
Book Title
Book Editors
IOS Press, 2003

1

Certification of Quantitative Properties of
Programs 1

Martin Hofmann, Hans-Wolfgang Loidl, Lennart Beringer
Institut für Informatik, Ludwig-Maximilians Universität, D-80538 München, Germany

Abstract. In the context of mobile and global computing knowledge of quantitative
properties of programs is particularly important. Here are some typical scenarios:

• A provider of distributed computational power may only be willing to offer
this service upon receiving dependable guarantees about the required resource
consumption.

• A user of a handheld device, wearable computer, or smart card might want
to know that a downloaded application will definitely run within the limited
amount of memory available.

• Third-party software updates for mobile phones, household appliances, or car
electronics should come with a guarantee not to set system parameters beyond
manufacturer-specified safe limits.

Requiring certificates of specified resource consumption will also help to prevent
mobile agents from performing denial of service attacks using bona fide host envi-
ronments as a portal. These lecture notes describe how such quantitative resource-
related properties can be inferred automatically using type systems and how the
results of such analysis can be turned into unforgeable certificates using a proof-
carrying code framework.

Keywords. Type systems, Proof-carrying-code, program logics.

1. Introduction

These notes describe methods for inferring and certifying quantitative bounds on com-
puting resources. Resources of particular interest are memory allocation, execution time,
number of files or network connections, parameters to system calls, etc. By certifica-
tion we understand the automatic creation of unforgeable certificates of the purported
resource bound in the sense of proof carrying code (PCC [22]), see G. Necula’s contri-
bution to this volume.

In the context of mobile computing and computing on small devices such as em-
bedded systems, mobile phones, smart cards present a host of applications for such an
infrastructure. A user of a mobile phone might need to know for sure that a certain appli-
cation provided by a third party does not allocate more memory than announced in the
specification and furthermore obeys a specified limit on the number and cost of network
connections made. A provider of shared computing power might only be willing to grant

1This material is based on results of the recently completed EU-funded project “Mobile Resource
Guarantees” IST-2001-33149.

access to their system upon presentation of a certificate as to the total execution time and
space consumption.

Our main tools will be type systems for automatically inferring resource bounds
and formalised program logics to write down certificates in the sense of PCC. We now
describe these two key techniques informally.

1.1. Type systems

Verification of even simple properties of arbitrary programs is infeasible and undecidable
in general. On the other hand, the verification of simple properties of sensibly written
programs can be quite easy. Type systems highlight such simple properties of sensibly
written programs. Here are some examples of everyday type systems:

• The Java type system prevents uncaught exceptions, certain segmentation faults,
etc. It also guarantees survival of the subsequent bytecode verification.

• The ML type system often prevents one from supplying arguments to a function
in the wrong order etc. Slogan: “If it typechecks it works”.

• Abstract datatypes promote modularity by preventing breaches of abstraction

In the research literature type systems for many more properties have been proposed,
e.g., security of information flow, absence of array bound violation, and indeed resource
bounds, to name a few.

A common feature of type systems is that they rely on program annotations, the
types, whose well-formedness is given by an inductive definition, the typing rules.
Checking whether a given annotation of a program meets the typing rules is known as
type checking. For many type systems all or large parts of the typing annotations can be
determined automatically in a most general fashion. This is known as type inference and
is available for the ML type system, but not for Java’s type system.

As opposed to program analysis [24] type systems try to give some feedback to the
programmer in the form of types and also type error messages in case the inference fails.
On the other hand, program analyses are often more flexible and powerful. Having said
that, type systems and program analysis are often just two sides of the same coin and
have been translated into each other [16, 10], indeed, the type systems that we describe
below in Section 5 was originally construed as a program analysis.

An excellent reference for type systems is [26].

1.2. Program Logics

A program logic (for object code) is a set of syntax-directed rules for deriving statements
of the following form:

If in heap h and stack E program phrase e terminates with result v and post-heap h′

then (h,E,v,h′) ∈ φ.
This is written e : φ. Typical proof rules for this judgement are as follows:

x.m() : φ =⇒ em(x) : φ

x.m() : φ

2

e1 : E[x]=true ⇒ φ e2 : E[x]=false ⇒ φ

if x then e1 else e2 : φ

Program logics are usually complete in the sense that all semantically valid judgements
are derivable using the proof rules, but some rules have semantic side conditions of the
form φ1 ⊆ φ2 which may be arbitrarily difficult to establish. This is known as relative
completeness. It says that the proof rules adequately break down proof obligations ac-
cording to the program structure.

Often program logics use a Hoare style format [11] where the statements of interest
take the form

“If in heap h and stack E such that (h,E)∈ φ program phrase e terminates with result
v and post-heap h′ then (v,h′) ∈ ψ.”

This is traditionally written {φ}e{ψ} and called a Hoare triple. In order to relate φ

(the precondition) to the ψ (the postcondition) one must use auxiliary variables, i.e., con-
sider assertions of the form ∀~x.{φ(~x)}e{ψ(~x)}. With this generalisation an assertion e : φ

is equivalent to the Hoare triple ∀h1,E1.{h = h1∧E = E1}e{φ(E1,h1,v,h′)}. Conversely,
the Hoare triple ∀~x.{φ(~x)}e{ψ(~x)} is equivalent to the assertion e : ∀~x.φ(~x,E,h) ⇒
ψ(~x,v,h′).

We prefer the single-assertion format, also known as VDM-style [14, 15], to Hoare-
style because it does not need auxiliary variables and rules to manipulate them.

If a program logic is formalised in a theorem prover then proofs of program proper-
ties are unforgeable certificates.

The rest of this lecture note is organised as follows: in Section 2 we describe a first-
order functional programming language, Camelot, that contains primitives for memory
management in the style of C/C++ and thus enables more accurate predictions of space
usage than a garbage-collected language such as ML or Java does. Camelot is compiled
into an abstract form of a subset of Java bytecode, called Grail.

In Section 2 the runtime behaviour of Grail is defined as a resource-aware opera-
tional semantics which we take as the formal model of execution and resource usage.
Statements in the program logic to be described in Section 4 will refer to this operational
semantics. On top of this program logic we will then define a derived logic, which reflects
the structure of a high-level type system for the resource under consideration (Section 5).

2. Camelot and Grail

While certification must take place on the low level of bytecode or machine code, type
checking and inference are easier to perform on high-level code which displays more
structure than the low-level code it is compiled into and also restricts flow of control
to certain patterns as opposed to arbitrary “spaghetti code”. Of course, it is then neces-
sary to transfer the results of type inference across the compilation process so as to aid
the generation of certificates. This transfer process is the subject of Section 5. Here we
present as a concrete example one high-level language, Camelot, which is a variant of
Objective CAML that has memory primitives in the style of C/C++ and is compiled to
Java Bytecode (JVM).

Let us begin with a tail-recursive version of the factorial function

val fac: int -> int

3

static int fac(int);
Code:
0: iconst_1
1: istore_1
2: iload_0
3: iconst_1
4: if_icmplt 18
7: iload_1
8: iload_0
9: imul
10: istore_1
11: iload_0
12: iconst_1
13: isub
14: istore_0
15: goto 2
18: iload_1
19: ireturn

static int fac(int);
Code:

0: $0 = 1
1: b = $0

f : $0 = n
3: $1 = 1
4: if ($0 < $1) then f_then else f_else

f_else: $0 = b
8: $1 = n
9: $0 = $0 * $1
10: b = $0
11: $0 = n
12: $1 = 1
13: $0 = $0 - $1
14: n = $0
15: goto f

f_then: $0 = b
19: ireturn $0

Figure 1. Java bytecode in ordinary (left) and beautified (right) form

let rec f n b =
if n < 1 then b else f (n - 1) (n * b)

in f n 1

In Camelot tail-recursive functions are understood as and translated into loops. Ac-
cordingly, this Camelot program corresponds to the following Java program

class Fac {
static int fac(int n) {

int b = 1;
while (n >= 1) {

b = b * n;
n = n - 1;

}
return b;

}}

The Java Bytecode corresponding to either the Camelot program or the Java program
is given in the first column of Figure 1.

Recall that many JVM commands refer to the operand stack. If we explicitly denote
the items on this stack by $0, $1, $2,. . . , starting from the top, then we obtain the
beautified version of the bytecode given in the right column of Fig. 1.

In Grail, our version of JVM, we take this one step further by removing the stack
altogether and allowing arithmetic operations on arbitrary variables. Moreover, we use a
functional notation for jumps and local variables as exemplified by the code in the left
column of Figure 2 which corresponds to the above JVM bytecode. Here is a genuinely
recursive version of the factorial in Camelot:

val fac: int -> int
let rec fac n =

if n < 1 then 1 else n * fac (n - 1)

The corresponding Grail code is found in the right column of Figure 2.

3. Syntax and semantics of Grail

Grail is an intermediate language that corresponds bijectively to a subset of well-
structured bytecode. It is presented using an (impure) functional notation in order to sim-

4

method static int fac (int n) =
let

val b = 1
fun f(int n, int b) =

if n<1 then b
else f_else(n,b)

fun f_else(int n, int b) =
let

val b = mul b n
val n = sub n 1

in
f(n,b)

end
in

f(n,b)
end

method static int fac (int n) =
let

fun f_else(n) =
let

val n’ = sub n 1
val n’ = invokestatic <Fac Fac.fac(int)> (n’)

in mul n n’
end

in
if n<1 then 1
else f_else(n)

end

Figure 2. Grail versions of iterative, tail-recursive (left) and genuinely recursive (right) versions of the factorial

plify compilation from the source language Camelot. At the global level, Grail retains the
JVM class and method structure, while method bodies themselves are represented as a
collection of mutually first-order functions that correspond to basic blocks. The dynamic
semantics is given by a big-step operational semantics that combines functional elements
(evaluation environments) with imperative aspects (initial and final heaps). Grail admits
a reversible expansion of expressions into JVM code such that let-bound variables can be
interpreted as local registers and function calls as jumps. Indeed, the operational seman-
tics coincides with the standard interpretation of JVM code for this expansion, provided
some mild syntactic conditions are met: function calls may only appear in tail position,
and function arguments must be variables and moreover coincide syntactically with the
formal parameters of the invoked function. General recursion is available via method
invocations whose occurrence is not limited to tail positions.

As a further component, judgements include a resource component that collects the
cumulative consumption of computational resources such as the number of executed
instructions or the maximal height of the frame stack observed during an execution.
Resources that cannot be modelled in this cumulative way (like the number of currently
open files) could in principle be modelled as further components of the heap, i.e. as if
there were a global variable that contained the current value of the resource.

3.1. Syntax

Formally, Grail programs are formulated over the mutually disjoint categories M of
method names m, . . ., C of class names c, . . ., F of function names (i.e. labels of basic
blocks) f , . . . , T of (virtual or static) field names t, . . ., and X of variables x, . . ., where
self ∈ X .

Neither the syntax nor the operational semantics of Grail mentions the operand stack
explicitly.

For the remainder of these lecture notes, the global structure of a Grail program is
represented by a method table MT , i.e. a finite map associating method declarations to
C ×M -pairs. A method declaration MT(c.m) consists of

• a list of (distinct) variables, the formal method parameters,
• a function table giving the definition of the basic blocks, and
• a Grail expression representing the initial basic block.

We identify these components as parsc.m, FTc.m, and bodyc.m, respectively. The first
method parameter is always the variable self. Function tables FT are also finite maps,

5

e [[e]]
null aconst null
imm i iconst i
var x xload x
prim op x y xload x;xload y; [[op]]
new c [ti := xi] new c;dup;xload x1; . . . ;xload xn;invokespecial c m
x.t aload x;getfield t
x.t:=y aload x;xload y;putfield t
c� t getstatic c t
c� t:=x xload x;putstatic c t
let x=e1 in e [[e1]];xstore x; [[e2]]
e1 ; e2 [[e1]]; [[e2]]
if x then e1 else e2 xload x;ifeq TRUE f ; [[e2]] where f : [[e1]]
call f goto f
x ·m(a1, . . . ,an) aload x; [[a1]]; . . . ; [[an]]; invokevirtual c m
c.m(a1, . . . ,an) [[a1]]; . . . ; [[an]]; invokestatic c m

Figure 3. Translation from Grail to JVM Bytecode

associating formal parameters (lists of distinct variables) and function bodies (expres-
sions) to function names.

The syntax of expressions is given by the following grammar, where overbars repre-
sent (possibly empty) list of items.

e ∈ expr ::= a | prim op x x | new c [ti := xi] | x.t | x.t:=x | c� t | c� t:=x |

let x=e in e | e ; e | if x then e else e | call f | x ·m(a) | c.m(a)

a ∈ args ::= var x | null | imm i

The first expression form injects constants (i ranges over numeric constants) and vari-
ables into the category of expressions. An expression prim op x y represents the ap-
plication of the binary primitive operation op to the arguments held in local registers
x and y, where op is expected to correspond to a binary JVM instruction [[op]], as in
[[λ x y. x+ y]] = iadd. Object creation (instruction new) may include the initialisation of
fields t1, . . . , tn with the content of registers x1, . . . ,xn. The next four instructions represent
access and modification operations for instance and static fields, respectively. Instruc-
tion composition may either involve the storing of a value in a register or be performed
anonymously. In the first case, the named composition let x=e1 in e2 is used, which
updates register x with the result of evaluating e1. In the latter case, the composition
e1 ; e2 is used, where the constituent phrases are merely juxtaposed. This form of com-
position is appropriate if the evaluation of the JVM expansion of e1 would not leave a
value on the operand stack, as is the case in a field modification. The syntax of condition-
als is unsurprising. As the arguments of function calls syntactically are understood to be
precisely the formal parameters in the definition of the functions, the syntax for function
calls does not include arguments at all. Finally, virtual and static method invocations are
represented by instructions x ·m(a) and c.m(a), respectively, where arguments a can be
variables or immediates.

While we omit a formalisation of the condition that function calls occur only at tail
position (and of typing conditions), an intuitive interpretation of Grail programs can be
obtained from the informal expansion [[.]] into JVM code given in Fig. 3. The prefix x
indicates the type-dependency of the corresponding instruction. Here, the notation f : [[e]]

6

dom h the domain of the object heap of h

h(l).t the content of field t of the object at location l

in the object heap of h

h[l.t 7→ v] modification of the above instance field

h(c).t the content of the field c.t in the static heap of h

h[c.t 7→ v] modification of the static field c.t

h[l 7→ (c,{ti := vi})] modification of object heap of h at location l, where the

inserted object has class c and fields t1, . . . , tn with values

v1, . . . ,vn, respectively

freshloc(h) returns a location l with l /∈ dom h

classOf (h(v)) = c the dynamic class of the object at v in h is c

Figure 4. Notations for heaps and environments

is used to indicate and FT(f) = e holds, where FT is the function table of the current
method.

As a consequence of the structure of Grail expressions, the JVM operand stack after
the execution of [[e]] is identical to the operand stack prior to its execution. Since operand
stacks are empty prior to the first instruction of a method, the same condition is true
between any two (expansions of) Grail expressions. This property strengthens a condition
identified by Leroy [18] as being beneficial for the on-card verification of Java bytecode
programs.

3.2. Operational semantics

The dynamic semantics is given by judgements E ` h,e⇓ h′,v, p, to be read as: evaluating
e in variable environment E and initial heap h yields the result value v and final heap h′,
consuming p resources. As is characteristic for a big-step semantics, non-termination is
modelled by the absence of a derivation rather than the existence of an infinite sequence
of one-step reductions as would be the case for a small-step semantics. The semantic
domains of the components occurring in operational judgements are as follows.

Values v ∈ V can either be references (tagged locations Ref l or null) or integers i
Environments E ∈ E are finite maps from variables to values. We let dom E denote the

domain of E, E〈x〉 the access operation (where x ∈ dom E), and E〈x := v〉 the
update operation

Heaps h ∈ H consist of an object heap and a static heap. Object heaps are finite maps
from locations to objects, where objects consist of a (dynamic) class name and a
map from field names to values. Static heaps map class names to maps from field
names to values. We use the abbreviations given in Figure 4

7

Resource counters p ∈ R can be values from specific sets that are endowed with some
constants and two operations ⊕ (addition) and ^ (maximum). For the purpose of
these lecture notes, we restrict our attention to the resource component R = N4

consisting of four counters. The four components of a resource tuple

p = 〈clock callc invkc invkdpth〉

summarise (in that order) the elapsed time (the approximate number of instruc-
tions executed), the number of function calls (jumps), the number of method in-
vocations, and the maximal height of the frame stack observed during an execu-
tion. For p = 〈p1 p2 p3 p4〉 and q = 〈q1 q2 q3 q4〉, we define the oper-
ators ⊕ and ^ by p⊕ q = 〈p1 + q1 p2 + q2 p3 + q3 p4 + q4〉 and p ^ q =
〈p1 +q1 p2 +q2 p3 +q3 max(p4,q4)〉, respectively.
Generalising from the given notion of resource tuples, it would not be difficult to
model the consumption of other resources, such as the invocations of particular
(native) methods, or the power consumption with respect to specific cost models.
The above notion of resources does not include an explicit counter for heap con-
sumption since this can be derived by comparing the sizes of the heap before and
after execution.

The rules defining the relation E ` h,e ⇓ h′,v, p are as follows.

E ` h,null ⇓ h,null,〈1 0 0 0〉
(NULL)

E ` h,imm i ⇓ h, i,〈1 0 0 0〉
(IMM)

E ` h,var x ⇓ h,E〈x〉,〈1 0 0 0〉
(VAR)

E ` h,prim op x y ⇓ h,op (E〈x〉) (E〈y〉),〈3 0 0 0〉
(PRIM)

E〈x〉= Ref l
E ` h,x.t ⇓ h,h(l).t,〈2 0 0 0〉

(GETF)
E〈x〉= Ref l

E ` h,x.t:=y ⇓ h[l.t 7→ E〈y〉],⊥,〈3 0 0 0〉
(PUTF)

E ` h,c� t ⇓ h,h(c).t,〈1 0 0 0〉
(GETST)

E ` h,c� t:=y ⇓ h[c.t 7→ E〈y〉],⊥,〈2 0 0 0〉
(PUTST)

l = freshloc(h)
E ` h,new c [ti := xi] ⇓ h[l 7→ (c,{ti := E〈xi〉})],Ref l,〈(n+3) 0 0 0〉

(NEW)

E〈x〉= true E ` h,e1 ⇓ h1,v, p
E ` h,if x then e1 else e2 ⇓ h1,v,〈2 0 0 0〉⊕ p

(IFTRUE)

E〈x〉= false E ` h,e2 ⇓ h1,v, p
E ` h,if x then e1 else e2 ⇓ h1,v,〈2 0 0 0〉⊕ p

(IFFALSE)

E ` h,e1 ⇓ h1,w, p w 6=⊥ E〈x := w〉 ` h1,e2 ⇓ h2,v,q
E ` h,let x=e1 in e2 ⇓ h2,v,〈1 0 0 0〉⊕ (p ^ q)

(LET)

8

E ` h,e1 ⇓ h1,⊥, p E ` h1,e2 ⇓ h2,v,q
E ` h,e1 ; e2 ⇓ h2,v, p ^ q

(COMP)

E ` h,FT f ⇓ h1,v, p
E ` h,call f ⇓ h1,v,〈1 1 0 0〉⊕ p

(CALL)

Env(parsc.m,null :: a,E) ` h,bodyc.m ⇓ h1,v, p
E ` h,c.m(a) ⇓ h1,v,〈(2+ | a |) 0 1 1〉⊕ p

(SINV)

classOf (h(E〈x〉)) = c Env(parsc.m,E〈x〉 :: a,E) ` h,bodyc.m ⇓ h1,v, p
E ` h,x ·m(a) ⇓ h1,v,〈(4+ | a |) 0 1 1〉⊕ p

(VINV)

In the rules, the first component of resource tuples gives an approximate notion of
execution time, roughly motivated by the number of JVM instructions executed accord-
ing to the expansion given above. The first eight rules evaluate constants and variables,
evaluate primitive operations and perform static and virtual field access and modifica-
tion. In all cases, the functional aspects of the rules are standard. The resource vectors
indicate that only a constant number of JVM instruction is executed, that no jumps or
method invocations are involved, and that the frame stack height is not affected. The
rule for object allocation extends the heap at a fresh location and initialises the fields.
The rules for conditionals evaluate the branch condition and promote the result and the
resources of the corresponding branch, incrementing the instruction counter by two –
one increment for the loading of x onto the operand stack and one for performing the
branch evaluation. Composition using the let form applies if the evaluation of [[e1]] leaves
a value on the operand stack, whose storage in variable x is responsible for the increment
in the instruction counter. Anonymous composition applies if [[e1]] does not leave a value
on the operand stack, and merely composes the costs of the constituent phrases. In both
cases, the use of the operator ^ indicates that the maximum frame stack height is taken,
while the addition is applied in first three components of the resource tuples. The rule
for function application simply continues with the evaluation of the function body, with-
out creating a new environment. This corresponds precisely to the execution of a jump
instruction. The costs are modified by charging for one anonymous instruction and one
jump. The notation FT f refers to the entry for label f in the function table associated
with the currently method. Finally, the two rules for method invocation create (in the se-
mantic function Env) a local environment (“frame”) that contains precisely the values for
the formal parameters. These are obtained by evaluating the arguments ai in the environ-
ment of the caller, E, and assigning the result to parameter pi. The increments in the in-
struction counters depend linearly on the number of arguments and include constants for
frame construction and deconstruction. The difference between static and virtual meth-
ods arises from the loading of the object reference onto the operand stack and the dy-
namic method resolution. Furthermore, a (cumulative) method invocation is observed,
and the maximal frame stack height is also incremented.

9

4. Program Logic

The basis for reasoning and certificate generation is a general-purpose program logic
for Grail where assertions are boolean functions over all semantic components occurring
in the operational semantics, i.e. evaluation environments, pre- and post-heaps, result
values, and resource vector. In this section, we define a logic of partial correctness (i.e. in
particular, non-terminating programs satisfy any assertion), and we will comment on a
separate termination logic in Section 4.8.

4.1. Assertions and validity

Deviating from the syntactic separation into pre- and post-conditions typical for Hoare-
style and VDM-style program logics [11, 14], a judgement in our logic relates a
Grail expression e to a single assertion A Γ � e : A dependent on a context Γ =
{(e1,A1), . . . ,{en,An)} that stores verification assumptions for recursive program struc-
tures.1

Following the so-called “shallow embedding” style, we encode assertions as predi-
cates in the formal higher-order meta-logic. Assertions range over the components of the
operational semantics, namely the input environment E and initial heap h, and the post
heap h′, the result value v, and the resources consumed p. An assertion A thus belongs to
the type A ≡E →H →H →V →R →B where B is the set of propositional booleans.
We use the notation of Isabelle/HOL for writing logical connectives and predicates, in
particular, using λ-notation to define predicates: A = λE h h′ v p. · · · and curried function
application to denote their application to particular semantic values: A E1 h1 h′1 v1 p1
in the rules of the logic, the conclusions define assertions which hold for each form of
expression, by applying assertions from the premises to appropriately modified values
corresponding to the operational semantics. Axioms define assertions which are satisfied
exactly by the corresponding evaluation in the semantics.

Compared to more traditional Hoare-style program logics with pre- and post-
conditions, a single assertion allows us to simplify the treatment of auxiliary variables
and admits a formulation of the rule for program composition that avoids the modifica-
tion of the precondition typical for Hoare-style logics. We discuss this further in Sec-
tion 4.3.

The validity of assertion A for expression e is defined by a partial correctness inter-
pretation: A must be satisfied for all terminating executions of e.

Definition 1 (Validity) Assertion A is valid for e, written |= e : A, if

E ` h,e ⇓ h′,v, p implies A E h h′ v p

for all E, h, h′, v, and p.

This definition may be lifted to contexts Γ in the obvious way.

1Later on we sometimes use the term “specification” as a synonym for “assertion”, especially when referring
to assumptions or assertions used to define behaviour exactly.

10

Definition 2 (Contextual validity) Context Γ is valid, notation |= Γ, if all pairs (e,A) in
Γ satisfy |= e : A. Assertion A is valid for e in context Γ, written Γ |= e : A, if |= Γ implies
|= e : A.

We next turn to the description of our proof system and the proof of its soundness
and completeness for this notion of validity.

4.2. Proof System

The program logic comprises one rule for each expression form, and two logical rules,
VAX and VCONSEQ. Again, we consider classes and methods for a fixed program P.

Γ�null : λE hh′ v p.h′ = h ∧ v = null ∧ p = 〈1 0 0 0〉
(VNULL)

Γ�imm i : λE hh′ v p.h′ = h ∧ v = i ∧ p = 〈1 0 0 0〉
(VIMM)

Γ�var x : λE hh′ v p.h′ = h ∧ v = E〈x〉 ∧ p = 〈1 0 0 0〉
(VVAR)

Γ�prim op x y : λE hh′ v p. v = op E〈x〉 E〈y〉 ∧ h′ = h ∧ p = 〈3 0 0 0〉
(VPRIM)

Γ� x.t : λE hh′ v p.∃l. E〈x〉= Ref l ∧ h′ = h ∧ v = h′(l).t ∧ p = 〈2 0 0 0〉
(VGETF)

Γ� x.t:=y : λE hh′ v p.∃l. E〈x〉= Ref l ∧ p = 〈3 0 0 0〉∧
h′ = h[l.t 7→ E〈y〉] ∧ v =⊥

(VPUTF)

Γ� c� t : λE hh′ v p.h′ = h ∧ v = h(c).t ∧ p = 〈1 0 0 0〉
(VGETST)

Γ� c� t:=y : λE hh′ v p.h′ = h[c.t 7→ E〈y〉] ∧ v =⊥ ∧ p = 〈2 0 0 0〉
(VPUTST)

Γ�new c [ti := xi] : λE hh′ v p.∃l. l = freshloc(h) ∧ p = 〈(n+3) 0 0 0〉∧
h′ = h[l 7→ (c,{ti := E〈xi〉})] ∧ v = Ref l

(VNEW)

Γ� e1 : A1 Γ� e2 : A2

Γ�if x then e1 else e2 : λE hh′ v p.∃p′. p = 〈2 0 0 0〉⊕ p′∧
(E〈x〉= true−→ A1 E h h′ v p′) ∧
(E〈x〉= false−→ A2 E h h′ v p′) ∧
(E〈x〉= true ∨ E〈x〉= false)

(VIF)

Γ� e1 : A Γ� e2 : B
Γ�let x=e1 in e2 : λE hh′ v p.∃ p1 p2 h1 w. A E h h1 w p1 ∧ w 6=⊥ ∧

B (E〈x := w〉) h1 h′ v p2) ∧
p = 〈1 0 0 0〉⊕ (p1 ^ p2)

(VLET)

Γ� e1 : A Γ� e2 : B
Γ� e1 ; e2 : λE hh′ v p.∃ p1 p2 h1. A E h h1 ⊥ p1 ∧ B E h1 h′ v p2 ∧ p = p1 ^ p2

(VCOMP)

Γ∪{(call f ,A)}�bodyf : Θ(A, f)
Γ�call f : A

(VCALL)

11

Γ∪{(c.m(a),A)}�bodyc,m : Φ(A,c,m,a)
Γ� c.m(a) : A

(VSINV)

Γ∪{x ·m(a),A)}�bodyc,m : Ψ(A,x,c,m,a)
Γ� x ·m(a) : A

(VVINV)

(e,A) ∈ Γ

Γ� e : A
(VAX)

Γ� e : A ∀ E h h′ v p. A E h h′ v p −→ B E h h′ v p
Γ� e : B

(VCONSEQ)

The rules for function calls and method invocations make use of the following oper-
ators that model the effect of frame creation and the application of the resource-algebraic
operations:

Θ(A, f) = λE hh′ v p.A E h h′ v (〈1 1 0 0〉⊕ p)
Φ(A,c,m,a) = λE hh′ v p.

∀ E ′. E = Env(self :: parsc,m,null :: a,E ′)
−→ A E ′ h h′ v (〈(2+ | a |) 0 1 1〉⊕ p)

Ψ(A,x,c,m,a) = λE hh′ v p.
∀ E ′ l. (E ′〈x〉= Ref l ∧ h(l) = c ∧ E = Env(self :: parsc,m,x :: a,E ′))

−→ A E ′ h h′ v (〈(4+ | a |) 0 1 1〉⊕ p).

4.3. Discussion

The axioms (VNULL to VNEW) directly model the corresponding rules in the operational
semantics, with constants for the resource tuples. The VIF rule uses the appropriate as-
sertion based on the boolean value in the variable x. Since the evaluation of the branch
condition does not modify the heap we only existentially quantify over the cost compo-
nent p′. In contrast, rule VLET existentially quantifies over the result value w, the heap h1
resulting from evaluating e1, and the resources from e1 and e2. Apart from the absence
of environment update, rule VCOMP is similar to VLET.

The rules for recursive functions and methods involve the context and generalise
Hoare’s original rule for parameterless recursive procedures. They require one to prove
that the bodies satisfy assertions that are related to the concluding assertions A in a way
that is compatible with the relationship between the hypothetical and the concluding
judgements of the operational rules CALL, SINV and VINV. In rule VCALL, this com-
patibility condition only affects the resources, as the operational rule CALL leaves the
environment, the heaps, and the result value untouched. Thus, the definition of Θ merely
modifies the resource vector to 〈1 1 0 0〉⊕ p. In the case of VSINV and VVINV, the con-
struction of a new frame in the operational rules corresponds to the universal quantifica-
tion over the environment associated with the caller, E ′, in the definitions of operators
Φ and Ψ. In both cases, the environment associated with the body, E, arises from this
outer environment E ′ by the Env(, ,) function. Again, the costs of the method call are
applied by requiring that the body satisfies a assertion whose resource component makes
A true after the application of the appropriate operator from R . As is the case in VCALL,
the verification of the method bodies proceeds in contexts that extend Γ by the yet-to-be-
proven tuple. Recursive calls or invocations may thus access the stipulated assertion via
rule VAX.

The VCONSEQ consequence rule derives an assertion B that follows from another
assertion A in the meta-logic HOL.

The rules for program composition, VLET and VCOMP, relate to the earlier discus-
sion on the format of assertions. In Hoare-style program logics, the purpose of auxil-

12

iary variables is to link pre- and post-conditions by “freezing” the values of (program or
other) variables in the initial state, so that they can be referred to in the post-condition.
Formally, auxiliary variables need to be universally quantified in the interpretation of
judgements in order to treat variables of arbitrary domain, and their interaction with the
rule of consequence. This quantification may either happen explicitly at the object level
or implicitly, where pre- and post-condition are predicates over pairs of states and the
domain of auxiliary variables. See [15] for a detailed comparative discussion.

4.4. Soundness

In order to enable an inductive soundness proof we need to assign a semantic meaning
to the auxiliary judgments involving nonempty contexts.

Definition 3 (Relativised validity) Specification A is valid for e at depth n, written |=n
e : A, if

(m ≤ n ∧ E ` h,e ⇓m h′,v, p) −→ A E h h′ v p.

Here, the judgement E ` h,e ⇓m h′,v, p indicates that E ` h,e ⇓ h′,v, p holds by a deriva-
tion of height at most m. We omit the formal definition.

The counter n in Definition 3 restricts the set of pre- and post-states for which A
has to be fulfilled. It is easy to show that |= e : A is equivalent to ∀n. |=n e : A, and that
relativised validity is downward closed, i.e. that for m ≤ n, |=n e : A implies |=m e : A.

Definition 4 (Relativised context validity) Context Γ is valid at depth n, written |=n Γ,
if for all (e,A) ∈ Γ, |=n e : A holds. Assertion A is valid for e in context Γ at depth n,
denoted Γ |=n e : A, if |=n Γ implies |=n e : A.

The following lemma is proved by induction on n.

Lemma 1 For |=n Γ and Γ∪{call f ,A}�bodyf : Θ(A, f), let

|=m (Γ∪{call f ,A})−→|=m bodyf : Θ(A, f)

hold for all m. Then |=n call f : A.

Similar results hold for static and virtual method invocations. From this, the following
result may be proved by rule induction.

Lemma 2 If Γ� e : A then ∀n. Γ |=n e : A

Finally, the soundness statement is obtained from Lemma 2 by unfolding the definitions
of (relativised) validity.

Theorem 1 (Soundness) If Γ� e : A then Γ |= e : A.

In particular, an assertion that may be derived using the empty context is valid: /0� e : A
implies |= e : A.

13

4.5. Admissible rules

The following admissible rules are helpful for concrete program verifications and also in
the proof of completeness. In addition to the proof rules given Section 4.2, we need some
rules to simplify reasoning about concrete programs, and some others to help establish
completeness. All of these rules involve the context of assumptions.

Γ� e : A
Γ∪∆� e : A

(VWEAK)
Γ� e : A ∀ d B. (d,B) ∈ Γ −→ ∆�d : B

∆� e : A
(VCTXT)

{(d,B)}∪Γ� e : A Γ�d : B
Γ� e : A

(VCUT)
Γ |= ST (e,A) ∈ Γ

/0� e : A
(MUTREC)

Γ |= ST (c.m(a),ST(c,m,a)) ∈ Γ

/0� c.m(b) : ST(c,m,b)
(ADAPTS)

Γ |= ST (x ·m(a),ST(x,m,a)) ∈ Γ

/0� y ·m(b) : ST(y,m,b)
(ADAPTV)

The first two rules, VWEAK and VCTXT, are proven by an induction on the derivation
of Γ � e : A. A further cut rule, VCUT, follows easily from VCTXT. The cut rules elimi-
nate the need for introducing a second form of judgement used previously in the litera-
ture (e.g., [25]) when establishing soundness of the rule MUTREC for mutually recursive
program fragments. This proof will now be outlined.

First, we introduce the concept of specification tables. These associate an assertion
A to each function name or method invocation.

Definition 5 A specification table ST consists of the functions FST : F →A , sMST : C →
M → args → A , and vMST : X → M → args → A , where args is the type of argument
lists. We write ST(f), ST(c,m,a) and ST(x,m,a) for the respective access operations.

Contexts whose entries arise uniformly from these specification tables
are of particular interest.

Definition 6 Context Γ respects specification table ST, notation Γ |= ST, if all (e,A) ∈ Γ

satisfy one of the three following conditions

• (e,A) = (call f ,ST(f)) for some f with Γ�bodyf : Θ(ST(f), f)
• (e,A) = (c.m(a),ST(c,m,a)) for some c, m and a, and all b satisfy

Γ�bodyc,m : Φ(ST(c,m,b),c,m,b),

• (e,A) = (x ·m(a),ST(x,m,a)) for some x, m and a, and all c, y, and b satisfy

Γ�bodyc,m : Ψ(ST(y,m,b),y,c,m,b).

Here, the operators Θ, Φ, and Ψ are those defined in Section 4.2. Using rule VCUT, is
not difficult to prove that this property is closed under sub-contexts.

Lemma 3 If (e,A)∪Γ |= ST then Γ |= ST.

14

Based on Lemma 3, rule MUTREC can be proven by induction on the size of Γ. Notice
that the conclusion relates e to A in the empty proof context – and thus, by rule VWEAK,
in any context.

The remaining admissible rules ADAPTS and ADAPTV amount to variations of
MUTREC for method invocations. In these rules, the expression in the conclusion may
syntactically differ from the expression stored the context, as long as this difference oc-
curs only in the method arguments (including the object on which a virtual method is
invoked) and is reflected in the assertions. In Hoare logics, the adaptation of method
specifications is related to the adaptation of auxiliary variables, a historically tricky is-
sue in formal understandings of program logics [27, 25, 15]. For example, Nipkow [25]
adapts auxiliary variables in the rule of consequence, which allows him to adapt them
also when accessing method specifications from contexts. In addition to admitting such
an adaptation using universal quantification in the definition of method specifications
(see the discussion in the previous section), our rules also allow differences in syntactic
components, the method arguments.

In order to show ADAPTS sound, we first prove

Lemma 4 If Γ |= ST and (c.m(a),ST(c,m,a)) ∈ Γ then

Γ\ (c.m(a),ST(c,m,a))� c.m(b) : ST(c,m,b).

using rule VCUT. The conclusion in this lemma already involves method arguments, b,
that may be different from the arguments used in the context, a. From this, rule ADAPTS
follows by repeated application of Lemma 3. The proof of rule ADAPTV is similar.

4.6. Completeness

The soundness of a program logic ensures that derivable judgements assert valid state-
ments with respect to the operational semantics. Soundness is thus paramount to a trust-
worthy proof-carrying code system. In contrast, completeness of program logics has hith-
erto been mostly of meta-theoretic interest. For the intended use as the basis of MRG’s
hierarchy of program logics, however, this meta-theoretic motivation is complemented
by a pragmatic motivation. The intention of encoding (possibly yet unknown) high-level
type systems as systems of derived assertions requires that any property that (for a given
notion of validity) holds for the operational semantics be indeed provable. Partially, this
requirement concerns the expressiveness of the assertion language, which, thanks to our
choice of shallow embedding, is guaranteed, as any HOL-definable predicate may occur
in assertions. On the other hand, the usage of a logically incomplete ambient logic such
as HOL renders the program logic immediately incomplete itself, via the rule of con-
sequence. The by now accepted idea of relative completeness [7] proposes to separate
reasoning about the program logic from issues regarding the logical language. In partic-
ular, the side condition of rule VCONSEQ only needs to hold in the meta-logic, instead
of being required to be provable. Since Kleymann’s work [15], it is customary to follow
this suggestion for shallow embeddings of program logics in theorem provers.

In our setting, the role of most general formulae, originally introduced by Gore-
lick [9] to prove completeness of recursive programs, is played by strongest specifica-
tions. These are those assertions that are satisfied exactly for the tuples of the operational
semantics.

15

Definition 7 (Strongest specification) The strongest specification for e is defined by

SSpec(e)≡ λE hh′ v p.E ` h,e ⇓ h′,v, p.

It is immediate that strongest specifications are valid

|= e : SSpec(e)

and imply all other valid specifications:

If |= e : A and SSpec(e) E h h′ v p then A E h h′ v p. (1)

The context Γstrong associates to each function label and each method declaration in
the global program P its strongest specification

Γstrong ≡ {(e,SSpec(e)) | ∃ f .e = call f ∨ ∃cma.e = c.m(a) ∨ ∃xma.e = x ·m(a)}

By induction on e, we prove

Lemma 5 For any e, we have Γstrong � e : SSpec(e).

This result can be used to show that Γstrong respects the strongest specification table,

STstrong ≡ (λ f . SSpec(call f),λ c m a. SSpec(c.m(a)),λ x m a. SSpec(x ·m(a))).

Lemma 6 We have Γstrong |= STstrong.

The proof of this lemma proceeds by unfolding the definitions, using Lemma 5 in the
claims for function calls and method invocations.

Next, we prove that

Γstrong |= ST implies /0� e : SSpec(e) (2)

for arbitrary specification table ST , by applying rule VCTXT, where the first premise
is discharged by Lemma 5 (i.e. Γ is instantiated to Γstrong) and the second premise is
discharged by rule MUTREC.

Combining property (2) and Lemma 6 yields /0� e : SSpec(e), from which

Theorem 2 (Completeness) For any e and A, |= e : A implies /0� e : A.

follows by rule VCONSEQ and property (1).

4.7. Verification examples

The following examples show how to use the argument adaptation rules for method in-
vocations, and how to specify and verify properties of resource consumption. We first
outline our verification strategy.

Given a specification table ST , the verification of methods proceeds in groups of
strongly connected components (SCCs) in the call graph, in topological order (callers

16

method LIST LIST.append(l1, l2) = call f
f 7→ let v3 = l1.TAG in

let b=prim (λ z y. if z = 2 then true else false) v3 v3 in
if b then var l2 else call f1

f1 7→ let v3 = l1.HD in let v2 = l1.TL in
let l1 =LIST.append([var v2,var l2]) in let tg=imm 3 in
new LIST [TAG := tg,HD := v3;TL := l1]

Figure 5. Code of method append

after callees). For simplicity, suppose for the moment that we have only static methods.
When verifying SCC N, all methods c.m invoked in the bodies of methods in N are either
in the same SCC, or are members of a smaller SCC and have already been verified, i.e.

∀a. /0� c.m(a) : ST(c,m,a) (3)

has already been established. Supposing that N contains methods c1.m1, . . . ,cn.mn with
bodies e1, . . . ,en, respectively, the verification of N proceeds in three stages. First, we
define a context ΓN that contains

• at least all entries (c.m(a),ST(c,m,a)) where c.m(a) occurs in at least one body
ei, and c.m is not in any SCC M < N, and

• at least one entry (ci.mi(ai),ST(ci,mi,ai)) for each i ∈ {1, . . . ,n}, where the ai are
distinct meta-variables.

Second, for each pair (c,m) for which there exists an a with (c.m(a),ST(c,m,a)) ∈ ΓN ,
we prove the lemma

∀b. ΓN �bodyc,m : Φ(ST(c,m,b),c,m,b).

In the proofs of these lemmas, all invocations of methods in N are verified using rule
VAX, and all remaining method invocations are verified from (3) using VWEAK. Together,
these lemmas yield a verification of ΓN |= ST in which each method body has been
verified only once.

In the third stage, from ΓN |= ST we obtain

∀a. /0� ci.mi(a) : ST(ci,mi,a)

by rule ADAPTS for all i, and SCC N has been verified.

4.7.1. Append

Our first example is for the method LIST.append shown in Figure 5. The property we
will prove is given in the specification table entry

ST(LIST,append,a) = λE hh′ v p.

∀ Y n m.

(
∃ X x y. a = [var x,var y]∧h |=list(n,X) E〈x〉 ∧

h |=list(m,Y) E〈y〉 ∧ X ∩Y = /0

)
−→

(∃ Z. h′ |=list(n+m,Z) v ∧ Z∩dom(h) = Y ∧ h =dom(h) h′).

17

which asserts that the result v represents a list of length n+m in the final heap, provided
that the arguments represent non-overlapping lists of length n and m in the initial heap,
respectively.

The datatype representation predicate h |=list(n,X) v is defined by the rules:

h(l) = LIST h(l).TAG = 2
h |=list(0,{l}) Ref l

h(l) = LIST l /∈ X
h(l).TAG 6= 2 h |=list(n,X) h(l).TL

h |=list(n+1,X∪{l}) Ref l
.

This predicate captures that the heap h contains a well laid-out (non-overlapping) list
of length n beginning at location value v = Ref l, and occupying locations X . Predicates
such as this are generated from high-level datatype definitions which are translated into
class and field structures for representation on the virtual machine.

The program proceeds by induction on the first argument, and allocates fresh mem-
ory when constructing the result. The region inhabited by the result, Z, thus overlaps with
the region Y of the second argument, but not the region X of the first argument. Further-
more, the content of all locations in dom(h) remains unchanged (equality h =dom(h) h′).
By universally quantifying over arguments x and y, the property is uniform in the choice
of argument names.

We verify that

∀a. /0�LIST.append(a) : ST(LIST,append,a) (4)

holds following the strategy outlined above.
In the first step, the smallest context Γappend satisfying the conditions for append’s

SCC is the singleton context

Γappend = {(LIST.append([var v2,var l2]),ST(LIST,append, [var v2,var l2]))},

since the only invocation in the body of append is LIST.append([var v2,var l2]). The
second step consists of proving the lemma

∀b. Γappend �bodyLIST,append : Φ(ST(LIST,append,b),LIST,append,b), (5)

by applying the syntax-directed proof rules automatically and using rule VAX at the in-
vocation of LIST.append([var v2,var l2]). The two remaining side conditions (one for
each branch) may be discharged by case analysis on the data type representation predi-
cate, instantiating quantifiers, and applying datatype preservation results such as

(h |=list(n,X) v∧h =X h′)−→ h′ |=list(n,X) v

which are themselves proven by induction on h |=list(n,X) v. The proof that the side con-
ditions are fulfilled is thus, in general, difficult to automate.

From the lemma (5) we obtain immediately Γappend |= ST , so the correctness state-
ment (4) follows using rule ADAPTS.

Although statement (4) proves the correctness of LIST.append(a) for arbitrary a,
the definition of ST(LIST,append,a) implies that useful assertions only arise for cases
where a is an argument list of length two. In other cases, the formula to the left of the

18

implication is false, resulting in the trivial assertion λE hh′ v p. true that is fulfilled by
any program but hardly useful at any point at which append is invoked.

The specification of append may be refined to include quantitative aspects. For
example, we can verify that all four metrics that make up R Count depend linearly on
the length of the list represented by the first argument. First, we define linear factors
AppTimeF, . . . ,AppHeapF and constants AppTimeC, . . . ,AppHeapC.

AppTimeF 35 AppTimeC 14
AppCallF 2 AppCallC 1
AppInvF 1 AppInvC 1

AppStackF 1 AppStackC 1
AppHeapF 1 AppHeapC 0

Next, we modify the above specification table entry to include a specification of the
resource component and a term relating the size of the final heap to that of the initial
heap.

ST(LIST,append,a) = λE hh′ v p.

∀ Y n m.

(
∃ X x y. a = [var x,var y]∧h |=list(n,X) E〈x〉 ∧

h |=list(m,Y) E〈y〉 ∧ X ∩Y = /0

)
−→

∃ Z. h′ |=list(n+m,Z) v ∧ Z∩dom(h) = Y ∧ h =dom(h) h′ ∧
p = 〈 (AppTimeF ∗n+AppTimeC)

(AppCallF ∗n+AppCallC)
(AppInvF ∗n+AppInvC)

(AppStackF ∗n+AppStackC) 〉 ∧
|dom(h′)|= |dom(h)|+AppHeapF ∗n+AppHeapC

Finally, the verification of

∀a. /0�LIST.append(a) : ST(LIST,append,a)

with respect to this modified specification is structurally identical to the proof of property
(4).

4.7.2. Flatten

To continue with another example program emitted by the Camelot compiler, Figure 6
shows the definition of a method that flattens a tree into a list.

Again, we define a specification table entry for flatten,

ST(TREE,flatten,a) = λE hh′ v p.
∀ n x. (∃ X . a = [var x] ∧ h |=tree(n,X) E〈x〉)−→

(∃ Z. h′ |=list(2n,Z) v ∧ Z∩dom(h) = /0 ∧ h =dom(h) h′)

which universally quantifies over the argument name x. It asserts that the result v rep-
resents a list of length 2n in the final heap, provided that the argument represents a bal-
anced binary tree of height n in the initial heap. Moreover, the region inhabited by the
result, Z, does not overlap with h (i.e. the list is represented in freshly allocated memory),
and the content of all locations in dom(h) remains unchanged. The datatype representa-

19

method LIST TREE.flatten(t) = call f

f 7→ let v4 = t.TAG in
let b= iszero v4 in
if b then call f0 else call f1

f0 7→ let v4 = t.CONT in let tg=imm 2 in
let t=new LIST [TAG := tg] in let tg=imm 3 in
new LIST [TAG := tg;HD := v4;TL := t]

f1 7→ let v3 = t.LEFT in let v2 = t.RIGHT in let v1 =TREE.flatten(var v3) in
let t=TREE.flatten(var v2) in LIST.append([var v1,var t])

Figure 6. Code of method flatten

tion predicate h |=tree(n,X) v is defined in a similar way as the list predicate h |=list(n,X) v,
namely:

h(l) = TREE h(l).TAG = 0
h |=tree(0,{l}) Ref l

h(l) = TREE l /∈ L∪R
h(l).TAG 6= 0 h |=tree(n,L) h(l).LEFT
L∩R = /0 h |=tree(n,R) h(l).RIGHT

h |=tree(n+1,L∪R∪{l}) Ref l

Once more, following the prescribed verification strategy, we prove

∀a. /0�TREE.flatten(a) : ST(TREE,flatten,a). (6)

Building on the verification of append, the context defined in the first step may be chosen
as

Γflatten =
{

(TREE.flatten([var v2]),ST(TREE,flatten, [var v2])),
(TREE.flatten([var v3]),ST(TREE,flatten, [var v3]))

}
.

In the verification of

∀b. Γflatten �bodyTREE,flatten : Φ(ST(TREE,flatten,b),TREE,flatten,b), (7)

the two invocations of flatten are discharged by rule VAX, while the invocation of append
is discharged by appealing to property (4) using VWEAK. Once more, the proofs of the
side conditions involve case analysis on the datatype representation predicates, the in-
stantiation of quantifiers, and the application of datatype preservation lemmas for trees
and lists. The preconditions of the latter are satisfied thanks to the separation conditions
in the specifications of append and flatten.

Similarly to the verification of append, we obtain Γflatten |= ST from the result (7),
and the correctness of flatten, i.e property (6), follows using rule ADAPTS. As before,
the specification of flatten is non-trivial for argument lists of the right shape, in this case
argument lists of length one.

To verify resource consumption for this method, we observe that the costs of flatten
depend on those of append, plus the costs of two recursive invocations of flatten on
subtrees. The resulting recurrence may expressed for the four additive metrics by:

20

FlTime n = FlCost AppTimeF AppTimeC 38 22 n

FlCall n = FlCost AppCallF AppCallC 2 2 n

FlInv n = FlCost AppInvF AppInvC 1 1 n

FlHeap n = FlCost AppHeapF AppHeapC 2 0 n

where the function FlCost : N → N → N → N → N → N is defined by

FlCost appF appC base step 0 = base

FlCost appF appC base step (Suc n) = step + appF ∗ (2n) + appC

+ 2∗ (FlCost appF appC base step n),

and the recurrence equation for the frame stack height is given by

FlStack 0 = 1

FlStack (Suc n) = 1 + max(FlStack n,2n +1).

The verification of the extended specification

ST(TREE,flatten,a) = λE hh′ v p.
∀ n x. (∃ X . a = [var x] ∧ h |=tree(n,X) E〈x〉)−→(∃ Z. h′ |=list(2n,Z) v ∧ Z∩dom(h) = /0 ∧ h =dom(h) h′ ∧

p = 〈(FlTime n) (FlCall n) (FlInv n) (FlStack n)〉 ∧
|dom(h′)|= |dom(h)|+FlHeap n

)

again proceeds following the same structure as for the simpler specification (6). As ex-
pected, unfolding the recurrence equations leads to functions of exponential growth,
since the index n in the predicate h |=tree(n,X) v denotes the height of the tree.

4.8. Termination

So far the program logic developed for Grail has been a logic for partial correctness. This
simplifies the development of our core logic. In order to deal with termination, we de-
velop a separate program logic, with the judgement �T{P} e ↓, to be read as “expression
e terminates under pre-condition P.” More formally,

∀ E h.P E h −→ ∃h′ v p. E ` h,e ⇓ h′,v, p

In formalising the concept of a pre-condition, we adopt the same approach as in
the core logic and use a shallow embedding. Thus, pre-conditions are predicates over
environments and heaps in the meta-logic and have the type P ≡ E → H → B .

Since this termination logic is put on top of the existing partial correctness logic,
we can use judgements of the latter in the side conditions of the former. In particular,
the let rule uses such a side condition to relate the pre-condition of the let with the pre-
condition needed for the let-body. The main complication in this logic is the requirement
of a measure to prove termination of function and method calls. This adds complexity
to these two rules, which would be present in the core logic already, had we chosen to

21

come up with a total correctness logic to start with. For concrete examples of proving
termination, finding an appropriate measure remains the main step.

The resulting termination logic has been formalised in Isabelle and been proven
sound and complete. Thus it can be used as the basis for proving termination of general
JVM code. However, we have not developed derived assertions for this logic, yet. We do
not elaborate on the details of the termination logic here and refer the interested reader
to [3].

5. From Type Systems to Program Logic

In this section we discuss how to map a high-level type system, which encodes informa-
tion on resource consumption, down to a specialised program logic, which facilitates the
process of independently proving given resource bounds.

5.1. The General Approach

A type system for a programming language defines a subset of all possible programs,
which are in some sense “well behaved”. The idea is to constrain the set of acceptable
programs in such a way, that set membership can be tested efficiently by a type checking,
or even better a type inference algorithm. Once a program passes type checking, the
programmer can be sure that the program is “well behaved” and therefore does not need
to consider bugs that might be due to ill-typed programs. This idea is often paraphrased
as well-typed programs don’t go wrong.

In general we can state this property as follows: if a program term t is well-typed,
i.e. belongs to the set of well-typed programs, the compiled code ptq will adhere to the
safety policy Φ defined by the type system:

t ∈ T =⇒ ptq � Φ

Examples for modern type systems that define interesting safety policies are:

• Absence of security violations [1, 28]
• Bounds on memory usage [8, 12]
• Absence of (unwanted) aliasing [13]
• Asymptotic bounds on runtime [20, 17]

The classical approach to proving correctness of such a type system is to extend
the type system to configurations of a small step operational semantics, e.g. heaps and
environments and then to prove that a) well-typed configurations are closed under the
reduction rules of the semantics, b) no “wrong” (under the purported safety policy) con-
figuration admits a typing.

An alternative approach consists of proving the soundness of the type system directly
by induction on the typing rules. This often requires an extension of the purported safety
policy, corresponding to a strengthening of the inductive hypothesis.

Usually, such developments are carried out on paper and therefore prone to glossing
over some technicalities. The inference system itself will then be hardcoded into the
compiler. This adds both the type system itself and its implementation in the compiler to
the trusted code base (TCB) of the system, which the consumer of mobile code has to

22

implicitly trust. This problem can be tackled by encoding the entire soundness proof of
the type system in a theorem prover. However, this is considerable effort and still leaves
the type system in the TCB.

A related problem is that the typing rules become increasingly complicated when ex-
pressing interesting properties. Hence, the soundness proof is far from obvious and even
given the soundness proof there is a considerable danger of bugs in the implementation
of the type inference process. This makes the size of the TCB an important issue in the
design of a PCC system.

Another problem when using high-level type systems to realise a PCC infrastructure
is that certificate checking, i.e. proving properties of the program, is done on the object
code level, rather than the high level of the type system, where none of the high level
program structure is present any more. Thus, typically a complete proof has to be used
as the certificate for a particular piece of code. This yields very large certificates, despite
various efforts in compressing proofs [4] or using techniques such as oracle strings to
just record the inference path [23].

Finally, several different type systems might be developed to describe different re-
sources, or properties, of the code. Combining these type systems would be very useful,
but difficult, since they are usually not very modular. A common language as the basis
for all these type systems would therefore be desirable.

In addressing these issues, we do not take the classical approach of hand-crafting a
type system and then formalising the entire soundness proof to obtain security. Instead
we define for each type τ and context Γ a derived assertion D(Γ,τ), which expresses the
property of interest on the level of the program logic. This derived assertions must be
related to the compilation p·q of a program term t as follows

Γ ` t : τ =⇒ ptq : D(Γ,τ)

We then can prove once and for all the soundness of derived rules for this form of
assertions. To simplify reasoning with these derived rules they should be mainly syntax-
directed, with simple side conditions, that can be easily checked. Most of the difficult
reasoning is done in the soundness proof already, which can also be done in an automated
theorem prover to improve the trust in the system. We remark that the derived rules
roughly correspond to the cases in a proof of type soundness by induction on typing rules
(the second approach to correctness of a type system described above).

In our approach the program logic on bytecode level (or “bytecode logic”) becomes
the assembler language for formal correctness. Types in the high-level language are
compiled into assertions for this program logic, and thus retain some information on the
structure of the high-level code. With such a bytecode logic, there is no need to trust the
type system itself, since any property derived via the type system is proven on the level
of the logic. This follows the spirit of the foundational PCC [2] approach, that aims to
minimise the trusted code base. On a more general issue, this program logic can serve
as the basis for combining different type systems, which are all compiled down to this
logic.

As a very simple example, assume a Camelot function that takes a list as input and
produces a list as output: List α −→ List α. To encode traditional type-correctness for
this language we translate the type into the following specification for f (x):

λ E h h′ v p.h �list E〈x〉=⇒ h′ �list v

23

As before the predicate h �list v asserts that v points to a linked list in heap h.
To prove this property several approaches have been taken in the literature. One

could directly encode the logic into a theorem prover and perform the proof for this par-
ticular property using these rules [21]. However, for many interesting properties a proof
on this level becomes very complicated even with small programs. In particular, the side
conditions often talk about relationships between entire heaps, that need to be suitably
instantiated. Another classical approach is to first collect all verification conditions (VCs)
falling out of the rules of the program logic and then to pass it to (a maybe specialised)
prover to solve these conditions. Again, depending on the complexity of the underlying
program logic these VCs may be very complex, beyond the scope of what a prover can
automatically solve. At the other extreme of using automated proving tools, one could
formalise the entire proof of type soundness in a prover, and then instantiate it for the
particular example by hand.

Our approach lies between these extremes, in choosing a specialised logic, built on
top of derived assertions. Using the format mentioned above, we define rules for this
particular format without ever unfolding its definition. The resulting rules are largely
syntax-directed and the side-conditions are much simpler than in the general program
logic. Once the soundness of these rules have been proven, most of the complexity of the
proof is hidden behind this new specialised logic.

Continuing with our list example, we can define derived assertions as follows:

D(x : List α,y : List α,List α) ≡ λ E h h′ v p.
h �list E〈x〉∧h �list E〈y〉=⇒
h′ �list E〈x〉∧h′ �list E〈y〉∧h′ �list v

Now, we can define rules for the image of compiling high-level constructs such as cons
down to bytecode:

pe1q : D(Γ,α) pe2q : D(Γ,List α)
pcons(e1,e2)q : D(Γ,List α)

Here pcons(e1,e2)q is the code snippet produced by the compiler as the result of the high-
level construct cons(e1,e2). Of course, altering the compiler, if only slightly, requires
us to redo the proof of this rule. However, for any given program it can be applied in a
syntax-directed fashion without having to do much logical reasoning.

5.2. Extended Example: The Cachera-Jensen Analysis

Cachera, Jensen, Pichardie, and Schneider [6] have developed the entire meta-theoretic
correctness proof for a simple program analysis in the Coq theorem prover. We will use
the same analysis as an extended example illustrating the method of derived assertions.

The analysis guarantees a bounded (independent of input) heap consumption by
showing that no cycle in the control flow graph contains a memory allocation. Accord-
ingly, memory allocations can only happen a fixed number of times.

We use a first-order fragment of Camelot [19], with lists as the only composed data-
type and expressions in let-normal-form meaning arguments to functions must be vari-
ables (k are constants, x variables, f function names):

24

e ∈ expr ::=k | x | nil | cons(x1,x2) | f (x1, . . . ,xn f) | let x=e1 in e2
| match x with nil⇒ e1;cons(x1,x2)⇒ e2

First, to be amenable to our method, the program analysis must be translated into a type
system. We define such a type system as follows (Σ(f) is a type signature mapping
function names to N):

`H e : n n ≤ m
`H e : m

(WEAK)
`H k : 0

(CONST)
`H x : 0

(VAR)

`H f (x1, . . . ,xn f) : Σ(f)
(APP)

`H nil : 0
(NIL)

`H cons(x1,x2) : 1
(CONS)

`H e1 : m `H e2 : n
`H let x=e1 in e2 : m+n

(LET)

`H e1 : n `H e2 : n
`H match x with nil⇒ e1;cons(x1,x2)⇒ e2 : n

(MATCH)

To give a relationship with the Jensen-Cachera analysis let us say that a function
is recursive if it can be found on a cycle in the call graph. Let us say, that a function
allocates if its body contains an allocation, i.e., a subexpression of the form cons(x1,x2).
One can show that a program is typeable iff no recursive function allocates and that
moreover in this case the type of a function bounds the number of allocations it can make.
In order to establish correctness of the type system and, more importantly, to enable
generation of certificates as proofs in our program logic, we will now develop a derived
assertion and a set of syntax-directed proof rules for it that mimic our typing rules and
permit the automatic translation of any typing derivation into a valid proof.

Recall that Γ � e : A is a judgement of the core logic, and that A is parameterised
over variable environment, pre- and post-heap (see [3] for more details on encoding
program logics for these kinds of languages).

Based on this logic, we can now define a derived assertion, which captures the fact
that the heap h′ after the execution is at most n units larger than the heap h before execu-
tion2: D(n)≡ λE h h′ v p. |dom(h′) |≤|dom(h) |+n. We can now write derived rules of
the canonical form �e : De(n) to arrive at a program logic for heap consumption:

�e : D(n) n ≤ m
�e : D(m)

(DWEAK)

�k : D(0)
(DCONST)

�x : D(0)
(DVAR)

� f (x1, . . . ,xn f) : Σ(f)
(DAPP)

�nil : D(0)
(DNIL)

�cons(x1,x2) : D(1)
(DCONS)

2We do not model garbage collection here, so the size of the heap always increases.

25

�e1 : D(m) � e2 : D(n)
�let x=e1 in e2 : D(m+n)

(DLET)

�e1 : D(n) � e2 : D(n)
�match x with nil⇒ e1;cons(x1,x2)⇒ e2 : D(n)

(DMATCH)

All these proof rules for derived assertions have been formalised and proven in Is-
abelle.

We can now automatically construct a proof of bounded heap consumption, by re-
playing the type derivation for the high-level type system `H , and using the correspond-
ing rules in the derived logic. The side-conditions coming out of this proof will be only
the inequality side-conditions used in the derived logic. No reasoning about the heaps is
necessary at all at this level; this has been covered already in the soundness proof of the
derived logic w.r.t. the core program logic.

5.3. Beyond Cachera-Jensen

The destructive pattern match of Camelot allows one to replenish the freelist and thus to
make an unbounded number of allocations yet get by with a bounded total heap size.

We can generalise our type system to encompass this situation by assigning a type of
the form Σ(f) = (m,n) with m,n ∈ N to functions and, correspondingly, a typing judge-
ment of the format `Σ e : (m,n). The corresponding derived assertion D(m,n) asserting
that if in the pre-heap the static field FL points to a freelist of length greater or equal to
m then the static field FL points to a freelist of length greater or equal n in the post heap.
Moreover, the size of the post-heap equals the size of the pre-heap.

Of course, we assume now that allocations are fed from the freelist, that is part of
the heap, as long as that freelist is nonempty. If we know that, say, e : (5,3) then we can
execute e after filling the freelist with 5 freshly allocated cells.

The typing rules for this extended system are as follows; corresponding derived rules
are provable in the program logic.

`H e : (m,n) m′ ≥ m+q n′ ≤ n+q
`H e : (m′,n′)

(WEAK)

`H k : (0,0)
(CONST)

`H x : (0,0)
(VAR)

`H f (x1, . . . ,xn f) : Σ(f)
(APP)

`H nil : (0,0)
(NIL)

`H cons(x1,x2) : (1,0)
(CONS)

`H e1 : (m,n) `H e2 : (n,k)
`H let x=e1 in e2 : (m,k)

(LET)

`H e1 : (m,n) `H e2 : (m+1,n)
`H match x with nil⇒ e1;cons(x1,x2)@ ⇒ e2 : (m,n)

(MATCH)

Notice that this type system does not prevent deallocation of live cells. Doing so
would compromise functional correctness of the code but not the validity of the derived
assertions that merely speak about freelist size.

26

In [5] we extend the type system even further by allowing for input-dependent freelist
size using an amortised approach. Here it is crucial to rule out “rogue programs” that
deallocate live data. There are a number of type systems capable of doing precisely that;
among them we choose the admittedly rather restrictive linear typing that requires single
use of each variable.

To obtain working experience with our PCC infrastructure and the program
logics, a small set of exercises has been made available online and is available
at: http://lionel.tcs.ifi.lmu.de/mrg/pcc4/exercises.html. The software re-
quired for running the exercises can be downloaded from the following address:
http://groups.inf.ed.ac.uk/mrg/camelot/programs/MRG-infra-0805.tgz.

References

[1] M. Abadi. Logic in Access Control. In Proceedings of the Eighteenth Annual IEEE
Symposium on Logic in Computer Science (LICS03), pages 228–233, 2003.

[2] A.W. Appel. Foundational proof-carrying code. In LICS’01 — 16th Annual IEEE
Symposium on Logic in Computer Science, pages 247–258. IEEE Computer Soci-
ety, June 2001.

[3] D. Aspinall, L. Beringer, M. Hofmann, H-W. Loidl, and A. Momigliano. A Program
Logic for Resources. Theoretical Computer Science, July 2005. Submitted.

[4] S. Berghofer and T. Nipkow. Proof Terms for Simply Typed Higher Order Logic.
In TPHOL’02 — Theorem Proving in Higher Order Logics, volume 1869 of LNCS,
pages 38–52. Springer-Verlag, 2000.

[5] L. Beringer, M. Hofmann, A. Momigliano, and O. Shkaravska. Automatic Certifi-
cation of Heap Consumption. In Andrei Voronkov Franz Baader, editor, LPAR 2004
— Logic for Programming, Artificial Intelligence, and Reasoning, volume 3452 of
LNCS, pages 347–362, Montevideo, Uruguay, March 14–18, Feb 2005. Springer.

[6] D. Cachera, T. Jensen, D. Pichardie, and G. Schneider. Certified Memory Usage
Analysis. In FM’05 — Intl Symp on Formal Methods, LNCS, pages 91–106, New-
castle, UK, July 18–22, 2005. Springer.

[7] S. A. Cook. Soundness and completeness of an axiom system for program verifi-
cation. SIAM J. Comput., 7(1):70–90, 1978. see Corrigendum in SIAM J. Comput.
10, 612.

[8] K. Crary and S. Weirich. Resource Bound Certification. In POPL’00 — Symposium
on Principles of Programming Languages, Boston, MA, USA, Jan 19–21, 2000.

[9] G. A. Gorelick. A complete axiomatic system for proving assertions about recursive
and non-recursive programs. Technical Report 75, University of Toronto, 1975.

[10] C. Hankin and D. Le Métayer. A Type-based Framework for Program Analysis. In
B. Le Charlier, editor, SAS’94 — Static Analysis Symposium, volume 864 of LNCS,
pages 380–394, Namur, Belgium, September 1994. Springer-Verlag.

[11] C.A.R. Hoare. An Axiomatic Basis for Computer Programming. Communications
of the ACM, 12(10):576–580, 1969.

[12] M. Hofmann and S. Jost. Static Prediction of Heap Space Usage for First-Order
Functional Programs. In POPL’03 — Symposium on Principles of Programming
Languages, pages 185–197, New Orleans, LA, USA, January 2003. ACM Press.

27

[13] A. Igarashi and N. Kobayashi. Resource Usage Analysis. In POPL’02 — Sym-
posium on Principles of Programming Languages, pages 331–342, January 2002.
Expanded version to appear in ACM TOPLAS.

[14] C. Jones. Systematic Software Development Using VDM. Prentice Hall, 1990.
[15] T. Kleymann. Hoare Logic and VDM: Machine-Checked Soundness and Complete-

ness Proofs. PhD thesis, LFCS, University of Edinburgh, 1999.
[16] T-M. Kuo and P. Mishra. Strictness Analysis: a New Perspective Based on Type

Inference. In FPCA’89 — Conference on Functional Programming Languages and
Computer Architecture, pages 260–272, Imperial College, London, UK, September
11–13, 1989. ACM Press.

[17] D. Leivant. Implicit Computational Complexity for Higher Type Functionals. In
CSL, volume 2471 of LNCS, pages 367–381. Springer, 2002.

[18] X. Leroy. Bytecode Verification for Java Smart Cards. Software Practice and Ex-
perience, 32(4):319–340, April 2002.

[19] K. MacKenzie and N. Wolverson. Camelot and Grail: resource-aware functional
programming on the jvm. In Trends in Functional Programing, volume 4, pages
29–46. Intellect, 2004.

[20] J-Y. Marion. Analysing the implicit complexity of programs. Information and
Computation, 183(1):2–18, 2003.

[21] J. Strother Moore. Inductive assertions and operational semantics. In CHARME’03
— Correct Hardware Design and Verification Methods, volume 2860 of LNCS,
pages 289–303, L’Aquila, Italy, Oct 21–24, 2003. Springer.

[22] G.C. Necula. Proof-carrying Code. In POPL’97 — Symposium on Principles of
Programming Languages, pages 106–116, Paris, France, Jan 15–17, 1997.

[23] G.C. Necula. Logical Aspects of Secure Computer Systems, chapter Proof-Carrying
Code. IOS Press, 2005.

[24] F. Nielson, H.R. Nielson, and C. Hankin. Principles of Program Analysis. Springer-
Verlag, 2005. ISBN 3-540-65410-0.

[25] T. Nipkow. Hoare logics in Isabelle/HOL. In H. Schwichtenberg and R. Stein-
brüggen, editors, Proof and System-Reliability, pages 341–367. Kluwer, 2002.

[26] B.C. Pierce, editor. Advanced Topics in Types and Programming Languages. MIT
Press, 2005.

[27] C. Pierik and F.S. de Boer. Modularity and the Rule of Adaptation. In C. Rattray,
S. Maharaj, and C. Shankland, editors, AMAST, volume 3116 of LNCS, pages 394–
408. Springer, 2004.

[28] D. Walker. A Type System for Expressive Security Policies. In POPL’00 — Sym-
posium on Principles of Programming Languages, pages 254–267, Boston, MA,
USA, Jan 19–21, January 2000.

28

