CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2012; 00:1-30
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

Parallel Haskell implementations of the n-body problem

Prabhat Totoo, Hans-Wolfgang Loidl

School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, EHI14 4AS, UK.

SUMMARY

This paper provides an assessment of the advantages and disadvantages of high-level parallel programming
models for multi-core programming by implementing two versions of the n-body problem. We compare
three different parallel programming models based on parallel Haskell, differing in the ways how potential
parallelism is identified and managed. We assess the performance of each implementation, discuss the
sequential and parallel tuning steps leading to the final versions, and draw general conclusions on the
suitability of high-level parallel programming models for multi-core programming. We achieve speed-ups
of up to 7.2 for the all-pairs algorithm and up to 6.5 for the Barnes-Hut algorithm on an §-core machine.
Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Modern multi-core architectures make the computational power of parallel hardware available
to domain experts, who want to implement compute-intensive applications. However, most
established parallel programming technology makes it challenging for non-specialists in parallel
programming to exploit this potential. In contrast, high-level parallel programming models simplify
the challenging tasks of parallel programming by offering powerful abstractions and by hiding the
low level details of synchronisation and coordination from the programmer [30]. Writing parallel
programs using these models usually involves only small changes to the sequential algorithm and
therefore does not obscure the core computation. This comes, of course, at the expense of additional
runtime overhead. Despite being high-level, the programming model should be detailed enough to
allow for targeted performance tuning, enabling the domain expert to use algorithmic knowledge in
order to improve the utilisation of multi- and many-cores.

Several high-level language models are built on the purely functional, non-strict programming
language Haskell. While all of them are significantly higher than explicit, thread-based orchestration
as in C+MPI, they vary in their support and flexibility. Completely implicit models of parallelism
try to hide all aspects of parallelism to the programmer and rely on compilation and runtime system
technology for parallelisation. Semi-explicit models of parallelism only require the programmer to
identify the available parallelism. All aspects of synchronisation and communication are handled
automatically by the runtime-system, the compiler or library code. Explicit models of parallelism
expose the notion of independent threads to the application programmer and provide means of
explicit synchronisation.

This paper considers three current variants of parallel Haskell including: the semi-explicit
GpH [35, 50, 34], which provides basic primitives for introducing parallelism and controlling
order and degree of evaluation; the semi-explicit Eden [32], which identifies parallelism through
the notion of processes and is implemented for distributed-memory architectures; and the explicit
ParMonad [36], which provides a new programming model for explicit, deterministic parallel
programming in Haskell.
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To compare these models we implement the n-body problem which represents an important class
of problems in many different areas of science including molecular dynamics and astrophysics. It is
the core of a real application and representative for a wide range of applications. As a baseline for
comparison, we first implement a naive all-pairs algorithm exploiting obvious data-parallelism and
tuning its parallel performance. As a more efficient algorithm, we then implement the more complex
Barnes-Hut algorithm which presents more challenge in getting a good parallel implementation.

The development of the parallel implementations uses a proven methodology, we have developed
for languages with semi-explicit parallelism on the basis of several symbolic computations in the
past [31]. Notably, it makes use of a rich set of pre-defined parallel patterns, or skeletons, that encode
optimised, parallel patterns of computation as higher order functions.

This work contributes to the wider effort put together by participants in the SICSA Multicore
Challenge* where parallel implementations of the naive algorithm in a variety of languages were
presented. The results varied from language to language. Our aim is to look into implementations
using different parallel models in Haskell and evaluate which one is best suited for this particular
problem. The comparison takes into account the usability of the models and the required tunings in
order to get the optimal parallel implementation.

The structure of the paper is as follows. We first look at the problem description and solving
methods, followed by a discussion of the three parallel programming models in which we cover the
internal implementation of each as well as user-level functions. The two subsequent sections look
at the sequential and parallel implementations respectively. The performance of the models is then
discussed and we cover related work in the area before concluding.

2. THE PROBLEM

The n-body problem is the problem of predicting the motion of a system of N bodies that interact
with each other gravitationally. In astrophysics, the bodies are galaxies or stars, and the movement
of the bodies are affected by the gravitational force. The computation proceeds over time steps
where the acceleration of each body with respect to the others is calculated and then used to update
the velocity and position in each iteration. We look at two commonly used methods of solving the
problem: the first method is used mainly for simulation consisting of up to a few thousands number
of bodies while the second method is best suited for system of large number of bodies, for example,
interactions between molecules in biological systems.

2.1. All-Pairs Algorithm

The all-pairs method is the traditional brute-force technique in which the pair-wise accelerations
among the bodies are calculated. The body-to-body comparison requires a time complexity of O(N?)
to complete and thus making it convenient for only small number of bodies. It is relatively simple
to implement in an imperative language using a double nested loop with inplace update.

In pure Haskell, the absence of destructive update makes the implementation a bit different.
Loops are implemented using recursive function calls. However, a nested mapping function can
also be employed to get the same behaviour.

2.2. Barnes-Hut Algorithm

In a system consisting of huge number of bodies, the traditional approach may not be feasible. In
this situation, using a hierarchical force-calculation algorithm for example Barnes-Hut [3] provides
an approximate and efficient solution.

The tree-based algorithm proceeds by recursively sub-dividing the region containing the bodies
into smaller regions and calculating the centre of mass and total mass of each region. A tree is

*SICSA Multicore Challenge: n-body computation.
http://www.macs.hw.ac.uk/sicsawiki/index.php/Challenge_PhaselIl
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PARALLEL HASKELL IMPLEMENTATIONS OF THE N-BODY PROBLEM 3

Figure 1. Bodies or points in a 2D simulation are contained in a region (bounding box) which is sub-divided
recursively into smaller regions.

constructed with its root representing the entire region and children nodes as sub-region. The force-
calculation for each body is done by traversing the tree and approximating bodies that are too far
away (determined using a threshold) using the region centre of mass. The tree construction phase
does not usually lead to a well-balanced structure which creates irregular parallelism.

3. TECHNOLOGY

While the problem has been implemented across a wide variety of programming languages covering
many paradigms, using a functional approach raises the level of abstraction by making it easier
to express the problem, for example, through use of higher-order functions. As a pure functional
language, it is free of many of the inherent problems associated with imperative programming e.g
it disallows side effects which leads to referential transparency, thus making it easier to parallelise
programs.

Haskell had good support for parallelism but for concurrent programming, it provides concurrent
execution of threads in an interleaved fashion using operations from the Control.Concurrent
library [43]. This is a more explicit way of spawning multiple IO threads that execute at the same
time. This approach is non-deterministic and can result in race conditions and deadlocks. This paper
does not deal with concurrency but rather pure parallelism to speed up a program. But we will shortly
see how the ParMonad builds on this technology to deliver a new deterministic model for parallel
computation. We briefly describe GpH, the ParMonad and Eden as parallel programming models in
Haskell. Data Parallel Haskell (DPH) provides a model of nested data parallelism in Haskell, and
an implementation of the Barnes-Hut algorithm, with a discussion of flattening transformations to
improve performance, is given in [25].

3.1. Parallelisation Methodology

We follow guidelines established in [31, Sec 3] with some flexibility. The approach we use is as
follows:

e Sequential implementation: Start with the initial sequential algorithms.

o Sequential optimisation: Optimise the sequential algorithms e.g. improve heap consumption
by identifying any space leaks and fix them; use tail recursive functions; and add strictness
where necessary.
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e Time profile: To point out "’big eaters”, i.e. parts of the programs that are compute-intensive.

e Top-level parallelisation: Parallelise top-level data independent operations e.g. map
functions representing data-oriented parallelism, and independent tasks representing task-
oriented parallelism, using high-level constructs provided in the parallel programming model.

o Parallel execution and initial results: Run parallel programs on multi-core machine or
cluster to obtain initial results.

e Parallel tuning: To achieve better runtimes and speedups, use more advanced and explicit
features of the model. This step also looks at scalability of the parallel programs by tuning for
varying/increasing input sizes.

3.2. GpH: Glasgow parallel Haskell

GpH extends Haskell with two basic primitives to enable semi-explicit parallelism: par for parallel
composition and pseq for sequential composition [50, 34, 35]. The par primitive “sparks” its
first argument, i.e. it records it to potentially be evaluated in parallel. The pseq primitive evaluates
its first argument to WHNF (Weak Head Normal Form) before continuing with the evaluation of
its second argument and thus enforces sequential ordering. Both primitives return their second
argument as the result.

—— parallel composition

par :: a —> b —>b
—— sequential composition
pseq :: a—>b —>b

For parallel execution, the program needs to be compiled with the —threaded option. The
runtime option —Nx needs to be specified where x represents the number of processors.

Sparks are added to a spark pool and are taken up for execution by lightweight Haskell threads
which in turn are mapped down to the underlying OS threads. Creating sparks using par is
cheap, just a pointer, and thousands of them can be created. Converted sparks represent parallelism
extracted from the algorithm, incurring the usual thread creation overhead.

Using the primitives only may often lead to wrongly specify parallelism and obscure the
code. Evaluation strategies provide an abstraction over this level of programming, separating the
coordination and computation concerns. An evaluation strategy is basically a function of type a ->
Eval a thatis executed for coordination effects.

data Eval a = Done a

runEval :: Eval a —> a
runEval (Done x) = x

type Strategy a = a —> Eval a

rseq, rpar Strategy a

rseq x = x ‘pseq‘ Done x

rpar x = x ‘par ‘ Done x

using :: a —> Strategy a —> a

X ‘using ¢ strat = runEval (strat x)

—— applying strategy e.g.
somefunc strat = someexpr ‘using ‘ strat

The basic strategies rpar and rseq are defined directly in terms of their primitives. The using
function applies a strategy to an expression. Since all parallelism, evaluation order and evaluation
degree are specified within the Eval monad, an explicit runEval is used at the point where it is
applied to a concrete expression. Using a monad helps to separate the purely functional aspects of
the execution from the behavioural aspects of the execution. It also allows the programmer to use
rich sets of libraries and abstractions available for monads in Haskell.

Strategies can be composed just like functions using the dot strategy combinator e.g. (rpar
‘dot ' rdeepseq) sparks parallel evaluation of its argument and completely evaluates it to
normal form. In this example rdeepseq is used to specify the evaluation degree. The expressive
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PARALLEL HASKELL IMPLEMENTATIONS OF THE N-BODY PROBLEM 5

power of evaluation strategies comes from the ability to compose them, as above, to separate the
specification of parallelism from evaluation degree and other parallelism optimisations such as
clustering, as we will see later, and the possibility to nest strategies, by providing other strategies as
arguments, exploiting higher-order functions in the language.

Skeletons: A number of skeletons are implemented as higher-order functions e.g. parallel map,
pipeline and divide&conquer. Parallel map is the most common one which specifies data-oriented
parallelism over a list.

—— parallel map definition
parMap strat f xs = map f xs ‘using ° parList strat

xs = parMap rdeepseq f [10..25]

In the version above, parMap exposes the maximal parallelism, creating a spark for each item
to be evaluated in parallel. In Section 5 we will discuss several techniques for improving parallel
performance by generating fewer, more coarse-grained threads.

3.3. ParMonad

The ParMonad offers a new parallel programming model which is implemented entirely as a Haskell
library [36]. Programming in the ParMonad looks a lot like programming in Concurrent Haskell but
it preserves determinism and is side-effect-free. Par is simply a type declared as a monad. IVars
are used for communication, an implementation of the I-Structures, a concept from the pH and Id
languages [40]. The basic operations use an explicit approach to specify parallel computations.
Parallelism is introduced using fork which creates a parallel task. Tasks are scheduled using
an optimised parallel scheduler among threads. The computation in the monad is extracted using
runPar. The communication constructs include the following functions:

e new to create a new IVar.

e put to place some value in the TVar. Itis executed once per IVar otherwise an error occurs.

e get to retrieve the value from the IVar. It is a blocking operation and waits until something
is put into the IVar.

The derived spawn function hides the explicit put and get operations and therefore ensures
that each IVar created is only ever put into once. This raises the level of abstraction provided by
this model.

runPar :: Par a —> a

fork :: Par () —> Par ()

spawn :: NFData a => Par a —> Par (IVar a)
— communication

data IVar a

new :: Par (IVar a)

put :: NFData a => IVar a —> a —> Par ()
get :: IVar a —> Par a

As the library is fairly recent, it has a limited number of higher-level function abstractions. The
most obvious being a parallel map implementation, parMap. Work on more abstractions is in
progress.

3.4. Eden

Eden extends Haskell by providing constructs for parallel process definition: abstracting a function
that takes an argument and produces a value into a process with input and output that correspond to
the function argument and result respectively; and process instantiation: evaluating the process in
parallel [32].

— process definition

process ::( Trans a,Trans b) => (a—>b) —> Process a b

— process instantiation
(#) ::(Trans a,Trans b) => Process a b —> a —> b
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Building on these coordination constructs, a parallel function application operator and eager
process creation function are derived. spawn is only denotationally specified, ignoring demand
control.

—— parallel function application

($#)::(Trans a,Trans b) => (a—>b) —> a —> b
f $# x = process f # x

—— eager process creation
spawn ::( Trans a,Trans b) => [Process a b] — [a] —> [b]
spawn = zipWith (#)

The parallel runtime system distributes the processes to the available processors. Since Eden has
been designed for a distributed-memory model, processes communicate messages to each other to
provide input and retrieve output. All this synchronisation and coordination is handled implicitly
by the runtime-system. The programmer does not need to worry about low-level send and receive
between parallel processes, and only uses process abstraction or skeletons built on top of these.
Eden processes produce output eagerly with the argument to the process being evaluated locally in
the parent process before sending. Lists are handled as streams and are sent element-by-element.
This can cause significant overhead and techniques to avoid element-wise streaming are used.

EdenSkel: Eden provides a rich set of higher-order functions that abstract common parallel
patterns in its skeleton library EdenSkel. For instance, an implementation of parallel map uses
spawn to eagerly instantiate a list of process abstractions.

—— parallel map definition in Eden
parMap f = spawn (repeat (process f))

parMap creates a process for each list element and this often results in far too many processes
in comparison to the number of processing elements available.

Farm process: The farm process skeleton adapts the number of processes to the number of
available processing elements (given by noPe). The input list is grouped into noPe sublists and then
a process is created for each sublist instead of each individual element. The farm process rewritten
below to provide a simpler interface and familiar name to the programmer specifies unshuffle
as the distribution function and shuffle as the combination function.

parMapFarm f = shuffle . (parMap (map f)) . (unshuffle noPe)

parMapFarm creates (noPe+1) processes in total with noPe farm processes and 1 main
process which means that one machine will be allocated two processes. A slight variation to this,
parMapFarmMinus, where noPe-1 processes are created so each processor gets exactly one
process.

Chunking input stream: The farm process reduces the number of processes but does not have
any effect on the messages exchanged between the processes. Each element of the list is sent as a
single message by default. To improve process communication, the number of messages is reduced
using a chunking policy. parMapFarmChunk is defined as a new function which decomposes the
input list into chunks of a specified size e.g. 1000 then creates the farm processes and distributes the
chunks to them. This reduces communication overhead.

parMapFarmChunk f xs = concat (parMapFarm (map f) (chunk size xs))

Offline processes: Another skeleton that is available modifies the communication behaviour:
rather than evaluating the input by the parent process, the unevaluated data is sent (which is typically
much smaller) and evaluated lazily by the new process. This reduces the combined effort of the main
process having to completely evaluate all input to the farm processes.
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PARALLEL HASKELL IMPLEMENTATIONS OF THE N-BODY PROBLEM 7

— x is strictly reduced and sent to child process
f $# x

—— parameter passing: input serialised and sent to remote PE

A\NO = f x) $# O

3.5. Summary

In summary, all three models provide high-level constructs which can be used to get initial
parallelism from the sequential algorithm. Both GpH and Eden represent semi-explicit parallelism,
without an explicit notion of threads. Both implementations delegate the coordination of the
parallelism to a sophisticated runtime system, in the case of Eden based on a distributed memory
model, in the case of GpH based on a (virtual) shared memory model. Under closer examination,
Eden can be considered slightly more explicit since process instantiation mandates the generation
of parallelism, whereas all parallelism in GpH is advisory and may be discarded by the runtime-
system. In contrast, ParMonad is explicit in creating parallel threads, using spawn, and it is up
to the programmer to coordinate the parallel threads, using IVars on a physical shared memory
system.

Skeletons: In order to raise the level of abstraction further, all three languages provide skeleton
libraries. The most advanced of these libraries is the EdenSkel library. It uses internal primitives
of the Eden implementation, to realise sophisticated topology skeletons, such as rings and tori, as
well as optimised, high-level algorithmic skeletons for common patterns such as data parallelism,
divide-and-conquer etc. Based on a long history of developed and comparative applications to a
range of symbolic applications [30], it represents the best tuned skeleton library of these. The
abstraction provided for GpH are evaluation strategies, which have proven to be very flexible and
easily composable in describing patterns of parallelism [35]. They provide the least intrusive way
of specifying parallelism, achieving the clean separation between coordination and computation.
ParMonad is the youngest of these systems, and thus, it comes with only a small set of skeletons,
most notably ones for data-parallelism. Being the most explicit of these languages, it provides the
highest level of control to the skeleton programmer. This is reflected in a carefully tuned, work-
inlining scheduler, that aims to minimise the parallelism overhead in massively parallel programs.

Runtime-system: The most significant difference between these three models is on the runtime-
system level. GpH implements parallelism on top of a (virtual) shared-memory model. It is
implemented very efficiently on physical shared-memory systems, via the GHC-SMP runtime-
system, which is part of the main release of GHC. It is also implemented on distributed memory
architectures, via the GHC-GUM runtime-system and explicit message passing. Eden has been
designed for distributed memory architectures from the start but can also be used on shared
memory machines by exploiting an optimised implementation of MPI or custom shared memory
implementation of internal communication. This generality of design, however, bears the danger of
runtime overhead due to duplication of data in different memory locations. The GHC-Eden runtime
system is the only stable release of distributed memory parallelism for Haskell at the moment. The
implementation of ParMonad supports only physical shared memory systems. In contrast to GpH
and Eden, it does not require any runtime-system extension and is implemented entirely as a library.
One advantage of this design is the decoupling from any internal changes to the GHC compile chain
or runtime-system. As of the time of writing, the latest official GHC-based releases are 7.4 for GHC-
SMP and 6.12.3 for GHC-Eden. A release candidate for GHC-Eden 7.4 and an unstable version of
GHC-GUM 6.12.3 exist.

Because of the different advantages for the individual systems, a combination of some or all
of them is desirable in particular for heterogeneous, hierarchical networks of multi-cores. The
development of such a merged system is currently being pursued by several research groups.
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4. SEQUENTIAL IMPLEMENTATION

In this section, we discuss the sequential implementation of the two algorithms. Starting with a naive
initial implementation, we perform several sequential tuning steps in order to produce optimised
versions of both all-pairs and Barnes-Hut algorithms. We consider the problem in three dimensional
space. The runtimes exclude generation of input and show the main computation of the algorithms
only.

4.1. All-Pairs

The all-pairs program proceeds by comparing each body with the rest in order to calculate the
accelerations induced by the other bodies. The accelerations are then deducted from the body’s
initial velocity and the body is finally moved by updating its position. Two algebraic data types are
defined to represent a body and the acceleration.
data Body — body type def
= Body { x::Double, y::Double, z::Double,

vx :: Double, vy::Double, vz::Double,
m:: Double }

data Accel — acceleration type def
= Accel { ax::Double, ay::Double, az::Double }

The main part of the program is implemented using two map functions. The top-level map
function applies the composite function (updatePos . updateVel) to each body in the list
bs. The main computation happens in the updateVel function, which has another map function
to calculate the accelerations against all the bodies. The fold function deducts the accelerations
which gives the updated velocity. The code below shows the computation for one iteration.

doSteps :: Int —>[Body]—>[Body ]
doSteps 0 bs bs
doSteps s bs
where
new_bs = map (updatePos . updateVel) bs

doSteps (s—1) new_bs

updatePos (Body x y z vx vy vz m) = Body (x+timeStepxvx) (y+timeStep=vy)
(z+timeStep*vz) vX vy vz m

updateVel b = foldl deductChange b (map (accel b) bs)

deductChange (Body x y z vx vy vz m) (Accel ax ay az) = Body x y z (vx—ax
) (vy—ay) (vz—az) m

accel (Body ix iy iz ivx ivy ivz imass) (Body jx jy jz jvx jvy jvz jmass)
= Accel (dxxjmasssmag) (dyxjmxmag) (dzs*jmsxmag)
where
mag = timeStep / (dSquared x distance)
distance = sqrt (dSquared)
dSquared = dxxdx + dyxdy + dzxdz + eps

dx = ix — jx
dy = iy — jy
dz = iz — jz

4.2. Barnes-Hut

The Barnes-Hut implementation is more complicated and based on the 2D version of the algorithm
from [7] and [42] that focus on nested-data parallelism.

The Body and Accel types from the all-pairs version remain unchanged. Three new data types
are introduced to represent

1. BHTree the Barnes-Hut tree structure;
2. Bbox the bounding box representing a region in 3D space, and
3. Centroid the centroid of a region.
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PARALLEL HASKELL IMPLEMENTATIONS OF THE N-BODY PROBLEM 9

The BHTree data-structure implements a rose tree, with an arbitrary number of sub-trees,
represented by a list. In our case of modelling a 3D space, this will not be more than 8 children
per node, thus an oct-tree. The node consists of the size of a region, the centre of mass, total mass
and sub-trees.
data BHTree

= BHT { size ::Double, centerx ::Double, centery ::Double,
centerz :: Double, totalmass ::Double, subTrees::[BHTree] }

data Bbox
= Bbox { minx::Double, miny::Double, minz:: Double,
maxx :: Double, maxy::Double, maxz::Double }

data Centroid
= Centroid { cx::Double, cy::Double, cz::Double, cm::Double }

The algorithm proceeds in two main phases:
tree construction first an oct-tree is constructed from the list of bodies (buildTree);

force calculation then all forces between bodies are calculated to update the velocities
(updateVel), and their positions are updated (updatePos).

Tree construction: This phase constructs an oct-tree from the list of bodies, shown in the
buildTree function below.

First, the bounding box representing the lower and upper coordinates of the region containing all
the points is found (findBounds) and the size of the region calculated.

The centre of mass (cx, cy, cz) and total mass (cm) are calculated and stored at the root node of
the tree to represent the whole space.

The centre of mass (R) and total mass (M) of a list of bodies (m) are given by:

M = Z m; Wwhere n is number of bodies (1)
i=1
1 n
R=— Z m; X T (2)
M i=1

The bounding box is used to subdivide the bodies into 8 smaller regions (splitPoints) and
then the centre of mass and total mass of the bodies contained in each region are computed in the
same way and stored in the children nodes. The process continues until a region has no body in it —
buildTree is essentially a recursive function. The actual bodies are not stored in the tree structure
as in some implementation as the centre and total mass are calculated in the tree construction phase.

doSteps 0 bs bs
doSteps s bs doSteps (s—1) new_bs

where
bbox = findBounds bs
tree = buildTree (bbox,bs)

new_bs = map (updatePos . updateVel) bs

— build the Barnes—Hut tree

buildTree :: (Bbox,[Body])—>BHTree
buildTree (bb,bs) = BHT size cx cy cz cm subTrees
where
subTrees = if bs <=1 then []

else map buildTree (splitPoints bb bs)
Centroid c¢x cy cz cm = calcCentroid bs
size = calcBoxSize bs

findBounds :: [ Body]->Bbox

—— split bodies into subregions
splitPoints :: Bbox—>[Body]—>[(Bbox ,[Body]) ]
—— calculate the centroid of points
calcCentroid ::[ Body]->Centroid
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—— size of the region
calcBoxSize :: Bbox—>Double

Force calculation: In this phase, the acceleration due to each body is computed by traversing the
tree, shown in the calcAccel function below.

The traversal along any path is stopped as soon as a node is too far away to make a significant
contribution to the overall force (isFar). This is determined by dividing the size s of the region
by the distance d between the body and the node centre of mass coordinates. If the ratio 3 is less
than a certain threshold ¢ where 0 <t </ then the centroid is used as approximation as the point is
far from the region. Setting ¢ to zero degenerates to a brute force version while increasing the value
improves performance at the expense of losing some precision.

The accel function here differs from the one in the all-pairs version in that instead of calculating
the acceleration between two bodies, it uses the centroid of a region and a body. The updatevel
function deducts the net acceleration due to each body.

updatePos (Body x y z vX vy vz m) = ... — same as allpairs
updateVel b@(Body x y z vx vy vz m) = Body x y z (vx—ax) (vy—ay) (vz—az) m
where
Accel ax ay az = calcAccel b tree

calcAccel :: Body—>BHTree—>Accel

calcAccel b tree@ (BHT . _ _ _ subtrees)
| null subtrees = accel tree b
| isFar tree b = accel tree b
| otherwise = foldl addAccel (Accel 0 0 0) (map (calcAccel b) subtrees)
where

addAccel (Accel axl ayl azl) (Accel ax2 ay2 az2) = Accel (axl+ax2) (ayl
+ay2) (azl+az2)

accel :: BHTree—>Body—>Accel
isFar :: BHTree—>Body—>Bool

4.3. Sequential tuning

A number of sequential optimisation techniques are used for improving the runtime, heap usage and
fixing issues like stack overflow.

Optimisations: The following general optimisations apply to both algorithms:

Reducing stack consumption: The naive implementation of the algorithm suffers from an
excessive stack consumption if huge number of bodies are used. Space profiling helps to understand
the memory usage of each algorithm and to find any space leak, which led to a stackoverflow in
the initial implementation. To fix the problem and improve general performance of the sequential
algorithm, the following steps are taken:

e Tail recursion:
Two general, well known techniques for reducing stack consumption in functional languages
are to make the function tail recursive and to use accumulating parameters.

o Strictness:
More specifically to a lazily evaluated language such as Haskell, strictness annotations can
be added, where delaying evaluation is not necessary thus avoid unnecessary thunking of
computations. This is achieved in a number of ways e.g. using the pseq primitive, strict
application function ($!) or strict annotation (!) from the BangPatterns extension.

e Types Definition:
Initially, type synonyms were used e.g. to represent position, velocity and mass as triple tuple:
type Pos = (Double,Double,Double). Through the use of more advanced data
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PARALLEL HASKELL IMPLEMENTATIONS OF THE N-BODY PROBLEM 11

types provided in Haskell e.g. with strict data fields, space leaks can be avoided and this
improves performance considerably with high input sizes as we will see shortly.

Reducing heap consumption: While the GHC compiler performs numerous automatic
optimisations, more opportunities can be exposed by specific code changes, in particular in fusing
function applications where necessary. This removes any intermediate data structures that could
potentially decrease performance.

— A trivial example
map updatePos (map updateVel bs)

—— rewritten using function composition
map (updatePos . updateVel) bs

The composed version using a single map is easier to read and also does not depend on compiler
optimisation.

The use of foldr in conjunction with list comprehension (foldr/build) also eliminates the
intermediate lists produced by build and consumed by foldr. This was used in the Barnes-Hut tuning.

Quantifying sequential tuning: Table I shows the results of each step of tuning the sequential
all-pairs and Barnes-Hut algorithms.

All-Pairs

o Version 1: the initial version of the all-pairs program uses type synonyms/tuples to represent
position, velocity, mass and acceleration. Type synonyms are not new data types but are used
mainly for code clarity. For example, it is easy to read that a position consists of 3 doubles,
thus representing it using a tuple.

type Pos = (Double , Double , Double)
type Vel = (Double ,Double , Double)
type Mass = Double

type Accel = (Double,Double,Double)

e Version 2: change type synonyms to data types. This causes the initial runtime to go up by
60%. Using type synonym is usually more efficient as it incurs one less indirection than data
type. However, data types are more powerful and can be used with further optimisation as we
will see in the following versions. Data type necessitates deriving appropriate typeclasses e.g.
Eq if we need to be able to compare them.

data Pos = Pos Double Double Double
data Vel = Vel Double Double Double
data Mass = Mass Double

data Accel Accel Double Double Double

e Version 3: add strictness to avoid unnecessary thunking of computation. For example, return
type of the accel function below is Accel. By default the data fields of Accel are
evaluated lazily, explaining why Version 2 takes up a lot of memory space. By making them
strict, they are computed eagerly. The clearer way to achieve this is by using the (!) strictness
annotation instead of the most explicit pseq. As the results show, this step accounts for the
main reduction in heap and time by 78% and 96%.

—— data fields evaluated lazily
accel bodyi bodyj = Accel (dxxjmsmag) (dyxjmxmag) (dzs*jm=mag)

— add strictness annotation (!)
accel bodyi bodyj = Accel ax ay az

where
lax = (dx+*jms*xmag)
lay = (dy*jmsxmag)
laz = (dzxjmsxmag)
Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
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(a) All-Pairs (5000 bodies)

Version Runtime (s) | Max Resi (KB) | Heap Alloc (%)
allpairs1 39.47 1976 +0.0
allpairs2 63.24 3533 +30.9
allpairs3 2.54 1273 -77.9
allpairs4 2.15 726 -28.9
allpairs5 2.14 726 -0.0
allpairs-final 1.94 69 -0.0

(b) Barnes-Hut (80000 bodies)

Version | Runtime (s) | Max Resi (KB) | Heap Alloc (%)
bhl 41.90 28 +0.0%
bh-final 33.37 27 -88.6%

Table 1. Sequential tuning

e Version 4: Strict data fields. Making the data fields strict removes the need for the previous
strictness annotation added inside the function. In addition to this, use of the UNPACK pragma
indicates to the compiler that it should unpack the contents of the constructor field into the
constructor itself, removing a level of indirection.

data Pos = Pos {—# UNPACK #—} !Double {—# UNPACK #-} !Double {—# UNPACK #
—} !Double

e Version 5: use appropriate higher order functions from the standard libraries e.g. use fold1l’
instead of £o1d1 for its strictness properties.

e Final version: use single Body data type. This removes the need to deal with many different
data types, makes the program more compact, and as a result, reduces the runtime by 10%.
The maximum residency sees an important decrease.

data Body

= Body

{ x :: {—# UNPACK #-} !Double — pos of x
, y :: {—# UNPACK #-} !Double — pos of y
, z :: {—# UNPACK #-} !Double — pos of z
, vx :: {—# UNPACK #-} !Double — vel of x
, vy :: {—# UNPACK #-} !Double — vel of y
, vz {—# UNPACK #-} !Double — vel of z
, m {—# UNPACK #-} !Double } — mass

Barnes-Hut In addition to the optimisations applied to all-pairs, the main tuning for Barnes-Hut
sequential performance is the use of foldr/build.

e Version 1: The first Barnes-Hut version includes all all-pairs optimisations detailed earlier.
This gives a good initial runtime.
o Version 2: Use foldr/build in the calcAccel which eliminates intermediate lists
produced by build and consumed by foldr.
— before
foldl® addAccel (Accel 0 0 0) [calcAccel st b | st <— subtrees]

— after
foldr addAccel (Accel 0 0 0) [calcAccel st b | st <— subtrees]

Compiler optimisation: The sequential runtimes up to now are based on fully optimised
code and used 5000 bodies. GHC’s automatic optimisation already manages to improve time
and heap performance significantly. Table II shows that without enabling compiler optimisation,
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allpairs|1 allpairs-final
Optimisation Runtime (s) | Max Resi (KB) | Runtime (s) | Max Resi (KB)
-00 (disable optimisations) 48.26 1667000 18.58 71
-01 (standard optimisations) 3.76 1094 0.31 69
-02  (full optimisations) 3.72 1117 0.31 69

Table II. Effect of compiler optimisation (2000 bodies)

the runtime may be very high, and actually too high that we use 2000 bodies here to show
the difference in optimisation. This table shows, that GHC’s aggressive optimisation machinery
manages to automatically improve performance of the final version by a factor of 13.0, relative
to the unoptimised version, but doesn’t find many more optimisation sources when going to full
optimisation. Algorithmic optimisation, represented by all the sequential tuning steps as discussed
in this section, gives a performance gain of a factor of 12.0 (combined with full optimisations). Both
taken together account for a sequential speedup of 155.7.

Baseline comparison: As comparison basis of our sequential all-pairs algorithm, we use the
highly optimised nbody implementations from the language shootout website . We first compare
the performance of our all-pairs version with the corresponding Haskell implementation. The
two programs implement the same algorithm. However, we note that our implementation is by
a factor of 1.5 slower: 1.97 sec compared to 1.25 sec using 5000 bodies. The shootout Haskell
version is highly optimised by programmers, who are both experts in Haskell and in the GHC
compiler, using inplace update operations organised through monadic code and unsafe operations
like unsafePerformIO. The disadvantage of this approach is that it introduces sequentialisation
in the code as part of the optimisation and therefore loses a lot of potential for parallelism.

Comparing the performance of the Haskell version with other languages, the shootout Haskell
version is by a factor of 2.3 slower than the fastest, Fortran version. Therefore, we observe as a
baseline comparison a sequential overhead of a factor of 3.4 compared to the fastest available all-
pairs algorithm.

By remaining faithful to a purely functional programming model, our implementation provides
opportunities for parallelism, that do not exist in the lower-level implementations and have to be
refactored in a time-consuming and error prone parallelisation methodology. By exploiting high-
level parallelism, we can compensate for the sequential overhead, using a fairly small number
of processors, and achieve high scalability of our code, through the usage of more massively
parallel hardware. In particular, the final parallel program will not be tied to one particular class
of architectures, nor to a certain number of processors.

5. PARALLEL IMPLEMENTATION

The parallel implementation is based on high-level constructs provided in each of the programming
models. This should not necessitate major changes to the sequential algorithms to get initial parallel
versions of both algorithms. Still, the small set of available constructs makes it possible to improve
runtime and speedup in a parallel tuning phase of program development.

Time profiling: Identifying the source of parallelism is the first step in writing the parallel
algorithms. Time profiling points out the “big eaters,” that is, functions that take the largest
percentage of the total time. Listing 1 shows the time and allocation profiling for both algorithms.

TThe Computer Language Benchmarks Game [1] http://shootout.alioth.debian.org/
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Listing 1: Time and Allocation Profiling Report

individual inherited
COST CENTRE MODULE entries %time %alloc %time %alloc

— All—Pairs (2000 bodies, 1 iteration)

doSteps Main 1 0.0 0.0 100.0 99.8
updatePos Main 2000 0.0 0.0 0.0 0.0
updateVel Main 2000 3.1 1.9 99.9 99.8
accel Main 4000000 23.5 37.2 94.5 93.3
deductChange Main 4000000 2.4 4.5 2.4 4.5
— Barnes—Hut (8000 bodies, 1 iteration)
doSteps Main 1 0.0 0.0 99.9 99.8
findBounds Main 1 0.0 0.0 0.0 0.0
buildTree Main 11804 0.0 0.0 0.2 0.2
splitPoints Main 3804 0.0 0.0 0.1 0.2
calcCentroid Main 11804 0.0 0.0 0.0 0.0
updatePos Main 8000 0.0 0.0 0.0 0.1
updateVel Main 8000 0.0 0.0 99.7 99.5
calcAccel Main 14893157 4.8 7.1 99.7 99.5
accel Main 12193706 12.9 16.1 65.1 63.3
isFar Main 10247211 7.1 9.2 29.7 29.1

In both algorithms, the top-level doSteps function performs the iterations and inherits the
largest percentage of time. The main source of parallelism arises from the update velocity function
updateVel which is used as the function argument of a map operation in both all-pairs and
Barnes-Hut. It accounts for almost 100% of the inherited overall time. As it is used in a map, it
presents data-oriented parallelism.

new_bs = map (updatePos . updateVel) bs

While the tree construction phase can normally be done in parallel, the time profile indicates that
buildTree accounts for less than 1% of the time in the Barnes-Hut algorithm. Parallelising it may
not cause any significant improvement but could, on the other hand, create overheads. However, with
the same number of bodies as used for all-pairs, the time percentage spent in buildTree reaches
approximately 12%. This is explained by lesser computation involved in the acceleration calculation
phase and thus better distribution of the time between the two phases. Also, depending on the
distance threshold used to determine when to consider a body far enough, the time in updatevel
can varies significantly. For instance, if the distance threshold is high (closer to 1), the traversal is
very fast, as a result of little computation involved. This is not very good for parallelism as the cost
of creating parallelism may be higher than the actual computation. Smaller thresholds for example
0.1 runs slower, while O degenerates to pair-wise comparison. Ideally, we use 0.25 which gives a
reasonable approximation, accuracy and speed.

Both all-pairs and Barnes-Hut implementations turn out to be data-parallel algorithms as the same
operation is applied to the list of bodies in order to update them. All of the three models provide
some sort of parallel map for data parallelism.

5.1. GpH
All-Pairs: Initial parallelism is obtained by replacing map with parMap such that each body
velocity is computed in parallel.

new_bs = parMap rdeepseq (updatePos . updateVel) bs

— equivalent to

new_bs = map (updatePos . updateVel) bs ‘using ° parList rdeepseq

The composition in the map function argument can be turned into a pipeline using the parallel

. | | combinator that arranges for a parallel evaluation of both functions being combined. In
thls case, the result of updatevel is evaluated in parallel with the application of the first
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function. However, given that the updatePos function does negligible computation as opposed
to updateVel, this is not a useful source of parallelism and therefore not considered any further.
It demonstrates, however, that this programming model makes it easy to compose different sources
of parallelism, and to prototype alternative parallelisations, without having to restructure the existing
code in a fundamental way.

The performance results from this naive version are disappointing: in the best case we observe
a speedup of 1.4 on 4 processors, but for 8 processors we actually encounter a slow-down. The
reason for this poor performance is considerable overhead associated with generating a thread for
every list element, potentially 16000 in total. While the generation of sparks is cheap, it amounts
to adding a pointer to a queue, the generation of a thread requires the allocation and initialisation
of a thread state object (TSO), which among other data contains the stack used by the thread. In
this case, the computation performed by one thread, namely updating the velocity and position of
one body, is too small in comparison with the overhead for TSO initialisation and for scheduling
the available threads. The following statistics summarises the execution on 2 cores: in total 16000
sparks are created, one for each list element, and of these 8192 are converted into threads. This
lower number is due to the limited size of the spark pool, which is 4k by default. Since the nature
of the parallelism is data-parallel, no work can be subsumed by a sibling-thread, and thus lazy task
creation is not effective in automatically increasing thread granularities.

Listing 2: Global statistics of a parallel run on 2 cores

./ allpairs 16000 1 +RTS —N2 —s
56026.00329381344
54897.906546913
time taken: 16.76s
31,145,652,016 bytes allocated in the heap
27,366,360 bytes copied during GC
2,999,520 bytes maximum residency (5 sample(s))
517,760 bytes maximum slop
10 MB total memory in use (0 MB lost due to fragmentation)

Generation 0: 44953 collections , 44952 parallel, 2.70s, 1.22s elapsed
Generation 1: 5 collections , 5 parallel, 0.05s, 0.03s elapsed

Parallel GC work balance: 1.12 (3256443 / 2904329, ideal 2)

MUT time (elapsed) GC time (elapsed)
Task O (worker) : 4.90s ( 15.635s) 1.51s ( 0.82s)
Task 1 (worker) : 6.21s ( 15.63s) 0.52s ( 0.08s)
Task 2 (bound) : 9.96s ( 15.63s) 0.72s ( 0.365s)
Task 3 (worker) : 0.00s ( 15.635s) 0.00s ( 0.00s)

SPARKS: 16000 (8192 converted, O pruned)

INIT time 0.00s ( 0.01ls elapsed)
MUT time 21.07s ( 15.63s elapsed)
GC time 2.75s ( 1.25s elapsed)
EXIT time 0.00s ( 0.00s elapsed)
Total time 23.83s ( 16.89s elapsed)

9GC time 11.6% (7.4% elapsed)
Alloc rate 1,477,931,568 bytes per MUT second

Productivity 88.4% of total user, 124.8% of total elapsed

In order to tune the parallel performance, we control the number of sparks created by grouping
elements into larger units, into “‘chunks.” Instead of creating a spark for each element in the list, the
list is broken down into chunks and a spark is created for each chunk, thus significantly reducing
the thread creation overhead. The number of chunks is determined by the number of available
processors. Having too few chunks may result in some processors not getting enough work while
too many chunks create excessive overhead.
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As often in data-parallel programs, a careful balance between low thread management overhead
and massive parallelism is crucial. There is no dynamic parallelism here, i.e. all parallelism is
generated at the beginning. Thus a low, fixed number of chunks is likely to be the best choice for
performance. Each processor does not necessarily get the same number of chunks. Using more
chunks retains more flexibility for the runtime system, because a faster or more lightly loaded
processor can pick-up new work after having finished its initial work allocation.

We now consider three ways to introduce chunking (or clustering) into the algorithm (the
language-level differences between these approaches are discussed in more detail in [35]).

Explicit Chunking: The most obvious way of performing chunking, is to explicitly apply
functions performing chunking before and de-chunking after the data-parallel core of the application
(see below). Explicit chunking will be used in the ParMonad version, and its performance discussed
in Section 5.2.

s = 1000 — chunk size
new_bs = concat (map (map (updatePos . updateVel)) (chunk s bs) ‘using®
parList rdeepseq)

Used directly in the application code, this technique obfuscates the computational core of the
application, and introduces an intermediate data structure that is only needed in order to increase
thread granularity.

Strategic Chunking: Another skeleton-based approach to introducing chunking is to modify the
definition of the strategy and to encode chunking additionally to the specification of parallelism
inside this skeleton. Thus, we change parList to parListChunk, which takes an additional
argument, specifying the chunk size. The parListChunk strategy applies the given strategy,
in this case rdeepseq, to each chunk. This achieves a cleaner separation of computation and
coordination, leaving the core code unchanged, and hiding the intermediate data structure in a
custom strategy. However, this strategy is now fixed to one parallel pattern and one way of chunking.

s = (length bs) ‘quot‘ (numCapabilities * 4) — 4 chunks/PE
new_bs = map (updatePos . updateVel) bs ‘using ° parListChunk s rdeepseq

Table X (a) in Appendix 10 shows the runtime and speedup results for different number of chunks
per processor using parListChunk strategy. While generating exactly 1 chunk per processor
might intuitively seem to be the best choice, it is also the least flexible one, because it deprives the
runtime-system from distributing parallelism in the case where one processor suffers from a high
external load. Therefore, a small number of chunks greater than 1 is usually a good choice. In this
case, the right balance is to have approximately 4 chunks per processor.

Implicit Clustering: A more compositional way to introduce chunking is to delegate it to an
instance of a new Cluster class, with functions for performing clustering and unclustering (or
flattening). We can use available abstractions of performing an operation on each element of a cluster
(1ift) and of flattening the resulting data structure (decluster). Thus, to define an instance of
this class the programmer only needs to define cluster in such a way, that the specified proof
obligation is fulfilled e.g. an instance for lists as given below requires us only to define cluster.

class (Traversable c, Monoid a) => Cluster a ¢ where

cluster :: Imt —> a —> ¢ a

decluster :: ¢ a —> a

lift it (a—>b) —>ca-—>cb

lift = fmap — ¢ is a Functor, via Traversable
decluster = fold — ¢ is Foldable, via Traversable
— we require: decluster . cluster n == id

instance Cluster [a] [] where
cluster = chunk
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nochunk parListChunk evalCluster
no. PE | Runtime (s) | Speedup | Runtime (s) | Speedup | Runtime (s) | Speedup
Seq. 20.04 1.00 20.06 1.00 20.02 1.00
1 20.64 0.97 22.10 0.91 19.71 1.02
2 16.76 1.20 11.33 1.77 10.93 1.83
4 13.89 1.44 5.97 3.36 5.83 3.43
8 15.64 1.28 3.29 6.10 3.28 6.10

Table III. All-Pairs: GpH runtime and speedup

Based on this class definition, we can then separately define an evalCluster strategy, which
uses these functions before and after applying its argument strategy to each cluster, thus separating
the definition of parallelism from any form of clustering.

evalCluster :: Cluster ¢ => Int—>Strategy a—>Strategy a

evalCluster n s x = return (decluster (cluster n x ‘using‘ cs))
where cs = evalTraversable s :: Strategy c

Using this approach, we can add clustering to the basic data-parallel strategy, without changing
the original strategy at all. We simply replace evallist (rpar ‘dot‘ rdeepseq), which
is the definition of parList,by evalCluster s (rpar ‘dot‘ rdeepseq).In short, the
compositionality of this style of programming allows to specify a parallel strategy combined with a
clustering strategy. This provides more flexibility in aggregating collections in ways that cannot be
expressed using only strategies.

In summary, the code below shows the use cases for all three clustering techniques:

— explicit clustering

concat (map (map f) (chunk s bs) ‘using ° parList rdeepseq)

—— strategic clustering

map f xs ‘using ° parListChunk s rdeepseq

—— combining parallel and clustering strategies
map f xs ‘using ° evalCluster s (rpar ‘dot‘ rdeepseq)

Table IIT summarises the parallel results of using: no chunk, parListChunk, and evalCluster with
the last two using 4 chunks per PE. Most notably, the implicit evalCluster version achieves the same
performance as the strategic parListChunk. Thus, using this more compositional version, that makes
it easy to introduce and modify clustering strategies separately from specifying parallelism over the
data structure, does not incur a significant performance penalty.

Barnes-Hut: Sequential profiling of the Barnes-Hut algorithm identifies the same function,
updateVel, as the main eater of compute time. As the call count for this function shows, this
is due to the iterative use in the top level map. Therefore, the Barnes-Hut algorithm is parallelised in
the same, data-parallel way as the all-pairs version. Since an abundance of fine-grained parallelism
is also a problem in this version, we use the same form of chunking in order to tune the parallel
performance.

In this version a natural parallel phase is buildTree, where sub-trees can be constructed in
parallel. But as the profiling report showed earlier, it does not account for a big percentage of the
overall time, and therefore benefits from parallelising this stage are limited. However, it is cheap to
mark the stage as parallel computation, and whether to take the spark for parallel execution is up to
the runtime-system.

Another generic optimisation that is applied in the buildTree function is “thresholding.” By
adding an explicit argument to the function that represents the current level of the tree, the generation
of parallelism can be restricted to just the top levels. This makes sure there are not too many parallel
threads for the tree construction otherwise it would cause overheads with large number of bodies.

As expected, Table IV shows that parallel buildTree does not improve performance
significantly but it does not cause additional cost either. The main observation though is that the
algorithm does not achieve as good speedup as the all-pairs algorithm. This is expected as all parallel
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Top-level map only Parallel buildTree
no. PE | Runtime (s) | Speedup | Runtime (s) | Speedup
Seq. 3331 1.00 3331 1.00
1 35.77 0.93 35.77 0.93
2 21.50 1.55 21.61 1.54
4 11.00 3.03 10.77 3.09
8 6.77 492 6.11 5.45

Table IV. Barnes-Hut: GpH runtime and speedup

tasks in the all-pairs algorithm have the same amount of computation to perform i.e. the parallelism
is regular; whereas the acceleration calculation steps in the Barnes Hut algorithm varies for each
body depending on its location. Some bodies require traversing deeper inside the tree to calculate
the net acceleration, while for some, it may not require to do so. For instance, quantifying the
irregularity of the computation involved in Barnes-Hut, random generation of 80000 bodies gives
an unbalanced tree with minimum tree depth 6 and maximum depth 9.

5.2. ParMonad

All-Pairs: We use the pre-defined parallel map provided in ParMonad to add parallelism the
same way as we did in GpH. In contrast to GpH, the parallel computation happens in a monad
and therefore the result has to be extracted using runPar.

new_bs = runPar $ parMap (updatePos . updateVel) bs

The initial results in Table X (b), without using chunks, already show good performance: a
speedup of 6.17 on 8 cores. The reason for this efficient behaviour is the work-inlining scheduler,
which distributes the potential parallel tasks to a number of implicitly created threads and then
executes the task within the existing thread. This dramatically reduces the thread creation overhead,
at the expense of less flexibility in how to distribute the tasks in the first place. This model is well
suited for homogeneous, multi-core architectures and no explicit chunking is needed to improve
parallel performance. However, as shown in Table V the use of chunking reduces the maximum
residency by 50% from 4822MB to 2417MB for parallel run on 8 cores.

Table X (b) also shows that the number of chunks causes negligible change to the runtime and
speedup. However, in order to maintain low memory residency, and to facilitate scalability beyond
the number of cores available for these measurements, a chunking policy is preferred.

ParMonad, however, does not come with a pre-defined parallel map function with chunking. So,
we use explicit chunking, as discussed above: s is the chunk size, and it is adjusted to the number of
cores, in the same way as in GpH in order to produce an appropriate number of chunks.

new_bs = parMapChunk (updatePos . updateVel) s bs

parMapChunk f n xs = concat ( runPar $ parMap (map f) (chunk n xs) )

Barnes-Hut: For the Barnes-Hut algorithm we note that chunking causes a noticeable
improvement in the speedup from 5.29 to 6.50 on 8 cores (using parallel buildTree). This could
be due to the fact that a large number of bodies are used in this algorithm and the memory usage is
more significant.

nochunk | chunking
copied during GC (MB) 31527 16171
max residency (MB) 4822 2417
Table V. ParMonad: nochunk vs 4chunks/PE

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
Prepared using cpeauth.cls DOLI: 10.1002/cpe



PARALLEL HASKELL IMPLEMENTATIONS OF THE N-BODY PROBLEM 19

Top-level map only Parallel buildTree
no. PE | Runtime (s) | Speedup | Runtime (s) | Speedup
Seq. 33.39 1.00 33.65 1.00
1 34.49 0.97 33.96 0.99
2 17.72 1.88 17.79 1.89
4 9.21 3.63 8.97 3.75
8 591 5.65 5.18 6.50

Table VI. Barnes-Hut: ParMonad runtime and speedup

The large number of bodies used in Barnes-Hut makes the heap usage more significant compared
to the all-pairs algorithm. Without chunking, the maximum residency is 83MB and productivity
is at 63%. With chunking, residency is 55SMB and improved productivity by 10%. This reduced
percentage of garbage collection time has an immediate impact on the performance of the parallel
program.

Similarly to the GpH version, we also try to parallelise the buildTree function and the
difference is insignificant, as we expected due to buildTree not representing a large part of
the overall computation (Table VI).

5.3. Eden

All-Pairs: As with the previous two models, we only need a parallel map implementation to
get data-oriented parallelism from the algorithm. Eden offers several skeletal approaches and in
particular has several implementations of parallel map as described earlier. The default parMap
implementation creates a process for each list element causing far too much overheads in terms of
number of processes and messages communicated between them (16001 and 64000 respectively as
shown in Appendix Table XI). Observing number of processes and communications is motivation
for picking a different strategy, and with it numbers drop significantly and speedup improves.

The farm process skeleton creates the same number of processes as the number of available
processing elements. But the message overheads remain. Each list element is communicated as
a single message which generates 32048 messages in total. This represents a high number but still
the performance is considerably improved compared to the naive parallel map and good speedup
is noted. This indicates that process creation overheads is far more important than the number of
messages.

Doing further parallel tuning in order to reduce message overheads, we use chunking to break
the stream into chunks of size 1000 items which are then sent as one message, thus enabling the
process to do more computation at one time rather than having to send and receive messages in
between. The chunking reduces the total number of messages communicated in the parMapFarm
version (farm process) from 32048 to just 80 messages. As a result of this, the runtime and speedup
is improved as indicated in Table VII.

The offline farm process, where process input is evaluated by the child process instead of the
parent process, causes a small performance improvement compared to the farm process. Sending
process input to child processes to be evaluated is intended to reduce the combined time the parent

farm processes with stream chunking
no. PE | Runtime (s) | Speedup | Runtime (s) | Speedup
Seq. 22.13 1.00 22.13 1.00
1 23.67 0.93 2291 0.97
2 11.91 1.86 11.57 1.91
4 6.08 3.64 5.82 3.80
8 3.41 6.49 3.09 7.16

Table VII. All-Pairs: Eden parMapFarm vs. parMapFarmChunk runtime and speedup
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Top-level map only Parallel buildTree
no. PE | Runtime (s) | Speedup | Runtime (s) | Speedup
Seq. 35.34 1.00 35.32 1.00
1 33.11 1.07 33.89 1.04
2 18.41 1.92 18.73 1.89
4 10.62 3.33 11.24 3.14
8 10.37 341 10.71 3.30

Table VIII. Barnes-Hut: Eden (parMapOfflineFarmChunk) runtime and speedup

process spent in reducing all inputs. However, in the algorithm, the inputs to farm processes is
Body type with strict fields. So there is no much reduction happening after sending it to the child
processes.

The measurements using all skeletons are available in Appendix Table X (c) and (d) for all-pairs
and Table XI summarises the overheads of each skeleton.

Barnes-Hut: Though the Eden all-pairs implementation has given the best performance so far
compared to the other two models, the performance for the Barnes-Hut algorithm using Eden is not
as good as the other models. The speedup is roughly the same on 1 to 4 cores but then there is no
further speedup upto 8 cores. The best speedup achieved is using offline process with chunking as
seen in Table VIII. This is partially due to the high maximum residency caused by all PEs combined
due to the large number of bodies used. Furthermore, this indicates that spark-oriented parallelism in
GpH and ParMonad parallel tasks deal better with dynamic and irregular parallelism. We compare
the performance of all implementations in more detail in Section 6.

6. PERFORMANCE EVALUATION

Experimental Setup: The machine used for taking the measurements contains a 64-bit Intel Xeon
CPU E5410 2.33 GHz processor with 8 cores, 8GB RAM and 12MB L2 cache. The machine runs
Linux and the version of GHC used for GpH and ParMonad is 7.0.1 while Eden uses 6.12.3. A
newer version of Eden is under development and an attempt to get measurements using it was not
successful. Comparison between GpH/ParMonad and Eden is therefore on the basis of speedup.

The input size for all-pairs measurements is 16000 bodies, while for Barnes-Hut, being a more
efficient algorithm and able to cope with high number of bodies, we use 80000 bodies. The input
sizes ensure the runtimes of one iteration are within a minute for both algorithms. Larger input
sizes are used for doing scalability tests and smaller sizes in the sequential optimisation phase.
Measurements for the challenge input specification of 1024 bodies and 20 iterations are given at the
end of the section, for comparison with other systems. All speedups in the tables and graphs are
absolute.

Apart from the performance obtained from using the different models for the parallel
implementations, other factors are equally important. For example, each model is built around
different concepts and the underlying implementation is fairly technical. However, exposing high-
level functions with simple interfaces to the casual programmer is an important part of any
programming model. All of them do provide similar interfaces familiar to the programmer, for
example, parallel map.

Tuning: While an initial parallel version was easily produced with only a one-line program
change, GpH required some parallel performance tuning, in particular by using chunks to generate
a bounded number of threads of suitable granularity. Selecting a good chunk size required a series
of experiments, establishing four threads per processor to be the best balance between massive
parallelism and coarse thread granularity. The more irregular nature of the parallelism in the Barnes-
Hut version, compared to the naive all-pairs version, diminishes the achieved speedup, but also
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Figure 2. Threadscope of parallel run on 8 cores
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Figure 3. Eden Trace Viewer of parallel run on 8§ PE

demonstrates that the runtime-system effectively manages and distributes the available parallelism,
without requiring further application code changes from the programmer.

The ParMonad version uses a highly tuned, data-parallel map skeleton, and thus can efficiently
handle a large number of parallel tasks already in its initial version, eliminating the need for explicit
chunking. However, chunking does improve the maximum residency and therefore the scalability
of the application.

Eden provides the richest set of skeletons available to implement both versions of the algorithm.
In this model, parallelisation amounts to selecting the most suitable skeleton for the main worker
function. Ample literature on the advantages and disadvantages of different skeletons helps in
making the best decision for a specific application and architecture. For fine tuning the parallel
performance, however, an understanding of the process creation and message communication is
required to minimise the amount of communication in this distributed memory model.

For any high-level language model, good tool support is crucial in order to understand the concrete
dynamic behaviour of a particular algorithm and to tune its performance. Threadscope helps to
visualise the work distribution among the available processors for GpH and ParMonad. Figure 2
shows the work distribution of running the all-pairs GpH program on 8 cores before and after
parallel tuning using chunking. The upper portion of the graph shows overall activity, measured
in terms of the total number of active processors at each time in the execution. The lower portion
of the graph shows the activity for each of the processors, with green representing “running” and
red representing “idle”. Additionally, the time spent in garbage collection is indicated in orange.
The number of sparks is given in the runtime statistics for GpH. For ParMonad, however, the exact
number of threads created is not given.

EdenTV (Eden Trace Viewer) gives useful information about processes, their placement,
conversations and messages between processes. Figure 3 compares the use of the naive parallel
map (parMap) against an alternative implementation using farm process and stream chunking
(parMapFarmChunk). It shows the overheads of too many processes, and consequently messages,
being generated in the former. The overheads are eliminated in the tuned version. Each line
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Figure 4. Scale-up graphs of both algorithms for parallel runs on 8 cores

represents the activity on one processor, with green representing “running”’, while blue represents
“waiting for data”. While the first trace shows frequent changes between running and waiting states,
reflecting the element-by-element transfer of the input data from the master to the workers, the
second trace shows much better utilisation as uninterrupted activity once the entire block of input
data has been received by a worker. The master remains idle, while the workers produce their results.
A related set of skeletons allows a dual usage of the master process as worker in such a case, and
can be used to improve performance further.

Scale-up: Both algorithms have O(N?) asymptotic complexity, with a smaller, tunable factor
for the Barnes-Hut version. The optimisations carried out in the sequential tuning phase play an
important role in ensuring that the algorithms can be executed on a large number of bodies by
maintaining low heap consumption. Figure 4 assesses the scalability of all implementations by
plotting the runtimes against increasing input sizes on 8 cores: 12-24 for all-pairs and 80-200 for
Barnes-Hut. The graph indicates almost linear scale-up within this window by all models. The Eden
Barnes-Hut runtime is higher, reflecting a significantly higher memory consumption, which comes
from Eden’s distributed memory model, which duplicates data more often than needed on a shared
memory architecture. As expected, Barnes-Hut is also able to cope with very large number of bodies
e.g. 1 million.

Speed-up: The head-to-head comparison of speedups for the all-pairs versions of the code
in Figure 5a show that, despite a higher variability, the Eden implementation performs best,
even though it was designed for distributed memory architectures. This indicates that message
passing can work well on shared-memory architectures. Using a highly tuned skeleton that avoids
synchronisation bottlenecks on high-latency, distributed memory systems, is beneficial even on a
single multi-core. The support for light-weight parallelism in all three runtime-systems helps to
reduce the overhead that has to be paid for exposing parallelism. The GpH version is potentially
more flexible and adaptive, through its dynamic, spark-based load distribution policy. This, is
beneficial in particular in heterogeneous environments, with dynamically changing external load.
On an otherwise idle machine as used for these measurements, however, these benefits cannot be
capitalised on, while the overhead still has to be paid for. The ParMonad version performs very well
already in its initial, unoptimised version, but does not exceed the performance of the other systems
in its final version. In this case, the overhead of encoding scheduling and other dynamic machinery
in the application, rather than the runtime-system, is higher compared to the other two systems.
The speedup results for the Barnes-Hut algorithm in Figure 5b show a significantly different
picture. The dynamic behaviour of the Barnes-Hut algorithm differs from that of the all-pairs
version, in that the parallel threads vary significantly in their granularities. The amount of work
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Figure 5. Speed-up graphs of both algorithms on up to 8 cores

is significantly higher when calculating the impact of a densely populated cube in the oct-tree
representation. In contrast, the parallelism in the all-pairs version was more regular, with parallel
tasks taking approximately the same amount of time to execute on different processors. The irregular
parallelism in the Barnes-Hut version is more challenging to manage efficiently. The underlying
runtime-system of GpH and the application-level implementation of scheduling for ParMonad,
are designed to be very flexible and dynamic in their management of parallelism, in particular
allowing for cheap transfer of potential parallelism. Considering the more challenging nature of the
parallelism, GpH and ParMonad achieve good speedups. The Eden version, however, suffered most
severely from the irregular parallelism. This case shows the limitations of a purely skeleton-based
approach, that relies on the existence of a wide range of skeletons for many different architectures.
Since Eden is not limited to such a pure skeleton-based approach, but is a skeleton implementation
language in its own right, further optimisation should be possible, by fine tuning an existing skeleton
for this application. We have not explored a cluster configuration of the Eden execution in sufficient
detail to report any solid results on it here.

MultiCore Challenge input specification: Finally, Table IX shows the speed-up results for the
tuned versions of all-pairs and Barnes-Hut, when using the MultiCore Challenge input specification
of 1024 bodies and 20 iterations. As expected, the speed-ups are slightly lower for the smaller input
set and for an execution which requires synchronisation between the iterations. Still, the speed-ups
of 5.23 for GpH and 5.63 for ParMonad for the Barnes-Hut version are remarkable, for less than
a dozen lines of code changes, and no structural changes to the original Haskell implementation.
In particular, we surpass the calculated sequential overhead of a factor 3.4, compared to Fortran,
already on a moderate multi-core architecture and deliver superior, scalable performance with a
high-level language model.

All-Pairs Barnes-Hut
GpH ParMonad GpH ParMonad
no. PE | Runtime (s) | Speedup | Runtime (s) | Speedup | Runtime (s) | Speedup | Runtime (s) | Speedup
Seq. 1.67 1.00 1.70 1.00 1.36 1.00 1.35 1.00
1 1.71 0.98 1.66 1.02 1.40 0.97 1.38 0.98
2 0.94 1.78 0.93 1.83 0.78 1.74 0.72 1.88
4 0.51 3.27 0.52 3.27 0.44 3.09 0.42 321
8 0.30 5.57 0.30 5.67 0.26 5.23 0.24 5.63
Table IX. Runtime and speedup for 1024 bodies and 20 iterations
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7. RELATED WORK

The area of declarative programming languages provides a particularly rich source for parallelism,
stemming from the referentially transparent nature of the evaluation in a (pure) language [51].
This property guarantees that any order of evaluating an expression will deliver the same result.
In particular, independent parts of the program can be evaluated in parallel. A straightforward
implementation of this approach would yield an abundance of parallelism, with too fine grained
threads to be efficient. Therefore most modern parallel functional languages take an approach of
semi-explicit parallelism: they provide a means of identifying those sources of parallelism that are
likely to be useful. Still, most of the synchronisation, communication and thread management is
hidden from the programmer and done automatically in a sophisticated runtime-system.

An influential, early system for parallel functional programming was Mul-T [28] using Lisp. It
introduced the concept of futures as handles for a data-structure, that might be evaluated in parallel
and on which other threads should synchronise. Importantly for performance, this system introduced
lazy task creation [39] as a technique, where one task can automatically subsume the computation of
another task, thus increasing the granularity of the parallelism. Both, the language- and the system-
level contributions have been picked up in recent implementations of parallel functional languages.

One prominent example of this approach is the Manticore system [19] using a parallel variant
of ML that includes futures and constructs for data parallelism. It allows to specify parallelism on
several levels in a large-scale applications, typically using explicit synchronisation and coordination
on the top level [45] and combining it with implicit, automatically managed, fine-grained threads
on lower levels [18].

Another ML extension is Polyml [37], which also supports futures, light-weight threads and
implicit scheduling in its implementation. Reflecting its main usage as an implementation language
for automated theorem provers, such as Isabelle, it has been used to parallelise its core operations.

Another parallel extension of Haskell is Data Parallel Haskell [25], which has evolved out of the
Nepal language [7]. It provides language, compiler and runtime-system support for data-parallel
operations, in particular parallel list comprehensions. Several program transformations, e.g. data-
structure flattening, are performed in the compiler to optimise the parallel code. Its design is heavily
based on the Blelloch’s NESL language [5], a nested, data-parallel language with an explicit cost
model to predict parallel performance.

SAC [46] is another functional, data-parallel language. Its syntax is based on C, but its semantics
is based on single assignment, and therefore referentially transparent. It mainly targets numerical
applications and achieves excellent speedups on the NAS benchmark suite.

Microsoft’s Accellerator [47] is another prominent data-parallel system. It supports high-
level, language-independent program development, and generates parallel code to be executed on
GPGPUs or on multi-cores with vector-processing extensions.

Several experimental languages explored the use of high-level, parallelism language features in
object-oriented languages: Fortress [48], X10 [9] and Chapel [8]. Of these, Chapel is currently
best supported, in particular on massively parallel supercomputers. These languages introduce
high-level constructs such as virtual shared memory (X10), structured programming constructs for
parallel execution (Chapel), and software transactional memory (Fortress) to avoid a re-design of
the software architecture due to specifics of the underlying, parallel architecture [10].

Based on the experiences with these languages, high-level abstractions are now entering main-
stream languages for parallel programming. In particular, the concept of partitioned global address
spaces (PGAS) enables the programmer to use the abstraction of virtual shared memory, while
providing possibilities for co-locating data on specific nodes and thereby tune the parallel execution.
The most prominent languages in this family are Unified Parallel C (UPC) [17] and Co-Array
Fortran [41].

Increasingly, these high-level abstractions are also used in main-stream languages to facilitate
parallel programming. The latest version of the .NET platform, comes with the Task Parallel
Library [6], which provides a set of parallel patterns, in particular for divide-and-conquer and
pipeline parallelism, and some advanced parallel programming constructs such as futures. Several
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languages implemented on top of .NET, including C# and F#, can make direct use of these library
functions in order to introduce parallelism, without extending the language itself. Intel’s Task
Building Blocks [44], also a collection of parallel patterns, has been successfully used on a range of
parallel architectures.

Crucial for the feasibility of a high-level language approach to parallelism, is an efficient
and flexible implementation of basic resource management policies, such as load distribution
and scheduling. All three Haskell variants used in this paper profit from light-weight threads as
managed in the runtime system. GpH’s runtime system manages work distribution through “sparks”,
effectively handles to potential parallelism [49]. Work represented by one spark can be subsumed
by a running thread, effectively achieving lazy task creation [39]. Eden’s runtime system is more
prescriptive in the way it manages the parallelism, which allows for the specification of skeletons
implementing specific topologies [27]. ParMonad’s approach builds on the existing mechanisms for
thread creation and synchronisation as initially developed for Concurrent Haskell [43].

Several other systems have taken similar design decision in producing a system for dynamic and
adaptive management of parallelism. Filaments [33] was an early system focusing on light-weight
threads, encouraging an approach of parallelisation that exposes massive amounts of parallelism
and deciding at runtime whether or not to exploit specific parallelism, rather than restricting it
on application level. The Charm++ system [26] builds on top of C++ and provides asynchronous
message-driven orchestration together with an adaptive runtime system. It has been used on
numerous, large-scale applications, for example biomolecular simulations from the domain of
molecular dynamics. The Cilk system [21] achieved excellent results on physical shared memory
systems, in particular for the FFT application. Its C and C++ language extensions are now supported
both by Intel’s Cilk Plus compiler and by GCC 4.7. Goldstein’s thesis [22] provides a detailed study
of different representations of light-weight threads and their impact on parallel performance, e.g. in
the context of the TAM system [13].

8. CONCLUSIONS

In this paper we have used a very high level language approach to the challenge of obtaining efficient
parallelism from a typical, compute-intensive application: the n-body problem. As host language we
used Haskell, the de-facto standard, non-strict, purely functional language, that is increasingly used
in academia and beyond to achieve a high level of programmer productivity.

We studied three variants of parallel Haskell: evaluation strategies, built on top of Glasgow
parallel Haskell (GpH), Eden, which provides process abstractions akin to lambda abstractions to
define parallel computations, and ParMonad with an explicit way of controlling threads. Common
to all variants is the design philosophy to minimise the code changes that are needed in order to
achieve parallel execution. Ideally, the specification of the parallel execution is orthogonal, and
separate from the specification of the code. Indeed, the initial parallel versions of both algorithms
required only one-line code changes. All of these languages build on a sophisticated runtime-
system that automatically manages the synchronisation, coordination and communication necessary
to achieve high parallel performance. The resulting programming model is one of semi-explicit
parallel programming for GpH and Eden, where the programmer only has to identify the useful
sources of parallelism, but explicit for ParMonad, which allows to encode archetypical runtime-
system functionality as high-level Haskell code. More commonly, however, pre-defined parallel
skeletons are used to simplify the parallelisation.

The three variants differ in the way they facilitate tuning of the initial parallel algorithm,
though. Being first class objects, evaluation strategies can be easily modified to enable different
dynamic behaviour. For example, adding chunking to a data parallel algorithm can be easily
done by composing strategies. This modularity is one of its main advantages. However, control
of data locality is significantly more difficult, because GpH relies on an implicit, work stealing
scheduler to distribute the work. In contrast, in Eden thread creation is mandatory on process
application, and it provides finer control of co-location, by using partial applications. These features
provide more opportunities for tuning the parallel program without abandoning the high level of
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abstraction. Finally, ParMonad is the most explicit form of controlling parallelism. Here, threads
are explicit entities in the program, that have to be synchronised using IVars, which raises all the
usual issues about parallel programming. However, by providing parallel patterns of computation,
skeletons, these low-level issues can be hidden to the programmer. By implementing runtime-system
functionality on Haskell level, an expert parallel Haskell programmer can also tailor the application,
e.g. by implementing a custom scheduling algorithm.

Another current parallel Haskell extension is Data parallel Haskell (DPH), which implements
a model of implicit, nested data-parallelism on top of parallel arrays. For a predecessor of DPH,
Nepal, it is shown how a Barnes-Hut algorithm can be implemented in this language [25]. Concrete
performance comparisons with this Haskell variant would be interesting future work.

Despite the high-level of abstraction, the performance results show good speedups for all systems:
5.45 for GpH, 6.50 for ParMonad, and 3.62 for Eden, always using the Barnes-Hut algorithm. Most
notably, these results were achieved changing only a few lines of code. Introducing top-level data-
parallelism changes only one line of the original code. Introducing the chunking optimisation adds
less than a dozen lines of auxiliary functions, and modifies this one line code change.

Our main conclusions from this challenge implementation are:

o All three parallel Haskell variants are able to achieve competitive multi-core speed-ups not
only for the simple, regular all-pairs algorithm but also for the more sophisticated, irregular
Barnes Hut algorithm.

e The performance of the parallel all-pairs version surpasses the calculated performance of
the fastest sequential Fortran version from the language shootout [1] and achieves scalable
performance up to the maximum of 8 cores.

e The ease of parallelisation allowed us to develop 6 versions of the challenge, using three
different variants of parallel Haskell and implementing both an all-pairs and a Barnes-Hut
version.

e Well documented program transformations, in the form of local changes to the sequential
program, reduce both heap and stack space consumption considerably and improve sequential
performance by a factor of 12.0.

e Established techniques for tuning parallel performance, in particular chunking, were
important to tune the GpH and Eden implementations of the algorithms.

e The ParMonad version already achieves good parallel performance in its initial version, due
to a highly optimised, work-inlining scheduler. In contrast, both the GpH and Eden versions
require explicit chunking to achieve the same level of performance, but allow for more flexible
tuning of performance.

o Interestingly Eden, which is designed for distributed memory architectures, performs very
well on a shared memory setup using message passing, in particular for the all-pairs version.

We found this exercise of implementing one agreed challenge application, and comparing the
parallelisation methodology, the tool support and the achieved performance results with other
implementations, that were presented at the workshops, an extremely valuable experience, gaining
insights in the relative advantages of each of the approaches. These results also help to focus our
research efforts in developing the underlying systems further. In particular, one main direction of
further work is to improve our runtime support for hierarchical, heterogeneous parallel architectures,
e.g. clusters of multi-cores, and to integrate the different Haskell variants into one unified language
that makes use of these variants on different levels in the hierarchy. Eden, based on a distributed
memory model, is a natural match with clusters, whereas GpH and ParMonad are natural matches
for physical shared memory architectures. GpH also supports virtual memory, which can be
efficiently exploited on closely connected clusters. For the next challenge application we hope to
also cover clusters of multi-cores to address the issue of the scalability of the parallelism in more
detail. Eden already provides a suitably platform for such a comparison, and we hope to also have a
stable cluster-version of GpH ready to use for this next stage.
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10. APPENDIX

(2) GpH
nochunk Ichunk/PE 2chunks/PE 4chunks/PE
no. PE | Runtime (s) | Speedup | Runtime (s) | Speedup | Runtime (s) | Speedup | Runtime (s) | Speedup
Seq. 20.04 1.00 20.05 1.00 20.03 1.00 20.06 1.00
1 20.64 0.97 27.80 0.72 24.07 0.83 22.10 0.91
2 16.76 1.20 12.73 1.58 11.98 1.67 11.33 1.77
4 13.89 1.44 6.42 3.12 6.15 3.26 5.97 3.36
8 15.64 1.28 3.40 5.90 3.35 5.98 3.29 6.10
(b) Par monad
nochunk Ichunk/PE 2chunks/PE 4chunks/PE
no. PE | Runtime (s) | Speedup | Runtime (s) | Speedup | Runtime (s) | Speedup | Runtime (s) | Speedup
Seq. 20.30 1.00 20.06 1.00 20.03 1.00 20.04 1.00
1 20.48 0.99 20.16 1.00 20.08 1.00 20.19 0.99
2 10.96 1.85 10.91 1.84 10.98 1.82 10.94 1.83
4 5.93 3.42 5.85 3.43 5.82 3.44 5.78 3.47
8 3.29 6.17 3.24 6.19 3.22 6.22 3.25 6.17
(c) Eden 1
parMap parMapFarm parMapFarmMinus
no. PE | Runtime (s) | Speedup | Runtime (s) | Speedup | Runtime (s) | Speedup
Seq. 22.11 1.00 22.13 1.00 22.12 1.00
1 362.38 0.06 23.67 0.93 23.59 0.94
2 294.99 0.07 11.91 1.86 23.33 0.95
4 259.19 0.09 6.08 3.64 7.73 2.86
8 245.72 0.09 3.41 6.49 3.49 6.34
(d) Eden 2
parMapFarmChunk parMapOfflineFarmChunk | workpoolSortedChunk
no. PE | Runtime (s) | Speedup | Runtime (s) Speedup Runtime (s) | Speedup
Seq. 22.13 1.00 22.13 1.00 22.12 1.00
1 2291 0.97 23.02 0.96 23.06 0.96
2 11.57 1.91 11.53 1.92 11.59 1.91
4 5.82 3.80 5.80 3.82 5.84 3.79
8 3.09 7.16 3.04 7.28 3.11 7.11
Table X. All-Pairs: Measurements (16k bodies, 1 iteration)
processes | threads | conversations | messages
parMap 16001 32001 64000 64000
parMapFarm 9 17 48 32048
parMapFarmMinus 8 15 42 32042
parMapFarmChunk 9 17 48 80
parMapOfflineFarmChunk 9 17 40 56
workpoolSortedChunk 9 17 48 80
Table XI. All-Pairs: Eden skeleton overheads - 16000 bodies/par. run on 8 cores
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