
ACM Communications in Computer Algebra, ISSAC 2010 Software Presentation

ISSAC 2010 Software Presentation
SymGrid-Par: Parallel Orchestration of Symbolic

Computation Systems

The SCIEnce project
http://www.symbolic-computation.org

support@symbolic-computation.org

1 Introduction

Primary challenges for modern symbolic computation systems are the transparent access to complex,
mathematical software, the exchange of data between independent systems and the exploitation of
modern parallel hardware. Transparent access is increasingly delivered through Grid services that
standardise the access to remote software on a global scale. To facilitate data exchange, meta-
languages have been developed and standardised. The most prominent effort in this community is
the OpenMath standard, on which we build. Finally, and for us most importantly, to exploit parallel
hardware an execution model is needed, that matches the mathematical abstractions employed in
symbolic computation applications. The constructs for parallelism should be non-intrusive, thus
avoiding large-scale code restructuring, and largely advisory, so that the implementation can adjust
the dynamic execution to the widely different characteristics of the parallel hardware.

The design of SymGrid-Par addresses all of the above challenges and focuses on exploiting par-
allel hardware. SymGrid-Par orchestrates symbolic components into a Grid-enabled application.
Each component executes within an instance of a Grid-enabled engine, which can be geographically
distributed to form a wide-area computational Grid. SymGrid-Par has been designed to achieve
a high degree of flexibility in constructing a platform for high-performance, distributed symbolic
computation. The most visible aspect of this flexibility is the possibility to connect different com-
puter algebra systems (CAS) to co-operate in the execution of a program. To efficiently exploit
modern parallel hardware, which is increasingly heterogeneous and hierarchical, we apply different
implementations of parallel Haskell, performing dynamic and adaptive management of parallelism.

Figure 1 depicts the SymGrid-Par design as a stack of layers (left) of increasing levels of ab-
straction. The middle stack presents an early version of SymGrid-Par, based on a bespoke interface
between Haskell and the underlying CAS. The right stack describes the latest, standards-compliant
version of SymGrid-Par, supporting a distributed collection of servers. Most notably we use estab-
lished standards, such as sockets, where possible, and build on newly developed standards, such as
OpenMath and the Symbolic Computation Software Composability Protocol (SCSCP) [2], which
is reported on separately in this issue. For coordination we are using parallel implementations of
the functional programming language Haskell [4, 5, 6] as a high-level parallel programming model.
Access to the system at-large is provided through the separate SymGrid-Services interface.

1

SymGrid-Par

Access Layer:
Service Layer:
Application Layer:
Coordination Layer:
Communication Layer:
Data Layer:
Connection Layer:

Bespoke interface
Grid
Grid Service
Skeletons/Strategies
parallel Haskell (GpH)
Bespoke
Strings
Pipes

SCSCP interface
Grid
Grid Service
Skeletons
parallel Haskell (Eden)
SCSCP
OpenMath
Sockets

Figure 1: SymGrid-Par Layers (left): bespoke (middle) and SCSCP-based (right)

client

Coord. Server

server server server

OpenMath

SCSCP

SCSCP

OpenMath

socket

socket

socket

socket socket socket

CA

CA CA CA

CAG

GCA

Figure 2: Current SymGrid-Par Architecture

2 Examples of high-level orchestration

We exemplify our high-level parallel programming approach by computing the sum of the Euler
totient function over a list of integers, exposing a common fold-of-map structure. Here we focus on
how to express the parallelism and how to interface with the underlying computer algebra systems
that perform the bulk of the computation.

The system structure of SymGrid-Par is shown in Figure 2. Notably the end user continues to
work in the shell of his/her computer algebra system, avoiding the overhead of learning a different
system or language just to exploit parallelism. The SCSCP interface of the system is used to emit
calls to the Coordination Server, whose role is to coordinate the parallelism in the application. It
completely hides all aspects of the parallelism to the end user. Thus, a parallelised algorithm be-
comes indistinguishable from a sequential one, only exhibiting better performance. To additionally
provide the end-user with an easy way of specifying parallelism in his/her applications, a set of
patterns of symbolic computation, or skeletons [1] can be used. Thus the end user, working for
example in a GAP shell [3], uses the following call to invoke a parallel execution:

EvaluateBySCSCP("CS_SumEuler", [8000, 2000], "localhost", 26133);

2

The SCIEnce project

The Coordination Server implements the parallelism by either using the primitives of the paral-
lel Haskell extension or by using pre-defined patterns. In our example the service CS SumEuler

is mapped to the function sumEuler below. The first argument specifies the list length and the
second the chunk size, i.e. the size of blocks in the input list for which parallel tasks are gener-
ated. This parameter provides a handle to tune the granularity of the CAS calls, improving the
parallel performance. The algorithm first determines the ranges for all blocks and then instantiates
processes, using createProcess, for each of these ranges. This exemplifies how the Coordination
Server performs small Haskell computations to organise the parallel coordination. In our example,
the computation performed by each parallel process is specified in sumEulerRange. This function
directly corresponds to a function in GAP. Therefore, we only need wrapper code, that transforms
input and output from/to OpenMath objects, using fromOM and toOM, respectively. Then, the
function callSCSCP is used to emit an SCSCP call to the GAP-side service WS SumEulerRange.
Note that the result of this wrapper function is of type IO Int, since SCSCP calls interact with
the outside world, from Haskell’s point of view. Since we know that this call is to a side-effect free
function, we can immediately extract the result by using an unsafePerformIO, which simplifies the
handling of the result list xs, and reduces the amount of monadic code.

sumEuler :: Int -> Int -> IO Int
sumEuler n c = do
let rgs = [[i*c+1, (i+1)*c] | i <- [0..(num c n)-1]]
let xs’ = map (createProcess (process (\ns ->unsafePerformIO (sumEulerRange ns)))) rgs

‘using‘ whnfspine
let xs :: [Int]

xs = map deLift xs’
return (sum xs)

sumEulerRange :: [Int] -> IO Int
sumEulerRange = return . fromOM . (callSCSCP WS_SumEulerRange) . (map toOM)

Finally, on the GAP side we use the following code to perform the computation over a segment
of the list, where euler is a GAP-side implementation of the Euler totient function, and Sum is a
built-in higher-order function, combining a map of a function with the summation of the results.

SumEulerRange:=function(n,m)
local result, x;
result:=Sum([n..m], x -> euler(x));
return result; end;

The code required to make a function available as a service is minimal, and only defines a binding
of the service to a function on the CAS or Coordination Server side, e.g.

InstallSCSCPprocedure("WS_SumEulerRange", SumEulerRange, "see sumEuler.g", 1, 2);

Alternatively, we can compute the sum of the Euler totient function, by using a parMapFold pattern,
which implicitly generates parallelism for each of the calls and then applies a second function in
the fold phase. Both of these functions are specified as SCSCP services provided by the underlying
CAS. The Coordination Server performs SCSCP calls to invoke these functions, which are WS Phi

for the totient function in the map-phase and WS Plus for the summation in the fold-phase. For a
concrete input list xs we can start the parallel computation like this

3

SymGrid-Par

EvaluateBySCSCP("CS_parMapFold", ["WS_Phi","WS_Plus", 0, xs], "localhost", 26133);

This simple example demonstrates, how the user of the computer algebra system can easily express
parallelism, without having to know anything about parallel programming per-se and without leav-
ing the familiar shell. We currently provide a repertoire of common higher-order functions with
built-in parallel execution, such as map, fold and zipWith, as well as a domain specific orbit skele-
ton, which is currently being integrated into SymGrid-Par. More symbolic computation examples
that have been parallelised on multi-core machines using the older bespoke SymGrid-Par design
are currently being ported to the new system. These include a parallel version of the summatory
Liouville function, polynomial GCD and resultant computations, and a Gröbner Bases algorithm.

3 Summary

We have presented the latest implementation of SymGrid-Par, a heterogeneous system for parallel
symbolic computation, capable of coordinating several computer algebra systems and exploiting a
high-level model of parallel execution based on algorithmic skeletons. The novelty of SymGrid-Par
lies in the following features: (i) it is the first high-level parallel system for coordinating symbolic
computations based on the SCSCP standard; (ii) it uses high-level coordination and most notably
higher-order functions in the form of domain-specific skeletons to allow easy parallelisation for
non-specialists in the area of parallel programming; (iii) it makes access to parallel orchestration
directly available in the familiar environment of a computer algebra shell; (iv) it potentially can
co-ordinate several systems, based on the SCSCP protocol, to enhance both functionality and
(parallel) performance. The current, publicly available implementation of SymGrid-Par has been
used to parallelise simple, but representative, algorithms in the GAP system. Several skeletons,
capturing domain-specific patterns of symbolic computation are currently under development. The
latest version of SymGrid-Par, with links to background on (parallel) Haskell, skeletons and GAP,
is on-line available at: http://www.symbolic-computation.org/SymGrid

References

[1] M.I. Cole. Algorithmic Skeletons: Structured Management of Parallel Computation. The MIT
Press, Cambridge, MA, 1989.

[2] S. Freundt, P. Horn, A. Konovalov, S. Linton, and D. Roozemond. Sym-
bolic Computation Software Composability Protocol (SCSCP) specification.
http://www.symbolic-computation.org/scscp, 2009. Version 1.3.

[3] The GAP Group. The GAP Group, GAP – Groups, Algorithms, and Programming, 2008.
Version 4.4.12 (http://www.gap-system.org).

[4] The Haskell 98 Report. http://haskell.org/onlinereport/.

[5] R. Loogen, Y. Ortega-Mallén, and R. Peña-Maŕı. Parallel Functional Programming in Eden.
Journal of Functional Programming, 15(3):431–475, 2005.

[6] P.W. Trinder, K. Hammond, H-W. Loidl, and S.L. Peyton Jones. Algorithm + Strategy =
Parallelism. Journal of Functional Programming, 8(1):23–60, January 1998.

4

http://www.symbolic-computation.org/SymGrid
http://www.gap-system.org

	Introduction
	Examples of high-level orchestration
	Summary

