′1 v1 p1

in the rules of the logic, the conclusions define assertions which hold for each form
of expression, by applying assertions from the premises to appropriately modified

5 Later on we sometimes use the term “specification” as a synonym for “assertion”, espe-
cially when referring to assumptions or assertions used to define behaviour exactly.
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values corresponding to the operational semantics. Axioms define assertions which
are satisfied exactly by the corresponding evaluation in the semantics.

Although this “mega” assertion format is unusual, it has advantages. Compared
to program logics with pre- and post-conditions, a single assertion allows us to
simplify the treatment of auxiliary variables and admits a formulation of the rule
for program composition that avoids the modification of the precondition typical
for Hoare-style logics. We discuss this further in Section 3.3.

The validity of assertion A for expression e is defined by a partial correctness inter-
pretation: A must be satisfied for all terminating executions of e.

Definition 2 (Validity) Assertion A is valid for e, written |= e : A, if

E ` h,e ⇓ h′,v, p implies A E h h′ v p

for all E, h, h′, v, and p.

This definition may be lifted to contexts Γ in the obvious way.

Definition 3 (Contextual validity) Context Γ is valid, notation |= Γ, if all pairs
(e,A) in Γ satisfy |= e : A. Assertion A is valid for e in context Γ, written Γ |= e : A,
if |= Γ implies |= e : A.

We next turn to the description of our proof system and the proof of its soundness
and completeness for this notion of validity.

3.2 Proof system

The program logic comprises one rule for each expression form, and two logical
rules, VAX and VCONSEQ. Again, we consider classes and methods for a fixed
program P.

Γ�null : λE hh′ v p.h′ = h ∧ v = null ∧ p = R null
(VNULL)

Γ�imm i : λE hh′ v p.h′ = h ∧ v = i ∧ p = R imm
i

(VIMM)

Γ�var x : λE hh′ v p.h′ = h ∧ v = E〈x〉 ∧ p = R var
x

(VVAR)
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Γ�prim op x y : λE hh′ v p. v = op E〈x〉 E〈y〉 ∧ h′ = h ∧ p = R prim
op,x,y

(VPRIM)

Γ� x.t : λE hh′ v p.∃l. E〈x〉= Ref l ∧ h′ = h ∧ v = h′(l).t ∧ p = R getf
x,t
(VGETF)

Γ� x.t:=y : λE hh′ v p.∃l. E〈x〉= Ref l ∧ p = R putf
x,t,y∧

h′ = h[l.t 7→ E〈y〉] ∧ v =⊥

(VPUTF)

Γ� c� t : λE hh′ v p.h′ = h ∧ v = h(c).t ∧ p = R gets
c,t

(VGETST)

Γ� c� t:=y : λE hh′ v p.h′ = h[c.t 7→ E〈y〉] ∧ v =⊥ ∧ p = R puts
c,t,y

(VPUTST)

Γ�new c [ti := xi] : λE hh′ v p.∃l. l = freshloc(h) ∧ p = R new
c,x1,...,xn

∧

h′ = h[l 7→ (c,{ti := E〈xi〉})] ∧ v = Ref l
(VNEW)

Γ� e1 : A1 Γ� e2 : A2

Γ�if x then e1 else e2 : λE hh′ v p.∃p′. p = R if
x (p′)∧

(E〈x〉= true−→ A1 E h h′ v p′) ∧

(E〈x〉= false−→ A2 E h h′ v p′) ∧

(E〈x〉= true ∨ E〈x〉= false)
(VIF)

Γ� e1 : A Γ� e2 : B

Γ�let x=e1 in e2 : λE hh′ v p.∃ p1 p2 h1 w. A E h h1 w p1 ∧ w 6=⊥ ∧

B (E〈x := w〉) h1 h′ v p2) ∧

p = R let
x (p1, p2)

(VLET)
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Γ� e1 : A Γ� e2 : B

Γ� e1 ; e2 : λE hh′ v p.∃ p1 p2 h1. A E h h1 ⊥ p1 ∧ B E h1 h′ v p2 ∧

p = R comp(p1, p2)
(VCOMP)

Γ∪{(call f ,A)}�bodyf : Θ(A, f )

Γ�call f : A
(VCALL)

Γ∪{(c.m(a),A)}�bodyc,m : Φ(A,c,m,a)

Γ� c.m(a) : A
(VSINV)

Γ∪{x ·m(a),A)}�bodyc,m : Ψ(A,x,c,m,a)

Γ� x ·m(a) : A
(VVINV)

(e,A) ∈ Γ

Γ� e : A
(VAX)

Γ� e : A ∀ E h h′ v p. A E h h′ v p −→ B E h h′ v p
Γ� e : B

(VCONSEQ)

The rules for function calls and method invocations make use of the following
operators that model the effect of frame creation and the application of the resource-
algebraic operations:

Θ(A, f ) = λE hh′ v p.A E h h′ v (R call
f (p)),

Φ(A,c,m,a) = λE hh′ v p.

∀ E ′. E = Env(self :: parsc,m,null :: a,E ′) −→ A E ′ h h′ v (R invs
c,m,a(p))

Ψ(A,x,c,m,a) = λE hh′ v p.

∀ E ′ l.

 (E ′〈x〉= Ref l∧h(l) = c ∧

E = Env(self :: parsc,m,x :: a,E ′)

 −→ A E ′ h h′ v (R invv
x,m,a(p)).

3.3 Discussion

The axioms (VNULL to VNEW) directly model the corresponding rules in the op-
erational semantics, with constants for the resource tuples. The VIF rule uses the
appropriate assertion based on the boolean value in the variable x. Since the evalua-
tion of the branch condition does not modify the heap we only existentially quantify
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over the cost component p′. In contrast, rule VLET existentially quantifies over the
result value w, the heap h1 resulting from evaluating e1, and the resources from e1
and e2. Apart from the absence of environment update, rule VCOMP is similar to
VLET.

The rules for recursive functions and methods involve the context and generalise
Hoare’s original rule for parameterless recursive procedures. They require one to
prove that the bodies satisfy assertions that are related to the concluding assertions
A in a way that is compatible with the relationship between the hypothetical and
the concluding judgements of the operational rules CALL, SINV and VINV. In rule
VCALL, this compatibility condition only affects the resources, as the operational
rule CALL leaves the environment, the heaps, and the result value untouched. Thus,
the definition of Θ merely applies the R call operator to the resources consumed
by the body of f . In the case of VSINV and VVINV, the construction of a new
frame in the operational rules corresponds to the universal quantification over the
environment associated with the caller, E ′, in the definitions of operators Φ and Ψ.
In both cases, the environment associated with the body, E, arises from this outer
environment E ′ by the Env( , , ) function. Again, the costs of the method call are
applied by requiring that the body satisfies a assertion whose resource component
makes A true after the application of the appropriate operator from R . As is the case
in VCALL, the verification of the method bodies proceeds in contexts that extend Γ

by the yet-to-be-proven tuple. Recursive calls or invocations may thus access the
stipulated assertion via rule VAX.

The VCONSEQ consequence rule derives an assertion B that follows from another
assertion A in the meta-logic HOL.

The rules for program composition, VLET and VCOMP, relate to the earlier dis-
cussion on the format of assertions. In Hoare-style program logics, the purpose of
auxiliary variables is to link pre- and post-conditions by “freezing” the values of
(program or other) variables in the initial state, so that they can be referred to in
the post-condition. Formally, auxiliary variables need to be universally quantified
in the interpretation of judgements in order to treat variables of arbitrary domain,
and their interaction with the rule of consequence. This quantification may either
happen explicitly at the object level or implicitly, where pre- and post-condition are
predicates over pairs of states and the domain of auxiliary variables. Kleymann (21)
showed that by instantiating the domain of auxiliary variables to the category of
states one may embed VDM-style program logics in Hoare-style logics, and he
studied meta-theoretic issues of both styles of logic. In particular, VDM’s char-
acteristic feature that allows the initial values of program variables to be referred
to in the post-condition was modelled by giving both assertion components differ-
ent types: pre-conditions are predicates on (initial) states while post-conditions are
binary relations on states.

Kleymann’s proposal to instantiate the domain of auxiliary variables to states also
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allows one to employ further quantification in the definition of assertions. Such ad-
ditional quantification typically ranges over semantic entities rather than program
variables. As an example, consider an object-oriented language of terminating com-
mands c, and a predicate classOf (s,x,A) that is satisfied if the object pointed to by
variable x in state s is of class A. A Kleymann-style judgement

{λ Z s. Z = s}c{λ Z t. ∀ A. classOf (Z,x,A)→ classOf (t,x,A)}. (1)

states that the class of object x remains unaffected by program c, with quantifi-
cation occurring inside the post-condition. This formulation is highly preferable
to an alternative formulation where the domain of auxiliary variables is chosen to
be the category of class names. In the latter system, the above property would be
expressed by a judgement like

{λ A s. classOf (s,x,A)}c{λ A t. classOf (t,x,A)}. (2)

As a consequence, the type of assertions conceptually depends on the property one
wishes to prove – an immediate obstacle to a compositionality if other program
fragments require different instantiations.

Our approach of combining pre- and post-conditions enforces Kleymann’s disci-
pline. Were we adaptate our assertion format to an imperative language, the above
property would be expressed as:

Γ� c : λ s t. ∀ A. classOf (s,x,A)→ classOf (t,x,A),

which uses the same inner quantification as (1) but avoids the auxiliary variable Z,
similarly to a formulation in VDM.

A further difference to Hoare’s calculus occurs in VLET. This rule combines rules
for variable assignment and sequential program composition (the latter one corre-
sponding more closely to rule VCOMP), motivated by the syntactic structure of Grail
and its environment-based operational semantics. In contrast to Hoare’s assignment
rule

{A[e/x]}x := e{A}
VLET does not involve any syntactic manipulation of formulae. In particular, the
update of the environment (in an imperative setting: the assignment to the store)
is modelled in exactly the same way as in the operational semantics, avoiding the
(at first sight) counter-intuitive syntactic substitution in Hoare’s rule. Partially, this
difference originates from the shallowness of our embedding, where assertions are
functions over states. Indeed, Nipkow’s formalisation (see e.g. (22)) contains the
following rule for basic instructions

{λ s. A( f s)}Do f{A}
,
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which yields

{λ s. A(s[x 7→ eval e s])}x := e{A}
when specialised to assignments by modelling x := e as Do (λs.s[x 7→ eval e s]).
However, while the substitution is indeed replaced by an application of the as-
sertion to an updated state, this modification still happens in the pre-condition –
Nipkow’s rule is thus arguably closer to weakest precondition calculi (23). Finally,
when combining judgements of sub-expressions, notice how our rules existentially
quantify over intermediate states, while Hoare’s rule for program composition

{A}c1{B} {B}c2{C}
{A}c1;c2{C}

quantifies over intermediate assertions. Once again, our rule more closely related
to the corresponding rule in VDM:

{A}c1{λ s t. B t ∧C s t} {B}c2{D}
{A}c1;c2{D◦C}

,

which uses relational composition to combine post conditions.

3.4 Admissible rules

In addition to the proof rules given Section 3.2, we need some rules to simplify rea-
soning about concrete programs, and some others to help establish completeness.
All of these rules involve the context of assumptions.

Γ� e : A

Γ∪∆� e : A
(VWEAK)

Γ� e : A ∀ d B. (d,B) ∈ Γ −→ ∆�d : B

∆� e : A
(VCTXT)

{(d,B)}∪Γ� e : A Γ�d : B

Γ� e : A
(VCUT)

Γ |= ST (e,A) ∈ Γ

/0� e : A
(MUTREC)
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Γ |= ST (c.m(a),ST(c,m,a)) ∈ Γ

/0� c.m(b) : ST(c,m,b)
(ADAPTS)

Γ |= ST (x ·m(a),ST(x,m,a)) ∈ Γ

/0� y ·m(b) : ST(y,m,b)
(ADAPTV)

The first two rules, VWEAK and VCTXT, are proven by an induction on the deriva-
tion of Γ � e : A. A further cut rule, VCUT, follows easily from VCTXT. The cut
rules eliminate the need for introducing a second form of judgement used previ-
ously in the literature (e.g., (22)) when establishing soundness of the rule MUTREC

for mutually recursive program fragments. This proof will now be outlined.

First, we introduce the concept of specification tables. These associate an assertion
A to each function name or method invocation.

Definition 4 A specification table ST consists of the functions FST : F →A , sMST :
C → M → args → A , and vMST : X → M → args → A , where args is the type of
argument lists. We write ST(f ), ST(c,m,a) and ST(x,m,a) for the respective access
operations.

Contexts whose entries arise uniformly from these specification tables are of par-
ticular interest.

Definition 5 Context Γ respects specification table ST, notation Γ |= ST, if all
(e,A) ∈ Γ satisfy one of the three following conditions

• (e,A) = (call f ,ST(f )) for some f with Γ�bodyf : Θ(ST(f ), f )
• (e,A) = (c.m(a),ST(c,m,a)) for some c, m and a, and all b satisfy

Γ�bodyc,m : Φ(ST(c,m,b),c,m,b),

• (e,A) = (x ·m(a),ST(x,m,a)) for some x, m and a, and all c, y, and b satisfy

Γ�bodyc,m : Ψ(ST(y,m,b),y,c,m,b).

Here, the operators Θ, Φ, and Ψ are those defined in Section 3.2. Using rule VCUT,
is not difficult to prove that this property is closed under sub-contexts.

Lemma 6 If (e,A)∪Γ |= ST then Γ |= ST.

Based on Lemma 6, rule MUTREC can be proven by induction on the size of Γ.
Notice that the conclusion relates e to A in the empty proof context – and thus, by
rule VWEAK, in any context.
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The remaining admissible rules ADAPTS and ADAPTV amount to variations of
MUTREC for method invocations. In these rules, the expression in the conclusion
may syntactically differ from the expression stored the context, as long as this dif-
ference occurs only in the method arguments (including the object on which a vir-
tual method is invoked) and is reflected in the assertions. In Hoare logics, the adap-
tation of method specifications is related to the adaptation of auxiliary variables,
a historically tricky issue in formal understandings of program logics (24; 22; 21).
For example, Nipkow (22) adapts auxiliary variables in the rule of consequence,
which allows him to adapt them also when accessing method specifications from
contexts. In addition to admitting such an adaptation using universal quantifica-
tion in the definition of method specifications (see the discussion in the previous
section), our rules also allow differences in syntactic components, the method ar-
guments.

In order to show ADAPTS sound, we first prove

Lemma 7 If Γ |= ST and (c.m(a),ST(c,m,a)) ∈ Γ then

Γ\ (c.m(a),ST(c,m,a))� c.m(b) : ST(c,m,b).

using rule VCUT. The conclusion in this lemma already involves method arguments,
b, that may be different from the arguments used in the context, a. From this, rule
ADAPTS follows by repeated application of Lemma 6. The proof of rule ADAPTV
is similar.

3.5 Verification examples

Before treating the meta-logical issues of soundness and completeness, we first
describe a number of verification examples which we have carried out using our
implementation of the program logic in Isabelle/HOL. These examples show how
to use the argument adaptation rules for method invocations, and how to specify and
verify properties of resource consumption using resource algebras. We first outline
our verification strategy.

Given a specification table ST , the verification of methods proceeds in groups of
strongly connected components (SCCs) in the call graph, in topological order. For
simplicity, suppose for the moment that we have only static methods. When verify-
ing SCC N, all methods c.m invoked in the bodies of methods in N are either in the
same SCC, or are members of a smaller SCC and have already been verified, i.e.

∀a. /0� c.m(a) : ST(c,m,a) (3)

has already been established. Supposing that N contains methods c1.m1, . . . ,cn.mn
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with bodies e1, . . . ,en, respectively, the verification of N proceeds in three stages.
First, we define a context ΓN that contains

• at least all entries (c.m(a),ST(c,m,a)) where c.m(a) occurs in at least one body
ei, and c.m is not in any SCC M < N, and

• at least one entry (ci.mi(ai),ST(ci,mi,ai)) for each i ∈ {1, . . . ,n}, where the ai
are distinct meta-variables.

Second, for each pair (c,m) for which there exists an a with (c.m(a),ST(c,m,a)) ∈
ΓN , we prove the lemma

∀b. ΓN �bodyc,m : Φ(ST(c,m,b),c,m,b).

In the proofs of these lemmas, all invocations of methods in N are verified using
rule VAX, and all remaining method invocations are verified from (3) using VWEAK.
Together, these lemmas yield a verification of ΓN |= ST in which each method body
has been verified only once.

In the third stage, from ΓN |= ST we obtain

∀a. /0� ci.mi(a) : ST(ci,mi,a)

by rule ADAPTS for all i, and SCC N has been verified.

3.5.1 Append

Our first example is for the method LIST.append shown in Figure 1. The property
we will prove is given in the specification table entry

ST(LIST,append,a) = λE hh′ v p.

∀ Y n m.

∃ X x y. a = [var x,var y]∧h |=list(n,X) E〈x〉 ∧

h |=list(m,Y ) E〈y〉 ∧ X ∩Y = /0

−→

(∃ Z. h′ |=list(n+m,Z) v ∧ Z∩dom(h) = Y ∧ h =dom(h) h′).

which asserts that the result v represents a list of length n + m in the final heap,
provided that the arguments represent non-overlapping lists of length n and m in
the initial heap, respectively.

The datatype representation predicate h |=list(n,X) v is defined by the rules:

h(l) = LIST h(l).TAG = 2
h |=list(0,{l}) Ref l

h(l) = LIST l /∈ X

h(l).TAG 6= 2 h |=list(n,X) h(l).TL

h |=list(n+1,X∪{l}) Ref l
.
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This predicate captures that the heap h contains a well laid-out (non-overlapping)
list of length n begining at location value v = Ref l, and occupying locations X .
Predicates such as this are generated from high-level datatype definitions which are
translated into class and field structures for representation on the virtual machine.

The program proceeds by induction on the first argument, and allocates fresh mem-
ory when constructing the result. The region inhabited by the result, Z, thus overlaps
with the region Y of the second argument, but not the region X of the first argument.
Furthermore, the content of all locations in dom(h) remains unchanged (equality
h =dom(h) h′). By universally quantifying over arguments x and y, the property is
uniform in the choice of argument names.

We verify that

∀a. /0�LIST.append(a) : ST(LIST,append,a) (4)

holds following the strategy outlined above.

In the first step, the smallest context Γappend satisfying the conditions for append’s
SCC is the singleton context

Γappend = {(LIST.append([var v2,var l2]),ST(LIST,append, [var v2,var l2]))},

since the only invocation in the body of append is LIST.append([var v2,var l2]).
The second step consists of proving the lemma

∀b. Γappend �bodyLIST,append : Φ(ST(LIST,append,b),LIST,append,b), (5)

by applying the syntax-directed proof rules automatically and using rule VAX at
the invocation of LIST.append([var v2,var l2]). The two remaining side condi-
tions (one for each branch) may be discharged by case analysis on the data type
representation predicate, instantiating quantifiers, and applying datatype preserva-
tion results such as

(h |=list(n,X) v∧h =X h′)−→ h′ |=list(n,X) v

which are themselves proven by induction on h |=list(n,X) v. The proof that the side
conditions are fulfilled is thus, in general, difficult to automate.

From the lemma (5) we obtain immediately Γappend |= ST , so the correctness state-
ment (4) follows using rule ADAPTS.

Although statement (4) proves the correctness of LIST.append(a) for arbitrary a,
the definition of ST(LIST,append,a) implies that useful assertions only arise for
cases where a is an argument list of length two. In other cases, the formula to the
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left of the implication is false, resulting in the trivial assertion λE hh′ v p. true that is
fulfilled by any program but hardly useful at any point at which append is invoked.

The specification of append may be refined to include quantitative aspects us-
ing the resource algebras. For example, we can verify that all four metrics that
make up R Count depend linearly on the length of the list represented by the first
argument. First, we define linear factors AppTimeF, . . . ,AppHeapF and constants
AppTimeC, . . . ,AppHeapC.

AppTimeF 35 AppTimeC 14

AppCallF 2 AppCallC 1

AppInvF 1 AppInvC 1

AppStackF 1 AppStackC 1

AppHeapF 1 AppHeapC 0

Next, we modify the above specification table entry to include a specification of
the resource component and a term relating the size of the final heap to that of the
initial heap.

ST(LIST,append,a) = λE hh′ v p.

∀ Y n m.

∃ X x y. a = [var x,var y]∧h |=list(n,X) E〈x〉 ∧

h |=list(m,Y ) E〈y〉 ∧ X ∩Y = /0

−→

∃ Z. h′ |=list(n+m,Z) v ∧ Z∩dom(h) = Y ∧ h =dom(h) h′ ∧

p = 〈 (AppTimeF ∗n+AppTimeC)

(AppCallF ∗n+AppCallC)

(AppInvF ∗n+AppInvC)

(AppStackF ∗n+AppStackC) 〉 ∧

|dom(h′)|= |dom(h)|+AppHeapF ∗n+AppHeapC



Finally, the verification of

∀a. /0�LIST.append(a) : ST(LIST,append,a)

with respect to this modified specification is structurally identical to the proof of
property (4).
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3.5.2 Flatten

To continue with another example program emitted by the Camelot compiler, Fig-
ure 3 shows the definition of a method that flattens a tree into a list.

method LIST TREE.flatten(t) = call f

f 7→ let v4 = t.TAG in

let b= iszero v4 in

if b then call f0 else call f1

f0 7→ let v4 = t.CONT in let tg=imm 2 in

let t=new LIST [TAG := tg] in let tg=imm 3 in

new LIST [TAG := tg;HD := v4;TL := t]

f1 7→ let v3 = t.LEFT in let v2 = t.RIGHT in let v1 =TREE.flatten(var v3) in

let t=TREE.flatten(var v2) in LIST.append([var v1,var t])


Fig. 3. Code of method flatten

Again, we define a specification table entry for flatten,

ST(TREE,flatten,a) = λE hh′ v p.

∀ n x. (∃ X . a = [var x] ∧ h |=tree(n,X) E〈x〉)−→

(∃ Z. h′ |=list(2n,Z) v ∧ Z∩dom(h) = /0 ∧ h =dom(h) h′)

which universally quantifies over the argument name x. It asserts that the result v
represents a list of length 2n in the final heap, provided that the argument represents
a balanced binary tree of height n in the initial heap. Moreover, the region inhab-
ited by the result, Z, does not overlap with h (i.e. the list is represented in freshly
allocated memory), and the content of all locations in dom(h) remains unchanged.
The datatype representation predicate h |=tree(n,X) v is defined in a similar way as
the list predicate h |=list(n,X) v, namely:

h(l) = TREE h(l).TAG = 0
h |=tree(0,{l}) Ref l

h(l) = TREE l /∈ L∪R

h(l).TAG 6= 0 h |=tree(n,L) h(l).LEFT

L∩R = /0 h |=tree(n,R) h(l).RIGHT

h |=tree(n+1,L∪R∪{l}) Ref l

Once more, following the prescribed verification strategy, we prove
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∀a. /0�TREE.flatten(a) : ST(TREE,flatten,a). (6)

Building on the verification of append, the context defined in the first step may be
chosen as

Γflatten =

 (TREE.flatten([var v2]),ST(TREE,flatten, [var v2])),

(TREE.flatten([var v3]),ST(TREE,flatten, [var v3]))

 .

In the verification of

∀b. Γflatten �bodyTREE,flatten : Φ(ST(TREE,flatten,b),TREE,flatten,b), (7)

the two invocations of flatten are discharged by rule VAX, while the invocation of
append is discharged by appealing to property (4) using VWEAK. Once more, the
proofs of the side conditions involve case analysis on the datatype representation
predicates, the instantiation of quantifiers, and the application of datatype preserva-
tion lemmas for trees and lists. The preconditions of the latter are satisfied thanks
to the separation conditions in the specifications of append and flatten.

Similarly to the verification of append, we obtain Γflatten |= ST from the result
(7), and the correctness of flatten, i.e property (6), follows using rule ADAPTS.
As before, the specification of flatten is non-trivial for argument lists of the right
shape, in this case argument lists of length one.

To verify resource consumption for this method using R Count, we observe that
the costs of flatten depend on those of append, plus the costs of two recursive
invocations of flatten on subtrees. The resulting recurrence may expressed for the
four additive metrics by:

FlTime n = FlCost AppTimeF AppTimeC 38 22 n
FlCall n = FlCost AppCallF AppCallC 2 2 n
FlInv n = FlCost AppInvF AppInvC 1 1 n

FlHeap n = FlCost AppHeapF AppHeapC 2 0 n

where the function FlCost : N → N → N → N → N → N is defined by

FlCost appF appC base step 0 = base
FlCost appF appC base step (Suc n)= step + appF ∗ (2n) + appC

+ 2∗ (FlCost appF appC base step n),

and the recurrence equation for the frame stack height is given by
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FlStack 0 = 1
FlStack (Suc n)= 1 + max(FlStack n,2n +1).

The verification of the extended specification

ST(TREE,flatten,a) = λE hh′ v p.

∀ n x. (∃ X . a = [var x] ∧ h |=tree(n,X) E〈x〉)−→
∃ Z. h′ |=list(2n,Z) v ∧ Z∩dom(h) = /0 ∧ h =dom(h) h′ ∧

p = 〈(FlTime n) (FlCall n) (FlInv n) (FlStack n)〉 ∧

|dom(h′)|= |dom(h)|+FlHeap n


again proceeds following the same structure as for the simpler specification (6).
As expected, unfolding the recurrence equations leads to functions of exponential
growth, since the index n in the predicate h |=tree(n,X) v denotes the height of the
tree.

3.5.3 Even/Odd

As a third example, we verify that a run of the mutually recursive methods even
and odd (code in Figure 4) exhibits the expected alternation of method invocations.
This demonstrates that our rule MUTREC indeed works for mutually recursive meth-
ods, and also shows how we may use resource algebras for reasoning about exe-
cution traces. In particular, we consider the resource algebra R InvTr that collects
the static method invocations in execution order. We first define the auxiliary func-
tions fEven, fOdd : N → expr that calculate the list of invocations occurring inside a
method call, relative to a given input.

method BOOL EO.even(x) = let b= iszero x in let x=x−1 in

if b then imm true else EO.odd([var x])

method BOOL EO.odd(y) = let b= iszero y in let y=y−1 in

if b then imm false else EO.even([var y])

Fig. 4. Code of methods even and odd
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fEven 0 = [ ]
fEven (Suc n)= if (∃ k. Suc n = 2∗ k) then (fEven n) @ [EO.even([var y])]

else (fEven n) @ [EO.odd([var x])]
fOdd 0 = [ ]

fOdd (Suc n)= if (∃ k. Suc n = 2∗ k) then (fOdd n) @ [EO.odd([var x])]
else (fOdd n) @ [EO.even([var y])]

Next, the specification table entries for even and odd are defined. The specifications

ST(EO,even,a) = λE hh′ v p.

∀ w. (a = [var w] ∧ E〈w〉 ≥ 0)−→

 v = is even(E〈w〉) ∧

p = EO.even([var w]) :: (fEven(E〈w〉))


ST(EO,odd,a) = λE hh′ v p.

∀ w. (a = [var w] ∧ E〈w〉 ≥ 0)−→

 v = is odd(E〈w〉) ∧

p = EO.odd([var w]) :: (fOdd(E〈w〉))


constrain the form of input arguments, prefix the outermost call to the list of internal
invocations, and specify the result using the semantic functions

is even v = if (∃ n. v = 2∗n) then true else false
is odd v = if (∃ n. v = 2∗n) then false else true

The context ΓEO contains one entry for each method:

ΓEO =

 (EO.even([var y]),ST(EO,even, [var y])),

(EO.odd([var x]),ST(EO,odd, [var x]))


The verification of ΓEO |= ST unfolds each method body once, resolving the invo-
cation of the opposite method by rule VAX. We thus obtain

/0�EO.even([var z]) : ST(EO,even, [var z])

and

/0�EO.odd([var z]) : ST(EO,odd, [var z])
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for an arbitrary variable z using rule ADAPTS, and unfolding the definitions of fEven
and fOdd yields results such as

/0�EO.even([var z]) : λE hh′ v p. E〈z〉= 4 −→

v = true ∧

p = [ EO.even([var z]),EO.odd([var x]),

EO.even([var y]),EO.odd([var x]),

EO.even([var y])].

3.5.4 Limits on parameter values

As a final example, we show the use of the resource algebra R PVal to impose limits
on the arguments of invocations of a (native) method. The code fragment shown in
Figure 5 shows a loop that repeatedly prepends a new element to a list l and then
invokes C.M with l. In each iteration, the first argument, n, is intended to describe
an upper bound on the length of l.


f 7→ let n=n+1 in let l =new LIST [HD := n,TL := l] in

C.M(var n,var l) ; let b= if n < 42 then imm true else imm false in

if b then call f else var l


Fig. 5. A loop repeatedly invoking method C.M.

A policy that describes the desired relation is

P(a)≡ ∃ x y n R. a = [var x,var y] ∧ h |=list(n,R) E〈y〉 ∧ n ≤ E〈x〉 ∧ E〈x〉 ≤ 42.

This expresses that the method must always be invoked on two arguments, the
first argument must be a bound on the length of the list contained in the second
argument; the list also has a fixed concrete limit on its length.

Provided that the body of C.M itself satisfies the policy, we can verify that all invo-
cations of C.M arising from a call to f respect the policy, subject to conditions on
the initial state. The verification of

/0�call f : λE hh′ v p. (∃ m R. h |=list(m,R) E〈l〉 ∧ m ≤ E〈n〉)

−→ p = (E〈n〉< 42)

proceeds very similarly to the proofs described earlier.
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3.6 Soundness

In order to prove that each derivable judgement is semantically valid, we first define
a relativised notion of validity.

Definition 8 (Relativised validity) Specification A is valid for e at depth n, written
|=n e : A, if

(m ≤ n ∧ E ` h,e ⇓m h′,v, p) −→ A E h h′ v p.

Here, the judgement E ` h,e ⇓m h′,v, p refers to an operational semantics that ex-
tends the semantics given in Section 2.4 by an explicit index which models the
derivation height. Note that this counter is only used for meta-reasoning and is in-
dependent from the resources. It is immediate to show the equivalence of the two
semantics and we omit the details.

The counter n in Definition 8 restricts the set of pre- and post-states for which A
has to be fulfilled. It is easy to show that |= e : A is equivalent to ∀n. |=n e : A, and
that relativised validity is downward closed, i.e. that for m ≤ n, |=n e : A implies
|=m e : A.

Like unrestricted validity, relativised validity may be generalised to contexts:

Definition 9 (Relativised context validity) Context Γ is valid at depth n, written
|=n Γ, if for all (e,A) ∈ Γ, |=n e : A holds. Assertion A is valid for e in context Γ at
depth n, denoted Γ |=n e : A, if |=n Γ implies |=n e : A.

As a benefit of the index and of relativised validity, proofs may be carried out by
induction on the derivation height of the operational semantics (25; 21; 26).

In particular, we can prove the following lemma:

Lemma 10 For |=n Γ and Γ∪{call f ,A}�bodyf : Θ(A, f ), let

|=m (Γ∪{call f ,A})−→|=m bodyf : Θ(A, f )

hold for all m. Then |=n call f : A.

PROOF. By induction on n.

Similar results hold for static and virtual method invocations. From this, the fol-
lowing result may be proven:

Lemma 11 If Γ� e : A then ∀n. Γ |=n e : A
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PROOF. By induction on the derivation of Γ� e : A.

Finally, the soundness statement is obtained from Lemma 11 by unfolding the def-
initions of (relativised) validity.

Theorem 12 (Soundness) If Γ� e : A then Γ |= e : A.

In particular, an assertion that may be derived using the empty context is valid:
/0� e : A implies |= e : A.

3.7 Completeness

The soundness of a program logic ensures that derivable judgements assert valid
statements with respect to the operational semantics. Soundness is thus paramount
to a trustworthy proof-carrying code system. In contrast, completeness of program
logics has hitherto been mostly of meta-theoretic interest. For the intended use
as the basis of MRG’s hierarchy of program logics, however, this meta-theoretic
motivation is complemented by a pragmatic motivation. The intention of encoding
(possibly yet unknown) high-level type systems as systems of derived assertions re-
quires that any property that (for a given notion of validity) holds for the operational
semantics be indeed provable. Partially, this requirement concerns the expressive-
ness of the assertion language, which, thanks to our choice of shallow embedding,
is guaranteed, as any HOL-definable predicate may occur in assertions. On the
other hand, the usage of a logically incomplete ambient logic such as HOL renders
the program logic immediately incomplete itself, via the rule of consequence. The
by now accepted idea of relative completeness (27) proposes to separate reasoning
about the program logic from issues regarding the logical language. In particular,
the side condition of rule VCONSEQ only needs to hold in the meta-logic, instead of
being required to be provable. Since Kleymann’s work (21), it is customary to fol-
low this suggestion for shallow embeddings of program logics in theorem provers.

In our setting, the role of most general formulae, originally introduced by Gore-
lik (28) to prove completeness of recursive programs, is played by strongest spec-
ifications. These are those assertions that are satisfied exactly for the tuples of the
operational semantics.

Definition 13 (Strongest specification) The strongest specification for e is defined
by

SSpec(e)≡ λE hh′ v p.E ` h,e ⇓ h′,v, p.

It is immediate that strongest specifications are valid

|= e : SSpec(e)
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and imply all other valid specifications:

If |= e : A and SSpec(e) E h h′ v p then A E h h′ v p. (8)

The context Γstrong associates to each function label and each method declaration
in the global program P its strongest specification

Γstrong ≡

(e,SSpec(e)) |
∃ f . e = call f ∨ ∃ c m a. e = c.m(a)

∨ ∃ x m a. e = x ·m(a)


By induction on e, we prove

Lemma 14 For any e, we have Γstrong � e : SSpec(e).

This result can be used to show that Γstrong respects the strongest specification table,

STstrong ≡ (λ f . SSpec(call f ),λ c m a. SSpec(c.m(a)),λ x m a. SSpec(x ·m(a))).

Lemma 15 We have Γstrong |= STstrong.

The proof of this lemma proceeds by unfolding the definitions, using Lemma 14 in
the claims for function calls and method invocations.

Next, we prove that

Γstrong |= ST implies /0� e : SSpec(e) (9)

for arbitrary specification table ST , by applying rule VCTXT, where the first premise
is discharged by Lemma 14 (i.e. Γ is instantiated to Γstrong) and the second premise
is discharged by rule MUTREC.

Combining property (9) and Lemma 15 yields /0� e : SSpec(e), from which

Theorem 16 (Completeness) For any e and A, |= e : A implies /0� e : A.

follows by rule VCONSEQ and property (8).

4 Program logic for termination

So far the program logic developed for Grail has been a logic for partial correctness.
In this section we will develop a program logic for termination, with the judgement
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�T{P} e ↓, to be read as “expression e terminates under pre-condition P.” In for-
malising the concept of a pre-condition, we adopt the same approach as in the core
logic and use a shallow embedding. Thus, pre-conditions are predicates over envi-
ronments and heaps in the meta-logic and have the type P ≡ E → H → B .

With this termination logic a total correctness statement, that expression e fulfils
assertion A and terminates under pre-condition P, is then the conjunction of state-
ments of these two logics: /0� e : A ∧ �T{P}e ↓. In contrast to the usual approach
of adding the termination-guaranteeing side-conditions directly into the rules for
function calls and method invocations 6 , our approach has the advantage of being
modular: we do not have to modify the underlying logic for partial correctness at
all. To add confidence to the results in this section, we have formalised the termi-
nation logic and its soundness proof in Isabelle/HOL.

As side conditions in the rules for let and for composition we will need a form of
semantic “implication”, relating an overall pre-condition P to the pre-condition P′

for the second sub-expression, possibly after a value binding to the variable x. We
express this as an assertion in the partial correctness logic, and define the following
combinator.

Definition 17 A pre-condition implication of two pre-conditions P,P′ with a bind-
ing to variable x, written P −→〈x:=〉 P′, is an assertion defined as follows

λE h h′ v p. P E h −→ (∃i. v = i ∧ P′ (E〈x := i〉) h′)

Recall that the operation E〈x := i〉 performs an update of the variable x by the
value i. A similar −→〈 :=〉 combinator expresses a pre-condition implication with-
out value-binding.

4.1 Proof system

We now introduce a proof system for termination. It uses a relation symbol
�T{P} e ↓, where P is a pre-condition and e an expression. This symbol can be
instantiated in various ways, and the following sections will elaborate on the rela-
tionship with the semantic definition of termination.

While the core logic uses contexts to collect assumptions on methods and functions
we rely here on meta-level implication for this purpose: To prove that a call f ()
terminates for all inputs one must exhibit a measure function and prove for all n
that the body of f terminates for inputs of measure up to n assuming that calls to f

6 One notable exception is (29), where a termination logic is built on top of a Hoare-Logic
for a while-language.
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terminates for inputs of measure less than n. Unlike in the partial case such a rule
can be justified by meta-level induction on the termination measure.

Note that a similar use of metalvel implication would be unsound for partial cor-
rectness. For each function (or method) f () it trivially holds that either f () satisfies
the partial correctness assertion φ or else it is the case that its body satisfies it as-
suming that any call to f () satisfies φ by “ex falso quodlibet”. Thus, in the partial
correctness case the access to assumptions on calls must be suitably restricted (e.g.,
using contexts) so as to rule out meta-level case distinctions as above, whereas no
such restriction is necessary for termination logic due to the outside quantification
over the measure.

Thus, we can use a shallow encoding of object-logic contexts, or, in other terms,
a form of hypothetical-parametrical judgements as in type theory, where the meta-
logic context encodes the object one. The drawback is that termination does not
have an induction principle, yet the encoding abstracts from explicit context man-
agement operations such as axiomatic lookup or weakening, which are delegated
to the meta-logic.

Another noteworthy and to our knowledge original contribution is the proof of com-
pleteness of the logic even for mutually recursive functions without introducing ad
hoc rules that deal with mutual recursion explicitly.

∀E h.P′ E h −→ P E h �T {P} e ↓

�T{P′} e ↓
(TCONSEQ)

�T{P} null ↓
(TNULL)

�T{P} imm i ↓
(TIMM)

�T{P} var x ↓
(TVAR)

�T{P} prim op x y ↓
(TPRIM)

∀E h. P E h −→ E〈x〉 6= null

�T{P} x.t ↓
(TGETF)

∀E h. P E h −→ E〈x〉 6= null

�T{P} x.t:=y ↓
(TPUTF)

�T{P} c� t ↓
(TGETS)

�T{P} c� t:=y ↓
(TPUTS)

�T{P} new c [ti := xi] ↓
(TNEW)
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�T{λE h. P E h ∧ E〈x〉= true} e1 ↓ �T{λE h. P E h ∧ E〈x〉= false} e2 ↓

∀E h. P E h −→ E〈x〉 ∈ {true, false}

�T{P} if x then e1 else e2 ↓
(TIF)

�T{P} e1 ↓ �T{P′} e2 ↓ �e1 : P −→〈 :=〉 P′

�T{P} e1 ; e2 ↓
(TCOMP)

�T{P} e1 ↓ �T{P′} e2 ↓ �e1 : P −→〈x:=〉 P′

�T{P} let x=e1 in e2 ↓
(TLET)

∀n. �T {λE h. ∃m. m < n ∧ P m E h} call f ↓ −→ �T{P n} bodyf ↓

�T{λE h. ∃n. P n E h} call f ↓
(TCALL)

∀n. �T {λE h. ∃m. m < n ∧ P m E h} c.m(a) ↓ −→

�T{λE h. ∃E ′. E = Env(self :: parsc,m,null :: a,E ′) ∧ P n E ′ h} bodyc,m ↓

�T{λE h. ∃n. P n E h} c.m(a) ↓
(TSINV)

∀n. �T {λE h. ∃m l. m < n ∧ E〈x〉= Ref l ∧ h(l) = c ∧ P m E h} x ·m(a) ↓ −→

�T{λE h. ∃E ′. E = Env(self :: parsc,m,x :: a,E ′) ∧ P n E ′ h} bodyc,m ↓

�T{λE h. ∃n l. E〈x〉= Ref l ∧ h(l) = c ∧ P n E h} x ·m(a) ↓
(TINV)

4.2 Discussion

The TCONSEQ rule allows us to weaken the pre-condition P′ to P if it is a logi-
cal consequence from P′. For the leaf cases the only possibility of non-termination
is a null-reference in a get- or put-field operation. The operational semantics gets
stuck in this case. The if rule, TIF, requires termination of both branches under the
added knowledge on the value in the header, which must be a boolean value. In
the rules for composition, TCOMP, and for let, TLET, a side condition, phrased in
terms of the partial correctness logic, is used to establish a link between the overall
pre-condition P and the pre-condition P′ before the second sub-expression. In or-
der to deal with recursion, the rules TCALL, TSINV and TINV use a well-founded
relation < and require that termination of the body must be provable, assuming ter-
mination of a Call (or Invoke) for an arbitrary, smaller measure, i.e. for m < n. Note
that any well-founded ordering can be used in these rules. It is also worth noting
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that this formalisation, with an inner existential quantifier in the pre-condition, is
easier to apply than the version that uses an outer universal quantification over m,
since the value binding is deferred until the pre-condition is exposed in the proof.
As usual for such measures, the variable n is existentially quantified in the con-
clusions of the TCALL, TSINV and TINV rules, since it captures the value of the
measure at the call point. The rules for static and dynamic method invocation ac-
count for the modification of the environment, by applying the Env operator to the
outer environment E ′. The TINV rule contains another clause in its pre-condition,
stating that the variable x points to an instance of class c.

4.3 Soundness

We now define the notion of termination semantically as follows.

Definition 18 (Termination) The expression e terminates under the pre-condition
P, written |=T {P} e ↓, iff for all environments E and heaps h

P E h −→ ∃h′ v p. E ` h,e ⇓ h′,v, p

To spell it out, a Grail expression e terminates under a pre-condition P, if for all
states, i.e. environments E and heaps h, that fulfil P, a final state, comprised of heap
h′, value v and resources p, exists in the operational semantics.

We now prove that the rules for the proof system in Section 4.1 are sound w.r.t.
this definition of termination, i.e. we will prove them as lemmas on the semantic
definition of termination.

Theorem 19 (TSoundness) The relation |=T {P} e ↓ is closed under the proof rules
for �T{P} e ↓ in Section 4.1.

PROOF. By cases on e: the leaf cases are straightforward. In the TCOMP and
TLET cases, soundness of the partial correctness logic is used to propagate the
pre-condition P through the let header. Likewise for the header in the conditional.
The TCALL, TSINV and TINV cases are proven by well-founded induction of the
predicate λn.∀E h.P n E h −→ (∃h′ v p. E ` h, e′ ⇓ h′, v , p) over n, where e′ is
call f , c.m(a), or x ·m(a), respectively.

4.4 Completeness

In this section we present a proof of completeness for the termination logic. In
the proof we only cover functions, but the extension to methods can use the same
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techniques for a suitably modified definition of IHk below. Note that we instantiate
the well founded relation < to “strictly less” on the naturals. The overall structure
of the completeness proof is as follows: as most general formulae we use pairs of
expression e and its weakest pre-condition wp e. Having a standard consequence
rule it suffices to show �T{wp e} e ↓. We reduce this to a proof of Lemma 27,
which augments the weakest precondition with a descending chain of naturals, and
the lemma can be proven by induction over this chain.

Definition 20 The weakest pre-condition of an expression e ∈ expr, written wp e,
is

λ E h. ∃ h′ v p. E ` h,e ⇓ h′,v, p

Definition 21 The bounded weakest pre-condition of an expression e ∈ expr for
n ∈ N, written wp′ e n, is

λ E h. ∃ m ≤ n. ∃ h′ v p. E ` h,e ⇓m h′,v, p

The index m in the operational semantic judgement is the same index on the deriva-
tion height that was used in the formulation of relativised validity in Definition 9.
It is easy to show that wp e is a pre-condition and that it is the weakest such pre-
condition.

Lemma 22 For all expressions e ∈ expr and pre-conditions P ∈ P ,

|=T {wp e} e ↓ (10)
|=T {P} e ↓−→ ∀E h.P E h −→ wp e E h (11)

We make use of the following lemmas, which are shown by unfolding the definition
of wp′, using rules of the semantics and simple logical reasoning. The last sub-
lemma (16) is shown by induction over e.

Lemma 23 For all expressions e ∈ expr, function names f ∈ F , environments E ∈
E , heaps h ∈ H , n,n′ ∈ N,

wp e E h = ∃n. wp′ e n E h (12)
wp′ e n E h −→ ∃n. wp′ e n E h (13)

wp′ e n E h ∧ n ≤ n′ −→ wp′ e n′ E h (14)
wp′ (bodyf ) n E h = wp′ (call f ) (n+1) E h (15)

�T{λE h. false} e ↓ (16)

In the proof for completeness, we use a variant of the call rule, which follows
directly from TCALL. This version of the rule goes back to Sokołowski (30).
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∀E h.¬P 0 E h

∀n.�T {P n } call f ↓−→�T {P (n+1) } bodyf ↓

�T{λE h. ∃n. P n E h } call f ↓
(TCALL’)

The completeness theorem for the termination logic is now stated as follows. It
establishes the fact that, if |=T {P}e ↓ holds, then this can be proven using the
proof rules for �T alone.

Theorem 24 (TCompleteness) If �T is any relation that validates the proof rules
in Section 4.1, then |=T ⊆ �T .

PROOF. Follows from Lemma 25 and TCONSEQ with Lemma 22(11).

Lemma 25 For all expressions e ∈ expr, the following holds: �T{wp e} e ↓

PROOF. Proof by induction over e. The leaf cases are trivial. The cases TCOMP,
TLET and TIF use completeness of the core logic and deterministic evaluation of
the operational semantics. The TCALL case uses TCONSEQ with Lemma 27 and
Lemma 23(12).

Without loss of generality we assume that the function names are sorted as f1, . . . , fM.

Definition 26 For expression e ∈ expr, k,M ∈ N, k ≤ M, n1, . . . ,nk ∈ N, let

IHk ≡ ∀ 1 ≤ i ≤ k. �T {wp′ (call fi) ni ∧ ∀1 ≤ j < i. n j ≥ n j+1} call fi ↓ −→

�T{wp′ e nk ∧ ∀1 ≤ j < k. n j ≥ n j+1} e ↓

Lemma 27 For all k ≤ M, IHk holds.

PROOF. By induction over M−k. The base case, with k = M, follows from Lemma 28,
the induction case from Lemma 29 and the induction hypothesis.

The following lemma proves the base case, i.e. IHM.

Lemma 28 For all expressions e ∈ expr, n1, . . . ,nM ∈ N,

∀ 1 ≤ i ≤ M. �T {wp′ (call fi) ni ∧ ∀1 ≤ j < i. n j ≥ n j+1} call fi ↓ −→

�T{wp′ e nM ∧ ∀1 ≤ j < M. n j ≥ n j+1} e ↓
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PROOF. By structural induction over e. For all non-call cases, apply the syntax-
oriented rule, then for each sub-expression TCONSEQ with Lemma 23(14), and
then the induction hypothesis. The call case follows directly via TCONSEQ with
Lemma 23(14) and monotonicity of the ≥ chain.

The following lemma allows us to add information on the function fk+1 into the
meta-context. This is used to discharge the implication in IHk+1 in the proof of
Lemma 27. Note, that this step corresponds to the cut-rule on an explicit context,
which was used in the proof for completeness of the core logic.

Lemma 29 For all n1, . . . ,nk+1 ∈ N, if IHk+1 then

∀ 1 ≤ i ≤ k. �T {wp′ (call fi) ni ∧ ∀1 ≤ j < i. n j ≥ n j+1} call fi ↓ −→

�T{wp′ (call fk+1) nk+1 ∧ ∀1 ≤ j < k +1. n j ≥ n j+1} call fk+1 ↓

PROOF. TCONSEQ via Lemma 23(13) then TCALL’. This leaves to prove that
�T{wp′ (call fk+1) (nk+1 + 1) ∧ ∀1 ≤ j < k +1. n j ≥ n j+1 + 1} body fk+1

↓,
assuming �T{wp′ (call fk+1) nk+1 ∧ ∀1 ≤ j < k +1. n j ≥ n j+1} call fk+1 ↓.
This follows via TCONSEQ with Lemma 23(15) and monotonicity of the ≥ chain
from �T{wp′ (body fk+1

) nk+1 ∧ ∀1 ≤ j < k +1. n j ≥ n j+1} body fk+1
↓, which we

know from the induction hypothesis IHk+1.

4.5 Example

As example program we use a variant of the even/odd program from Section 3.5.3,
which uses only functions and decrements x. We emphasise that we can prove ter-
mination of even/odd without any additional rules for mutual recursion and we do
the proof directly on the rules in Section 4.1. We focus on the specifics of a proof
of mutually recursive functions.

We need to specify the pre-condition under which the functions terminate. Typ-
ically this involves characterising the possible parameter values and class mem-
bership for the methods involved. The format of the pre-condition should fit the
structure of the pre-condition in the call rule to be existentially quantified over the
measure. In this case we can use the same parameterised pre-condition for both
functions: Pe/o ≡ λn E h. 0 ≤ E〈x〉∧n = E〈x〉.

We need to provide a measure for each function, which assures termination. With
the format of the pre-condition above, we can read the measure straight off: Me/o ≡
λE h. E〈x〉. We prove termination of even, i.e.

�T{λE h. ∃n. Pe/o n E h} call even ↓
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In the proof we first apply the TCALL rule, adding information on the pre-condition
for even to the meta-context. Only syntax-directed rules are used to traverse the
body of the function. When encountering odd we first use TCONSEQ and then
prove termination of odd under the pre-condition λE h.∃n′. Pe/o n′ E h ∧ n′ =
n−1 which is implied by the pre-condition at the call point. We use the constraint
n′ = n−1 to relate the measure for even, namely n, to that of odd, namely n′, and
then apply the TCALL rule. Following the proof idea in the completeness proof,
we could use the weaker constraint n′ ≤ n; however, this would give a longer proof
and thus we pick the exact value for this program. When arriving at the second call
to even, we use the first clause in the meta-context, i.e. :

�T{λE h. ∃m. m < n ∧ 0 ≤ E〈x〉 ∧ m = E〈x〉} call even ↓

�T{λE h. n−1 < n′ ∧ 0 ≤ E〈x〉 ∧ n−1 = E〈x〉} call odd ↓

These clauses were added by the two invocations of the TCALL rule. We now
instantiate the measure to n− 2 for even. After using TCONSEQ only the side-
conditions generated by the syntax-oriented rules remain. These are solved using
soundness of �, rules of the operational semantics and some auxiliary lemmas,
formalising non-interference of variables in the evaluation of sub-expressions. A
case distinction over n > 0 is necessary to separate the recursion path, from the
non-recursive path through the program, and basic arithmetic completes the proof.

5 An infrastructure for resource certification

In this section we describe the infrastructure for certification of resources which we
build on top of the program logics presented above. This is based on a multi-layered
approach (shown in Figure 6).

To begin with, we use an applied type system. While the complexity of proving
general program correctness often restricts the research on program verification to
only security-critical systems, increasingly complex type systems have found their
way into main-stream programming and are accepted as useful tools in software
development. Given this complexity, soundness proofs become subtle, and the user
of the code has to trust both the proof and the translation of the high-level code into
the object-code. Our approach in guaranteeing the absence of bad behaviour is to
translate types into proofs in a suitably specialised program logic. Going by this
route, a formal certificate is generated that can be independently checked.

At the basis we have our (trusted) operational semantics that is extended with gen-
eral “effects” that encode the basic security-sensitive operations (for example, heap
allocation if the security policy is bounded heap consumption). The Foundational
PCC approach (31) performs proofs directly on this level and thereby reduces the
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High-Level Type System

Specialised Logic

Termination Logic

Program Logic

Operational Semantics E ` h,e ⇓ h′,v, p

Γ � e : A

�T{P} e ↓
� ptq : D(Φ,τ)

compile

Φ `H t : τ

?

Fig. 6. A family of logics for resource consumption

size of the trusted code base (TCB). Similarly, since we formalise the entire hierar-
chy of logics in a theorem prover we do not need to include any of these logics into
the TCB.

On the next level we have our general-purpose program logic for partial correct-
ness. Its role is to serve as a platform at which various higher level logics may
be unified. The latter purpose makes logical completeness of the program logic a
desirable property, which has hitherto been mostly of meta-theoretic interest. Of
course, soundness remains mandatory, as the trustworthiness of any application
logic defined at higher levels depends upon it. Our soundness and completeness
results establish a tight link between operational semantics and program logic, as
shown in Figure 6.

While assertions in the core logic make statements on partial program correctness,
as we have seen, the termination logic is defined on top of this level to certify
termination. This separation improves modularity in developing these logics, and
allows us to use judgements of the partial correctness logic when talking about
termination.

On top of the general-purpose logic, a specialised logic (for example the heap logic
of (32)) is defined that captures the specifics of a particular security policy. This
logic uses a restricted format of assertions, called derived assertions, which reflects
the information of the high-level type system. Therefore, the specialised logic can
be embedded into the core logic. Judgements in the specialised logic have the form
� ptq : D(Φ,τ), where the expression ptq is the result of compiling a high-level
term t down to a low-level language, and the information in the high-level type
system is encoded in a special form of assertion that depends on the context and
type associated to t, D(Φ,τ). Depending on the property of interest, this level may
be further refined into a hierarchy of proof systems, for example if parts of the
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soundness argument of the specialised assertions can be achieved by different type
systems. In contrast to the general-purpose logic, this specialised logic is not ex-
pected to be logically complete, but it should provide support for automated proof
search. In the case of the logic for heap consumption, this is achieved by formu-
lating a system of derived assertions whose level of granularity is roughly similar
to the high-level type system. However, the rules are expressed in terms of code
fragments in the low-level language. Since the side conditions of the typing rules
are computationally easy to validate, automated proof search is supported by the
syntax-directness of the typing rules. At points where syntax-directness fails —
such as recursive program structures — the necessary invariants are provided by
the type system.

Thus, on the top level we find a high-level type system, that encodes information
on resource consumption. In the judgement Φ `H t : τ, the term t has an (extended)
type τ in a context Φ. This level is of immediate relevance for the programming
languages area, and many type-based inferences have been suggested. The case we
have worked out is the Hofmann & Jost type system for heap usage (33). In our
work, however, we give a framework for tying such analyses into a fully formalised
infrastructure for reasoning about resource consumption.

However, for illustration purposes, let us instantiate this hierarchy with a a sim-
ple security property of “well-formed datatypes”, related to memory safety polices
considered in PCC. To model datatypes, we use a version of the previously defined
predicate h |=τ a, expressing that an address a in heap h is the start of a (high-level)
data-type τ. In the core program logic we can express the fact that the a method c.m f
compiled from the high-level function f :: τ list → τ list preserves a well-formed
data-type as follows:

� c.m f (x) : λE h h′ v. h |=list E〈x〉 −→ h′ |=list v

To abstract over the details of modelling data-structures, we construct a specialised
logic for this security property, by restricting the form of the assertions to reflect the
high-level property to be formalised. These derived assertions D(Φ,τ) must have
the following property for a program term t and a high-level type τ:

Φ `H t : τ =⇒ �ptq : D(Φ,τ)

The definition of the derived assertion carries with it the high-level types of the vari-
ables, and accesses low-level predicates, which are needed to express the security
policy but should be hidden in the specialised logic itself:

D(x : list,y : list, list) ≡ λE h h′ v p. h |=list E〈x〉 ∧ h |=list E〈y〉 −→

h′ |=list E〈x〉 ∧ h′ |=list E〈y〉 ∧ h′ |=list v
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Based on this format we could phrase a rule for a high-level list-cons operator,
which abstract from the representation predicates:

�pt1q : D(Φ,τ) �pt2q : D(Φ,τ list)

�pcons(t1, t2)q : D(Φ,τ list)

The soundness of the rules in the specialised logic can then be proven once and
for all on top of the core logic. Each rule roughly corresponds to each case in the
type soundness proof at the high level. The main advantages of the specialised logic
are proofs in this logic being largely syntax-directed with simpler side conditions.
Since most of the rules in this logic are syntax-directed, it is possible to turn (high-
level) type checking into an (effective) tactic in a proof assistant. In comparison,
using an interactive prover to prove such assertions becomes very complicated,
except for very simple programs. Even in the presence of a verification condition
generator, side conditions arise that are currently too difficult for the automated
facilities of a proof assistant, hence considerable manual intervention is necessary.
As we remarked earlier, performing a soundness proof of an entire type system may
be in itself a daunting task. Moreover, this hardly provides any guarantees with the
respect to the compiled code level.

6 Related Work

There has been an outstanding amount of research about formalising the safety of
Java/JVM/JavaCard, see (34) for a review up to 2001. For our purposes, we review
only work related to program logics, which we can divide in roughly three cate-
gories: imperative and object-oriented logics, pointer logics and bytecode logics.
Note, however, that none of this related work contains any formalized account of
resources.

6.1 Imperative and object-oriented logics

Most closely related to our work on the meta-theoretical side are Nipkow’s imple-
mentation of Hoare logic in (25), the Java-light logic by von Oheimb (35), Kley-
mann’s thesis (21), and Hofmann’s (26) work on completeness of program logics.
The formalized logic by Nipkow in (25) is for a while-language with parameter-
less functions, with proofs of soundness and completeness. Although several tech-
niques we use in our proofs are motivated by this work, we have made progress on
the treatment of mutual recursion and adaptation. In particular, in covering mutual
recursion we do not specify a separate derivation system but only use a derived rule
MUTREC that keeps our core logic small and easy to handle when proving sound-
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ness and completeness. Several options for formalising either VDM or Hoare-style
program logics have been explored by Kleymann in his thesis (21). In particular,
this work demonstrates how to formalise an adaptation rule that permits to modify
auxiliary variables. This logic for total correctness of a while language with func-
tions is closely related to our termination logic. In particular, the call rule is similar,
but he does not cover methods. We used these results, together with our own pre-
vious experience on VDM-style logics (36) to design the Grail program logic. The
techniques used in our completeness proof are based on those by one of the authors
in (26).

With respect to other relevant program logics, the one for Java-light by von
Oheimb (35) is encoded in Isabelle and proven sound and complete. It cov-
ers more object-oriented features, but it works on a higher level than our
logic for a bytecode language and does not address resources. Moreover, be-
cause of the focus on meta-theoretical properties, it is hardly suitable for con-
crete program verification, as it can also be seen from the only example pro-
vided (http://isabelle.in.tum.de/Bali/src/Bali5/AxExample.html). He
also discusses, as an alternative to his own logic, a rule for method invocation in
a total correctness logic for Java-light that allows a similar handling of mutual re-
cursion as our system. Both Kleymann and von Oheimb develop logics combining
functional correctness and termination in one logic, yielding a far more complicated
system than our termination logic.

DeBoer et al. (37; 38) present a sound and complete Hoare-style logic for a se-
quential object-oriented language with inheritance and subtyping. In contrast to
our approach, the proof system employs a specific assertion language for object
structures, a WP calculus for assignment and object creation, and Hoare rules for
method invocation. The approach is heavily based on syntactical substitutions, yet
the logic is not compositional. Recently a tool supporting the verification of anno-
tated programs (flowcharts) yielding verification conditions to be solved in HOL
has been produced (39). This also extends to multi-threaded Java (40), where also
a non-formalized proof of the soundness and completeness of its assertion-based
proof system is provided.

Abadi and Leino combine a program logic for a simple object-oriented language
with a type system (41; 42). The language supports sub-classing and recursive ob-
ject types. In a judgement, specifications as well as types are attached to expres-
sions. In contrast to our logic, it uses a global store model, with the possibility of
storing pointers to arbitrary methods in objects. As a result of this design decision
this logic is incomplete.

Homeier (29) also develops a termination logic, separate from a partial correctness
Hoare-logic for a simple while-language with procedures. His treatment of mu-
tual recursion builds on procedure entrance specifications that relate the state at the
beginning of procedure with that at a call point in the procedure. These entrance
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specifications can be used to encode a descending chain, as we use it in the com-
pleteness proof, but in terms of logics his work uses heavier machinery (a separate
logic for entrance specifications). In contrast to our work, he doesn’t give formal
completeness results for his termination logic.

Several projects aim at developing program logics for subsets of Java, mainly as
tools for program verification. Müller and Poetzsch-Heffter present a sound Hoare-
style logic for a Java subset (43). Their language covers class and interface types
with subtyping and inheritance, as well as dynamic and static binding, and aliasing
via object references, which has been implemented in the Jive tool (44). As part of
the LOOP (45) project, Huisman and Jacobs (46) present an extension of a Hoare
logic that includes means for reasoning about abrupt termination and side-effects,
encoded in PVS/Isabelle. In (47) a set of sound rules for the sequential impera-
tive fragment of Java are given, based on JML, combining all possible termination
modes in a single logic. Krakatoa (48) is a tool for verifying JML-annotated Java
programs that acts as front-end to the Why system (49), using Coq to model the
semantics and conduct the proofs. Why produces proof-obligations for programs
in imperative-functional style via an interpretation in a type theory of effects and
monads. JACK (50) is based on a weakest preconditions calculus, which is asserted
rather than semantically derived from a machine model. It generates proof obliga-
tions from annotated Java sources. The proof obligations can be discharged using
different systems, from automated tools such as Simplify to interactive theorem
provers. Much effort is invested in making the system usable by Java programmers
by means of an Eclipse plug-in and a proof obligation viewer. Recently (51) this has
been extended to a logic for sequential bytecode, where annotations are expressed
in a Bytecode Modelling Language, which is the target of a JVM compiler. The
logic is based on a weakest precondition calculus, whose soundness is reported to
have been proven w.r.t. to the operational semantics of the JVM in (52). In addi-
tion to defining a predicate transformer for each bytecode, the approach requires
the computation of the WP of the whole program using its control flow graph. In
the context of the KeY project (53), Beckert (54) presents a sequent calculus for a
version of Dynamic Logic dedicated to the JAVACARD language with judgments
of the form Γ ` 〈e〉φU , where e is a program, Γ encodes preconditions and U is
a state update used to cope with aliasing. Loops are dealt with by unrolling and
method calls by symbolic execution of the body. Soundness and completeness are
not proven. This has been integrated with the KeY interactive prover and applied to
security properties in (55) (for example only ISOException thrown at top level).
An attempt is made to modularize the approach to methods by utilising pre and
post-condition rather than execution of the body. (56) extends the approach to deal
with JAVACARD transactions by introducing a trace modality. A related system is
KIV (57); in particular, (58) presents a formalized operational semantics and sound
dynamic logic for full JAVACARD, based on strongest postconditions. Expressions
and blocks are flattened (a sort of ANF), new instructions are added (for example,
to mark the end of a block) yielding judgments of the form Γ ` 〈H;e〉φ,∆, where
H is the initial heap. Program rules may be applicable also on the left hand side
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of the turnstyle, making the over 50 rules a rich calculus best suited to interactive
verification. Furthermore, the encoding is not definitional, but relies on dozens of
axioms over operations such as replacement of variables, flattening of blocks etc.

There are also systems more oriented towards lightweight static validation: the main
one is ESC/JAVA2 (59), a tool that attempts to find common run-time errors (such
as null references) in JML-annotated Java programs by static analysis of the pro-
gram code and its formal annotations. It trades off soundness (and completeness)
in favour of full automation.

6.2 Pointer logics

A related issue is the verification of pointer programs. We do not discuss the the-
oretical papers on Separation Logic (60), although our specifications do include
the encoding of separation principles. This is due to our emphasis on formalising
our logic in a theorem prover and the unavailability of tools based on Separation
Logic at this moment in time. Historically, some of the first formal verification of
pointer programs in (61) (and later (62)) used a model where the store is incorpo-
rated in the assertion logic. More recent is the verification of several algorithms, in-
cluding list manipulating programs and the Schorr-Waite graph-marking algorithm,
by Bornat (63) using the Jape system. This approach employs a Hoare logic for a
while-language with components that are semantically modelled as pointer-indexed
arrays. Separation conditions are expressed as predicates on (object) pointers. (64)
uses a Hoare logic in the style of Gordon (65) to reason about pointer programs
in a simple while-language, including a declarative proof of the correctness of the
Schorr-Waite algorithm. An Isabelle/HOL implementation of separation logic fol-
lowing the previous paper is presented in (66), although the author reports proofs
(typically in-place reversal) to be slightly more complicated than in (64). Further-
more, little or no support for automation is currently available, both for proof search
and for generating invariants.

6.3 Bytecode logics

Differently from us, most approaches work on traditional bytecode, albeit with cer-
tain restrictions and are based on weakest precondition calculi. Only two (67; 68)
have a formalized verification. Bannwart and Müller (69) present a sound and com-
plete bytecode logic for a fragment of sequential JVML – 15 instructions, although
under some “well-formedness” restrictions, namely only virtual methods with one
parameter, always yielding a value and ending with a return, which cannot oc-
cur anywhere else. The scenario is the context of proof-transforming compilers,
i.e. compilers that modify source-level correctness proofs. Thus, the system shares
the object model and many of the structural rules with (43). The unstructured nature
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of bytecode is dealt with by the notion of instruction specification and its WP cal-
culus, following closely (70). Quigley (67) is mainly concerned with reconstructing
high-level control structures such as loops in the bytecode: hence the Hoare rules
are overly complex, limited (no method calls) and not appropriate for a PCC sce-
nario. In (68), the authors instantiate the PCC framework of (71) to Jinja bytecode
(a dozen instructions including exception handling) and a safety policy concerning
arithmetic overflow. Provability is defined semantically and a generic sound and
complete VCG based on flow-graph analysis produces annotations in a dedicated
assertion language, basically first-order arithmetics with stack primitives. As the
framework is generic, other safety polices are possible, provided an appropriate
language satisfying certain restrictions is given. The user is required to provide the
invariants, although (72) presents preliminary results to automatically extract an-
notations from untrusted static analysers (in this case, interval analysis). Finally,
Moore (73) used ACL2 to verify the correctness of simple programs in a fragment
of the JVM, directly from the operational semantics, by encoding an interpreter for
the byte code as a LISP function. In (74) the same approach was used to prove some
meta-theoretical properties of the JVM.

7 Conclusion

7.1 Summary

In this article we have presented program logics for a compact representation of
virtual machine languages, based on a formalisation in the theorem prover Is-
abelle/HOL. Founded on an operational semantics that includes a flexible notion
of resources, we have first discussed a sound and complete logic of partial correct-
ness, in which pre- and post-conditions are combined to yield specifications that are
relations over the components of the operational semantics. We have presented de-
rived rules for mutually recursively program fragments and method invocation with
parameter adaptation, with proofs based on (also derived) cut rules. The usefulness
of these rules was demonstrated on non-trivial examples, including the verification
of quantitative specifications and other non-functional properties.

In the second part of this article, we have exhibited a logic for termination which
relies on partial correctness assertions formulated in the core logic as side condi-
tions of the rules for let and if constructs. Thus we achieve a modular treatment of
termination, which leaves the underlying partial logic unchanged. This facilitates
the hierarchical design of logics as championed in this paper. Noteworthy technical
features of the termination logic are the use of an implicit context, which simplifies
the judgement, and that it does not need a special rule or proof system for mutual
recursion, as justified formally by the completeness proof for the termination logic.
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7.2 Discussion and future work

Thanks to the formalised proofs of soundness, both program logics may be used
as a basis of a PCC system such as the one we have been developing in the con-
text of the Mobile Resource Guarantees project (2). Our approach of implementing
a hierarchy of logics addresses a critical issue in the design of PCC systems, the
trade-off between expressiveness and automation. Indeed, the proofs of the example
programs described in this article appear difficult to automate, and contain typically
100-200 proof commands. In order to exploit structure available in typed high-level
languages, we are developing derived proof systems that are interpreted high-level
type systems with respect to certain compilation strategies. As is the case in our first
such logic (32), an interpretation of Hofmann-Jost’s LFD system (33), the sound-
ness proofs of such derived logics often hide the complexity of low-level proofs.
Instantiations of (existential) quantifiers and unfolding of datatype representation
predicates are performed during the derivation of the rules, whereas their (often:
syntax-directed) application only involves side conditions that are computationally
easy to discharge. Complementing the communication of typing derivations, the
role of type systems in the process of certificate generation becomes that of deriv-
ing either invariants (in the formalisation of LFD: method specifications) or other
hints that suffice for the prover to reconstruct proofs. Current and future work in
this direction will aim to represent type systems for a variety of resources, and their
modular combination.

Another research strand is concerned with extending Grail and its program logic
to include more features of the JVML, including exceptions and threads. This is
mostly relevant to the forthcoming ST FET Integrated Project MOBIUS (Mobility,
Ubiquity and Security), see http://mobius.inria.fr/.

Following onto our work on the termination logic, we are generalising the key ideas
to formalise other security properties in a similar framework, which we call “partial
termination”. The rationale is that classical termination might be a too strong prop-
erty for the purpose of guaranteeing resource-bounded computation. It prohibits
for example the treatment of demon processes that are designed to run forever, but
should not consume resources. Furthermore, the necessity of defining a measure
in the termination logic complicates automatic proofs of termination. The devel-
opment of partial termination proceeds in two stages. First insecure behaviour is
defined using an inductive axiomatisation. Then a logic for security is defined on
top of this axiomatisation. For example, if insecurity is introduced by function calls
to a certain class of functions, possibly under side-conditions of parameter size, we
add an axiom for this case. All other rules in the logic are then oblivious to the un-
derlying security policy and only propagate the information through the program.
For most security policies it should be possible to re-use the same techniques for
soundness and completeness proofs. They are likely to be simpler, though, since no
explicit measure will be necessary.
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As regards the resource algebras, we are currently exploring further ways of struc-
turing the operations and exploring formal relations to static notions such as ef-
fects. As was remarked earlier, the traces collected by resource algebras such as
R InvTr and R HpTr can be constrained in a more flexible way than using precise
specifications such as fEven and fOdd. For example, Schneider’s EM policies (18)
(short for: security policies that are enforceable by monitoring system execution)
and the associated specification formalism, security automata, appear well-suited
to be formulated as (variants of) R InvTr or other resource algebras, which would
yield a program logic in which satisfaction of EM policies can be certified. Simi-
larly, Skalka’s history effects (75) represent a static way to approximate properties
of event histories, i.e. of abstractions of traces with respect to arbitrary observable
properties. Interpreting history effects as labelled transition systems allows Skalka
to employ model checking techniques to (statically) verify assertions modelled as
formulae in a temporal logic. As was remarked in the introduction, the usage of type
systems is at the heart of our approach to certificate generation, and the potential
to exploit type-and-effect systems was indeed one of the motivations to consider a
generalised form of resources. Finally, Beckert and Mostowski’s throughout modal-
ity (76) requires the quantified property to be satisfied in all intermediate states of
a computation. The satisfaction of this modality appears to follow a similar regime
as the validation of the policy that enforces limits of parameter values, as a boolean
variable may be used to signal violation. We thus expect our logic to be sufficiently
expressive to capture strong invariants such as the example properties described
in (56).

7.3 Acknowledgements

This research was supported by the MRG project (IST-2001-33149) which was
funded by the EC under the FET proactive initiative on Global Computing. We
would like to thank all of the researchers and who contributed to MRG, including
D. Sannella, I. Stark, S. Gilmore, K. MacKenzie, O. Shkaravska, M. Prowse and
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