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Abstract. This paper presents a novel variant of work stealing for load
balancing in a distributed graph reducer, executing a semi-explicit paral-
lel dialect of Haskell. The key concept of this load-balancer is colocating
related sparks (potential parallelism) using maximum prefix matching on
the encoding of the spark’s ancestry within the computation tree, recon-
structed at run time, in spark selection decisions. We evaluate spark colo-
cation in terms of performance and scalability on a set of five benchmarks
on a Beowulf-class cluster of multi-core machines using up to 256 cores.
In comparison to the baseline mechanism, we achieve speedup increase
of up to 46% for three out of five applications, due to improved locality
and load balance throughout the execution as demonstrated by profil-
ing data. For one less scalable program and one program with excessive
amounts of very fine-grained parallelism we observe drops in speedup by
17% and 42%, respectively. Overall, spark colocation results in reduced
mean time to fetch the required data and in higher degree of parallelism
of finer granularity, which is most beneficial on higher PE numbers.

Keywords: Parallel Functional Programming · Graph Reduction · Load
Balancing · Distributed-Memory Work Stealing · Adaptive Parallelism

1 Introduction

Exploiting modern distributed parallel architectures is key for improving ap-
plication performance and scalability beyond a single machine, for instance for
Large-Scale Data Analytics and High-Performance Computing. Additionally, us-
ing a high-level programming language is crucial for countering growing software
complexity and for increasing programmer productivity by delegating most of
the coordination and parallelism management to the run-time system (RTS).
Functional Programming offers a high level of abstraction and advanced lan-
guage features [1, 16, 14], e.g. higher-order functions, polymorphism, and type
classes. In particular, functional languages appear suitable for exploitation of
fine-grained parallelism as independent sub-expressions can be evaluated in any
order without changing the result (known as the Church-Rosser property [9]),



facilitating incremental parallelisation and allowing for sequential debugging of
parallel programs, whilst avoiding race conditions and deadlocks [13].

Work stealing [5] is a popular passive (i.e. receiver-initiated) decentralised
load balancing mechanism, where idle processing elements (PEs) attempt to
steal work from busy PEs. Important parameters in this mechanism are the
target of the steal attempt and the choice of the (potential) parallel work units,
or sparks. In our current parallel RTS the target is randomly selected, to avoid
hotspots in the communication, and older sparks are preferred, because they
typically represent work of larger granularity. Large granularity aims at offsetting
the communication costs, especially in computations that use the Divide-and-
Conquer (D&C) pattern or are nested and are run on distributed architectures
with very high communication costs.

Note that in our system all parallelism is advisory rather than mandatory.
This means that RTS policies can adaptively tune the amount of parallelism,
deciding not to generate actual parallelism. This can effectively in-line work into
other threads and thereby improve the granularity of the computation.

In this paper we investigate the effect of a modification to the spark (work)
selection policy, namely spark colocation (SC), on performance and scalability.
SC exports the spark that is, according to a specific metric, most closely related
to the computation performed by the thief and is aimed at resolving the trade-off
between data locality and load balance, instead of exporting the oldest spark.
The chosen metric for proximity is the distance in the compute tree, and the
RTS is extended to capture a trace of spark sites, representing the path in the
tree leading to this spark. On selecting a spark to export to another PE, the one
with the longest common prefix is used, as the one that is most closely related to
recent work performed on the thief’s PE. Compared to the baseline mechanism,
SC achieves speedup increase of up to 46%, due to improved locality and load
balance throughout the execution as demonstrated by profiling data, whilst for
one less scalable application and one with excessive amount of overly fine-grained
parallelism we observe drops in speedup of 17% and 42%, respectively.

Next we introduce the GUM RTS for Glasgow parallel Haskell in Section 2
and discuss the design and implementation of spark colocation in Section 3,
followed by evaluation of empirical results for five applications based on means-
based metrics from per-PE profiles gathered from runs on a 256-PE-cluster in
Section 4. A brief discussion of related work follows in Section 5, before our
conclusion and future work directions are presented in Section 6.

2 Distributed Graph Reduction in the GUM RTS

Here we briefly introduce the Glasgow parallel Haskell (GpH) language and
the underlying GUM (Graph Reduction on a Unified Machine Model) RTS that
implements distributed graph reduction [31], including most notably using global
addresses to implement virtual shared memory, thread management using sparks
that efficiently represent potential parallelism, and work stealing, or fishing, for
passive load distribution.
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2.1 Haskell Extension for Semi-Explicit Parallelism

Glasgow parallel Haskell (GpH) [12] extends Haskell [15, 24], a popular non-strict
purely functional language, by adding a sequential and a parallel combinator as
language primitives (pseq and par), which allow the specification of evaluation
order and identification of potential parallelism, respectively. This high-level
programming model is semi-explicit. The advisory parallelism identification and
optional application-level granularity control are explicit. All other coordination
aspects, such as communication and synchronisation, are implicitly controlled
by the RTS. Listing 1.1 provides an example.

1 f i b 0 = 0 −− s e qu en t i a l v e r s i on
2 f i b 1 = 1 −− NB args o f type In t eg e r
3 f i b n = f i b (n−1) + f i b (n−2)
4

5 p f i b 0 = 0 −− p a r a l l e l v e r s i on
6 p f i b 1 = 1
7 p f i b n t | n <= t = f i b n −− th r e sho ld f o r g r anu l a r i t y con t r o l
8 | otherwi se = x ‘ par ‘ y ‘ pseq ‘ x + y
9 where x = p f i b (n−1) t

10 y = p f i b (n−2) t

Listing 1.1. GpH Example: Sequential and Parallel Fibonacci Functions

Using par, the programmer provides a hint to the RTS that the first argument
expression can be beneficially evaluated in parallel, thus creating a spark, and
the RTS decides at run time whether the spark will be turned into a light-
weight thread increasing the actual degree of parallelism or ignored. Note that
in order to be useful the first expression should be unevaluated, represent a large-
enough amount of computation, and be shared with the rest of the program [21].
This mechanism can be viewed as implementing lazy futures similar to lazy task
creation [25]. To cleanly separate the computation and coordination concerns
Evaluation Strategies [30, 22] were introduced on top of the basic primitives.

2.2 Memory Management

GUM implements GpH by supporting distributed graph reduction, where each
graph node represents a potentially shared computation, using a combination
of a virtual shared memory that holds the shared graph nodes and independent
local heaps associated with separate GUM instances that run on each PE in
parallel. Once a node has been evaluated it is replaced by the result, which is in
turn sent to all the PEs that require it.

This design, based on private heaps with some sharing across them, is scal-
able as most of garbage collection (GC) can be performed locally without the
need for communication and synchronisation. GUM uses a generational garbage
collector that is either copying or compacting depending on the RTS flags set,
thus avoiding a stop-the-world design (e.g. as used in GHC-SMP [23]). Heap
objects that survive for a long time are promoted from the initial and frequently
GC’d heap area (called nursery) to a different space that is GC’d less often. This
GC scheme assumes that most heap objects will expire after a short period of
time allowing the associated memory to be reclaimed. Additionally, GUM uses
distributed weighted reference counting [4] to manage the virtual shared heap.
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2.3 Thread and Parallelism Management

GUM represents sub-computations using light-weight threads that are mapped
to relatively few heavy-weight OS threads (often one per core) in an M-to-N
fashion for scalability (similar to Green Threads). Each RTS instance maintains
a local thread pool for runnable threads and blocked queues for threads waiting
on a result of evaluation performed by another potentially remote thread1.

GUM’s scheduler is unfair and non-preemptive. It prioritises handling mes-
sages and implements the evaluate-and-die evaluation model [28]. In this model
a thread picks up a thunk (an unevaluated expression) to evaluate and returns
control to the scheduler once either the evaluation to weak-head normal form
has completed or thread blocks waiting on another value under evaluation.

Sparks that represent potentially parallel work are created using the par

primitive and kept in a separate local pool on each PE. Sparking is inexpen-
sive, as it merely adds a pointer to a graph node representing the expression
to be evaluated to the pool, which is implemented using an efficient lock-free
dequeue [8], which allows the owner to use one end locally for pushing, whilst
older sparks are stolen off the other end using a single atomic compare-and-swap
operation (FIFO). The overhead is absent unless two threads happen to simul-
taneously operate on the same item of the dequeue. Sparks are discarded if they
have been already evaluated or if the spark pool is full.

2.4 Workload Distribution

Load balancing across PEs is achieved through work stealing (also called fishing)
and aims at reducing the overall idle time across PEs. The two main decisions
include: 1) where to steal from (victim selection by the thief or selection of for-
warding destination by victim with no sparks available for export) and 2) which
spark to export (decision made by a victim that has exportable sparks). This
work is focused on the latter decision.

Figure 1 illustrates the message types and the protocol. A FISH message
is a request for work and is forwarded to randomly selected PEs until either
some work was found or the FISH expires by reaching a maximum age (it is
incremented with every hop). If the thief was successful, it receives a SCHEDULE

message containing some work and potentially some related data. The thief
responds by sending an ACK message with an updated list of pairs of old and
new global addresses to the victim to update the virtual shared memory to reflect
the change. If the FISH expires, it is sent back to the original PE, which then
can then send out a new FISH.

The default mechanism selects a victim at random. A victim that receives a
FISH, selects the oldest spark for donation and sends it back to the origin PE.
This is where SC differs: it selects a spark from the same source of parallelism
using maximum prefix matching on the encoding of the path of the spark within

1 parallelism is exploited over pure functions and I/O is handled orthogonally by a
separate thread
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Fig. 1. Multi-Hop Successful FISHing Attempt

the computational graph, rather than using the age of the spark (as described
in detail in Section 3).

Fish delay and delay factor as well as a limitation on the number of outstand-
ing fishes (currently one) are used to avoid swamping the network with FISHes.
Thread migration is not supported in the current implementation.

3 Spark Colocation

Spark Colocation is aimed at improving load balance and locality by exporting
the spark that is most closely related to the computation performed by the thief.

3.1 Motivating Example

Consider the example from Figure 2 that illustrates a situation where two PEs
work on several tasks and one PE needs to decide which spark to donate.

The tree structure represents computational dependencies, whilst the dashed
regions depict which tasks are located on which PE. In particular, both sparks
ended up on PE1. As PE2 continues the evaluation it runs out of tasks and
sends a FISH to PE1. In turn, PE1 can now decide which spark to donate. It
would donate B, which we assume is older2, in the baseline case. Then it would
continue to execute the remaining spark A locally. However, the result of A
is needed by PE2, which would require additional communication. Similarly, if
spark B is exported and turned into a thread on PE2, communication is required
to send the result to PE1. If Spark Colocation is used A would be donated as it
is more related to the computation on PE2.

2 this is reasonable as PE1 is the main PE and PE2 starts with no work
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Fig. 2. Example of Potential for Colocation

The main idea is to allocate computations to PEs that have worked on related
computations. A related computation is located closely in the same computa-
tional sub-tree, because its result or produced data are likely to be required by
the other computation. The concept of SC builds on the notion of proximity
between computations. Two sparks are defined to be in close proximity if the
path in the tree between their nodes is short. In particular, if the root node is
on the path, the sparks can be considered unrelated.

3.2 Design

SC is an extension of the baseline work stealing mechanism, investigating the
effect of favouring colocation of related sparks, rather than selecting a spark to
export based on its age alone. The idea is to allocate computations to PEs that
have worked on related computations, i.e. computation located closely in the
same computational sub-tree likely to require the result of, or share some data
with the other. Using SC, the information on the proximity between sparks that
would normally be lost during compilation is forwarded to the RTS, where it
can dynamically influence scheduling and load balancing decisions at run time.

Informally, the colocation algorithm behaves as follows: if a PE is idle, it will
attempt to steal work from others that will respond with the spark on the path
through the compute tree that is most related to the computation performed
by the thief, rather than with the oldest. We use the ancestry relation with the
maximum prefix function as the matching function for finding the best match
between the encoding of the thief and of the sparks available to the victim. The
baseline mechanism is used as a fallback.

Figure 3 illustrates the encoding for two sources of parallelism, thus base 2 is
used for the encoding. For example, if spark A with the encoding 01 was turned
into a thread and then had the choice between sparks B and C, the latter would
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be chosen as given its encoding 010 it has a longer common prefix of length
two with A as opposed to B with encoding 00, which shares only one symbol
with A. We can also see that A requires the result of computation C, whilst it
does not require the result of B to proceed. An ancestor of a spark is recursively
defined as either the direct creator of the spark (its parent), or as the ancestor
of its parent. The ancestry relation is encoded as a path in the computation
represented by a string of symbols that encode the branch at each tree level.

Fig. 3. Spark Ancestry Encoding Example

We select maximum prefix as a matching function, because the resulting
encoding mirrors closely the actual tree-like computational structure of the ap-
plication. The ancestry relation defines the distance between a thread’s encoding
and the encoding of a given spark as the sum of edges traversed on the path from
one encoding to the other in the tree. The smaller the distance the more closely
related two sub-computations are deemed to be. Investigation of alternative en-
codings and matching functions remains for future work.

3.3 Implementation

SC is implemented as an explicit language primitive — a version of the par

combinator we call parEnc — that takes additional encoding arguments that are
passed to the RTS and used to tag the sparks. The path to the spark constitutes
an encoding, where we start from the root and add a symbol for each sub-branch
chosen at each level. The symbol corresponds to the parEnc site that leads to
the creation of the spark and is appended to its inherited parent’s encoding.

Spark Selection: In the baseline mechanism, the spark pool is implemented as a
lock-free double-ended queue, so that the owning PE can add new sparks at the
tail of the deque whilst sparks are exported off the head. This mechanism avoids
most of the synchronisation cost as it is only incurred when threads attempt to
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dequeue the same spark, as the owner turns local sparks into threads by taking
them from the tail, which is similar to the Breadth-first-Until-Saturation-then-
Depth-first mechanism [6].

By contrast, SC uses spark encodings to select related sparks, if possible.
Internally, we use hash tables to store and efficiently access the information on
threads and sparks using their respective identifiers as lookup keys. This mecha-
nism enables the RTS to distinguish sparks based on their source of parallelism
and location within the compute tree of the application for a given input. Each
time a spark is created it stores its encoding in the hash table. This encoding is
compared to the encoding carried by an incoming FISH message, extended with
information about the encoding of the thief. The spark pool is traversed and a
spark with a maximum prefix match is donated. To trade precision for overhead,
the maximum traversal length can be specified as an RTS option.

Matching Function: We have chosen to encode ancestry as a string of symbols
to the base needed to encode the maximum number of branches at a level of the
tree, reflecting the dynamic relationship that arises at run time.

As a natural choice, maximum prefix string matching is used to determine the
spark for export, since it represents the closest relation between the computations
in the graph. Nevertheless, the matching may potentially lead to more commu-
nication than in the baseline case and increased amount of inter-PE sharing as
implicated by the number of global addresses. Therefore an empirical evaluation
is needed.

Packet Format: To propagate ancestry information, the packet format is ex-
tended for the FISH and the SCHEDULE protocol messages. FISH is extended to
carry the requesting PE’s encoding, whilst SCHEDULE includes the exported spark
and its encoding. When turned into a thread, the spark’s encoding is used as
the thread’s encoding, which is in turn passed on to the sparks it may generate.

Profiling: To facilitate comparison between SC and the baseline mechanism, the
event-based profiling sub-system is extended to record thread granularities, i.e.
the run time elapsed from start to termination of a thread, and fetch times, i.e.
run time spent in the state waiting for data to arrive, in addition to the already
available profiling information such as per-PE load over time, message counts,
and number of global addresses.

The extension is small as it requires mainly adding calls to a timer function
in places where a thread enters a particular state (e.g. fetching) and recording
the difference when a transition to another state occurs. The extension does not
impede scalability as it only involves keeping an additional per-thread counter
adding little to the existing profiling overhead, whilst the events are written
out to file as they occur using a separate asynchronous thread responsible for
buffered I/O.
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4 Evaluation

We compare SC and the baseline mechanism using empirical measurements.

4.1 Methodology

We run each of the five applications five times for each PE-count both with and
without event-based profiling and compare the median runs with and without
SC3. The elapsed (wall-clock) run time is measured in milliseconds and includes
both the mutation time and the garbage collection time. We don’t have exclusive
access to the cluster, so that although it is usually lightly loaded, we can’t fully
rule out some variation due to interference with other processes running on the
machines. As PVM is used as a communication library [11], processes are placed
onto nodes in a round robin fashion as specified in a hostfile that is read in
top-to-bottom order.

Using ends-based metrics such as run time and speedup alone doesn’t provide
sufficient insight into why the observed effects of SC take place, for instance with
respect to load balance over time. Therefore, we also collect profiling data for
several means-based metrics: per-PE numbers of threads over time as a measure
of load balance and degree of parallelism, thread sizes reflecting granularity,
numbers of transmitted messages of different types, as well as the numbers inter-
PE pointers to assess data locality, and fetch times and counts for data-carrying
messages.

4.2 Target Platform

The applications are run on a 32-node Beowulf cluster of multi-cores using up to
256 PEs. The cluster comprises a mix of 8-core Xeon 5504 nodes with two sockets
with four 2GHz cores, 256 KB L2 cache, 4MB shared L3 cache and 12GB RAM,
and 8-core Xeon 5450 nodes with two sockets with four 3GHz cores, 6MB shared
L2 cache and 16GB RAM. The machines are connected via Gigabit Ethernet with
an average latency of 0.23 µs, measured using the Linux ping utility (average
round-trip time of 100 packets). We use the CentOS 6.7 operating system, the
GHC 6.12.3 Haskell compiler, the GCC 4.4.8 C compiler, and the PVM 3.4.6
communication library. The optimisations are turned on (-O2).

4.3 Applications

We use five D&C benchmark applications adopted from the parallel part of the
established nofib benchmarking suite [26] and from a recent study of Evaluation
Strategies [22]. In particular, we use parfib which is the standard parallelism
microbenchmark, parpair with calls to sumeuler and parfib nested within
the pair and evaluated in parallel, interval-based sumeuler version reformulated

3 median is used as it is more robust to outliers
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using the D&C pattern that calculates the sum of Euler Totient4 functions in
a given range, worpitzky that calculates the Worpitzky identity5 and minimax

that implements a game using alpha-beta pruning.

Table 1. Applications Overview

application parallelism regularity input
pattern parameters

parfib D&C regular 50 35
parpair nested D&C irregular/regular 100000 10 50 35
sumeuler D&C irregular 100000 10
worpitzky D&C irregular 27 30 18
minimax D&C irregular 4 8 2

4.4 Results

The results summarised in Table 2 demonstrate that substantial speedups can
be reached for both the baseline and for the colocation case over sequential run
time, achieving speedup improvement of up to 46% with SC over the baseline
for three of the programs. However, we also observe a drop in speedup for SC,
for the less scalable minimax, and for worpitzky with excessively fine-grained
parallelism and parallelism degree of 17% and 42%, respectively. We focus on
load balance and granularity profiles for sumeuler as they most clearly depict
the differences between the mechanisms.

Table 2. Applications’ Speedups on 256 PEs

application sequential baseline colocation change
run time (sec) speedup speedup in %

parfib 1609 204 219 +7
parpair 2870 200 231 +16
sumeuler 1450 142 207 +46
worpitzky 3269 175 101 −42
minimax 160 95 79 −17

Load Balance: Figures 4 and 5 show the detailed per-PE profiling data for
sumeuler indicating load balancing behaviour change resulting from SC use.

4 http://mathworld.wolfram.com/TotientFunction.html
5 http://mathworld.wolfram.com/WorpitzkysIdentity.html
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We visualise data using 128 PEs for readability, but the difference is stronger
for higher numbers of PEs. Figure 4 visualises PEs 1–64 as horizontal bars,
Figure 5 PEs 65–128, baseline being on the left and SC on the right. A per-PE
profile shows PEs on the y-axis and execution time in milliseconds on the x-axis,
thus depicting load-balance across PEs over time. The darkness of the green
value at each point in time shows the utilisation (i.e. the number of runnable
threads) as an average over a fixed time window, whilst idle time is shown in red.
Additionally, the small blue stripes embedded in the lines for each individual PE
reflect the number of communicating (blocked-on-fetch) threads.

Overall, we observe better load balance for SC, as almost all of the bars are
green, as opposed to the baseline case, where there are substantially more gaps
and areas with a reduced number of threads visible. In particular, most of the
blocking time is at the end of execution for the baseline (we can distinguish
the execution and the waiting for termination as two distinct phases), but it is
more spread out and more evenly distributed across more PEs for SC, which
exhibits fewer blocking hotspots. We can see noticeably more short green stripes
for baseline reflecting the need to fetch data, which appears less often for SC
as either the data is readily available or the waiting can be overlapped with
computation performed by another thread.

Additionally, the data show good load balance for SC, with very similar total
run times on each PE, whilst for the baseline the run times are more variabile,
with differences of over 30% of the total run time in some cases.

Granularity: We use event-based profiling to record execution time for each
thread. Figure 6 depicts the granularity of sumeuler on 256 PEs, with number
of threads on the y-axis and thread granularity in milliseconds on the x-axis.
Light-red represents the baseline case, light-blue SC, and a darker shade shows
the overlap between both. The granularity profiles are overlapping but distinct.

We observe fewer threads and coarser granularity for the baseline case6, which
results from exporting older and likely larger sparks, which are then turned into
threads on arrival at the thief PE. Note that the RTS cannot re-balance threads,
as opposed to sparks, between PEs, and therefore this behaviour can lead to load
imbalance. By contrast, SC exports sparks that are closer to a thief’s encoding,
but of smaller granularity, which allows more flexibility in saturating larger num-
ber of PEs. Although finer granularity is associated with additional overhead, in
this case the advantage of improved load balance out-weighs this overhead. Note
that due to thread subsumption, which allows a thread to evaluate a potentially
parallel child computation sequentially, not all of the fine-grained sparks will be
turned into threads, thus reducing the overhead.

Degree of Parallelism: Complementing the granularity profiles, Tables 3 and 4
present the measured total (across PEs) and calculated median (per PE) spark
and thread counts, representing the potential and actual degree of parallelism,
respectively. We report data from the median run profiled on 256 PEs for each
benchmark, comparing the baseline against SC.

6 for other benchmarks SC consistently leads to more and smaller threads
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Fig. 6. Granularity of sumeuler on 256 PEs

Table 3. Spark Counts for Benchmarks on 256 PEs

application median total change
baseline SC baseline SC in %

parfib 11 12 2755 3172 +15
parpair 14 19 3840 5045 +31
sumeuler 6 7 1854 1983 +7
worpitzky 1322 1927 337116 488550 +45
minimax 7 5 2466 2525 +2

Overall, we observe consistently higher potential parallelism in the range be-
tween 2% and 45% for SC, which translates into proportionally higher increase in
the number of threads of up to 197%. This can be attributed to the export of re-
lated sparks rather than the oldest, which may reduce potential for subsumption
once the computation is shared across the PEs. Sparks are inexpensive as they
are pointers to sub-graphs and can be maintained with low overhead and allow
more flexibility for load balancing, potentially increasing utilisation. Threads

14



Table 4. Thread Counts for Benchmarks on 256 PEs

application median total change
baseline SC baseline SC in %

parfib 4 6 1127 1584 +41
parpair 5 10 1195 2508 +110
sumeuler 3 4 802 955 +19
worpitzky 322 979 82065 243709 +197
minimax 4 4 1092 1055 −3

are more expensive as they require the creation of data structures in the heap
to hold thread state and related information, which may increase the memory
management overhead.

Using SC turns out to be particularly beneficial for larger numbers of PEs as
the number of threads per PE is increased in all but one case, whilst the amount
of total heap available grows with the number of PEs reducing the pressure
on the garbage collector. The worpitzky benchmark is an example of worst-
case behaviour, demonstrating that having a higher number of threads may
become counterproductive when there are already more than enough threads in
the baseline case, due to additional overhead, reducing scalability.

Fetching Behaviour: Another distinguishing characteristic and the most direct
indicator of SC’s efficacy is the fetch time threads spend waiting for data re-
quired by the computation to arrive. Table 5 compares the baseline and SC across
applications for the median run on 256 PEs (no data available for minimax).

Table 5. Overview of Fetching on 256 PEs (in ms)

application baseline colocation mean total total
mean mean fetch time fetch time fetch count

fetch time fetch time change in % change change
across PEs across PEs across PEs in % in %

parfib 829 637 −23 +8 +35
parpair 1109 566 −49 −5 +78
sumeuler 594 290 −51 −29 +49
worpitzky 19 12 −40 +81 +163

In some cases it is possible that the data is already available or fits into the
same packet, resulting in fetch time of zero, as for many sumeuler threads, and
in other cases the fetch time may exceed the time the thread spends performing
the computation.
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We observe that SC has consistently a smaller mean fetch time across PEs
than the baseline, with drops in the range between 23% and 51%. This indicates
that the threads in SC case are ’more useful’ in the sense that they spend less time
waiting on data to arrive. Thus, despite finer granularity, SC threads have higher
average utilisation as can be seen from the load balancing results, and the degree
of parallelism is increased, which allows more overlap between communication
and computation. Although the total number of fetch messages is increased due
to the larger number of threads, for parpair and sumeuler, the benchmarks that
benefit most from SC, the total fetch times are still lower than for the baseline
due to reduction in individual fetch times.

5 Related Work

Although popularised by Cilk [5], work stealing was used in earlier parallel im-
plementations of functional languages [6, 18, 27], whilst remaining popular in
contemporary implementations (e.g. [10]), as reviewed in a recent survey [32],
with locality-awareness being a popular current research direction.

Table 6. Overview of GUM and Related Systems

RTS parallelism scheduling archi- synchro- load
(Language) identification tecture nisation balancing

Cilk [5] explicit LIFO shared explicit work
(C ext.) (cilk spawn) stealing
GHC-SMP [23] annotations FIFO shared implicit work
(GpH) (advisory) unfair stealing
Manticore [10] impl. data par. FIFO shared implicit work
(NESL/CML-alike) expl. task par. nestable pushing
X10 [7] impl. data par. PGAS shared implicit work
(X10) expl. task par. stealing
GUM [31] annotations FIFO virtual implicit work
(GpH) (advisory) unfair shared stealing
DREAM [20] explicit process round robin shared- implicit work
(Eden) instantiation fair nothing pushing

Table 6 provides an overview of GUM compared to the most related systems,
which together span a wide spectrum of parallel language run-time systems. For
more detailed and broader comparisons refer to further literature [3, 2]. With
respect to parallelism identification GUM and SMP occupy a unique place in
the design space as the annotations provide hints that are advisory rather than
mandatory, as is e.g. process instantiation performend in an Eden program,
which will lead to a creation of a remote process. Eden and GUM are similar
in the architectural respect that unlike other systems they enable distributed
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execution. On the other hand they differ in the implementation as GUM provides
a Global Indirection Table for inter-PE pointers implementing the virtual shared
memory abstraction, whilst DREAM uses shared-nothing design and sends data
once it is in normal form. Manticore and X10 are somewhat similar in chosing to
incorporate both implicit data parallelism and explicit task parallelism, whilst
GUM makes no special arrangements for data parallelism and treats expressions
requiring data as tasks. There is no agreement on the scheduling style among
the systems, Manticore allowing nested schedulers and X10 following PGAS
distribution style. GUM and SMP follow the evaluate-and-die model that leads
to an unfair design, but helps improve performance by avoiding some overhead.

In all systems thread and memory management are implicit as well as syn-
chronisation, with an exception of Cilk. This allows for a high level of expressive-
ness, compared to explicit synchronisation and parallelism managment. Despite
the popularity of work stealing, some systems have chosen to use work pushing
to reduce the amount of communication. This diversity exacerbates the difficulty
of directly comparing these systems and languages.

Granularity control is another key consideration for execution of non-strict
parallel functional programs [19], both through thread subsumption [25] and
explicit application-level specification using thresholding and sophisticated fuel-
based algorithms [29] at application or library level. Moreover, work stealing was
also shown to benefit from granularity awareness [17].

6 Conclusion

We have introduced spark colocation, a work stealing variant that maintains
dynamic information about ancestry throughout the execution and uses this in-
formation to select sparks that are more closely related to a thief’s computation,
rather than picking the oldest spark. We report results from five Glasgow par-
allel Haskell benchmark programs running on a cluster of multi-cores using an
extended version of the GUM RTS on up to 256 cores, showing speedup improve-
ments of up to 46% for three of the programs. Examining profiling data suggests
that the gain is due to improved load balance and reduced average fetching time,
suggesting that related tasks were indeed colocated.

However, the drop in speedup for one less scalable application and one with
excessive amounts of overly fine-grained parallelism, suggests that a heuristic
could be developed to switch between the baseline and spark colocation depend-
ing on both application and architectural characteristics such as the number and
computational capability of PEs.

Our mechanism requires minimal programmer overhead, and we argue that it
is possible to automatically place annotations by enumerating pars and replacing
each par with parEnc, with the corresponding encoding as an argument. As fur-
ther future work, we would like to investigate different encodings and matching
functions to effect granularity in the opposite direction towards a more coarse-
grained setting, which becomes useful if the number of PEs is small or parallelism
degree is excessive.
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