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Abstract. SymGrid-Par is a new framework for executing large com-
puter algebra problems on computational Grids. We present the design
of SymGrid-Par, which supports multiple computer algebra packages,
and hence provides the novel possibility of composing a system using
components from different packages. Orchestration of the components
on the Grid is provided by a Grid-enabled parallel Haskell (GpH). We
present a prototype implementation of a core component of SymGrid-
Par, together with promising measurements of two programs on a mod-
est Grid to demonstrate the feasibility of our approach.

1 Introduction

This paper considers the design of high-performance parallel computational al-
gebra systems targeting computational Grids, undertaken as part of the Euro-
pean Union Framework VI grant RII3-CT-2005-026133 (SCIEnce). Parallelis-
ing computational algebra problems is challenging since they frequently possess
highly-irregular data- and computational-structures. We describe early stages
of work on the SymGrid system that will ultimately Grid-enable a range of
important computational algebra systems, including at least Maple [12], Mu-
Pad [21], Kant [16] and GAP [18]. The SymGrid system comprises two dis-
tinct parts: SymGrid-Services allows symbolic computations to access, and
to be offered as, Grid services; conversely, SymGrid-Par enables the parallel
execution of large symbolic computations on computational Grids. This paper
focuses on SymGrid-Par. While there are some parallel symbolic systems that
are suitable for either shared-memory or distributed memory parallel systems
(e.g. [13,11,15,19,5]), work on Grid-based symbolic systems is still nascent, and
our work is therefore highly novel, notably in aiming to allow the construction
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of heterogeneous computations, combining components from different computa-
tional algebra systems. In this paper, we introduce the design of SymGrid-Par
(Section 2); outline a prototype implementation (Section 3) and present some
preliminary results to demonstrate the realisability of our approach (Section 4).
In particular, we demonstrate the integration of GRID-GUM with one important
computational algebra system, the GAP system for programming with groups
and permutations, and show that we can exploit parallelism within a single Grid-
enabled cluster. This represents the first step towards a general heterogeneous
framework for symbolic computing on the Grid that will eventually allow the
orchestration of complete symbolic applications from mixed components written
using different computational algebra systems, running on a variety of computer
architectures in a geographically dispersed setting, and accessing distributed
data and other resources.

2 The SymGrid-Par Middleware Design

Computational algebra has played an important role in notable mathematical
developments, for example in the classification of Finite Simple Groups. It is
essential in several areas of mathematics which apply to computer science, such
as formal languages, coding theory, or cryptography. Applications are typically
characterised by complex and expensive computations that would benefit from
parallel computation, but which may exhibit a high degree of irregularity in
terms of both data- and computational structures. In order to provide proper
support for high-performance symbolic computing applications, we therefore use
a multi-level approach where parallelism may be exploited within a local cluster
(or, indeed, within a single multiprocessor/multicore system), and where indi-
vidual clusters may then be marshalled into a larger heterogeneous system. In
order to allow adequate flexibility, we also provide support for dynamic task allo-
cation, rebalancing and migration. Although we will not discuss it in this paper,
our design also allows us to exploit the availability of specific Grid resources,
which may not be distributed across the entire computational Grid.

The SymGrid-Par middleware is built on the GRID-GUM [8] Grid-enabled
implementation of Glasgow Parallel Haskell (GpH) [25], a well-established semi-
implicitly parallel extension to the standard Glasgow Haskell Compiler. GpH

provides various high-level parallelism services including support for ultra-light-
weight threads, virtual shared-memory management, scheduling support, auto-
matic thread placement, automatic datatype-specific marshalling/unmarshalling,
implicit communication, load-based thread throttling, and thread migration. It
thus provides a flexible, adaptive environment for managing parallelism at vari-
ous degrees of granularity, and has therefore been ported to a variety of shared-
memory and distributed-memory systems. GRID-GUM replaces the MPI-based
low-level communication library in GpH with MPICH-G2, which integrates
with standard Globus Toolkit middleware.
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<OMOBJ> <OMA>

<OMS name=’’FuncName’’ cd=’’SomeCD’’ />

<OMV name=’’arg 1’’ />

<OMV name=’’argn N’’ />

</OMA>

</OMOBJ>

Fig. 2. GCA OpenMath Service Request

Our overall design is shown in Figure 1. SymGrid-Par comprises two in-
terfaces: CAG links computational algebra systems (CASs) to GpH; and GCA
conversely links GpH to these CASs. The purpose of the CAG/GCA interfaces
is to enable CASs to execute on computational Grids, e.g. on a loosely-coupled
collection of Grid-enabled clusters. This is achieved by calling from the CAS to
the Grid-enabled GpH middleware using CAG. This, in turn, calls CAS func-
tions on remote processing elements using GCA.

2.1 GCA Design

The purpose of the GCA interface is to allow CAS functions to be invoked
from GpH. In this way, GpH deals with issues of process creation/coordination,
and the CAS deals with the algebraic computations. GpH and the CAS run
as separate operating system processes, communicating through shared pipes.
Figure 3 shows the design of the GCA interface. Unidirectional pipes connect
each GRID-GUM process to the companion CAS process, as shown in Figure 4.
Objects that are communicated between the two systems are encoded using the
standard OpenMath [6] format for exchanging mathematical data (see Figure 2).

2.2 CAG Design

The CAG interface will support low-effort Grid programming by providing al-
gorithmic skeletons [14] that have been tailored to the needs of computational
Grids. Figure 5 shows the standard GAP functions that we believe can form the
basis for an initial set of skeletons (ParGAP [15] has also identified a similar
set of parallel operations). Here each argument to the pattern is separated by
an arrow (->), and may operate over lists of values ([..]), or pairs of values



620 A. Al Zain et al.

MPICH−G2

Processor A Processor B

Grid−GUM

KANT ....
GAP, Maple, 

GpH

GCA

Grid−GUM

KANT ....
GAP, Maple, 

GpH

GCA

CAS CAS

Fig. 3. GCA Interface

OM
Code/
Decode

OM
Code/
Decode

GCA CAS

GpH

OM Object
Input pipe carrying

OM Object
Output pipe carrying

Fig. 4. GCA Design

((..,..)). All of the patterns are polymorphic: a, b etc. stand for (possibly dif-
ferent) concrete types. The first argument in each case is a function of either
one or two arguments that is to be applied in parallel. For example, parMap
applies its function argument to each element of its second argument (a list) in
parallel, and parReduce will reduce its third argument (a list) by applying the
function between pairs of elements, ending with the value supplied as its second
argument.

3 The GCA Prototype

The GCA prototype (Figure 6) interfaces GpH with GAP, connecting to a
small interpreter that allows the invocation of arbitrary GAP functions, mar-
shalling/unmarshalling data as required. The interface consists of both C and
Haskell fragments. The C component is mainly used to invoke operating sys-
tem services that are needed to initiate the GAP process, to establish the pipes,
and to send and receive commands/results from GAP process. It also provides
support for static memory that can be used to maintain state between calls.

The functions GAPEval and GAPEvalN allow GpH programs to invoke GAP
functions by simply giving the function name and a list of its parameters as

parZipWith :: (a−>b−>c) −> 
     −> [a] −> [b] −> [c]

parReduce :: (a−>b−>b) −> 
     b −> [a] −> b

parMap :: (a−>b) −> [a] −> [b]

parMapReduce :: (a−>b−>b) −>
    (c−>[(d,a)]) −> c −> [(d,b)]

Fig. 5. CAG Functions

GAPExpr2String :: GAPObject −> String

String2GAPExpr :: String −> GAPObject

GAPEval :: String −> [GAPObject] −> GAPObject

GAPEvalN :: String −> [GAPObject] −> [GAPObject]

Fig. 6. GCA Prototype Functions
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smallGroupSearch :: Int −> Int −> Int −> 
         ((Int,Int) −> (Int,Int,Bool)) −> [(Int,Int)]
smallGroupSearch lo hi chunkSize pred = 
         concat (map (ifmatch pred) [lo..hi] ‘using‘ 
                 parListChunk chunkSize)

ifmatch :: ((Int,Int) −> (Int,Int,Bool)) −> Int −> [(Int,Int)]
ifmatch predSmallGroup n = [ (i,n) | (i,n,b) <− 
          ((map predSmallGroup [(i,n) | i <− 
            [1..nrSmallGroups n]]) ‘using‘ 
             parListBigChunk 10000), b]

predSmallGroup :: (Int,Int) −> (Int,Int,Bool)
predSmallGroup (i,n) = 
         (i,n,(gapObject2String (gapEval "IntAvgOrder"
          [int2GAPObject n, int2GAPObject i]))== "true")

nrSmallGroups :: Int −> Int
nrSmallGroups n = gapObject2Int (gapEval
                                 "NrSmallGroups" [int2GAPObject n])

Fig. 7. smallGroup Kernel
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Fig. 8. lift: Activity Profile for (parFib 62) on 4 PEs; right: Activity Profile for small-

Group (1-250) on 5 PEs

GAPObjects. The GAPEvalN function is used to invoke GAP functions return-
ing more than one object. Finally, String2GAPExpr and GAPExpr2String con-
vert GAP objects to/from our internal Haskell format.

4 Preliminary GCA Prototype Performance Results

We have measured the performance of our GCA Prototype using two simple pro-
grams: parFib, a parallel benchmark that is capable of introducing large quan-
tities of very fine-grained parallelism; and smallGroup, a group-algebra program
that exhibits highly-irregular data-parallelism. In both cases GpH uses GCA
to invoke the GAP engine to perform actual computations, dealing only with
the decomposition of the problem, marshalling etc. The kernel of the smallGroup

program is shown in Figure 7. Invocations of GAPEval can be clearly seen in
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predSmallGroup and nrSmallGroups, and the associated marshalling of argu-
ments and results is also clearly visible. Our experiments were performed on
a Beowulf-style cluster of workstations at Heriot-Watt University, where each
processing element (PE) is a 3GHz Celeron processor with 500kB cache, running
Linux Fedora Core-2. All PEs are connected through a 100Mb/s fast Ethernet
switch with a latency of 142μs, as measured under PVM 3.4.2. In the following
results, each runtime is shown as the median of three execution times.

For (parFib 62), the GCA prototype implementation delivers good parallel per-
formance on four processors, requiring 539s in the parallel case, as opposed to a
sequential time of 2, 559s (a superlinear speedup of 4.75, with average parallelism
of 4.0). Figure 3 (above) shows the corresponding GpH activity profile, where
time on the x-axis is plotted against the number of threads in various states,
e.g. running or blocked, on the y-axis. Note that the activity profiles record only
GpH computations, and do not expose activity in the underlying GAP process,
which may be lower or higher. The corresponding results for smallGroup show
that on five PEs, the computation of groups in the interval between 1 and 250
is completed in 37 seconds, compared with a sequential time of 144s, that is a
speedup of 3.9 at an average parallelism of 2.9. Figure 8 shows the corresponding
activity profile for the GpH component. In order to estimate overheads due to
parallelisation, we have also measured sequential times for this problem using
the standard GAP sytem. In this case, the problem was executed in 87s, that
is the cost of marshalling/unmarshalling data and context switching between
processes amounts to 66%. While this is a relatively high figure, we anticipate
that we should be able to reduce this cost by careful tuning of the GRID-GUM

runtime system. While these represent very early results for SymGrid-Par,
and we therefore now intend to explore performance both on larger numbers
of processors and on multiple clusters, and for larger-scale applications, it is
clear that real benefit can be obtained for computational algebra problems on a
clustered system without major rewriting of the computational algebra system.

5 Related Work

Significant research has been undertaken for specific parallel computational al-
gebra algorithms, notably term re-writing and Gröbner basis completion (e.g. [9,
10]). A number of one-off parallel programs have also been developed for specific
algebraic computations, mainly in representation theory [2]. There is, however,
little if any support for parallelism in the most widely-used CASs such as Maple,
Axiom or GAP. As research systems, Maple/Linda-Sugarbush [13] supports
sparse modular gcd and parallel bignum systems, with Maple/DSC [11] support-
ing sparse linear algebra, and ParGAP [15] supporting very coarse-grained com-
putation between multiple GAP processes. There have also been a few attempts
to link parallel functional programming languages with computer algebra sys-
tems, for example, the GHC-Maple interface [5]; or the Eden-Maple system [20].
None of these systems is in widespread use at present, however, and none sup-
ports the broad range of computational algebra applications we intend to target.
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Roch and Villard [23] provide a good general survey of work in the field as of 1997.
Even less work has so far been carried out to interface CASs to the Grid. While
a number of projects have considered the provision of CASs as Grid services, of-
ten extending existing web services frameworks, e.g. GENSS [3], GEMLCA [17],
Netsolve/GridSolve [7], Geodise [4], MathGridLink [24] or Maple2G [22], and sys-
tems such as GridMathematica [1] allow Grid services to be called from within
CASs, there has been very little work on adapting CASs so that they can coop-
erate as part of a general Grid resource. Key work is in the Maple2G system that
is now being developed as part of our SCIEnce project. None of these systems
is, however, capable of linking heterogeneous CASs as in SymGrid.

6 Conclusions

This paper has presented the design of SymGrid-Par, a framework for sym-
bolic computing on heterogeneous computational Grids that uniquely enables
the construction of complex systems by composing components taken from dif-
ferent symbolic computing systems. The core of SymGrid-Par is a pair of
standard interfaces (CAG and GCA) that interface between the symbolic com-
puting systems and the GpH middleware. We have discussed a prototype GCA
implementation and reported promising performance measurements for two sim-
ple GAP/GpH programs. In ongoing work funded by the EU FP VI SCIence
project, we now intend to implement the more sophisticated CAG and GCA
interfaces, initially for GAP, and then for Kant, Maple and MuPad. The imple-
mentations will be validated on larger symbolic computations and robustified.
We also plan to demonstrate the inter-operation of multiple symbolic computing
systems. In the longer term we will investigate issues associated with schedul-
ing irregular symbolic computations on computational Grids, and develop more
sophisticated parallel skeletons. Finally, we will provide wider access to high
performance symbolic computation by offering SymGrid-Par as a grid service.
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