
HERIOT-WATT UNIVERSITY

FINAL YEAR DISSERTATION

Improving the Security and Correctness of a
Historical Massively Multiplayer Online

Role-Playing Game Server

Author:

Helen RANKIN

H00124425

Supervisor:

Dr Hans-Wolfgang LOIDL

Second Reader:

Prof. Oliver LEMON

Submitted as part of the requirements for the MEng in Software Engineering

in the

Department of Mathematics and Computer Science

April 25, 2016

http://www.hw.ac.uk/
http://macs.hw.ac.uk

iii

Declaration of Authorship
I, Helen RANKIN, confirm that this work submitted for assessment is my own and is expressed

in my own words. Any uses made within it of the works of other authors in any form (e.g.,

ideas, equations, figures, text, tables, programs) are properly acknowledged at any point of

their use. A list of the references employed is included.

Signed: Helen Rankin

Date: 25.04.2016

v

HERIOT-WATT UNIVERSITY

Abstract
Department of Mathematics and Computer Science

MEng in Software Engineering

Improving the Security and Correctness of a Historical Massively Multiplayer Online

Role-Playing Game Server

by Helen RANKIN

This project evaluates tools and techniques, both established and emerging, for improving the

security and correctness of distributed client-server applications. As a case study, this project

examines the JominiEngine, an engine for massively multiplayer online games (MMOs), which

can be viewed as a stress test for distributed and multi-threaded systems due to the high load

and security issues that are endemic to MMOs. Static and dynamic analysis are evaluated

through selected tools and libraries, as well as emerging techniques from distributed language

design, and their suitability for large client-server applications is reflected on. Specifically,

this project evaluates Microsoft Code Contracts, Microsoft Unit Test framework and dynam-

ically checked session types in terms of error detection and prevention for distributed sys-

tems. In addition, this project investigates the impact increased security and session-based

communication has on code complexity, runtime and memory consumption. While the imme-

diate goal is to improve the security and correctness of the JominiEngine, the results are more

broadly applicable to large multi-user distributed systems and massively multiplayer games

more specifically. To conclude, this project recommends a hybrid (static and dynamic verifica-

tion) approach to Test Driven Design and debugging, as well as (potentially) statically-checked

session types for robust communications.

HTTP://WWW.HW.AC.UK/
http://macs.hw.ac.uk

vii

Acknowledgements

My thanks go to my supervisor, for his advice and tireless support for this project, without

which this project would never have been completed. I also extend my gratitude to Calvin

Houliston for his patience and motivation, and to my family for supporting my studies for all

these years and encouraging me to aim high.

ix

Dedicated in memory of Vindhya.

xi

Contents

Declaration of Authorship iii

Abstract v

Acknowledgements vii

1 Introduction 1

1.1 Project Aims & Objectives . 1

1.1.1 A Brief Note on Session Types . 3

1.2 Problems Solved . 4

1.3 Project Evaluation . 4

1.3.1 Static versus Dynamic analysis . 5

1.3.2 Performance . 5

1.3.3 Maintainability . 6

1.4 Scope & Context . 7

1.4.1 Project History . 7

1.4.2 Project Scope . 8

1.4.3 Security . 11

1.5 Project Adaptations . 14

1.6 Work Done . 15

1.7 Relevant Professional, Ethical, Legal and Social Issues 17

2 Background 19

2.1 Session Types . 19

2.1.1 Statically Checked Session Types versus a Dynamic Implementation . . . 24

xii

2.2 Static Analysis in Distributed Systems . 24

2.3 Tools Used . 26

2.3.1 Scribble . 26

2.3.2 Microsoft Visual Studio Community 2013 27

2.3.3 Microsoft Code Contracts . 27

2.3.4 Microsoft Unit Testing Framework . 27

2.3.5 JetBrains ReSharper Ultimate . 27

3 Implementation 29

3.1 Session Types . 29

3.2 Static Analysis . 31

3.3 Dynamic Analysis . 32

3.4 Security . 33

3.4.1 General Security Principles . 33

3.4.2 Authentication . 34

3.4.3 Secure Connection . 35

3.4.4 Key Exchange . 35

3.4.5 Potential Security Flaws . 35

3.5 Consistency . 36

3.6 Refactoring the Game Engine . 37

3.7 Administrative Components . 38

4 Results 43

4.1 Evaluation Strategy . 43

4.2 Error Detection and Prevention with Dynamically-Checked Session Types, Static

Analysis and Dynamic Analysis . 44

4.3 Impact of Session-based Implementation on Performance 49

4.4 Impact of Encrypting Messages on Performance 51

4.5 Changes in Code Complexity and Maintainability 52

4.6 A Subjective View on the Relative Difficulty of Implementation 56

xiii

5 Conclusion 61

6 Future Work 65

Appendices 67

A Runtime Measurements 67

A.1 Time Measurements . 67

A.2 Memory Measurements . 67

B Code Metrics 69

C Bug Results 71

References 73

xv

List of Figures

1.1 UML Diagram . 9

2.1 LogIn Protocol . 20

2.2 LogIn protocol at Server . 21

2.3 State-Machine Diagram . 22

3.1 Connection Approval . 40

3.2 LogIn: Authentication stage . 41

4.1 Static Analysis Results . 47

4.2 Dynamic Analysis Results . 47

4.3 Time Comparisons . 50

4.4 Memory Comparisons . 50

4.5 Server Code Metrics . 53

4.6 Client Code Metrics . 53

4.7 Game Code Metrics . 54

A.1 Table of Time Results . 67

A.2 Table of Memory Results . 67

B.1 Code Metrics: Server . 69

B.2 Code Metrics: Client . 69

B.3 Code Metrics: Game . 69

B.4 Code Metrics: ActionController (Game) . 70

C.1 Summary of bugs found . 71

xvii

List of Abbreviations

MMO Massively Multiplayer Online (games)

RPG Role Playing Game

MITM Man In The Middle

ABCD (project) A Basis for Concurrency and Distribution

TDD Test Driven Development

IL Intermediate Language

EAL Evaluation Assurance Level

1

Chapter 1

Introduction

This chapter describes the objectives of this project, as well as the problems this project aims

to solve. Also included is a short description of the emerging technique from distributed lan-

guage design, session types, and a description of what is covered in the project, how the project

will be evaluated, the adaptations that have been made since the initial project design, and le-

gal, social, ethical and professional issues relevant to this project.

1.1 Project Aims & Objectives

The aim of this project is to use a combination of established and emerging software tools and

techniques to improve the security of the JominiEngine described in section 1.4.1, and to eval-

uate the effectiveness and applicability of these techniques to large-scale distributed systems.

In particular this project aims to use the communication protocol description language "Scrib-

ble" (see section 2.3.1) to model the communication protocol; to redesign the communication

protocol from stateless to session-based with dynamically checked session types (described in

section 2.1); to determine the impact this has on performance; and to use and compare estab-

lished techniques for verifying the correctness of the server by recording the range of bugs

detected.

Due to a lack of statically-checked session type implementations in C# (the language the

case study is written in) the focus will not be on implementing true session types in the Jo-

miniEngine, but on modelling the communication using session types, validating these models

2 Chapter 1. Introduction

and refactoring the game engine to use an off-line approach to session types as the communi-

cation protocol. While the integrity of this implementation cannot be guaranteed by the type

system, it can be compared against valid models to ensure it adheres to the allowed message

sequences. This allows the effectiveness of modelling communication on session types to be

examined without attempting to re-write entire session type libraries into C#.

The primary objectives of this project can be divided into the following:

• To investigate the impact improvements to confidentiality and integrity of communica-

tions has on time and memory performance

• To make use of current research into session types to improve the security and readability

of the communication protocol

• To evaluate session types as a means of ensuring correctness of communication, i.e. that

the order and type of messages is consistent with the communication protocol. To ensure

a valid flow of messages, an offline approach to session types shall be used

• To implement a means of enabling the client and server to authenticate each other, and

to determine the impact this has on time and memory performance

• To create a series of unit tests to dynamically check whether the functions under test

perform correctly, and to gather the results

• To add Code Contracts annotations to several functions and classes, and record the result

of running the static analyser on them

• To improve correctness of the server-side code using the results above, ensuring the code

performs the intended function and that code integral to the security and functioning of

the JominiEngine has been thoroughly tested and verified

• To create a test suite that runs through a standard flow of messages between client and

server, and to measure how the time and memory consumption of running this test suite

is affected by both sessions and encryption

1.1. Project Aims & Objectives 3

• To compare static and dynamic analysis in terms of the number and range of bugs de-

tected, as well as time and effort required to implement and relative ease of implementa-

tion

Of these, the focus shall be on the security of the communication through the communi-

cation protocol. In particular this project examines session types, an active research area with

few implementations. Modelling the communication using session types while implementing

an offline version of them in C# may contribute new findings to this field.

Connection security and client authentication is a key feature of any server. This is a well

researched area with standard security practices, such as certificate-based authentication and

secure key exchange protocols, and this project uses these established methods to authenticate

clients and provide secure connections to the game server. The effect this had on the time

and memory required to authenticate and communicate with clients has been measured, and

Chapter 4 asserts that the minor impact on time is offset by the benefit of increased security.

As there is less research into commercial coding tools and session types, as well as their im-

pact on large networked projects, the focus is more on this rather than on authentication and

connection security.

Aside from improving the JominiEngine, the aim is to discover how best to do so. Having

selected several techniques and tools to aid development and improve correctness, the aim is to

determine which benefit the project while not impacting performance or requiring a great deal

of learning. To evaluate this, a test run has been created that executes a sequence of actions on

the server and measure the memory used and time taken. The number and type of bugs found

during testing was also recorded to determine the effectiveness of each tool and technique

in detecting or preventing bugs. The difficulty of implementation is purely subjective and

is covered in Chapter 4.6. The findings and conclusions are summarised in Chapter 5, and

recommend session types and Test Driven Development (TDD) with added static analysis.

1.1.1 A Brief Note on Session Types

Session types are being pursued as a means of using type systems to increase the reliability

and correctness of distributed systems. The core concept is that message type and order can

4 Chapter 1. Introduction

be statically checked much like any other type in high-level languages, resulting in robust

communications while also decreasing development time and cost.

While much has been accomplished in realising session types, they have not yet been im-

plemented for C# and remain far from becoming a mainstream language feature. As such, this

project implements a dynamic approach to session types. More can be read on session types

in section 2.1.

1.2 Problems Solved

This project answers the question of how security and correctness can be enforced across a

large distributed system which has had limited or no structured testing. In particular, it fo-

cusses on what techniques are most appropriate for the domain of massively multiplayer on-

line games (MMOs), including the complexity of each technique, the time required, and the

impact on memory and performance.

As session types are an emerging language feature, and static analysis has largely been

confined to systems that require high reliability and integrity (such as safety-critical systems),

there is limited existing information about how these may be applied to large distributed and

concurrent systems. In Chapter 4 the improvements to the correctness of the client-server

communication with respect to the communication protocol are described, and Chapter 5 con-

cludes that session types and static analysis are appropriate for large distributed systems (in-

cluding MMOs), and outlines how they may be used and what benefit they provide.

1.3 Project Evaluation

While the focus of this project is on improving security and investigating techniques and tools

for improving code reliability, it is important to remember that the case study is a MMO role-

playing game (MMORPG) server which will need to cope with large numbers of connections

and a high strain on resources, and so the performance of the JominiEngine should be com-

pared to determine what impact the additional security has. Additionally, the maintainability

1.3. Project Evaluation 5

of the code should be taken into account to assess whether changes to the code have made it

more or less manageable. The evaluation of this is described in section 1.3.3.

1.3.1 Static versus Dynamic analysis

To evaluate the effectiveness of dynamic analysis, a series of unit tests has been created using

the Microsoft Unit Test framework (Chapter 2.3.4) to determine whether the replies given by

the server and the state of the game are consistent with the messages sent by the client. The

methods tested were logging in, maintaining an army, recruiting troops, travelling, adjusting

fief expenditure, spying and attacking. Logging in was chosen as it is a core security require-

ment, while the others were chosen to reflect a wide range of actions available to the client, as

well as being some of the more complicated actions to carry out.

The number and details of bugs encountered during the running of these tests was recorded

and categorised, which allowed static analysis and dynamic analysis to be evaluated in terms

of range of bugs found.

The evaluation of static analysis was carried out using Microsoft Code Contracts (Chapter

2.3.3). By setting the static analyser to search for potential sources of error (such as Null-

ReferenceExceptions) and adding preconditions and postconditions to several functions, the

number and range of issues detected by the analyser could be recorded and analysed.

In the results section (see Chapter 4) the type of sources of error (both real and potential)

detected by static and dynamic analysis has been compared. This indicates what type of error

(from uncaught exceptions to incorrect behaviour) each technique is best suited to finding.

Results indicate that static analysis is best suited to detecting potential common exceptions

(such as numbers being out of range), whereas dynamic tests are more suited to logic errors

and issues involving dynamic collections.

1.3.2 Performance

To determine whether the additional security measures and changes from a stateless to session-

based communication protocol had an impact on the time and memory performance, a small

test run was created that ran through a series of actions comparable to normal game-play,

6 Chapter 1. Introduction

timed how long each stage took and measured the maximum memory consumed. This was

run 10 times each for four different versions of the program:

• Stateless communication protocol with unencrypted messages

• Stateless communication protocol with encrypted messages

• Session-based communication protocol with unencrypted messages

• Session-based communication protocol with encrypted messages

The test began with a client logging in, followed by recruiting troops, travelling to another

fief, and spying on the fief they had travelled to. Times were measured from client sending the

message to the moment the expected reply was received, and the memory usage was measured

after each action. This tested the time for a wide range of actions, and reflected how long a

client could expect to wait (with a good connection) to receive a reply.

1.3.3 Maintainability

The code maintainability was measured using the in-built code metrics tool for Visual Studio

(see section 2.3.2), which calculates a value for each class and method based on the number of

different paths of execution (cyclomatic complexity), the depth of inheritance, how dependent

the code is on other classes (coupling) and the lines of code in Intermediate Language (IL). This

final maintainability value is between one to one hundred, with higher values indicating better

maintainability, and is calculated using the following formula (Microsoft Developer Network,

2007):

x =(171− 5.2 ∗ log(Halstead Volume)

− 0.23 ∗ (Cyclomatic Complexity)

− 16.2 ∗ log(Lines of Code)

Maintainability Index =MAX(0, x ∗ 100/171)

1.4. Scope & Context 7

While the validity of this measurement is dubious, as pointed out in a blog by software

engineering professor Arie van Deursen (Deursen, 2014), it is sufficient for this project as the

analysis is not concerned with what is classified as a "good" maintainability rating (as this is

highly subjective), but rather what impact changes to the project have had on maintainability.

1.4 Scope & Context

Security and correctness are challenging in distributed systems, as both the computation and

coordination are potential sources of error. MMOs present additional challenges in that they

are intended to be played by many people simultaneously, requiring massive coordination and

putting strain on resources. Additionally, a proportion of MMO players are experienced in

modifying and hacking games, and are skilled in identifying and using security flaws for their

own gain. This makes the JominiEngine a good stress test for both established and emerging

techniques for improving security.

1.4.1 Project History

The JominiEngine (Bond, 2015) is a game engine for online massively-multiplayer role-playing

games (MMORPGs) designed to be used by thousands of players in a large-scale, distributed

setting. The core game engine was developed in C# as a monolithic application in 2015 by

Heriot-Watt University master’s student Dave Bond, and features land, army and family man-

agement in an accurate historical setting. Designed to evaluate technologies for building and

designing game servers, the key considerations were scalability and modularity, which are re-

flected in the choice of database, Riak (Klophaus, 2010), and the structure of the code. While

the core game functionality was implemented, due to time restraints the project was imple-

mented as a monolithic structure rather than client-server structure, and was scaled back to

exclude the multiplayer and networking functionality. Figure 1.1 illustrates the key actions

that can be taken by the player.

As part of a larger effort in designing and implementing a game engine for Serious Games

in history education, I was employed to extend the JominiEngine as part of an internship at

8 Chapter 1. Introduction

Heriot-Watt university. During this I designed and implemented the networking functionality,

refactored the existing code to support multiple players, built a game client in the game de-

velopment platform Unity, and added extra functionality to the core game engine by adding a

“dirty deeds” system which enabled kidnapping, spying and ransoming.

For the work in the final year project described here, the focus shifted to improving the

security and correctness of the JominiEngine. Security and stability across all aspects should

be taken into account in any software project, and this particularly challenging for MMORPGs

which involve thousands of skilled players, many with the motivation to try and subvert se-

curity measures. Flaws in the code or in the communication layer can take the server offline

or have unintended consequences for players, both of which can result in decreased user satis-

faction and the exposure of private data. Another problem common to large-scale, distributed

systems is that the sheer size of the code makes securing and testing code challenging. This

project aims to improve the security of the JominiEngine, and in doing so evaluate various

methods of improving server-side security and make recommendations for the design and

implementation of secure distributed systems.

1.4.2 Project Scope

As a final year projoct, this is a solo project running from September 2015 to mid-April 2016, but

is built on a previous implementation of the game engine as described in section 1.4.1. The Jo-

miniEngine consisted of over 30,000 lines of code across 35 classes before changes implemented

in this project, and implements a range of features (such as land management and combat), a

No-SQL Riak database back-end, several administrative functions and a client-server archi-

tecture suitable for distributed systems. Due to the large existing code size and complexity,

changing or refactoring code can be time consuming and may produce unintended results.

For the initial implementation the focus was on functionality, whereas for this project the

focus is to use a range of techniques to improve security and correctness. Rather than attempt-

ing to apply these techniques to all parts of the engine (due to the many months this would

take), different techniques have been applied to select parts of the engine and assessed. This

project selects representative tools from different classes of established and emerging tools:

1.4. Scope & Context 9

FIGURE 1.1: JominiEngine UML diagram, taken from Dave Bond’s thesis (Bond,
2015)

10 Chapter 1. Introduction

Microsoft Code Contracts for static analysis, Microsoft Unit Test framework for systematic

runtime checking, and session types for a secure communication protocol.

This project also examines the applicability of session types to the domain of large, dis-

tributed client-server systems. Session typing aims to use static type checking systems to

guarantee correctness and deadlock-freedom in communication protocols, and can be read

about in more detail in Chapter 2.1. While session types are an active area of research there

is currently no existing implementation of static type-checking for sessions for the full C# lan-

guage. Therefore, this project takes a dynamic approach of checking properties that can be

encoded using session types, and will talk extensively in Chapter 5 about the potential bene-

fits session-types can bring to large distributed systems such as the JominiEngine, as well as

making recommendations for the development of distributed systems in general.

The scope of the project is summarised below:

• The benefits of static analysis shall be explored through the use of Microsoft Code Con-

tracts, based on pre and post-condition verification, as an example of classic sequential

techniques for secure coding

• The benefits of dynamic analysis shall be explored through the use of dynamic (runtime)

whitebox unit tests- with assertions to check the messages received and game state is as

expected - created using Microsoft Unit Test framework

• The tests mentioned above shall be created for functionality which is either key to the

security of the server, non-trivial or has been changed significantly over the course of the

project

• The benefits of using state-of-the-art code analysis, refactoring and generation tools shall

be explored using the ReSharper extension for Visual Studio 2013

• The benefits of using the concept of session types for dynamic checks of protocol coher-

ence, as well as the effect on time and memory usage of moving from a stateless to a

session-based system, will be explored and a comparison made between the implemen-

tation and a true session-typed communication protocol

1.4. Scope & Context 11

• The code complexity and maintainability shall be measured using Visual Studio 2015’s

Code Analysis features

1.4.3 Security

This section is based in content and structure on the Common Criteria for Information Tech-

nology Security Evaluation (CC), a framework for specifying the security functional and as-

surance requirements of a system through a protection profile. CC is used to provide some

assurance that the security requirements of a product have been carefully defined, analysed,

implemented and tested, and while this project will not be evaluated by an external party, the

CC structure still provides a clear and thorough way to define security requirements. The CC

is described in more detail in the official publication (Common Criteria Maintenance Board,

2012).

Protection Profile

The JominiEngine is an online multiplayer game engine, and faces similar security challenges

to other games in this genre. Clients will connect across the internet to a single machine run-

ning the game and will send sequences of messages across indicating what actions they wish

to take. While a message makes sense as part of one sequence, it might have to be prohibited

in other sequences; as such message sequences and message types must be checked to ensure

they adhere to the communication protocol.

Each client has one PlayerCharacter through which they can manage their land, armies and

household, and should only be able to perform actions relating to their own PlayerCharacter.

At the moment the game is free to play, and no registration or sign-up process exists.

Clients ought to be able to connect from any machine with minimal set-up, requiring only

a valid game client software.

Security Target

During this project, the communication protocol between client and server has been changed

from stateless to session-based. This brings about new security concerns, as certain sequences

12 Chapter 1. Introduction

of messages should not be permitted (for example, a Log In request is not permitted after

successfully logging in, and requests to perform an action in-game are forbidden until logging

in). Additionally, the way several messages are handled has changed significantly during the

project, and now use complicated asynchronous tasks to retrieve and process replies from the

client.

As clients will be connecting to the server over the internet, there is the possibility that

attackers wishing to obtain information from them could masquerade as the server and fool

the client into providing personal details. Ensuring clients are able to identify and authenticate

the server is a key security concern.

Password security is an obvious security need, due to the prevalent use (and re-use) of

passwords in a vast range of services. As such, keeping passwords secure both in storage and

during transmission is a key security concern.

Although sensitive information will never be transmitted as part of normal gameplay, as a

competitive real-time strategy game players may attempt to sabotage each other by intercept-

ing messages and either changing them to invoke unintended actions for their characters, or

reading them to obtain information. While this would be a substantial amount of effort for

very little gain, it would be beneficial to take some action to provide some measure of message

integrity and confidentiality. Messages do not need to be undecipherable; increasing the time

taken to decode and re-encode a message by even a minute will render most attacks ineffective

(due to the large number of messages passed and the relative insignificance of a single packet)

and will hamper attempts to sabotage a game in this manner. This is a secondary security

concern, as it affects player experience but does not place clients’ information at risk.

Security of the Administrative Components

To ensure password security, the password should be verified by using a salted hash of the

password, rather than the password itself. Chapter 3.4.2 describes the method used to verify

passwords, which is an established technique for password security that ensures not only that

the password is never transmitted, but that the password hash (which could be used to log in)

is kept secure.

1.4. Scope & Context 13

Client-Server Security

The client must be able to authenticate the server in order to prevent attackers from mas-

querading as a trusted server. This will be achieved through X509 certificate verification, as it

is a widely used and well-recognised technique for authentication. The server’s certificate (or

the certificate of the root authority which signed the certificate) should be stored on the client

machine during installation of the game client, enabling the client to validate the server’s cer-

tificate during the connection process.

Messages sent between the client and server should be encrypted in order to provide some

secrecy and to discourage attackers who may wish to read or alter them. This encryption

should prioritise speed over effectiveness, as attempting to encrypt large volumes of messages

has the potential to slow down the server and cause latency issues for clients. The AES algo-

rithm was chosen for this purpose, as it is a widely used encryption standard with high speed

and low memory overheads. However, as a symmetric algorithm it requires a shared key to

perform encryption and decryption, which must be transmitted securely.

One common form of attack against distributed systems is the "Man in the Middle" attack

(MITM), in which an attacker intercepts the connection between the client and server and im-

personates the other party. This is a known vulnerability of certificate-based communication;

however, it can be protected against by using signed certificates. The client sends plain data to

the server, and the server signs this with its private key. The client can compare the signed data

to the original data and certificate, and can determine its authenticity. While a MITM attack

could intercept the connection, it would fail the signature test and the client be aware that the

connection is insecure.

Security Assurance Requirements

As the log in functionality is the main potential source of security concern, it should be exten-

sively tested. Additionally, both valid and invalid sequences of messages should be tested to

ensure the communication protocol handles sequences of messages as expected.

14 Chapter 1. Introduction

Extensive testing should also be performed on functionality which has been changed to use

asynchronous tasks to get a client’s response.

Evaluation Assurance Level

As there is a fairly limited personal risk to those playing the game, and the game itself is in-

tended to be used largely for education and entertainment purposes, the Evaluation Assurance

Level (EAL) has been set at level 1: only functional testing (or black box testing) is required.

Functional testing should be applied as per the Security Assurance Requirements section.

However, it should be noted that games are popular targets for skilled attackers, and there-

fore is a good case study for the security of distributed systems. As this project investigates

techniques for improving the security and correctness of distributed systems, both functional

testing and static analysis has been carried out, despite this being above the normal require-

ments of the EAL.

1.5 Project Adaptations

Following the initial planning stage of the project it became apparent that the initial scope

of the project was too broad (particularly in the range of techniques and tools to use) and in

order to create one detailed and coherent document in the time given it would be necessary

to reduce the project scope and scale. The focus is to use selected tools as representatives of

different classes of techniques: Microsoft Code Contracts for static analysis, Microsoft Unit Test

framework for dynamic analysis and session types for communication protocol verification.

During the creation of the unit tests it became clear that extensively testing every available

action in-game was going to be time consuming. Additionally, there existed many similarities

between how certain actions were handled, reducing the merit in testing these other actions. To

save time while still obtaining useful results, it was decided to restrict testing to functionality

that was integral to the security of the server, had been changed during project development

or was particularly complicated.

1.6. Work Done 15

Originally it had been intended to investigate how changes to the code affected the readability-

however, readability is hard to measure and is often based on how code is commented rather

than the code itself. During development it was discovered that Visual Studio’s Code Anal-

ysis tools analyse code and calculates its own code maintainability rating, which can be read

about in more detail in section 1.3.3. This is preferable to calculating readability, and will be

measured instead.

1.6 Work Done

This section briefly summarises the work done, in order to give an impression of the amount

of implementation involved. A more detailed description of the work done can be found in

Chapter 3.

Sessions

Perhaps the most significant change has been from a stateless to session-based communication

protocol. This involved not only a great deal of re-writing code, but also required learning

asynchronous programming in C#. This change from synchronous programming to asyn-

chronous also opened the door to several consistency issues, or "race conditions", which came

about as a result of multiple threads (created from asynchronous operations) interfering with

each other. Fixing the worst of these required a great deal of design and planning involving

EventHandlers, thread wakeups and locking. This is covered in more detail in Chapter 3.1.

Refactoring

To make the transition from stateless to session-based possible, it was necessary to refac-

tor a large part of the main game controller. This controller is responsible for translating a

client’s request into a response, and was previously implemented entirely in a case-switch.

The case switch was previously 1332 lines of Intermediate Language (IL) code (or over 2500

lines of C# code) for validating and processing 60 different types of client request. The sheer

size alone made it infeasible to turn this into a session-based implementation, and the need

16 Chapter 1. Introduction

for asynchronous execution further complicated matters. During refactoring each case in the

case-switch was implemented in its own method, which could be either synchronous or asyn-

chronous, which left only the logic for extracting the data from the client’s request in the case-

switch. While the task was time-consuming, it had the effect of dramatically increasing the

maintainability, as shown in Chapter 4.5, where the maintainability increased from 0 to 11 in

the stateless implementation (and 10 for the session-based implementation).

In addition, the process of validating incoming data was previously done per-request-type,

resulting in a great deal of repeating code. This was replaced with a single, consistent means

of validating data, which can be read about in more detail in Chapter 3.7. Refactoring this was

time consuming, but reduced code repetition greatly.

Security

Prior to this project only password security was implemented; there was no way for the

client to authenticate the server, and no means of encrypting messages. During this project

a certificate-based authentication process has been implemented, which includes a means for

a certificate to be sent to the client, signed messages for server authentication, a key-exchange

process to securely share a symmetric encryption key between client and server, and for mes-

sages sent between client and server to be encrypted with this shared key.

Test Client

To test the server it was necessary to build a basic client that would be capable of connecting

to the server and sending requests. This involved configuring a client to connect and send

all required log in information, as well as creating all the requests that would be used during

testing. Though not a main part of the project it was integral to the testing, and was time

consuming to make.

Unit Tests

To perform dynamic analysis on the JominiEngine, a series of unit tests were created to test

several client-requests with a wide range of parameters as well as for invalid sequences of

1.7. Relevant Professional, Ethical, Legal and Social Issues 17

messages. 51 tests were created for both the session-based and stateless implementations, and

each of these tests had to be run after making and adjustments to the code. In addition, if

any tests failed (or produced otherwise unexpected results) the problem had to be identified,

logged and fixed.

Versions

As this project involved testing both session-based and stateless communication protocols, it

was necessary to maintain two versions of the JominiEngine (while the results refer to test-

ing four versions, the difference between the encrypted and unencrypted versions was simply

whether the client supplied an encryption key or not, and did not require additional mainte-

nance). All issues found in one implementation had to be investigated in the other; and any

changes to non-communication based components had to be merged into both implementa-

tions. While this was made easier through Git version control (allowing easy switching and

merging of versions), it still required effort to maintain both versions.

1.7 Relevant Professional, Ethical, Legal and Social Issues

This project builds on existing research across multiple disciplines and sources, and credits

these in the References section. While the work done in this project is my own, the original

creation of the JominiEngine is the sole work of Dave Bond (Bond, 2015), and I am in no way

involved in the creation and development of the tools and techniques mentioned in this project.

While this project describes some forms of attacks on distributed systems, these attacks are

well known and this project does not encourage or provide instructions for carrying out these

attacks. Rather, this project outlines some methods of reducing their effectiveness.

Microsoft Visual Studio Community 2013 is a licensed piece of software, and is available

free for individuals working on their own projects. This project does not alter or re-distribute

any of Visual Studio Community 2013’s code and is within full use of the Microsoft software

licensing terms.

18 Chapter 1. Introduction

JetBrains ReSharper Ultimate is a commercial piece of software which is available for free

to students. This project uses ReSharper Ultimate under the student license, and does not

attempt to modify, distribute or reverse-engineer any of ReSharper’s code or files. As this

project is purely academic, the use of ReSharper for this project is within the JetBrains student

license agreement.

This project is assessed work for Heriot-Watt University, and may be visible to those out-

with the university. This project aims to meet the high standard of work set by Heriot-Watt

University, and to contribute new research to the field of security and correctness for dis-

tributed and concurrent systems.

The use of this project should be credited and referenced appropriately.

19

Chapter 2

Background

2.1 Session Types

Session types are being researched and developed as a means of using static type checking

systems to verify communication protocols in distributed and concurrent systems. This veri-

fication determines that the right messages are being sent in the right order, and that there is

no risk of any communicators either waiting endlessly for other communicators (deadlock) or

getting trapped in a cycle of execution (livelock). Whereas conventional deadlock prevention

techniques involve timestamps or resource locks, the goal of session types is to build on static

type-checking systems to validate protocols without the need for locking or dynamic checks.

Several researchers (such as those involved in the “A Basis for Concurrency and Distribution”

(ABCD) project (Wadler, 2016)) are working on making session types a reality.

To model communication protocols, the Scribble language and protocol (Yoshida et al.,

2013) has become a commonly-used tool among ABCD researchers for describing application-

level communication protocols. Put simply, it abstracts a rather complicated web choreog-

raphy description using message signatures, which made it simpler to build and use. The

Scribble project features tools to model, validate and run simulations on session-typed proto-

cols and is the first of its kind, representing a step towards an end-point implementation of

session types. While the majority of session type theory involves detailed knowledge of the π-

calculus and/or linear logic, Scribble is comparatively simple to understand and the tools are

straightforward to install and use. This makes it useful for this project, as the fairly novel and

complicated concept of session types can be illustrated clearly using Scribble protocols. For

20 Chapter 2. Background

example, the log-in process used in the JominiEngine involves several authentication stages

between client and server, during which either party can disconnect if they feel the other has

failed the authentication checks. While complicated in practice, this can be clearly represented

in Scribble as in listing 2.1. Scribble can also be used to project protocols, so that the protocol

1

2 global protocol LogIn(ro le Client, ro le Server) {
3 choice at Server {
4 SendSaltAndCert(ProtoLogIn) from Server to Client;
5 choice at Client {
6 SendHashAndKey(ProtoLogIn) from Client to

Server;
7 choice at Server {
8 SendClientDetails(ProtoClient) from

Server to Client;
9 }
10 or {
11 Disconnect(String) from Server to

Client;
12 }
13 }
14 or {
15 Disconnect(String) from Client to Server;
16 }
17 }
18 or {
19 Deny(String) from Server to Client;
20 }
21 }

FIGURE 2.1: The Scribble protocol for LogIn, from a global perspective

can be viewed from the perspective of one of the communicators. Listing 2.2 shows the LogIn

protocol from the Server’s perspective. Scribble protocols can be visualised as finite-state ma-

chines, which may be recognisable to those not familiar with communication protocols. Figure

2.3 shows an overview of the JominiEngine communication protocol as a state machine from

the server’s prospective, including the LogIn protocol. At the time of writing, session types re-

main a niche, yet active, research area and are not used in mainstream software development.

However, session types have been implemented for some mainstream languages: SessionJ (Hu

2.1. Session Types 21

1 l o c a l protocol LogIn at Server(ro le Client, ro le Server) {
2 choice at Server {
3 SendSaltAndCert(ProtoLogIn) to Client;
4 choice at Client {
5 SendHashAndKey(ProtoLogIn) from Client;
6 choice at Server {
7 SendClientDetails(ProtoClient) to

Client;
8 } or {
9 Disconnect(String) to Client;
10 }
11 } or {
12 Disconnect(String) from Client;
13 }
14 } or {
15 Deny(String) to Client;
16 }
17 }

FIGURE 2.2: Scribble LogIn protocol, showing the sequence of communication
from the Server’s perspective

et al., 2009), a Java-based language written using the Polyglot compiler, is one of the first to

demonstrate session types being used in a popular object-oriented language. The similarities

between Java and C# make this a promising advancement in relation to the JominiEngine and

show that using session types to guarantee reliability and consistency in distributed systems

is within reach.

In addition, a paper released as part of the ABCD project earlier this year (Hu and Yoshida,

2016) outlines a way in which session types could be implemented in existing mainstream

languages using a combination of static and dynamic type checking. The approach described

by Hu and Yoshida involves creating validated models in Scribble and then generating a finite

state machine from the model which shows all valid transitions from one state to another. Each

individual state is written as a channel type in the target language, where a channel transports

messages across a boundary between two or more peers. The incoming and outgoing messages

in each channel are specified by the protocol, and are therefore safe. To confirm that the channel

is being used correctly, two runtime checks are used: the first checks that the channel instance

22 Chapter 2. Background

FIGURE 2.3: Diagram showing the communication protocol from the server’s
perspective a a state-machine diagram

has not been used more than once, and the second checks that it is not left unused (i.e. that it

is not left inactive and expecting input). These combined result in a robust implementation of

session types without requiring extensive re-writing of the language to work.

The concept of session types has existed for decades now, first being proposed by Honda

2.1. Session Types 23

in his 1993 paper (Honda, 1993). Honda imagined concurrency as types and laid the theoret-

ical foundation on which session types are built, combining constant types, input types and

output types together in sequences and branches. This was complimented by work done by

Abramsky (Abramsky, 1993) in translating linear logic into π -calculus; however, as Wadler

mentions in his 2012 paper (Wadler, 2012), neither of these follow on from Curry-Howard.

Curry-Howard correspondence (or Curry-Howard isomorphism) can be generalised as that

programs are proofs and formulas are types for languages, which means that there is a strong

link between a program and the mathematical foundation underpinning it. Without this prop-

erty any direct implementations of Honda’s or Abramsky’s work would not have a solid link

from the implementation to its mathematical theory, thereby making it harder to prove their

correctness. Wadler’s work builds on a variation of Abramsky’s which is Curry-Howard, and

proposes a language which is free from deadlocks by virtue of being derived from linear logic.

Shortly after Wadler’s publication, the ABCD programme was given a grant by the En-

gineering and Physical Sciences Research Council (Wadler, Yoshida, and Gay, 2013). In the

grant application form, session types are described as a “revolution” for distributed systems

with the potential to reduce development costs, increase efficiency and improve reliability, and

the project partners include major companies such as Amazon, Red Hat Labs and Cognizant

Technology Solutions. Since receiving the grant the ABCD programme has achieved several

important milestones in the path to a feasible implementation of session types, bringing them

closer to a mainstream technique. However, distributed systems are complex and there are

many challenges to realising session types.

One problem of attempting to type sessions was how timeouts should be handled. In the

JominiEngine, where clients could disconnect or fail to respond at any time, ensuring free-

dom from errors in spite of this is necessary in order to protect the integrity of the server and

its data. Bocci, Yang and Yoshida propose a solution to this issue in their conference paper

on timed multi-party session types (Bocchi, Yang, and Yoshida, 2014). While still in its early

implementation stages, Bocci et al’s theory will have profound implications for ensuring relia-

bility in timed or scheduled applications.

As session types continue to be researched we are seeing new ways in which mainstream

24 Chapter 2. Background

languages can incorporate them. It is likely in the forseeable future that session types will go

from a niche research area to a widely recognised and used tool for developers of distributed

systems.

2.1.1 Statically Checked Session Types versus a Dynamic Implementation

As previously mentioned, the lack of a session type implementation for C# makes statically

checking for adherence to the communication protocol infeasible for this project. Instead, mes-

sages are verified dynamically to ensure the message contents and order are consistent with

the communication protocol. In the case of the LogIn protocol, when the Client connects it

is checked that the hail message contains a string. If the message is a verified username, the

server sends the certificate and then anticipates the client’s log in details. If the next message

received is not a valid log in, the server terminates the connection; otherwise, it sends the client

details and repeatedly waits for and processes the next message, stopping when the client dis-

connects. This can be seen in figures 3.1 and 3.2 in Chapter 3, and can be read about in more

detail in the same chapter.

This implementation checks the order and type of messages received dynamically, whereas

session types would use an underlying type system to statically verify message sequences.

This would result in faster performance (due to a lack of checks during runtime) as well as

more robust code: changes to the code may inadvertently render the JominiEngine open to

invalid message sequences, whereas static types checking guarantees adherence to the protocol

by the type system.

2.2 Static Analysis in Distributed Systems

The complexity of distributed systems has always presented a challenge to conventional test-

ing techniques. As most distributed systems also make use of concurrency, analysis must check

the validity of messages being received and sent, the order of messages, the safe execution of

threads and the code itself.

2.2. Static Analysis in Distributed Systems 25

Relying on static analysis is a tempting prospect at first glance; requiring very little addi-

tional effort on the behalf of the developer, static analysis is powerful enough to check a wide

range of conditions. However, as pointed out in an article by Dr. Anderson (Anderson, 2008),

static analysers are limited in several ways. Firstly, they are incapable of checking all paths

of execution. Taking into account the number of loops, conditional statements, asynchronous

methods and recursive calls that are common to many systems, this is understandable- there

are potentially infinitely many paths of execution. However, it does present the risk that one of

the paths not checked is the very one that causes the server to fall apart. Secondly, most static

analysers cannot analyse libraries used in the code. Issues in how the libraries are used, or in

the libraries themselves, will more likely than not slip through the static analyser.

While static analysis has its uses, the effectiveness varies; research by Goseva-Popstojanova

(Goseva-Popstojanova and Perhinschi, 2015) found that when running static analysis on C++

and Java code, between 59% and 62% of known errors were detected for C++ and 67%-73%

for Java. While this appears reasonable, two of the three Java analysis tools had around 25%

probability of reporting a false positive. This shows that static analysis is not always a reliable

technique.

Rather than relying solely on static analysers, other researchers have experimented with

creating languages that better support concurrency. An example of this is P# (Deligiannis et al.,

2015), which uses state-machines to avoid race conditions, and features a static analyser and a

bug-finding mode. The team behind P# intended to originally use the CHESS (Musuvathi et al.,

2009) tool to analyse P#; however they were able to create a more efficient implementation by

implementing a depth-first search and a random scheduler that took into account the absence

of race-conditions in P#. While their results are promising for avoiding race conditions, and the

integration with C# would make it a potential candidate for evaluating in this project, it does

not explicitly prevent deadlocks. However, as they point out in the paper, having no race con-

ditions means that “only synchronizing operations need to be treated as visible, which greatly

reduces the exploration space”. This makes it possible to use conventional resource-locking

techniques only when synchronizing, which simplifies the process of preventing deadlocks

and could improve the efficiency of the program due to less resource-locks taking place.

26 Chapter 2. Background

While using a language specifically designed for distributed and concurrent systems may

be possible for some projects, in this case due to the large amount of existing code and reliance

on libraries it is not. As we have seen that pure static analysis may not be the answer, a com-

bined approach such as the one developed by Sözer (Sözer, 2015) may be more appropriate.

In his paper Sözer describes a process by which the results of static and dynamic analysis are

fed into each other, the idea being that the dynamic analysis filters out false positives while

the static analysis indicates potential sources of error. This is repeated, producing a report of

detected errors which is typically more complete than just dynamic analysis, but with less false

positives than static analysis. However, Sözer admits that the results may be affected by oper-

ating system scheduling, and as only one system was tested the results cannot be generalised.

2.3 Tools Used

This section describes the various tools employed during this project for implementing, refac-

toring, running and testing code, as well as for modelling the communication protocol.

2.3.1 Scribble

Scribble (Yoshida et al., 2013) is a language and tool for describing session types, which are

written as communication protocols for participants. It features tools for verifying the correct-

ness of protocols, running simulations on a protocol and “projecting” a protocol, a term used

to describe rewriting a protocol from the perspectives of each of its participants. It is written

in Java and can be run either from the command-line, or within the Eclipse IDE. An example

global protocol written in Scribble can be viewed in listing 2.1, and the corresponding local

protocol in listing 2.2. The projection feature is useful for visualising how each peer sees the

communication protocol, which makes implementing the client and server side easier.

2.3. Tools Used 27

2.3.2 Microsoft Visual Studio Community 2013

Microsoft Visual Studio Community 2013 (Johnson, 2014) is a feature-rich Integrated Develop-

ment Environment created by Microsoft. It can be used to develop a wide range of applica-

tions, including web services, and features built-in support for C# as well as debugging and

testing tools. There are also several plug-ins that can be installed with Visual Studio to improve

development, debugging and testing. One such plugin is ReSharper, which will be covered in

section 4.4. Due to the wide range of features offered (as well as the support for ReSharper and

Code Contracts), Visual Studio 2013 is the development environment of choice for this project.

2.3.3 Microsoft Code Contracts

Code Contracts (Fähndrich, 2010), developed by Microsoft, are a tool for Visual Studio and are

part of the System.Diagnostics library for C#. With Code Contracts developers can add mark-

ings to code which specify constraints, such as preconditions, post-conditions and assertions.

Code Contracts comes with both static and dynamic verification tools to detect any violations

of contracts. In this project, Code Contracts will be used to detect potential bugs both statically

and during run-time.

2.3.4 Microsoft Unit Testing Framework

The Microsoft Unit Testing Framework (see Chapter 11 of Johnson, 2014) is a framework for

creating unit tests in Visual Studio. The framework allows methods to be marked with the

ClassInitialize and ClassCleanup attributes, which indicates that these methods must be run

before and after the tests, and facilitates easier setting up and finalizing of the test environment.

Also supported are several types of assertions, which check that some condition is being met-

this can be that the object is not null, that a boolean is true, or that an object exists in a collection.

2.3.5 JetBrains ReSharper Ultimate

ReSharper (Gasior, 2014) is a plug-in for Visual Studio which offers code analysis, refactor-

ing and debugging tools for C# and other languages. It enables developers to enforce code

28 Chapter 2. Background

standards, analyse code quality and detect potential errors, as well as suggesting possible so-

lutions. ReSharper also aims to help improve the readability and quality of the code, making it

a valuable additional tool for the project. The ability to customise code inspections and refactor

a large codebase quickly in ReSharper helped to decrease the project’s development time and

improved coding style.

29

Chapter 3

Implementation

3.1 Session Types

To create an approximation of session types without an underlying static type checking sys-

tem capable of detecting violations of session type protocols, it was necessary to find ways

of dynamically checking the order of messages being received and of verifying the message

type. Below is outlined how the communication protocol (as shown in figures 2.2 and 2.3) was

dynamically verified.

As all (valid) messages sent by a logged-in client are subclasses of the same base class

(ProtoMessage), which is composed of two enums representing the action to be taken and the

response code as well as several strings for including data, verifying the type of message was

performed through attempting to deserialize as ProtoMessage and, if successful, checking the

action request type to determine what action the client was attempting to perform. If necessary,

the message would then be cast to the appropriate subtype; failure at this stage means the

wrong type of message has been sent.

Message sequences were validated using the ActionControllerAsync method in the Client

class. First, the Client initiates the connection with the server, sending their username as a hail

message, which is handled as a ConnectionApproval type message on the server. If the user-

name obtained from the client is unrecognised, the server denies the connection; otherwise,

the server proceeds to the next verification step. This is shown in listing 3.1.

The next step verifies that the client can log in. If they cannot log in (for example, they are

logged in already) the server denies the connection; otherwise, it sends the signed certificate

30 Chapter 3. Implementation

and salts to the client and begins the ActionControllerAsync. Finally, the protocol specifies

that the next message from the client must either be a disconnect or the client’s hash and key.

Disconnects are handled automatically, and abort processes associated with the client. The

code shown in 3.2 shows code from the ActionControllerAsync method waiting (with time-

outs) for the next client message and aborting if not a log in.

This method guaranteed that the first message received was a Log In message, and in-

structed the LogInManager to verify the user’s credentials. Next it anticipated any valid ac-

tion as defined in the ActionController in the Game class- any action not recognised by the

ActionController would return a MessageInvalid message. This would then repeat until the

user disconnected (upon which any methods waiting on a reply would be cancelled) or timed

out.

User disconnects (voluntary or through connection issues) were handled with the help of

cancellation tokens in C#. When a user disconnects (or the server shuts down) the token is

cancelled and the user is removed from the list of registered observers. The status of the can-

cellation token is checked in several places throughout the code, and upon detecting cancella-

tion the current action is aborted. This reduces the risk of threads running beyond the lifetime

of the client who spawned them, which avoids unnecessary strain on the server and reduces

potential resource leaks.

The current implementation dynamically checks both message types and message sequences,

but this increases runtime and does not guarantee freedom from deadlocks. In principle, the

main motivation for session types is to use static type checking systems to eliminate the need

for dynamic checks such as those implemented in the JominiEngine and to prevent deadlocks,

thereby both increasing the efficiency and reliability of the communication protocol. Should

session types come to fruition it would be beneficial to attempt to integrate them into the Jo-

miniEngine, as they are ideal for the domain of large-scale distributed client-server systems

such as this.

3.2. Static Analysis 31

3.2 Static Analysis

Static analysis was largely accomplished through the use of Microsoft Code Contracts, which

feature a number of different checks:

• Precondition checks: Ensures the enclosing method satisfies the conditions provided before

being run

• Postcondition checks: Ensures that certain conditions are met once the enclosing method

completes

• Invariant checks: Checks that throughout the code a variable always satisfies the specified

conditions

• Assertions: Checks that, at the moment of the check, the specified condition is met

• Assumptions: Checks during runtime that a condition holds- useful if the condition can-

not be checked statically (e.g. due to external library calls)

The static analysis tools can be configured to run at compile time, which ensures that the code

is regularly analysed. The benefit of using static analysis is twofold: first of all, because the

code does not need to be executed to find flaws, static analysis techniques can unearth potential

errors that may not appear through conventional dynamic testing (where the conclusion of the

tests can only be "The code has failed to break thus far" rather than "The code is unbreakable");

secondly, because the checks can be configured to only run during compilation they do not

impact execution time.

The static analysis checks have largely been used in this project as a means of detecting

potential null-reference exceptions in the communication protocol and in the key translation

of incoming messages to in-game actions. This is due to the large number of conversions from

object IDs to in-game objects that take place, as the client will typically send the ID of the object

they wish to affect as a string as part of their message. This raises a lot of potential for clients

to either include null strings, or to request objects which do not exist.

In terms of determining where best to include static checks, ReSharper’s code analysis tools

were extremely useful. The depth of analysis can be configured to show warnings wherever

32 Chapter 3. Implementation

possible null-reference exceptions (or other basic code violations) exist, making it clear where

additional checks may be needed. This reduced development time while also catching any

areas that were under-restricted.

While static checking is a useful tool in ensuring code correctness, it is best used before

writing the code itself. This allows developers to see how code should perform while writing it,

and write code that meets the specification. By contrast, writing the static checks after writing

the code encourages developers to write them to fit the code. These tests do not provide any

useful feedback during analysis, as they are designed to pass. As this project worked with pre-

existing code, it was necessary to add the static checks after writing; while it was attempted

to make certain that the tests reflected the requirements of the project rather than the code, a

preferable approach would have been to build the project with static checks from the start.

3.3 Dynamic Analysis

Dynamic analysis was conducted by creating a series of tests using the Microsoft Unit Test

framework which would involve a dummy client attempting to connect and send requests to

the server. The unit tests were written in this way as this closely resembles how the end-users

will be interacting with the server. The method of testing used was white-box testing, where

the internal structure of the code is known and influences tests, as this enabled verification of

the state of the server as well as verification of the responses from the server.

The key difference between static and dynamic analysis is that while static analysers at-

tempt to make assertions about the range of possible values variables can be within a method,

and make recommendations based on these, dynamic analysis requires the code to be run. In

dynamic analysis through unit testing, each test is composed of a mixture of program code

and assertions, which determine whether some condition has been met. Tests that do not meet

these assertions, or do not complete, are failed tests and indicate a potential problem within

the code (or within the test itself).

In this project, a range of actions that could be taken by the client were selected as a basis for

the tests. These actions were chosen for being more complicated or (in the case of logging in)

3.4. Security 33

to be integral to security, and covered the main categories of actions: household management,

army management, subterfuge, and fief management. The actions under test were logging in,

attacking, spying, recruiting troops, maintaining an army, adjusting expenditure, and travel-

ling.

As chapter 4 will cover, this method of testing was work-intensive and time consuming;

however, a wide variety of bugs were detected using this technique.

3.4 Security

3.4.1 General Security Principles

In the context of online multiplayer games, it is important to realise that the game client is

effectively out of the control of developers as soon as it is released. This means the game client

is not part of the trusted code base, and the server cannot rely on the client being correct.

Players can and will attempt to decompile and modify it, either out of curiosity or for some

personal gain. For this reason, it is imperative that players cannot make any assertions about

their own state. An example of this is the "Bad Sport" points system in Grand Theft Auto

Online, where malicious actions (for example, destroying the vehicles of other players) accrue

points that result in being forced to play with players of a similar disposition. Because the

points were stored on the client side, players soon discovered a means of resetting the points

to zero and as a result could commit malicious actions with impunity.

On a similar note, input from the client should not be trusted. Assume that any and all

input is possible and validate it accordingly. In the case of the JominiEngine this includes

checking incoming object IDs are non-null, lack special characters, are of the correct format

and exist in the master lists of object IDs.

With any service where sensitive information may be involved, it is important that the in-

formation is neither sent nor stored as plain text. The reason for this is simple: information

can be intercepted during transit or obtained if a server is compromised, and so must be pro-

tected. While the JominiEngine currently does not send or store any sensitive information, it is

34 Chapter 3. Implementation

worth noting that other players may attempt to gain an advantage by intercepting their rival’s

messages.

3.4.2 Authentication

This subsection describes password security techniques. Hashing refers to using an algorithm

to map input data to output of a fixed size (where one can reliably retrieve the output from

the input, but not the other way around), while salting refers to prepending a random string

of bytes to the beginning of data in order to obfuscate it, and is often combined with hashing.

There are two authentication phases in the JominiEngine: server authentication and client

authentication.

During server authentication the server sends its own X509 certificate to the client (along

with a session and password salt, to be used in client authentication as described in the para-

graph below). The client then attempts to validate this certificate and either continues the log

in process by sending its own credentials, or terminates the connection. This method ensures

the client can correctly identify the server, reducing the chance of a malicious attacker being

able to masquerade as the server.

When a user is registered (which is not covered in this project), their password is hashed

with a randomly generated salt (referred to here as the password salt) and stored in the database

along with the salt used to create it. When logging in the server sends the client their pass-

word salt and a second randomly generated salt (referred to here as the session salt). The

client hashes their password with the password salt using the SHA256 hashing algorithm,

then hashes the result with the session salt using the same algorithm. The server receives the

client’s hash and validates it by comparing it to the hash of the session salt and the password

hash from the database; if they match, due to the low collision rate of hashing algorithms the

server can be reasonably sure the password entered was correct.

The above can be better summarised using the following equations:

phash = h(pass, ps)

3.4. Security 35

hash = h(phash, ss)

Where pass is the password, ps is the password salt, ss is the session salt, and h(a, b) is the

hashing function applied to b prepended to a.

3.4.3 Secure Connection

While sensitive information will not be transmitted as part of regular gameplay, messages

should be protected from being read or altered by anyone other than the intended recipient. To

accomplish this the messages are encrypted using the AES symmetric encryption algorithm,

which is fast and widely used. This ensures messages are kept secure without incurring a

severe performance penalty.

3.4.4 Key Exchange

In order for the messages to be encrypted symmetrically, it is necessary for the client and server

to share a key. While there exist several key exchange algorithms, this project uses public key

encryption to safely transmit a key from the client to the server.

After the client receives and verifies the server’s certificate, it generates a key for use in

symmetric encryption. It then uses the public key from the certificate to encrypt the symmetric

key and sends it to the server, along with its own login credentials. Upon receiving, the server

can decrypt the symmetric key using its private key. This enables the client and server to

make use of faster symmetric algorithms without the need to send additional messages for

exchanging keys.

3.4.5 Potential Security Flaws

The majority of security concerns stem from potential flaws in the X509 certificate protocol. As

pointed out by J. Kim et al (Kim, Choi, and Ryou, 2010), many of these stem from either user

carelessness in protecting the certificate’s private key, or poorly implemented checks that do

not fully verify the authenticity of the certificate. As the certificate is used both for authenti-

cating the server and for securely transmitting the symmetric encryption key, a compromised

36 Chapter 3. Implementation

certificate is disastrous for the security of the JominiEngine. If the private key of the certificate

becomes known, or the certificate is able to be successfully forged, anyone could masquerade

as the server and potentially intercept messages from the client.

Kim et al propose some ways to mitigate these security risks. Disconnecting on certificate

verification failure, rather than alerting the user and prompting them to disconnect, can reduce

the effect user carelessness has on security. Additionally, they recommend that the client must

be able to check the certificate’s revocation status in order to determine whether the certificate

is valid. That way, in the event the server’s private key is leaked the signing authority can

revoke the certificate and prevent clients from validating it. Both of these checks should be

implemented on the game client.

The certificate should also avoid a SHA-1-based signature, as there is a known vulnerability

(Stevens, Karpman, and Peyrin, 2015) in SHA-1 which significantly increases the chance of an

attacker being able to generate a certificate with the same signature. The certificate signing in

the JominiEngine has been implemented using the SHA-256 hashing algorithm, which does

not have the same vulnerability.

3.5 Consistency

While it was not originally intended to include any consistency checks or controls in the

project, during testing it became apparent that implementing consistency controls on the queue

of messages for each client would be necessary.

During testing in certain circumstances a null message would be obtained from the queue

of messages. As the method for obtaining messages should either return the next message

in the queue or wait for a new message to be received, this ought to have been impossible.

However, if two methods called the GetReply() method to obtain the next message from the

user, both would attempt to claim the next incoming message and only one would succeed,

with the other returning null.

3.6. Refactoring the Game Engine 37

To prevent this, a subclass of the ConcurrentQueue class in .Net was created which in-

cluded an EventWaitHandle. The ConcurrentQueue class is designed for concurrent opera-

tions on a queue and handles all consistency issues, while the EventWaitHandle can be used

to signal to threads when an event has occurred. Combined, this presented a thread-safe solu-

tion where it was possible to add and remove items from the queue without worrying about

consistency issues while also being able to wake up threads when a new message was avail-

able, preventing busy waiting. Using this in conjunction with locking ensured no two threads

could retrieve the next reply at the same time, and that enqueues and dequeues would not

interfere with each other, which solved the concurrency issue in the message queues. This il-

lustrates how classical techniques from operating systems can be used to improve the security

of multi-threaded code on the server side.

The focus for this project was on securing the communication protocol, rather than ensur-

ing the consistency of the server side code. However, as a result of switching to an multi-

threaded, session-based implementation it is highly likely that there remain many race condi-

tions and other concurrency issues in the code. This will require rigorous testing and repairing

in the future, but is out-with the scope of the project.

3.6 Refactoring the Game Engine

Stateless to Session-Based

The previous implementation of the JominiEngine was entirely stateless in terms of the com-

munication protocol: each action relied only on the message that was received and not any

before or after. This was largely due to the difficulty in creating session-based communication

protocols, as it requires the use of asynchronous tasks. While this was sufficient at the time, it

restricted future development in that it is impossible to keep track of the state of the client. In

this project a session-based communication protocol has been implemented, where the server

can wait asynchronously for replies from the client. This allows much more complicated se-

quences of messages to be built up, as messages received from the client can be considered

part of a longer conversation between client and server.

38 Chapter 3. Implementation

It is important to note that this is related to session types, but is not the same: a session-

based communication protocol infers that the state of each client is kept track of in a session,

whereas session typing refers to using types to ensure that the order and type of all messages

sent and received is consistent with the communication protocol.

Busy Waiting

The server originally polled for messages non-stop using a while-loop, wasting time by polling

even when there were no messages- a process referred to as "busy waiting". To improve per-

formance, and therefore scalability, the server now uses callbacks (more specifically, Lidgren’s

MessageReceivedEvent) to wait before reading messages.

Modularity

Client messages were originally evaluated entirely within a single case-switch, which grew to

thousands of lines of code as the number of actions available to clients increased. To improve

readability and maintainability, the logic for each individual action was extracted and placed

into separate methods. The case-switch is now used only to determine which action to carry

out, making it much easier to manage and change.

3.7 Administrative Components

LogInManager

While previously the LogInManager handled salt generation and hash verification, the user

names and hashes were stored in the Server class instead. This has been moved to the LogIn-

Manager in order to ensure the LogInManager is a cohesive unit. In the future it should be

possible to have a dedicated log-in server in order to reduce strain on the game server, and

keeping all log-in related code within LogInManager should make this easier.

3.7. Administrative Components 39

ID Validation

Going through the JominiEngine code, it became clear that there was a great deal of repetition

when it came to validating an object ID and retrieving the relevant object from the relevant

game object list. By creating methods that would take an ID as a string and return either

the relevant object or null and an error code, it was possible to reduce the lines of code and

improve the code readability as well as maintainability (as shown in Chapter 4.5).

40 Chapter 3. Implementation

case NetIncomingMessageType . ConnectionApproval :
{

s t r i n g senderID = im . ReadString () ;
s t r i n g t e x t = im . ReadString () ;
C l i e n t c l i e n t ;
Globals_Server . C l i e n t s . TryGetValue (senderID , out c l i e n t) ;
i f (c l i e n t != n u l l)
{

ProtoLogIn logIn ;
i f (! LogInManager . AcceptConnection (c l i e n t , t ex t , out

logIn))
{

im . SenderConnection . Deny () ;
}
e lse
{

NetOutgoingMessage msg = server . CreateMessage () ;
MemoryStream ms = new MemoryStream () ;
// logIn conta ins c e r t i f i c a t e , s igna ture and s a l t s
S e r i a l i z e r . Ser ia l izeWithLengthPre f ix <ProtoLogIn >(ms ,

logIn , P r e f i x S t y l e . Fixed32) ;
msg . Write (ms . GetBuffer ()) ;
lock (ConnectionLock)
{

c l i e n t C o n n e c t i o n s .Add(im . SenderConnection ,
c l i e n t) ;

c l i e n t . connect ion = im . SenderConnection ;
c l i e n t . ProcessConnect () ;

}
im . SenderConnection . Approve (msg) ;
server . FlushSendQueue () ;
Thread c l ien tThread = new Thread (new ThreadStart (

c l i e n t . ActionControl lerAsync)) ;
c l i en tThread . S t a r t () ;
Globals_Server . logEvent (" C l i e n t "+ c l i e n t . username+"

logs in from "+im . SenderEndPoint) ;
}

}
e lse
{

im . SenderConnection . Deny (" unrecognised ") ;
}

}

FIGURE 3.1: This code shows the connection approval process for clients wishing
to connect to the server

3.7. Administrative Components 41

Task<ProtoMessage > GetMessageTask = GetMessage () ;
i f (! GetMessageTask . Wait (3 0 0 0 , _linkedTokenSource . Token))
{

// Taken too long a f t e r accept ing connect ion request to r e c e i v e
log in

Server . Disconnect (connection , " Fa i l ed to log in due to timeout ") ;
re turn ;

}

ProtoLogIn LogIn = GetMessageTask . Resul t as ProtoLogIn ;
i f (LogIn == n u l l || LogIn . ActionType != Actions . LogIn)
{

// Error− expect ing LogIn . Disconnect and send message to c l i e n t
c tSource . Cancel () ;
Server . Disconnect (connection , " I n v a l i d message sequence−

expect ing log in ") ;
re turn ;

}
e lse
{

// Process LogIn
i f (! LogInManager . ProcessLogIn (LogIn , t h i s , _linkedTokenSource .

Token))
{

// Error
Server . Disconnect (connection , " Log in f a i l e d ") ;
re turn ;

}
}

FIGURE 3.2: This code shows process of authenticating clients, asserting that a
log-in message has been received and verifying the credentials

43

Chapter 4

Results

This chapter will cover the results of testing and evaluating the various implementations of

the JominiEngine.

4.1 Evaluation Strategy

The test run for measuring time and memory was run ten times per implementation, and the

results of the tests were averaged excluding the maximum and minimum values.

The time taken was measured from the test client sending a request to the test client re-

ceiving a response for that request, and was measured by recording the start and end times

in milliseconds using ’DateTime.Now.TimeOfDay.TotalMilliseconds’, and then subtracting the

end from the start. While this would usually be done with the ’System.Diagnostics.Stopwatch’

class, the stopwatch is not threadsafe and produced inaccurate results during testing.

The maximum amount of memory was measured using the ’GC.GetTotalMemory’ method.

While there are many different ways in C# of measuring the different types of allocated mem-

ory, such as paged memory and working set, the ’GC.GetTotalMemory’ estimates the total

allocated memory and so was deemed the most appropriate. To get the maximum memory,

the memory was recorded at the start and end of the test run, as well as after each test. While

this is not as accurate as using a profiling tool, as both the Visual Studio performance tools and

ReSharper performance tools failed this was selected as the next viable option.

Code maintainability was measured using Visual Studio’s code metrics tools (see Chapter

1.3.3).

44 Chapter 4. Results

The number and nature of bugs found during unit testing and static analysis were recorded,

and have been summarised and categorised below.

4.2 Error Detection and Prevention with Dynamically-Checked Ses-

sion Types, Static Analysis and Dynamic Analysis

This section discusses the various software issues encountered during static and dynamic anal-

ysis, as well as the issues that could be prevented with session types. Categorisation of issues is

based on the IEEE standard definitions for anomalies (“IEEE Standard Classification for Soft-

ware Anomalies” 2010). Specifically, behaviours that are inconsistent with the requirements

(but do not cause the system to crash) are categorised as defects, whereas issues that caused the

JominiEngine to cease functioning are categorised as failures. Additionally, issues that occurred

due to concurrency issues and which may only appear in certain circumstances are categorised

as Heisenbugs, a jargon term and play on words which refers to issues that seemingly disappear

when attempts are made to observe them. Revell’s article (Revell, 2015) describes Heisenbugs

in more detail.

Dynamically-Checked Session Types

The goal of session types is to ensure the correctness of the communication protocol, rather

than the correctness of the code itself. As such, this section will focus on how effective dynamically-

checked session types were at ensuring the correct order and type of messages.

In the stateless implementation, a mistake in the way clients were added to the list of logged

in clients resulted in a defect where clients were able to perform actions before logging in.

While the same mistake was present in the session-based implementation, because the order

of messages was enforced the client was still incapable of performing actions before logging in.

While this defect was prevented, the non-logged in client would still have been able to receive

updates from the server. In this case, while one defect was prevented, the underlying issue was

not. It could be argued that preventing this defect actually made the issue worse, as it obscured

4.2. Error Detection and Prevention with Dynamically-Checked Session Types, Static

Analysis and Dynamic Analysis
45

the underlying problem; however, as mentioned session types are being evaluated here for

there effectiveness in ensuring the correct communication protocol, and they did succeed in

this.

A client logging in with different credentials on the same connection produces another

defect which is prevented with dynamically-checked session types. In the stateless implemen-

tation, logging in a second time with different credentials succeeds, resulting in both clients

technically being logged in (although only one will be able to send messages at a time). This

is undesirable behaviour and could lead to other issues when attempting to send messages to

the clients. In the session-based implementation, the second log in request is handled as an in-

valid request and an error is sent to the client, preventing the second log in. This is due to this

implementation being ’aware’ that a log in has already taken place, and attempts to process the

message as a standard in-game action. Because the action type "LogIn" is not a recognisable

action in the game’s ActionController, the server sends an error to the client informing them

that this action is invalid.

Another defect present in the stateless implementation (though not inherently part of the

communication protocol) is the absence of time-outs. While a connection can still time-out if

the server does not send or receive from the client for an extended period of time (e.g. due

to unexpected network issues), the client can still send ’heartbeat’ messages (messages whose

sole purpose is to let connected peers know the sender is still connected) to keep the connection

alive. By contrast, in the session-based implementation it is possible to specify the time-frame

within which the next message from the client must be received, allowing clients who have

remained idle for a long time to time-out due to inactivity and freeing-up the connection pool.

While dynamically-checked session types were effective in preventing several issues with

the ordering of messages, due to the apparent lack of issues with the types of messages re-

ceived on the server there was little way of determining whether they were effective in pre-

venting invalid message types from being received. This is due to the nature of how requests

are written in the JominiEngine: each request takes the form of a serialized ProtoMessage ob-

ject, which has an action type, a response type, a string (for an additional message) and an array

of strings (for additional information). Requests and responses that require more information

46 Chapter 4. Results

extend this class, and all requests are serialized and de-serialized as ProtoMessage. This is

later cast to the appropriate type, and the code for doing so is dependent on the type of action

specified in the message. This code has not been modified between the implementations, and

has not caused any issues.

Static Analysis

As figure 4.1 shows, the entirety of problems detected were failures, rather than defects. This

may be partly due to weak preconditions, but is also in part a weakness of the static analyser.

While many of the bugs detected during static testing were also detected by the dynamic

analysis, two were not. One of these was for an action which was not tested dynamically

(unbarring characters), while the other was something that was not considered during testing.

The latter is a potential failure that can occur if the client somehow overwrites the first byte

of the incoming message on the server, which the networking library (Lidgren) uses to store

the connection status. If the user was successful in setting this to a value outside the range of

the NetConnectionStatus enum (and given the nature and skill of the potential users, this is a

possibility), the server would crash. Preventing this is fairly simple matter of checking that the

value is in range, but it is not something most testers would even think to test for.

The static analysis tools used were incapable of detecting the presence of Heisenbugs.

Given the nature of these bugs, this is unsurprising: the static analyser used here does not

check thread scheduling. The analysis tools were however very useful in indicating poten-

tial sources of error that would be often overlooked in conventional testing. Unfortunately,

analysis also brought up many false-positives, which had to be studied in detail to determine

whether or not they could be potential sources of error. In spite of this extra effort, static anal-

ysis is recommended as a complimentary method of testing to conventional unit testing, as the

some of the potential failures detected were outside what would be covered in a typical unit

test.

4.2. Error Detection and Prevention with Dynamically-Checked Session Types, Static

Analysis and Dynamic Analysis
47

FIGURE 4.1: Chart of the number of bugs found by category during static testing

FIGURE 4.2: Chart of the number of bugs found by category during dynamic
testing

48 Chapter 4. Results

Dynamic Analysis

As illustrated in figure 4.2, dynamic analysis found a much broader range of bugs compared

to static analysis (though the majority of these were still failures).

Dynamic analysis was the only method of analysis that detected Heisenbugs, though this

was by chance rather than by design. The first Heisenbug was found when once call to method

for retrieving the next message from the client returned null. This was previously thought to

be an impossibility; the method was intended to wait for the next message, and would be

cancelled if the client disconnected or took too long to reply. After adding some debugging

statements to the code, the bug disappeared- re-appearing when the debugging statements

were removed. It was eventually determined that if two tasks were waiting for the next mes-

sage, a single message was received, and both attempted to claim the message at the same

time, one would succeed and the other would return null. This was later fixed by using Con-

currentQueues, which are thread safe, and locks.

The second Heisenbug was detected not during a unit test, but during the test run designed

to measure time and memory performance. The bug essentially involves race conditions on

the dictionary mapping connections to clients: if a disconnect is interleaved with a connect,

the server will attempt to search the list of connected clients with an empty connection. This

results in a failure, and was solved without much difficulty using locks. While other tests had

involved clients logging out and then logging in again, the bug did not occur in any of those

tests, surfacing only when it was least expected.

The majority of defects detected were due to logging in and logging out not being handled

correctly in the stateless implementation. These included the server still continuing to process

a client’s message after the client logs out, no time outs, and the client being able to log in

twice with different credentials on the same connection. These were detected through failed

unit tests.

Dynamic analysis was capable of finding a wide range of bugs - some of which were not

being tested for - and was an effective means of determining under which conditions a method

would fail. However, as mentioned in the static analysis section above, there were failures that

4.3. Impact of Session-based Implementation on Performance 49

dynamic testing did not detect simply because it was not obvious that they could occur. While

dynamic analysis and unit testing should remain an integral part of software testing, it is best

complimented with static analysis to get more in-depth coverage.

4.3 Impact of Session-based Implementation on Performance

This section compares the performance of implementing a session-based communication pro-

tocol to the performance of the stateless communication protocol, in terms of both time and

maximum memory consumption.

Time

Figure 4.3 shows the time performance of the various implementations. Comparing the time

taken for the encrypted session-based and stateless implementations (blue and orange), as well

as the time taken for the unencrypted session-based and stateless implementations (yellow

and green), it is apparent that the session-based implementation takes longer in every action.

This is most noticeable in LogIn, where the session-based implementation takes around two-

hundred milliseconds longer. In total, there was a 36% increase from the encrypted stateless to

session-based implementation, and a 32% increase from the unencrypted stateless to session

based implementation. While this is a fairly large increase, it is worth noting that the time

for Recruit and Spy includes the time taken to receive the initial message stating the cost of

recruiting and success chance for spying, and the time taken to receive the result after sending

the confirmation. Additionally, as logging in is a once-per-session action, an increase in this

time will have only a small impact on the performance of the server. The increase in time in

the Recruit, Travel and Spy actions is small - less than twenty milliseconds on average in all

cases - and so should not have a noticeable negative affect on the performance of the server.

Memory

Figure 4.4 shows the impact various implementations had on the maximum total allocated

memory. Due to aforementioned issues with memory profilers, the memory measured is not

50 Chapter 4. Results

FIGURE 4.3: Time comparisons of stateless and session-based implementations,
both encrypted and unencrypted

FIGURE 4.4: Memory comparisons of stateless and session-based implementa-
tions, both encrypted and unencrypted

4.4. Impact of Encrypting Messages on Performance 51

exact and fluctuated between tests.

Comparing the encrypted stateless implementation to the session-based implementation,

the session-based implementation appears to use less memory; however, comparing the two

unencrypted implementations shows the session-based implementation using more memory.

Based on this, it can only be assumed that the session-based implementation has little impact

on memory consumption.

4.4 Impact of Encrypting Messages on Performance

This section compares the impact encrypting messages has on the time and memory perfor-

mance of the various implementations.

Time

Referring back to the recorded times in Figure 4.3, the times of the encrypted and unencrypted

stateless implementations (blue and yellow) and the encrypted and unencrypted session-based

implementations (orange and green) are now compared.

In the stateless implementation, encryption has no noticeable affect on time throughout

all actions. As appendix A.1 shows, the average total completion time is approximately eight

milliseconds more for the encrypted version- small enough to be negligible.

In the session based implementation, there is a noticeable difference between the encrypted

and unencrypted implementations- particularly while logging in. In total, the encrypted im-

plementation took 3% longer to complete- however, this masks the underlying results. Refer-

ring to Appendix A.1, the time taken to log in is 4% longer in the encrypted implementation

versus the unencrypted implementation. The time taken to perform recruitment, travelling

or spying on the other hand, is actually less with encryption than without encryption. The

increase in log in time can be explained by the required set-up of the shared encryption key.

The source of the decrease in the recruit, travel and spy times is less obvious- as the decrease

is present across all actions, it is unlikely to be accidental. It might be encrypted messages

52 Chapter 4. Results

are more efficient to send and receive, though without performing more in-depth tests this

remains unclear.

Memory

Referring back to figure 4.4, this section compares the encrypted and unencrypted stateless

implementations (blue and yellow) and the encrypted and unencrypted session-based imple-

mentations (orange and green).

While there is little change in memory consumption for the encrypted and unencrypted

session-based implementation, the difference between the encrypted and unencrypted state-

less implementation is much greater. This is likely due to aforementioned issues with measur-

ing the memory consumption, as the difference in memory is too large to be entirely due to

encryption. Furthermore, the session-based implementation shows no such leap in memory,

reinforcing the theory that this is accidental. From these results, it can only be determined that

encryption has little or no impact on memory consumption.

4.5 Changes in Code Complexity and Maintainability

This section examines the changes reported by Visual Studio’s code metrics (see Chapter 1.3.3)

across the different versions of the project. Here the "Original" implementation refers to the

project before refactoring took place, and is mostly used to show how refactoring improved the

maintainability of the code. "Stateless" refers to the implementation that does not use sessions

and dynamically-checked session types in the communication protocol, whereas "Session-

based" refers to the implementation with them.

Changes to the Server Class

As shown in figure 4.5, the main changes between the original and stateless implementations

were a slight increase in complexity and coupling, and a slight decrease in lines of code. The

4.5. Changes in Code Complexity and Maintainability 53

FIGURE 4.5: Changes to the code metrics of the Server class across implementa-
tions

FIGURE 4.6: Changes to the code metrics of the Client class across implementa-
tions

54 Chapter 4. Results

FIGURE 4.7: Changes to the code metrics of the Game class across implementa-
tions

changes in complexity and coupling were a result of moving the verification of client creden-

tials and the log in process from the Server class to the LogInManager class, decreasing the

amount of code but increasing coupling. Additional parameter checks were behind the in-

creased the cyclomatic complexity. While the code maintainability stayed roughly the same,

moving the log in code to the LogInManager class was an improvement in terms of class de-

sign as the LogInManager should be the sole class responsible for all authentication and log in

functionality.

The changes from the stateless to session-based implementations are largely due to the

code for message processing being moved from the Server class to the Client class (which is

also reflected in the increase in lines of code in figure 4.6). This resulted in a small increase in

maintainability, as well as a decrease in cyclomatic complexity, coupling and lines of code.

4.5. Changes in Code Complexity and Maintainability 55

Changes to the Client Class

Figure 4.6 shows the different code metrics for the various implementations of the Client class.

While there were very few changes between the original and stateless implementations, the

session-based implementation changed dramatically in terms of maintainability, complexity,

coupling and lines of code.

In order to obtain the next messages from the client, several additional methods had to be

added to asynchronously retrieve message from a queue (refer to section 3.1 for more details).

Moving the message processing logic from the Server class to the Client class further con-

tributed to the increased coupling, lines of code and complexity, while the use of dynamically-

checked session types required additional code to ensure the correct order of messages, further

increasing complexity and lines of code.

In spite of this, the maintainability index only dropped 8 points from 88 in the stateless

implementation to 76. Considering that this is a fairly drastic change in the communication

protocol, the slight reduction in maintainability can be taken as a sign that this change has

been implemented in a clear, maintainable way.

Changes to the Game Class

This section examines the changes in code metrics in the Game class across the various imple-

mentations.

Looking at figure 4.7, it is clear that the maintainability index is quite low. The class is,

by nature, hard to maintain, as it handles the set-up for the game as well as validating and

processing client’s requests to carry out actions. This depends on the current structure and

contents of each type of request, the rules associated with the request, and the methods that

will be carried out if the request is successful.

While the maintainability index is still low in the session-based and stateless implemen-

tations, what the chart does not show is the impressive increase in maintainability from the

original implementation. As appendix B.3 shows, the maintainability index increased from

13 in the original implementation to 46 in the stateless and session-based implementations-

56 Chapter 4. Results

an increase of almost 254%. This was largely due to refactoring Game’s ActionController as

described in Chapter 1.6.

Visual Studio’s code metrics for the ActionController method can be seen in Appendix B.4,

which assigned the original implementation’s ActionController a maintainability index of 0

and a cyclomatic complexity of 356, indicating that it was essentially unmaintainable. After

refactoring, the new index increased to 11 and the cyclomatic complexity had been reduced

by over 68% to 112. Refactoring also reduced the case-switch to 153 lines of IL code (approx-

imately 470 lines of C# code), which (while still difficult to maintain) is an improvement over

the original.

Appendix B.3 also shows no decrease in maintainability index between the stateless and

session-based implementations. This can be taken as an indication that the session-based ver-

sion of the Game class is not any more difficult to maintain.

4.6 A Subjective View on the Relative Difficulty of Implementation

Sessions and Dynamically Checked Session Types

Transitioning from a sequential, stateless communication protocol to a concurrent, session-

based one was a huge jump in complexity, though not due to dynamically checked session

types. Dynamically checking the order and type of messages was comparatively easy, as it

could be done by waiting for the next message, checking the type of client request and at-

tempting to cast to the expected type. The main difficulties lay in consistency controls, event

handling and task cancellation.

To give a clearer picture of how messages are processed in the stateless implementation,

here is a brief summary: When the server is started a long-running thread is created, which

has the sole purpose of receiving incoming messages and deciding what to do with them.

When a message is received the thread processes it synchronously, then retrieves the next one.

When there are no more messages, the thread waits until it receives a MessageReceivedEvent,

and retrieves the new message. This thread will continue until the server is shut down.

4.6. A Subjective View on the Relative Difficulty of Implementation 57

In the session-based implementation, there is still the long-running server thread as de-

scribed above. However, when a client connects a new thread is spawned to handle this client’s

requests (referred to here as a client thread). Much like the server thread, each client thread

runs until the client disconnects. The client thread waits for a LogIn message, processes it and,

if successful, repeatedly waits for and processes the next request from the client. Each Client

object in the server has their own queue for incoming messages. When the server receives an

incoming message from a client, it is added to this queue. This fires an event, waking up the

client thread and causing the message to be retrieved. In brief, we have a long-running thread

that spawns other long-running threads that create asynchronous tasks.

Here lies the problem: When the client disconnects, or the server shuts down, all tasks for

the affected clients must cancel and all threads must end. Additionally, if there are multiple

tasks waiting for the next message from the client, only one should be able to get the next

message while the others continue to wait- although when a message is received all of the

waiting tasks will wake up and attempt to claim it. To handle all this correctly required the

use of event handlers, locking, and linked cancellation tokens. This is rather complicated,

particularly for a solo project, and especially for those inexperienced in asynchronous and

concurrent programming. My opinion is that dynamically checking session types is feasible,

but transitioning to a session-based implementation is not recommended for the inexperienced

or those working alone unless using a library that provides the above functionality.

Dynamic Analysis with Microsoft Unit Test Framework

Unit testing will be familiar to the majority of developers, as it is an established method of

testing and debugging functions. In this project Microsoft Unit Test Framework was used not

for testing units of code, but client actions: Each test had the test client attempt to send a

request with various parameters, and validated both the reply received from the server and, in

some cases, the state of the game after processing the action. This method of testing, while not

as thorough as unit testing, was much closer to real exchanges between the server and clients.

The Microsoft Unit Test Framework was not especially difficult to use; being well-documented

and having a few key functions and attributes (such as Assert.IsTrue(....)), it took very little

58 Chapter 4. Results

time to learn and was expressive enough to provide the necessary control over tests required

(such as having time-outs on test methods, and being able to set-up the test environment using

ClassInitializeAttribute).

The one difficulty in this method of dynamic analysis is the amount of work involved: as

the majority of parameters could not be automatically generated (as much of the tests were

to do with permissions and object ownership), the tests were written by hand. With over

fifty tests and five-hundred lines of code (for each implementation), this was extremely time

consuming. Bear in mind this was only to test seven actions (including logging in) out of over

fifty - exhaustively testing every action would take even longer.

In addition, during testing I found the tests were often being adjusted to fit the behaviour

of the code rather than the other way around, simple because the "correct" behaviour of the

code had been misinterpreted or forgotten. To prevent this, it would be beneficial to use a Test-

Driven Development (TDD) (Beck, 2002) approach, which focuses on writing tests first. While

this was not possible for this project as it builds on existing code, in TDD the tests act as a form

of guidance to the developer, as the tests are based on the specification rather than on the code,

and so the correct behaviour of the code can be determined by looking at the tests. This also

spreads out the test writing, and ensures that testing is not a last minute, often-neglected task.

Static Analysis with Code Contracts

Despite not being a familiar tool, Code Contracts were comparatively simple to use. The ma-

jority of work was performed by the static analyser, which could be configured in terms of

which potential issues to report, what recommendations to make, and the warning level (from

only the most relevant warnings to all warnings). The only effort that had to be expended

was in configuring the analyser to focus only on specific classes (which required adding the

line ’assembly: ContractVerification(false)’ to the AssembleInfo.cs file and then adding the

’ContractVerificaton(true)’ attribute to classes to be tested), and adding preconditions, post-

conditions and invariants where appropriate. To run static analysis on the main sources of

error (the Server, Client, Game, Army and Battle classes) required only adding thirty-one lines

to the project.

4.6. A Subjective View on the Relative Difficulty of Implementation 59

Perhaps the only difficulties in using Code Contracts for static analysis was in interpreting

the suggestions, which were often vague, and the long analysis time. Restricting the analysis

to certain classes as above was necessary to ensure the analysis performed in a timely manner.

I personally would recommend Code Contracts (or other static analysis tools) to anyone with

knowledge of how to use preconditions and postconditions, as they require minimal effort to

implement while providing some useful insight on potential sources of error in the code.

61

Chapter 5

Conclusion

This project has evaluated how effective static analysis, dynamic analysis and dynamically

checked session types are in improving the security and correctness of large distributed sys-

tems, in addition to how difficult they were to implement, and how the changes to the case

study impacted the time and memory performance. This section summarises these results and

makes recommendations for the development of distributed systems and, more specifically,

MMOs.

Dynamically checked session types were found to be effective in preventing a variety of

communication protocol violations, as shown in Chapter 4.2, and improved the security of the

case study by ensuring that a client had logged in correctly before the client could perform

any authorised actions. Chapter 4.5 shows that the session-based implementation with dy-

namically checked session types did not reduce the maintainability of the code by any amount

that would cause concern; however, as Chapter 4.3 shows, this implementation came with

some loss of performance- the test runs took on average over 30% longer to complete. This

illustrates the benefits statically-checked session types could have for large scale, distributed

systems: with static type checking, there would be much less of an impact on performance

while also ensuring the correct implementation of the communication protocol. As dynami-

cally checked session types were effective in improving the security and correctness of the com-

munication protocol, it can be concluded that they are beneficial to large distributed systems-

though statically checked session types would be preferable for distributed systems with tight

performance constraints.

Static analysis using Code Contracts found a fairly narrow range of bugs, identifying only a

62 Chapter 5. Conclusion

few that would potentially cause failures (as well as several that would never come to fruition,

or false positives)- however as Chapter 4.2 notes some of these detected failures were far out-

side the range of normal testing, and likely would never have been found through unit testing

alone. Due to the nature of the case study, the JominiEngine (refer to Chapter 1.4.1 for more on

the project history), finding potential failures before deployment is important, as if a flaw is not

found during testing, it will be found (and quickly) by the end users after release. In addition,

Chapter 4.6 discusses the relative ease of implementing static analysis using Code Contracts,

and concludes that Code Contracts are a fast to implement, useful way of testing code. While

static analysis has been largely used for the verification of safety-critical systems, drawing

from the results of this project static analysis tools are recommended as part of standard project

testing- though should not replace dynamic tests, particularly in large, distributed, concurrent

systems such as the JominiEngine.

Dynamic analysis using Microsoft Unit Test framework found a wide range of bugs, some

of which were not being tested for. The results in Chapter 4.2 show that dynamic analysis

located defects, failures and Heisenbugs, and though detection of the latter was largely acci-

dental, it still illustrates the importance of running the code with a wide variety of parameters

to locate well-hidden bugs. Dynamic analysis is an established part of the software testing

process, and is irreplaceable. However, as described in Chapter 4.6 there is a large amount of

work required to set up the dynamic tests. Testing large projects in this way is extremely time

consuming and work-intensive, and it may be impossible to exhaustively test every unit and

subsystem- particularly in the case of the JominiEngine, where an existing framework of unit

tests was unavailable. As such, it is recommended to use a modified approach to Test Driven

Development (TDD) that integrates static precondition, postcondition and invariant checking

into the tests, as TDD has been shown to improve code quality over other approaches (Bhat

and Nagappan, 2006). The static analyser can check for potential exceptions and violations of

preconditions and postconditions, which improves the effectiveness of testing when combined

with dynamic analysis. Well-defined preconditions and postconditions could also reduce the

number of unit tests required to test a method fully, as the static analyser would eliminate

invalid parameters.

Chapter 5. Conclusion 63

To improve the integrity and privacy of messages sent between clients and the JominiEngine,

messages were encrypted using a symmetric encryption algorithm. While it was previously

thought that message encryption would have a noticeable negative impact on performance,

Chapter 4.4 shows that this impact was extremely small, having a slight negative impact on

time and no discernible impact on memory. As Man in the Middle (MITM) attacks are an estab-

lished attack that targets the connection between the client and the server, using encryption to

prevent messages being intercepted and tampered with is highly recommended for distributed

systems, even those with a focus on low response times, as the time taken to encrypt a message

is offset by the increased security.

In summary, both static and dynamic analysis are recommended for the testing of dis-

tributed systems (including MMO game servers), and a suitable method of employing them

would be through TDD. Session types have the potential to improve the security and correct-

ness of distributed systems, but until a mainstream statically checked implementation exists,

developers systems that require fast execution may wish to avoid them.

65

Chapter 6

Future Work

As many of the techniques and technologies used in this project are continually being re-

searched, it is hard to know what new techniques and tools will be available in the near future

- particularly when it comes to session types. As mentioned in Chapter 2.1, a hybrid imple-

mentation of session types for modern languages has been proposed, and future work could

attempt to implement this using the JominiEngine as a case study and evaluate the appropri-

ateness for large distributed systems and MMO game servers. However, this would require a

complete re-write of the JominiEngine server, and should not be taken lightly.

As consistency has not been a core focus of the project, only the minimum consistency

controls for the correct behaviour of the server (including retrieving client messages and mod-

ifying the list of connected clients - see 4.2 for more details) have been implemented. Due to

the use of concurrency, the session-based implementation may have introduced further con-

sistency issues throughout the game. Future work could evaluate methods of detecting incon-

sistencies and race conditions, or preventing them, with a focus on large distributed systems.

While it was initially intended to evaluate how modelling could be used to examine the

correctness of the design of large projects, it was later determined that this was largely out-

side the scope of static and dynamic code verification and so was not directly relevant to the

project. Additionally, during attempts to model subsystems of the game it became apparent

that the game objects were so closely linked that it was nearly impossible to cover a subsystem

in detail (such as the inheritance subsystem) without touching upon several others. In order

to model the (fairly complex) architecture of the JominiEngine a huge amount of abstraction

was necessary, so much so that the model did not closely resemble the true game objects and

66 Chapter 6. Future Work

had little benefit to the project. With that being said, model-based verification is an established

method of verification, and there is plenty of research on the model-based verification of dis-

tributed systems. A future project could examine the effectiveness of these, though it may be

better evaluated using a smaller and simpler case study than the JominiEngine.

67

Appendix A

Runtime Measurements

A.1 Time Measurements

Implementation Log In Time Recruit Time Travel Time Spy Time Total Time
Encrypted Stateless 661.253625 34.86125 54.00375 18.12625 780.6485

Encrypted Session-based 905.5175 48.90125 68.53875 25.0125 1062.73
Unencrypted Stateless 663.644 37.505 53.34125 17.5 778.978625

Unencrypted Session-based 865.245 51.655375 68.91375 26.14 1030.9625

FIGURE A.1: The average time (in milliseconds) of ten runs (excluding maximum
and minimum values) for each implementation

A.2 Memory Measurements

Implementation Memory (kilobytes)
Encrypted Stateless 6409.17

Encrypted Session-based 6183.03
Unencrypted Stateless 5900.83

Unencrypted Session-based 6190.69

FIGURE A.2: The average maximum memory consumed (in kilobytse) of ten
runs (excluding maximum and minimum values) for each implementation

69

Appendix B

Code Metrics

Code Metrics: Server

Implementation Maintainability Cyclomatic Inheritance Class Lines of
Index Complexity Coupling Code

Original 52 44 1 37 117
Stateless 51 60 1 44 171

Session-based 60 49 1 40 149

FIGURE B.1: The code metrics obtained from Visual Studio on the Server class,
across three implementations

Code Metrics: Client

Implementation Maintainability Cyclomatic Inheritance Class Lines of
Index Complexity Coupling Code

Original 88 25 1 17 44
Stateless 88 26 1 19 47

Session-based 76 53 1 33 113

FIGURE B.2: The code metrics obtained from Visual Studio on the Client class,
across three implementations

Code Metrics: Game

Implementation Maintainability Cyclomatic Inheritance Class Lines of
Index Complexity Coupling Code

Original 13 424 1 56 1904
Stateless 46 507 1 78 1715

Session-based 46 523 1 90 1741

FIGURE B.3: The code metrics obtained from Visual Studio on the Game class,
across three implementations

70 Appendix B. Code Metrics

Code Metrics: ActionController (Game)

Implementation Maintainability Cyclomatic Class Lines of
Index Complexity Coupling Code

Original 0 356 56 1332
Stateless 11 112 18 153

Session-based 10 113 22 156

FIGURE B.4: The code metrics obtained from Visual Studio on the ActionCon-
troller method of the Game class, across three implementations

71

Appendix C

Bug Results

Categorisation of Bugs Found

Detected by Defects Failures Heisenbugs
Static analysis 0 5 0

Dynamic analysis 5 6 0

FIGURE C.1: The number and type of bugs found, as well as which method
succeeded in detecting them

73

References

Abramsky, Samson (1993). “Computational interpretations of linear logic”. In: Theoretical Com-

puter Science 111.1-2, pp. 3–57. ISSN: 03043975. DOI: 10.1016/0304-3975(93)90181-R.

URL: http://www.sciencedirect.com/science/article/pii/030439759390181R.

Anderson, Paul (2008). “The use and limitations of static-analysis tools to improve software

quality”. In: CrossTalk: The Journal of Defense Software Engineering.

Beck (2002). Test Driven Development: By Example. Boston, MA, USA: Addison-Wesley Longman

Publishing Co., Inc. ISBN: 0321146530.

Bhat, Thirumalesh and Nachiappan Nagappan (2006). “Evaluating the Efficacy of Test-driven

Development: Industrial Case Studies”. In: Proceedings of the 2006 ACM/IEEE International

Symposium on Empirical Software Engineering. ISESE ’06. New York, NY, USA: ACM, pp. 356–

363. ISBN: 1-59593-218-6. DOI: 10.1145/1159733.1159787. URL: http://doi.acm.

org/10.1145/1159733.1159787.

Bocchi, Laura, Weizhen Yang, and Nobuko Yoshida (2014). “Timed Multiparty Session Types”.

In: In 25th International Conference on Concurrency Theory (CONCUR 2014). Springer, pp. 419

–434.

Bond, David (2015). “Design and implementation of a massively multi-player online historical

role-playing game”. MSc Thesis. Heriot-Watt University.

Common Criteria Maintenance Board (2012). Common Criteria for Information Technology Secu-

rity Evaluation Part 1 : Introduction and general model. Tech. rep. CCMB-2012-09-001. Common

Criteria.

Deligiannis, Pantazis et al. (2015). “Asynchronous Programming, Analysis and Testing with

State Machines”. In: Proceedings of the 36th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation. PLDI 2015. Portland, OR, USA: ACM, pp. 154–164. ISBN:

http://dx.doi.org/10.1016/0304-3975(93)90181-R
http://www.sciencedirect.com/science/article/pii/030439759390181R
http://dx.doi.org/10.1145/1159733.1159787
http://doi.acm.org/10.1145/1159733.1159787
http://doi.acm.org/10.1145/1159733.1159787

74 REFERENCES

978-1-4503-3468-6. DOI: 10.1145/2737924.2737996. URL: http://doi.acm.org/

10.1145/2737924.2737996.

Deursen, Arie van (2014). Think Twice Before Using the “Maintainability Index”. URL: https://

avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-

index/ (visited on 04/18/2016).

Fähndrich, Manuel (2010). “Static verification for code contracts”. In: Proceedings of the 17th

international conference on Static analysis. Springer-Verlag, pp. 2–5.

Gasior, Lukasz (2014). ReSharper Essentials. Packt Publishing. URL: https://www.jetbrains.

com/resharper/.

Goseva-Popstojanova, Katerina and Andrei Perhinschi (2015). “On the capability of static code

analysis to detect security vulnerabilities”. In: Information and Software Technology 68, pp. 18–

33. DOI: 10.1016/j.infsof.2015.08.002.

Honda, Kohei (1993). “Types for Dyadic Interaction”. In: CONCUR’93. Springer Berlin Heidel-

berg, pp. 509–523.

Hu, Raymond and Nobuko Yoshida (2016). “Hybrid Session Verification through Endpoint

API Generation”. In: FASE 2016. LNCS. Springer.

Hu, Raymond et al. (2009). The SJ Framework for Transport-Independent, Type-Safe, Object-Oriented

Communications Programming.

“IEEE Standard Classification for Software Anomalies” (2010). In: IEEE Std 1044-2009 (Revision

of IEEE Std 1044-1993), pp. 1–23. DOI: 10.1109/IEEESTD.2010.5399061.

Johnson, Bruce (2014). Professional Visual Studio 2013. 1st Edition. John Wiley & Sons.

Kim, J H, H B Choi, and J C Ryou (2010). “Countermeasures to Vulnerability of Certificate

Application in u-City”. In: Ubiquitous Information Technologies and Applications (CUTE), 2010

Proceedings of the 5th International Conference on, pp. 1–5. DOI: 10.1109/ICUT.2010.

5677755.

Klophaus, Rusty (2010). “Riak Core: building distributed applications without shared state”.

In: ACM SIGPLAN Commercial Users of Functional Programming. ACM New York, Article

No. 14.

http://dx.doi.org/10.1145/2737924.2737996
http://doi.acm.org/10.1145/2737924.2737996
http://doi.acm.org/10.1145/2737924.2737996
https://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/
https://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/
https://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/
https://www.jetbrains.com/resharper/
https://www.jetbrains.com/resharper/
http://dx.doi.org/10.1016/j.infsof.2015.08.002
http://dx.doi.org/10.1109/IEEESTD.2010.5399061
http://dx.doi.org/10.1109/ICUT.2010.5677755
http://dx.doi.org/10.1109/ICUT.2010.5677755

REFERENCES 75

Microsoft Developer Network. Unit Testing Framework. URL: https://msdn.microsoft.

com/en-us/library/ms243147(v=vs.90).aspx (visited on 04/23/2016).

— (2007). Maintainability Index Range and Meaning. URL: https://blogs.msdn.microsoft.

com/codeanalysis/2007/11/20/maintainability-index-range-and-meaning/

(visited on 04/24/2016).

Musuvathi, Madanlal et al. (2009). “Finding and reproducing Heisenbugs in concurrent pro-

grams”. In: In Proceedings of the 8th USENIX conference on Operating systems design and imple-

mentation, pp. 267–280.

Revell, Timothy (2015). “Bugged out”. In: New Scientist 228.3050, pp. 40–43. ISSN: 0262-4079.

DOI: http://dx.doi.org/10.1016/S0262- 4079(15)31813- 3. URL: http:

//www.sciencedirect.com/science/article/pii/S0262407915318133.

Sözer, H (2015). “Integrated static code analysis and runtime verification”. In: Software: Practice

and Experience 45.10, pp. 1359–1373. DOI: 10.1002/spe.2287.

Stevens, Marc, Pierre Karpman, and Thomas Peyrin (2015). Freestart collision for full SHA-1.

Cryptology ePrint Archive, Report 2015/967. http://eprint.iacr.org/.

Wadler, P., N. Yoshida, and S.J. Gay (2013). Grant: From Data Types to Session Types—A Basis for

Concurrency and Distribution.

Wadler, Philip (2012). “Propositions as Sessions”. In: International Conference on Functional Pro-

gramming (ICFP).

— (2016). A Basis for Concurrency and Distribution. URL: http://groups.inf.ed.ac.uk/

abcd/ (visited on 04/15/2016).

Yoshida, Nobuko et al. (2013). “The Scribble Protocol Language”. In: 8th International Sympo-

sium on Trustworthy Global Computing (TGC ’13) October. URL: http://mrg.doc.ic.ac.

uk/publications/the-scribble-protocol-language/invited.pdf.

https://msdn.microsoft.com/en-us/library/ms243147(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/ms243147(v=vs.90).aspx
https://blogs.msdn.microsoft.com/codeanalysis/2007/11/20/maintainability-index-range-and-meaning/
https://blogs.msdn.microsoft.com/codeanalysis/2007/11/20/maintainability-index-range-and-meaning/
http://dx.doi.org/http://dx.doi.org/10.1016/S0262-4079(15)31813-3
http://www.sciencedirect.com/science/article/pii/S0262407915318133
http://www.sciencedirect.com/science/article/pii/S0262407915318133
http://dx.doi.org/10.1002/spe.2287
http://eprint.iacr.org/
http://groups.inf.ed.ac.uk/abcd/
http://groups.inf.ed.ac.uk/abcd/
http://mrg.doc.ic.ac.uk/publications/the-scribble-protocol-language/invited.pdf
http://mrg.doc.ic.ac.uk/publications/the-scribble-protocol-language/invited.pdf

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Project Aims & Objectives
	A Brief Note on Session Types

	Problems Solved
	Project Evaluation
	Static versus Dynamic analysis
	Performance
	Maintainability

	Scope & Context
	Project History
	Project Scope
	Security

	Project Adaptations
	Work Done
	Relevant Professional, Ethical, Legal and Social Issues

	Background
	Session Types
	Statically Checked Session Types versus a Dynamic Implementation

	Static Analysis in Distributed Systems
	Tools Used
	Scribble
	Microsoft Visual Studio Community 2013
	Microsoft Code Contracts
	Microsoft Unit Testing Framework
	JetBrains ReSharper Ultimate

	Implementation
	Session Types
	Static Analysis
	Dynamic Analysis
	Security
	General Security Principles
	Authentication
	Secure Connection
	Key Exchange
	Potential Security Flaws

	Consistency
	Refactoring the Game Engine
	Administrative Components

	Results
	Evaluation Strategy
	Error Detection and Prevention with Dynamically-Checked Session Types, Static Analysis and Dynamic Analysis
	Impact of Session-based Implementation on Performance
	Impact of Encrypting Messages on Performance
	Changes in Code Complexity and Maintainability
	A Subjective View on the Relative Difficulty of Implementation

	Conclusion
	Future Work
	Appendices
	Runtime Measurements
	Time Measurements
	Memory Measurements

	Code Metrics
	Bug Results
	References

