
Seq no more: Better Strategies for Parallel Haskell

Simon Marlow
Microsoft Research, Cambridge, UK

simonmar@microsoft.com

Patrick Maier
Heriot-Watt University, Edinburgh, UK

P.Maier@hw.ac.uk

Hans-Wolfgang Loidl
Heriot-Watt University, Edinburgh, UK

H.W.Loidl@hw.ac.uk

Mustafa K. Aswad
Heriot-Watt University, Edinburgh, UK

mka19@hw.ac.uk

Phil Trinder
Heriot-Watt University, Edinburgh, UK

P.W.Trinder@hw.ac.uk

Abstract
We present a complete redesign of evaluation strategies, a key ab-
straction for specifying pure, deterministic parallelism in Haskell.
Our new formulation preserves the compositionality and modular-
ity benefits of the original, while providing significant new ben-
efits. First, we introduce an evaluation-order monad to provide
clearer, more generic, and more efficient specification of parallel
evaluation. Secondly, the new formulation resolves a subtle space
management issue with the original strategies, allowing parallelism
(sparks) to be preserved while reclaiming heap associated with su-
perfluous parallelism. Related to this, the new formulation provides
far better support for speculative parallelism as the garbage collec-
tor now prunes unneeded speculation. Finally, the new formula-
tion provides improved compositionality: we can directly express
parallelism embedded within lazy data structures, producing more
compositional strategies, and our basic strategies are parametric in
the coordination combinator, facilitating a richer set of parallelism
combinators.

We give measurements over a range of benchmarks demonstrating
that the runtime overheads of the new formulation relative to the
original are low, and the new strategies even yield slightly better
speedups on average than the original strategies.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.1.3 [Program-
ming Techniques]: Concurrent Programming

General Terms Performance, Measurement

Keywords Parallel Functional Programming, Strategies

1. Introduction
Evaluation strategies [Trinder et al. 1998], or “strategies” for short,
are a key abstraction for adding pure, deterministic, parallelism
to Haskell programs. Using strategies, parallel specifications can
be built up in a compositional way, and the parallelism can be
specified independently of the main computation. Despite the ap-
parent conflict between lazy evaluation and the eagerness im-
plied by parallelism, evaluation strategies show that non-strictness

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Haskell’10, September 30, 2010, Baltimore, Maryland, USA.
Copyright c© 2010 ACM 978-1-4503-0252-4/10/09. . . $10.00

and parallelism can co-exist in a coherent programming model,
and non-strictness even has some advantages for parallel lan-
guages [Loidl et al. 1999; Trinder et al. 2002]. Strategies have
been used for some 15 years in a number of parallel variants
of Haskell [Harris et al. 2005; Loogen et al. 2005; Trinder et al.
1998].

This paper presents a complete redesign of the strategy abstraction.
Our reformulation preserves the key compositionality and modular-
ity benefits of the original strategies (Section 4), together with their
low time and space overheads (Section 6), and the formal seman-
tics [Baker-Finch et al. 2000] is unchanged. The new formulation
provides the following additional benefits:

• Clearer, more generic and more efficient specification of par-
allel evaluation. Describing a parallel algorithm requires spec-
ifying an order of evaluation, something which the Haskell
language deliberately, and rightly, leaves unspecified. In the
new strategies we introduce an evaluation-order monad, al-
lowing the ordering of a set of evaluations to be specified in
a perspicuous and compositional way (Section 4). Moreover,
by using Applicative functors and the Traversable class
[McBride and Paterson 2008], we can define generic regular
strategies over data structures (Section 4.5). Our framework
also supports fusion, which allows the intermediate lists intro-
duced by modular strategies to be eliminated by the compiler
(Section 4.8).
• The new strategies resolve a subtle space management issue

where the original strategies retain heap unnecessarily (Sec-
tion 3). The crux of the space management challenge is to
preserve parallelism (sparks), while being able to reclaim the
heap associated with superfluous parallelism. Our measure-
ments demonstrate improved space behaviour for existing par-
allel programs simply by switching to the new strategies (Sec-
tion 6). Furthermore, the new strategies support speculative par-
allelism with unnecessary speculative tasks being pruned auto-
matically by the garbage collector, something which was not
possible with the original strategies.
• There is a class of important parallel coordination abstractions

that cannot be expressed as original strategies, but can be ex-
pressed in the new formulation. The feature that this class of
abstractions has in common is that they all embed parallelism
within lazy components of a data structure, a technique that
is essential for parallelising stream-processing pipelines. In the
original strategies we could write these functions, but they were
not instances of the strategy abstraction and so could not be
used compositionally. These drawbacks are resolved by the new
framework (Section 5.1).

• Motivated by wanting to have different versions of par to con-
trol locality in large architectures, the new formulation allows
for abstracting over the coordination combinator used (Sec-
tion 4.4).

Sadly, however, we must all pay for our lunch, and the new formu-
lation raises three issues.

• There is some extra complexity in the implementation of strate-
gies. However, many casual users of the library are insulated
from the changes: using and composing strategies works ex-
actly as before, modulo some renaming. Only users who need
to define their own strategies will have to become familiar with
the new idioms, and there should now be fewer such users given
that we provide generic strategies over any Traversable data
type.
• The original strategies provided a strong identity safety prop-

erty, namely that (‘using‘ s) is always an identity function
for any strategy s. The new strategies cannot provide the same
guarantee, although the library strategies are identities, and the
combinators preserve the property. Safety can be regained at the
expense of expressiveness by making the strategy type abstract,
giving the programmer a choice of expressiveness/safety levels
(Section 5.4).
• To express control parallelism an original strategy may freely

spark expressions. The corresponding new strategy must care-
fully preserve any sparked expressions (Section 4.6).

The new strategies are incorporated in the Haskell parallel pack-
age (Version 3.1)1. All the code for our benchmarks is available on-
line (Section 6), and the results were obtained with a recent GHC
development snapshot (6.13 as of 20.5.2010). The latest official re-
lease, GHC 6.12.3, achieves similar speedups.

2. Original Strategies
Pure parallelism in Haskell is achieved using only two primitives,
par and pseq, with the following types2:

par :: a -> b -> b
pseq :: a -> b -> b

The par combinator introduces a potential for parallel evaluation.
When par is applied to two arguments, it returns the value of its
second argument, while its first argument is possibly evaluated in
parallel. We say “possibly”, because as far as the program is con-
cerned, the result of par a b is always b; it makes no difference
to the meaning of the program whether a is evaluated in parallel or
not. We should think of par as an annotation; it merely hints to the
Haskell implementation that it might be beneficial to evaluate the
first argument in parallel.

What if the computation evaluated in parallel has the value ⊥,
or an error? Surely then it makes a difference to the meaning of
the program whether it is evaluated, or not? In fact it does not —
the system is required to ensure that the semantics of par a b is
always b, regardless of the value of a, ⊥ or otherwise. In practice,
this isn’t a problem for typical Haskell implementations, as a lazy
computation can already have value ⊥.

It is not enough to provide par alone, because generally when
suggesting that something is to be evaluated in parallel, it is useful

1 http://hackage.haskell.org/package/parallel
2 The original presentation used seq rather than pseq [Trinder et al. 1998];
however, Haskell later adopted a seq operator but without the order-of-
evaluation property required for parallel execution [Marlow et al. 2009].
Hence, to avoid confusion with Haskell’s seq, we now use pseq for ex-
pressing sequential ordering of evaluation.

to be able to say what it is to be evaluated in parallel with. Haskell
neither specifies nor requires a particular order of evaluation, so
normally the programmer has no control over this aspect of their
program’s execution. In particular, the programmer has no control
over when a particular call to par will be evaluated, or what
will be evaluated before or after it (or indeed in parallel with
it). This is the reason for pseq: a call pseq a b introduces an
order-of-evaluation requirement that a be evaluated before b. The
denotational semantics of pseq is

pseq a b = ⊥ if a = ⊥
= b otherwise

and the operational semantics is that a must be evaluated to weak
head normal form before returning b [Baker-Finch et al. 2000].

An example to illustrate the usage of par and pseq follows, using
the traditional nfib function. More examples can be found in the
literature [Jones Jr. et al. 2009; Trinder et al. 1998].

nfib :: Int -> Int
nfib n | n <= 1 = 1

| otherwise = let
x = nfib (n-1)
y = nfib (n-2)

in
x ‘par‘ (y ‘pseq‘ x + y + 1)

The computation is shaped like a binary tree. At each node of the
computation we combine par and pseq to evaluate one branch in
parallel with the other branch. The pattern here is a common one: in
x ‘par‘ (y ‘pseq‘ e), typically e involves both x and y. The
effect of this pattern is to cause x to be evaluated in parallel with
y. When the evaluation of y is complete, computation proceeds by
evaluating e. Here the pseq is used to control evaluation order.

The parallelism here is independent of the number of processors;
every time par is evaluated it creates a new opportunity for some
work to be evaluated in parallel (a spark), but the implementation
is free to ignore these opportunities. Indeed typical usage of par
creates many more sparks than there are processors available to
execute them, and the surplus sparks are simply discarded by the
runtime system.

2.1 Strategies

The basic programming model described above provides the raw
material for expressing parallelism in Haskell. Building on this,
a Strategies module affords an abstraction layer over par and
pseq to allow larger-scale parallel algorithms to be expressed.

Strategies are a remarkably simple idea. In the original formulation,
a strategy is a function of type a -> () for some a:

type Strategy a = a -> ()

Thus, a Strategy may evaluate its argument either in full or in part,
and it may only return () (or diverge). Crucially, using par and
pseq, a strategy may specify a recipe for evaluating its argument in
parallel.

Some basic strategies can be defined as follows.

r0 :: Strategy a
r0 x = ()

rwhnf :: Strategy a
rwhnf x = x ‘pseq‘ ()

rnf :: NFData a => Strategy a
-- rnf is a method in the class NFData

r0 is a strategy that evaluates nothing of its argument, rwhnf
evaluates its argument to weak-head normal form, and rnf eval-
uates its argument completely. The definition of rnf depends on

http://hackage.haskell.org/package/parallel

the structure of its argument, so it is defined using a type class
NFData, which has to be instantiated separately for each data type
(the strategies library provides instances for common types such as
Booleans, Integers, lists and tuples).

Strategies are applied with the using combinator:

using :: a -> Strategy a -> a
x ‘using‘ s = s x ‘pseq‘ x

So far we haven’t presented any strategies containing actual paral-
lelism. A simple one is parList, which applies a strategy to each
element of a list in parallel:

parList :: Strategy a -> Strategy [a]
parList strat [] = ()
parList strat (x:xs) = strat x ‘par‘ parList strat xs

The function parList illustrates the compositional nature of the
strategies abstraction: it takes as an argument a strategy to apply to
each list element, and returns a strategy for the whole list. The strat-
egy argument is typically used to specify the evaluation degree, that
is, how much each list element should be evaluated. For instance,
parList rwhnf causes each spark to evaluate its list element as far
as the top-level constructor, whereas parList rnf evaluates the el-
ements completely. Various evaluation degrees between these two
extremes are possible, such as evaluating the spine of a list (we’ll
give examples later in Section 4.7).

The parList function can also be used to illustrate the modular
nature of strategies; for example:

parMap :: Strategy b -> (a -> b) -> [a] -> [b]
parMap strat f xs = map f xs ‘using‘ parList strat

The parMap function takes a strategy strat, a function f, and a list
xs as arguments and maps the function f over the list in parallel,
applying strat to every element. Note how the construction of
the result with map, on the left of using, is separate from the
specification of the parallelism, on the right. This is a small-scale
example, but the idea also scales to much more elaborate settings
[Loidl et al. 1999].

The key to the modularity is lazy evaluation. The argument to a
strategy can be a complex data structure with lazy components, or
even a lazily-created data structure, and this allows the algorithm
that creates the data structure to be separated from the strategy that
specifies how to evaluate it. It’s not a panacea: not all algorithms
lend themselves to being decomposed in this way, and the interme-
diate lazy data structure has costs of its own. Nevertheless, in many
cases the modularity benefits outweigh the costs, and sometimes
the intermediate data structure can be automatically eliminated by
the compiler (Section 4.8).

3. Space Management: Preserving Parallelism,
not Garbage

In this section we describe the main problem in the original strate-
gies formulation that prompted the redesign described in this pa-
per. The problem we are about to describe only came to light re-
cently [Marlow et al. 2009].

To understand the problem we need to consider how par is im-
plemented. When the Haskell program evaluates the expression
par a b, the runtime system saves a pointer to the heap node rep-
resenting a in a data structure that we call a spark pool. For our
purposes, the spark pool is simply a set of pointers to heap objects
representing computations that have been sparked by par. The run-
time system from time to time removes objects from the pool in
order to evaluate them using idle processors, so-called lazy task
creation [Mohr et al. 1990]. More details on the implementation of

spark pools can be found in [Marlow et al. 2009]; the particular im-
plementation details are not important here.

How should the storage management system, in particular the
garbage collector, treat the spark pool? There are two main alterna-
tives, which we call ROOT and WEAK respectively, following the
terminology of [Marlow et al. 2009]:

1. ROOT: entries in the spark pool should be considered implic-
itly live. That is, the spark pool is a source of roots for the
garbage collector.

2. WEAK: an entry in the spark pool is only alive if the object
to which it points is independently reachable. That is, the spark
pool contains weak pointers in the usual terminology.

In fact, both of these policies lead to problems with original strate-
gies. First, let us consider WEAK, and examine how it works with
the definition of parList in the previous section. The sparks cre-
ated by parList are all expressions of the form strat x for some
strategy strat applied to some list element x. Now, every such ex-
pression is uniquely allocated for the sole purpose of being passed
to par; the spark pool will contain references to many expressions
of the form strat x, and in every case, the reference from the spark
pool is the only reference to that expression in the heap. So, by def-
inition, if we adopt the WEAK policy then every spark created by
parList will be discarded by the garbage collector, and we lose
all the parallelism.

Moreover, there is no definition of parList that can avoid this
problem. The only value that the parList strategy can return is
(), so the only way that parList can create a reachable spark is
by sparking part of the structure it was originally given, such as
the list elements. For example, we can define a non-compositional
variant of parList that works:

parListWHNF :: Strategy [a]
parListWHNF [] = ()
parListWHNF (x:xs) = x ‘par‘ parListWHNF xs

But unfortunately we lose the compositional nature of strategies
that was so appealing about the original formulation.

So what about the alternative garbage collection policy, ROOT,
where we treat the spark pool as a source of roots? Considering
the parList example again, the spark pool would still contain
references to expressions of the form strat x in the heap, but this
time all the expressions will be retained by the garbage collector,
and no parallelism is lost. However, another problem arises: what
happens when there are not enough parallel processors to evaluate
all the sparks? The spark pool retains references to all the strat x
expressions, perhaps long after each x is no longer required by
the program and would otherwise be reclaimed by the garbage
collector.

In an attempt to retain potential parallelism, the storage manager is
retaining memory that should have been released: this is a space
leak, and can and does have dramatic performance implications
(we’ll tell that story in Section 6.4). Even an innocuous parList
or parMap can turn a program that ran in constant space into one
that requires linear heap. The adverse effects tend to manifest when
running parallel programs on a single processor, because there are
no spare processors to evaluate the sparks and hence allow them
to be removed from the spark pool. However, effects are felt even
when multiple processors are available: the garbage sparks occupy
space in the spark pool that could be used for real parallelism, and
processors waste time evaluating garbage sparks which erodes the
overall speedup achieved.

It is tempting to think that perhaps we can solve the space leak by
only retaining sparks that share some data with the main program.

This is difficult to achieve, however, and in any case it is not clear
that it would be a robust solution to the problem: how much data
should be shared before we consider the spark to be alive?

3.1 Fizzled Sparks

It is possible that a spark in the spark pool can refer to a com-
putation that has already been evaluated by the program. Perhaps
there were not enough processors to evaluate the spark in parallel,
and another thread ended up evaluating the computation during the
normal course of computing its results.

When a spark in the spark pool refers to a value, rather than
an unevaluated computation, we say the spark has fizzled; this
potential for parallel execution has expired [Marlow et al. 2009].
The runtime system can, and should, remove fizzled sparks from
the spark pool so that the storage manager can release the memory
they refer to, to avoid the mutator wasting time evaluating useless
sparks, and to make more room for real potential parallelism in the
spark pool.

This is all well and good, but note that in the original strategies for-
mulation, most sparks will never fizzle because they are expressions
of the form strat x that are unshared and hence can never be eval-
uated by the main program. In contrast, the sparks generated by the
simpler non-compositional operation parListWHNF above can fiz-
zle, because in that case par is applied directly to a part of the data
structure, rather than to a new unshared expression, and presum-
ably the main program will proceed by evaluating the same data
structure itself.

3.2 Speculative Parallelism

Sparking ought to support speculative parallelism, by which we
mean sparking an expression whose value is not known for certain
to be eventually required by the computation as a whole. Ideally,
speculative parallelism should be automatically pruned by the sys-
tem when it can be proven to be never needed.

Speculative parallelism can be created using par; the question is
whether speculative sparks are ever discarded. Under the ROOT
policy, a speculative spark that is never evaluated will become a
space leak, whereas under the WEAK policy unreachable specu-
lative sparks will be discarded and their heap reclaimed. In short,
only the WEAK policy supports speculation.

3.3 Summary

For reference, the following table summarises the interaction be-
tween the choice of strategy abstraction (orginal strategies, Sec-
tion 2, versus new strategies, Section 4), nature of parallelism
(speculative or not), and GC policy (ROOT versus WEAK).

Strategies Parallelism ROOT WEAK
original non-speculative space leaks lost parallelism
original speculative space leaks lost parallelism
new non-speculative OK OK
new speculative space leaks OK

4. A New Formulation of Strategies
The difficulties with managing the space behaviour of sparks de-
scribed in Section 3 are rooted in the choice of the type for strate-
gies: if a strategy is a function returning the unit type (), then there
is no way for it to spark new expressions and to return them to the
caller, thus ensuring that the sparked expressions remain reachable
from the caller’s heap.

The key idea in our reformulation is that a strategy returns a new
version of its argument, in which the sparked computations have

been embedded. For example, when sparking a new parallel task
of the form strat x, rather than discarding this expression, the
strategy will now build a new version of the original data structure
with strat x in place of x. The caller will consume the new data
structure and discard the old, so that the parallel task strat x
remains reachable as long as the consumer requires it. Furthermore,
if the consumer evaluates strat x before it is evaluated by a
parallel thread, then the spark fizzles; superfluous parallelism is
discarded by the garbage collector, which is exactly what we need.

Perhaps our strategies should be identity functions. However, the
simplest identity type, a -> a, is not a suitable strategy type can-
didate. Functions of this type are necessarily strict3, so we cannot
express r0, the strategy that performs no evaluation of its argument,
as a function of this type. To accommodate r0, the result must be
lifted. We use a trivial lifting, Eval, and provide a way to unlift,
runEval:

type Strategy a = a -> Eval a

data Eval a = Done a

runEval :: Eval a -> a
runEval (Done a) = a

The rationale for the names will become clear shortly. Now we can
define some basic strategy combinators using the new type:

r0 :: Strategy a
r0 x = Done x

rseq :: Strategy a
rseq x = x ‘pseq‘ Done x

rpar :: Strategy a
rpar x = x ‘par‘ Done x

rdeepseq :: NFData a => Strategy a
rdeepseq x = rnf x ‘pseq‘ Done x

The new basic strategies r0, rseq and rdeepseq are analogues
to the original strategies r0, rwhnf and rnf respectively (in fact,
rdeepseq uses the original rnf).

4.1 The Evaluation-order Monad
We can declare Eval to be a monad. There are two choices here:
either it is the standard identity monad, or it is a strict identity
monad. The latter turns out to be a much more useful choice:

instance Monad Eval where
return x = Done x
Done x >>= k = k x

The strict identity monad4 gives us a convenient and flexible nota-
tion for expressing evaluation order, i.e. the ordering between ap-
plications of rseq and rpar, which is exactly what we need for ex-
pressing basic parallel evaluation. For example, the following frag-
ment of nfib

let
x = nfib (n-1)
y = nfib (n-2)

in
x ‘par‘ (y ‘pseq‘ x + y + 1)

can be rewritten as

runEval $ do
x <- rpar (nfib (n-1))
y <- rseq (nfib (n-2))

3 such functions may only return their argument or ⊥, hence when applied
to ⊥ the result is always ⊥
4 this is in fact isomorphic to the Lift monad in the MonadLib package,
http://hackage.haskell.org/package/monadLib

http://hackage.haskell.org/package/monadLib

type Strategy a = a -> ()

using :: a -> Strategy a -> a
x ‘using‘ s = s x ‘pseq‘ x

r0 :: Strategy a
r0 x = ()

rwhnf :: Strategy a
rwhnf x = x ‘pseq‘ ()

rnf :: NFData a => Strategy a
-- rnf is a method in the class NFData

seqList :: Strategy a -> Strategy [a]
seqList s [] = ()
seqList s (x:xs) = s x ‘pseq‘ (seqList s xs)

parList :: Strategy a -> Strategy [a]
parList s [] = ()
parList s (x:xs) = s x ‘par‘ (parList s xs)

data Eval a = Done a

instance Monad Eval where
return x = Done x
Done x >>= k = k x

runEval :: Eval a -> a
runEval (Done a) = a

type Strategy a = a -> Eval a

using :: a -> Strategy a -> a
x ‘using‘ s = runEval (s x)

dot :: Strategy a -> Strategy a -> Strategy a
s2 ‘dot‘ s1 = s2 . runEval . s1

r0 :: Strategy a
r0 x = return x

rseq :: Strategy a
rseq x = x ‘pseq‘ return x

rdeepseq :: NFData a => Strategy a
rdeepseq x = rnf x ‘pseq‘ return x

rpar :: Strategy a
rpar x = x ‘par‘ return x

evalList :: Strategy a -> Strategy [a]
evalList s [] = return []
evalList s (x:xs) = do x’ <- s x

xs’ <- evalList s xs
return (x’:xs’)

parList :: Strategy a -> Strategy [a]
parList s = evalList (rpar ‘dot‘ s)

Figure 1. Like-for-like comparison of original strategies (left column) versus new strategies (right column).

return (x + y + 1)

which clearly expresses the ordering between rpar and rseq,
using a notation that Haskell programmers will find familiar.

Programmers using the new strategies API no longer need to use
par and pseq to construct new strategies, instead they use the Eval
monad with rpar and rseq. The Eval monad raises the level of
abstraction for pseq and par; it makes fragments of evaluation-
order first class, and lets us compose them together. We should
think of the Eval monad as an Embedded Domain-Specific Lan-
guage (EDSL) for expressing evaluation order, embedding a little
evaluation-order-constrained language inside Haskell, which does
not have a strongly-defined evaluation order.

Figure 1 summarises the differences between the API for the orig-
inal strategies and the new strategies. Note that we have rede-
fined a few combinators using the monadic style consistently, using
return in place of Done, for example.

4.2 Eval, applicatively
An evaluation order is often something we want to impose on
an existing expression. Since Eval is a monad, it is also an
Applicative functor [McBride and Paterson 2008]:
instance Functor Eval where

fmap f x = x >>= return . f

instance Applicative Eval where
pure x = return x
(<*>) = ap

This means that we can use applicative notation for threading
“evaluation order” through an expression. Here’s a simple example:
in one of our benchmarks (Coins in Section 6.3), a result value is
defined as

res = append left right

and we want to spark left in parallel with right. We could use
the monadic syntax as we did for the nfib example above, but
sometimes even the monadic syntax is too heavy, and obscures the
structure of the original code. The Applicative operators <$> and
<*> let us rewrite the expression to include the parallelism, without
losing its structure:

res = runEval $ append <$> rpar left <*> rseq right

One might object that this is not a modular specification of paral-
lelism, and that would be a fair criticism. However, note that apart
from the introduction of rpar and rseq, the translation to applica-
tive style is mechanical, so this is a minimal and yet precise way
to add a little parallelism to an existing expression. We will discuss
how to recover modularity in cases like this in Section 4.6.

Applicative notation fixes the ordering to be depth-first, so in cases
where depth-first is not appropriate the monadic syntax has to be
used.

4.3 Using Strategies
As with the original strategies, a strategy application operator is
provided:

using :: a -> Strategy a -> a

x ‘using‘ s = runEval (s x)

The using function is defined to have lowest precedence and as-
sociate to the left, that is e ‘using‘ s1 ‘using‘ s2 stands for
(e ‘using‘ s1) ‘using‘ s2. This stacking of strategies being
similar to the stacking of function applications, there is a strategy
composition dot such that

(e ‘using‘ s1) ‘using‘ s2 = e ‘using‘ (s2 ‘dot‘ s1)

Just like function composition, dot has highest precedence and
associates to the right, so the parentheses can be dropped from the
above equation.

4.4 Compositional Strategies over Data

We build strategies over data types by first constructing a basic
strategy for the data type, parameterised over strategies for the
components of the type. The basic strategy traverses the data type in
the Eval monad, applies the argument strategies to the components
(usually in depth-first order), and builds a new instance of the type.

As an example, consider the Strategy combinator evalList, which
walks over a list and applies the argument strategy s to every
element:

evalList :: Strategy a -> Strategy [a]
evalList s [] = return []
evalList s (x:xs) = do x’ <- s x

xs’ <- evalList s xs
return (x’:xs’)

The evalList combinator generalises both parList and seqList
of original strategies, and more besides5. For example, parList is
obtained by composing the element strategy s with rpar:

parList :: Strategy a -> Strategy [a]
parList s = evalList (rpar ‘dot‘ s)

The original strategies had a seqList combinator, whereas the new
strategies do not provide a seqList. In fact, evalList is the new
strategies’ equivalent to seqList, but it is not immediately obvious
why this should be so — seqList is defined in terms of pseq, but
there is no pseq to be found in the definition of evalList. The
purpose of seqList is to apply the strategy s to each element of
the list in left-to-right order, and it achieves this ordering by using
pseq at each step. In evalList, we achieve the same ordering,
but by using the Eval monad instead: the Eval monad explicitly
sequences the application of the strategy s to each list element in
order — pseq is no more required.

We can specialise evalList in more ways. A number of new
parallel primitives are envisioned, for instance, a bounded par
that restricts locality, e.g. a spark with a low bound should be
executed “nearby”. An advantage of the new strategies is that all
these primitives can be passed as parameters, thus avoiding code
replication.

4.5 Generic Strategies

The Traversable class provides a convenient way to thread any
Applicative computation through the components of a data
structure in a depth-first manner, performing any effects on the
way whilst building a new data structure [McBride and Paterson
2008]. This is exactly what we need for defining strategies over
regular data structures such as lists and trees: a means of traversing
the data structure using Eval, applying a strategy at the leaves, and
building a new structure to return.

The method traverse has the following type:

5 evalList is a specialisation of the mapM associated with the Eval monad,
as an anonymous reviewer observed.

traverse :: (Traversable t, Applicative f)
=> (a -> f b) -> t a -> f (t b)

This function is so generic it is not immediately obvious how it
can be applied in our setting. However, if we specialise a -> f b to
Strategy a, then we get:

evalTraversable :: Traversable t
=> Strategy a -> Strategy (t a)

evalTraversable = traverse

This is a generic parameterised strategy for any Traversable data
type. It has evalList as an instance, and gives us strategies for
types like Maybe and Array for free. Adding parallelism to the
generic strategy is straightforward:

parTraversable :: Traversable t
=> Strategy a -> Strategy (t a)

parTraversable s = evalTraversable (rpar ‘dot‘ s)

4.6 Modularity

The key modularity property we have is that e ‘using‘ s is ob-
servably equivalent to e, at least in so far as it is defined (the for-
mer may be less defined than the latter). The point of this guarantee
is that someone who only wants to understand the algorithm can
ignore the strategies, i.e. every ‘using‘ s.

Of course, this property is only useful in cases where we can
actually make use of using. Some of the examples we have already
seen are not easily expressed with using; consider for example
nfib from Sections 4.1:

runEval $ do
x <- rpar (nfib (n-1))
y <- rseq (nfib (n-2))
return (x + y + 1)

This kind of parallelism is known as control or task parallelism,
where the parallelism follows the control structure of the program.
However, we cannot consider this a modular specification of paral-
lelism, as it clearly interleaves the algorithm with the coordination.

We can write a modular version:

x + y + 1 ‘using‘ strat
where

x = fib (n-1)
y = fib (n-2)
strat v = do rpar x; rseq y; return v

This strategy looks odd. We aren’t using the result of rpar, which
should raise the red flags: normally the result of rpar should be
embedded in the result returned, otherwise the spark is likely to be
discarded by the garbage collector, or become a space leak. How-
ever, it is acceptable to discard the result of rpar if the argument is
a variable, and that variable is already shared by the result, as it is
in this case.

This is a somewhat subtle rule-of-thumb, and the user may well pre-
fer the original direct definition using runEval. Note that the same
technique was possible with original strategies, although there we
had no option to use the more direct runEval style. This technique
will be applied to a more realistic example in Section 5.3.

4.7 Sequential Strategies
An important class of strategies specify only evaluation degree, i.e.
do evaluation only, and introduce no parallelism. Since they create
no sparks, there is no need for these strategies to rebuild the data
structure that they are passed. For example, if we were to define a
strategy that evaluates a list sequentially as

forceList = evalList rseq :: Strategy [a]

then the result is a strategy that is not only needlessly inefficient,
but worse, may overflow the stack on long lists because evalList
is not tail-recursive6.

Hence we dedicate a separate module Seq to the class of strate-
gies that do evaluation only. These sequential strategies have type
Seq.Strategy, the same type as the original strategies:

type Seq.Strategy a = a -> ()

We make Seq.Strategy into a “subtype” of Strategy by provid-
ing an explicit upcast evalSeq, which evaluates a sequential strat-
egy before returning the evaluated argument into the Eval monad.

evalSeq :: Seq.Strategy a -> Strategy a
evalSeq ss x = ss x ‘pseq‘ return x

Basic sequential strategies and sequential strategy combinators are
similar to the respective orginal strategies and combinators; for
example:

r0 :: Seq.Strategy a
r0 x = ()

rseq :: Seq.Strategy a
rseq x = x ‘seq‘ ()

seqList :: Seq.Strategy a -> Seq.Strategy [a]
seqList ss [] = ()
seqList ss (x:xs) = ss x ‘seq‘ seqList ss xs

As the order of evaluation of substructures is irrelevant here, these
combinators may use the ordinary Haskell seq operator instead of
pseq, granting the compiler more freedom to optimise the order of
evaluation. In contrast, the upcast evalSeq must use pseq to force
evaluation of the sequential strategy before returning.

Finally, seqFoldable is the sequential strategies’ counterpart to
the generic strategy evalTraversable.

seqFoldable :: Foldable t
=> Seq.Strategy a -> Seq.Strategy (t a)

seqFoldable ss = foldl’ (const ss) ()

seqFoldable strictly applies a strategy to all elements of a data
structure. Given the simpler return type of sequential strategies,
seqFoldable is already applicable to all Foldable data struc-
tures, which form a super class of the Traversable data struc-
tures.

Sequential strategies are widely used. The example below trans-
poses a list of matrices mats, each represented as a list of lists,
in parallel without evaluating the matrix elements. The sequential
strategy seqList (seqList r0) evaluates just the shape of a ma-
trix while the parMap computes the parallel transpose:

parMap (evalSeq (seqList (seqList r0))) transpose mats

The detailed control of evaluation degree provided by sequential
strategies may also be useful for tuning sequential programs. In
effect the module Seq complements existing abstractions provided
by the module DeepSeq.

4.8 Fusion
Using strategies in a modular way often implies that an interme-
diate data structure is generated by the computation, filtered by
the strategy, and finally consumed upstream. Consider once again
parMap:

parMap :: Strategy b -> (a -> b) -> [a] -> [b]
parMap s f xs = map f xs ‘using‘ parList s

The list produced by map is consumed by parList, which gen-
erates another list to return to the caller of parMap. Furthermore,

6 One would typically not use parList on long lists as too many sparks
would be created, instead parBuffer tends to be more practical.

there is an extra traversal: both map and parList traverse the com-
plete list.

Ideally we would like to have this intermediate structure and the
extra traversal eliminated by the compiler. Fortunately, using GHC
it is almost trivial to arrange that this optimisation occurs: GHC
provides user-defined transformation rules, which are used to im-
plement list fusion between many of the standard list-producing
and consuming library functions. Our parList is defined in terms
of parTraverse, which is defined in terms of traverse, and the
list instance of traverse happens to be defined in terms of foldr.
The intermediate list between map and foldr is automatically re-
moved by GHC’s transformation rules, so in fact parMap compiles
to an efficient single-traversal loop.

The measurements we report in Section 6 are without the bene-
fit of fusion. Separate measurements with fusion enabled, which
require an extra annotation in the Data.Traverse library, exhib-
ited a small improvement in speedup of +1.40% across most of
the applications. Since the overhead of data structure traversal in
strategies is fairly small (see Section 6.2) we cannot expect a major
improvement from this conceptually important optimisation.

5. Advanced Strategies
This section discusses how advanced features such as clustering,
buffering and parallel patterns, can be expressed in the new strate-
gies. Such features are essential for real parallel applications, and
are used in the kernels measured in Section 6.3.

5.1 Embedded Strategies: Rolling Buffers

Some parallel abstractions that are important for parallel perfor-
mance tuning rely on embedding parallelism inside a lazy data
structure, such that opportunities for parallel evaluation are cre-
ated “on demand” by the consumer of the data structure. The most
commonly encountered example is a parallel buffer [Trinder et al.
1998]:

parBuffer :: Int -> Strategy a -> Strategy [a]

Informally the idea is that parBuffer n s xs yields a list in which
evaluation of the ith element induces parallel evaluation of the
(i + n)th element with the first n elements being evaluated in
parallel immediately. The result list must therefore be lazy, at least
beyond the first n elements.

In the original strategies, while the parBuffer functionality could
be defined perfectly well, it could not be expressed as a strategy,
because it returns a new list containing parallelism embedded in
the lazy components. That is, the original type was

parBuffer :: Int -> Strategy a -> [a] -> [a]

This was an unfortunate wart, because it meant that parBuffer
could not be used as the argument to a strategy combinator and
thus compositionality was diminished.

Fortunately embedded parallelism can be directly expressed in the
new strategy formulation, and so parBuffer and functions like it
are instances of the Strategy type.

A fully compositional implementation of parBuffer can be found
below. It implements a rolling buffer (with amortised constant
overhead) by means of a highly optimised functional queue data
structure provided by module Data.Sequence. The rolling buffer
functionality is provided by roll, which takes a functional queue
(the buffer) and a list of elements yet to go into the buffer, and
returns a list (via the Eval monad). Whenever the result list is
demanded, roll applies the strategy s to the first element z to
go into the buffer and sticks the result to the end of the queue (by
calling q |> z’). Then it pulls the first element y’ out at the front of

the queue (by matching viewl (...) against y’:<q’) and returns
it as the head of the result list while embedding the recursive call
into the tail of the result list.

evalBuffer :: Int -> Strategy a -> Strategy [a]
evalBuffer n s xs =

roll (fromList (ys ‘using‘ evalList s)) zs
where

(ys,zs) = splitAt n xs
roll q [] = return (toList q)
roll q (z:zs) = do z’ <- s z

let y’:<q’ = viewl (q |> z’)
return (y’ : runEval (roll q’ zs))

parBuffer :: Int -> Strategy a -> Strategy [a]
parBuffer n s = evalBuffer n (rpar ‘dot‘ s)

5.2 Clustering

When tuning the performance of parallel programs it is often im-
portant to increase the size of parallel computation, i.e. to use a
coarser granularity, in order to achieve a better ratio of computation
versus coordination costs. Implementations often contain mecha-
nisms to automatically use coarser granularity on loaded proces-
sors. The scenario of fizzling sparks discussed in Section 3.1 is
such an example, because the work of a spark is performed by an
already running computation. However further improvements can
be obtained by explicitly controlling thread granularity, and in the
context of the original strategies we developed a range of clustering
techniques [Loidl et al. 2001]. This section adapts these techniques
for the new strategies and extends them.

One way to obtain a coarser granularity is to collect computations
on related elements of a data structure into “clusters.” To this end,
we define a class Cluster containing cluster and decluster
methods, as well as a method lift that turns an operation over the
original data structure into one over such a clustered data structure.

class (Traversable c, Monoid a) => Cluster a c where
cluster :: Int -> a -> c a
decluster :: c a -> a
lift :: (a -> b) -> c a -> c b

lift = fmap -- c is a Functor, via Traversable
decluster = fold -- c is Foldable, via Traversable
-- we require: decluster . cluster n == id

By assuming the Traversable and Monoid contexts we get sev-
eral operations for free. Through the implicit Functor context, we
can use fmap to lift an operation over the base type to one in the
cluster type. And through the Monoid and Foldable contexts (the
latter implicit), we can use fold as the default for decluster —
provided it is an inverse of cluster.

As an example we provide an instance for lists, clustered into
lists of lists. Notably, we only have to provide a definition for the
cluster method.

instance Cluster [a] [] where
cluster _ [] = []
cluster n xs = ys:cluster n zs

where (ys,zs) = splitAt n xs

We aim to define a strategy combinator

evalCluster :: Cluster a c
=> Int -> Strategy a -> Strategy a

which takes a cluster size parameter and generically transforms
a strategy by performing clustering and declustering behind the
scenes (using the methods of appropriate Cluster instances). Un-
fortunately, the cluster type c shows up only in the class context,
which means it could be ambiguous — in fact, it should be: there
may well be multiple reasonable ways of clustering a given type.

To disambiguate the cluster type, we need to expose c in the
signature of evalCluster by passing it as an extra argument
(which requires wrapping it with a fresh type variable w). This extra
argument serves purely as a “type parameter”; it is never evaluated
and will be optimised away by the compiler.

evalCluster :: forall a c w . Cluster a c
=> w c -> Int -> Strategy a -> Strategy a

evalCluster _ n s x =
return (decluster (cluster n x ‘using‘ cs))
where cs = evalTraversable s :: Strategy (c a)

Thanks to the Traversable context (inherited from Cluster), we
can lift the strategy s to a strategy cs which is applicable to the
clustered input. Note that the type annotation in the where clause
necessitates the explicit forall in the signature.

With this infrastructure we can define a generic parMapCluster,
a variant of parMap performing implicit clustering (based on the
Cluster class) behind the scenes.

parMapCluster :: forall a b c w . Cluster [b] c
=> w c -> Int -> Strategy b
-> (a -> b) -> [a] -> [b]

parMapCluster _ n s f xs = map f xs
‘using‘ evalCluster (__ :: w c) n (rpar ‘dot‘ evalList s)

Observe how a type annotation is used to emulate passing the
(wrapped) cluster type c as a “type argument” to evalCluster;
the double underscore __ is short for the bottom value undefined.

To improve readability, instead of wrapping the type argument with
fresh type variables, we can use a properly named phantom type:

data ClusterWith :: (* -> *) -> *

Now it is intuitive that parMapCluster (__ :: ClusterWith [])
uses lists for clustering.

5.3 A Divide-and-conquer Pattern

One of the main strengths of strategies is the possibility of con-
structing abstractions over patterns of parallel computation. There-
by all code specifying the coordination of the program is confined
to the pattern. Concrete applications can then instantiate the func-
tion parameters to get parallel execution for free. Such patterns are
commonly known as algorithmic skeletons [Cole 1988].

As an example we give the implementation of a divide-and-conquer
pattern. It is parameterised by a function that specifies the operation
to be applied on atomic arguments (f), a function to (potentially)
divide the argument into two smaller values (divide), and a func-
tion to combine the results from the recursive calls (conquer). Ad-
ditionally, we provide a function threshold that is used to limit
the amount of parallelism, by using a sequential strategy for argu-
ments below the threshold.

divConq :: (a -> b) -- compute the result
-> a -- the value
-> (a -> Bool) -- par threshold reached?
-> (b -> b -> b) -- combine results
-> (a -> Maybe (a,a)) -- divide
-> b

divConq f arg threshold conquer divide = go arg
where

go arg =
case divide arg of

Nothing -> f arg
Just (l0,r0) -> conquer l1 r1 ‘using‘ strat

where
l1 = go l0
r1 = go r0
strat x = do r l1; r r1; return x

where r | threshold arg = rseq
| otherwise = rpar

All coordination aspects of the function are encoded in the strategy
strat, which describes how the two subcomputations l1 and r1
should be evaluated. The thresholding predicate threshold pro-
vided by the caller places a bound on the depth of parallelism, and
this is used by strat to decide whether to spark both l1 and r1
or to evaluate them directly. The definition of divConq achieves
separation between the specifications of algorithm and parallelism,
the latter being confined entirely to the definition of strat.

5.4 Improving Safety
The original strategy type a -> () embodies the key modularity
goal of separating computation and coordination. As any original
strategy can only ever return (), it can never change the result of a
computation, up to divergence. Unfortunately, the new strategy type
gives up this type safety. Strategies of the new type a -> Eval a
should be identity functions, i.e. only evaluate their argument but
never change its value; we term this property identity safety. How-
ever the type system cannot enforce this behaviour and it is all too
easy to accidentally write flawed strategies, for instance:

x:xs ‘using‘ \ _ -> parList rdeepseq xs

The intention of the programmer is to evaluate the tail of the list
in parallel when the list is demanded. The strategy will do that, but
then returns only the tail of the list.

We propose a way of trading expressiveness for type checked
identity safety. For this purpose, the module SafeStrategies7

clones the functionality and interface of Strategies, except for
wrapping the strategy type with a newtype and providing an explicit
strategy application operator.

newtype Strategy a = MkStrat (a -> Eval a)

($$) :: Strategy a -> a -> Eval a
(MkStrat strat) $$ x = strat x

By hiding the constructor MkStrat when importing the module
SafeStrategies, programmers can choose to treat Strategy as
an abstract type, thereby restricting themselves to use only strate-
gies constructed by the pre-defined and trusted (identity safe) strat-
egy combinators (like evalList and evalTraversable). Since
MkStrat is not available, the type checker will prevent program-
mers from “hand-rolling” their own strategies (e.g. the flawed strat-
egy above will be rejected), thereby eliminating the danger of acci-
dentally violating identity safety.

Yet, programmers can still use the Eval monad freely. For instance,
the non-modular example of task parallelism from Section 4.6 can
be ported to SafeStrategies by inserting $$ after rpar and
rseq. Of course, careless use of rpar may cause space leaks or lost
parallelismn, depending on the GC policy (Section 3), but that is a
lesser concern than identity safety because it does not compromise
functional correctness.

Why does SafeStrategies export the constructor MkStrat at all,
rather than making Strategy a proper abstract type? The reason is
that programmers who do need to “hand-roll” their own strategies
may want to wrap them in MkStrat. Thus, MkStrat marks the
pieces of code where programmers incur “proof obligations” to
establish identity safety.

6. Evaluation
This section discusses our measurements in detail, but first we
summarise the key results:

• For all programs, the speedup and runtime results with original
and new strategies are very similar, giving us confidence that

7 currently not distributed with the parallel package

they specify the same parallel coordination for a range of pro-
grams and parallel paradigms (Figure 2).
• The speedups achieved with the new strategies are slightly

better compared to those with the original strategies: a mean
of 4.96 versus 4.83 on 7 cores across all applications (Columns
3 & 2 of Table 2).
• The new strategies fix the space leak outlined in Section 3, re-

ducing heap residency on a single core by 56.43% across all
applications, and better support speculative parallelism (Sec-
tion 6.4).
• The overheads of the new strategies are low: mean sequential

run-time overhead is 3.84% (Table 1), and memory overheads
are low for most programs (Columns 8 – 11 of Table 2).

6.1 Apparatus

Our measurements are made on an eight-core, 8GB RAM, 6MB
L2 cache, HP XW6600 Workstation comprising two Intel Xeon
5410 quad-core processors, each running at 2.33GHz. The bench-
marks run under Linux Fedora 7 using a recent GHC develop-
ment snapshot (6.13 as of 20.5.2010), and parallel packages 1.1.0.1
and 3.1.0.0, for original and new strategies, respectively. The data
points reported are the median of 3 executions. We measure up to
7 cores as measurements on the eighth core are known to introduce
some variability.

Our benchmarks are 10 parallel applications from a range of ap-
plication areas; 8 of these have been taken from existing bench-
marks suites [Aswad et al. 2009; Loidl et al. 1999; Marlow et al.
2009] and 2 benchmarks, Coins and TransClos, have been devel-
oped afresh with the new strategies module. The programs are
the computational kernels of realistic applications, cover a variety
of parallel paradigms, and employ several important parallel pro-
gramming techniques, such as thresholding to limit the amount of
parallelism generated, and clustering to obtain coarser thread gran-
ularity.

Genetic aligns RNA sequences, using divide-and-conquer paral-
lelism and nested data parallelism. MiniMax performs an alpha-
beta search in a 2-player game tree, using divide-and-conquer par-
allelism and exploiting laziness to prune unnecessary subtrees.
Queens solves the n-queens problem, using divide-and-conquer
parallelism with an explicit threshold. LinSolv finds an exact so-
lution to a set of linear equations, employing the data parallel mul-
tiple homomorphic images approach. Hidden performs hidden-line
removal in 3D rendering and uses data parallelism via the parList
strategy. Maze searches for a path in a 2D maze and uses spec-
ulative data parallelism. Sphere is a ray-tracer from the Haskell
nofib suite, using nested data parallelism, implemented as parMaps.
TransClos finds all elements that are reachable via a given relation
from a given set of seed values, using a parBuffer strategy over an
infinite list. Coins computes the number of ways of paying a given
value from a given set of coins, using divide-and-conquer paral-
lelism. MatMult performs matrix multiplication using data paral-
lelism with implicit clustering.

6.2 Sequential Overhead

Table 1 shows the sequential runtime as baseline, and the differ-
ence of the 1 processor runtime with both original and new strate-
gies. For the new strategies, we encounter a runtime overhead of
at most +18.14% for the MatMult program, which is mainly due
to the additional work in performing clustering. For all other pro-
grams the strategy overhead is significantly lower. Notably, the data
parallel programs have a fairly low overhead, despite the additional
traversal of a data structure to expose parallelism. Comparing the
geometric mean of the runtime overheads imposed by both strategy

Program Seq. ∆ Time (%)
Runtime Original New Paradigm

(seconds) Strategies Strategies
LinSolv 23.40 +0.90 +1.97 Nested Data par
TransClos 83.12 +0.77 +2.24 Data par
Sphere 21.11 +4.78 +3.32 Nested Data par
MiniMax 36.98 +0.87 +3.22 D&C
Coins 42.49 +1.11 +2.12 D&C
Queens 25.51 +1.37 +6.12 D&C
MatMult 18.85 +16.87 +18.14 Data par
Genetic 33.46 +2.96 +3.97 D&C Data par
Hidden 4.61 +5.86 +2.17 Data par
Maze 40.93 -2.22 -3.59 Nested Data par
Geom. Mean +3.21 +3.84

Table 1. Sequential runtime overheads.

versions we encounter only a slightly higher overhead for the new
strategies: +3.84% compared to +3.21% with the original strate-
gies. This justifies the new strategy approach of high-level generic
abstractions.

6.3 Parallel Performance

Speedups: Figure 2 compares the absolute speedup curves (i.e.
speedup relative to sequential runtime) for the applications with the
original and new strategies. Both the runtime curves (not reported
here) and speedup curves for the original and new strategies are
very similar. The pattern is repeated in more detailed analysis, e.g.
in Columns 2 and 3 of Table 2. We conclude that the original and
new strategies specify the same parallel coordination for a variety
of programs representing a range of parallel paradigms, and several
tuning techniques.

Performance: Table 2 analyses in detail the speedups, number
of sparks and memory consumption of all applications, running on
7 cores of an 8 core machine with the original strategies and the
new strategies, always using a ROOT garbage collection policy.
The number of generated sparks was in all cases virtually identi-
cal between original strategies and new strategies, giving us further
confidence that the two formulations are expressing the same par-
allelism. Small differences in the number of generated sparks arise
because GHC has a non-deterministic execution model in which
a particular expression may be evaluated multiple times at run-
time [Harris et al. 2005].

In the cases where the new strategies exhibit poorer performance,
the reduction in speedup is still very small: from 5.67 to 5.48 in the
worst case for MiniMax. This reflects the low overhead associated
with the new strategies, quantified in the previous sub-section.

In the case of MatMult heap residency roughly doubles with the
new strategies. This is due to the new strategies composing the
clusters to return the result value. The original strategies only use
the clusters to express parallelism, but do not compose them into
the final result. Despite the higher residency, however, the new
strategies achieve a higher speedup.

Interestingly, the performance of the new strategies in the Queens
and Sphere programs is better than in the original strategies. Ex-
amining the heap consumption reveals that with the new strategies
the heap residency is significantly reduced: −24.11% for Queens
and−14.53% for Sphere. This results in a lower total garbage col-
lection time, which contributes to about half of the reduction in
runtime. The reduction in residency is accounted for by the im-
proved space behaviour of the new strategies: the space retained by
superfluous sparks is being reclaimed.

Granularity improvement: The comparison of generated versus
converted sparks in Table 2 demonstrates the runtime system’s ef-

fective handling of potential parallelism (sparks). Even when an
excessive number of sparks is generated, for example in Coins,
the runtime-system converts only a small fraction of these sparks.
As with any divide-and-conquer program, a thread generated for
a computation close to the root will itself evaluate potential child
computations, causing their corresponding sparks to fizzle. Hence
the granularity of the generated sparks is automatically made
coarser, reducing overheads, as can be seen from the speedups
achieved. In general, the new strategies provide more opportunities
for sparks to fizzle, as discussed in Section 3. This shows up in a
lower number of converted sparks for all divide-and-conquer and
nested data parallel programs. For single-level data parallelism as
in Sphere, where sparks never share graph structures, there is little
or no reduction in the number of converted sparks.

6.4 Memory Management

Fixing the space leak: The new strategies fix the space leak
outlined in Section 3. For example, for the parallel raytracer that
exhibited the space leak8 with the original strategies, the heap
residency drops from 1.6GB to 5.8MB with the new strategies on
1 core, and the runtime correspondingly drops by about a factor of
3. Comparing single core executions for all benchmark programs
shows a mean reduction in residency of 56.43% with the new
strategies. However, for multiple cores the heap measurements in
Table 2 do not show a consistent reduction in residency for the
new strategies. There are a number of factors contributing to the
observed behaviour here:

• with parallel processors available, garbage sparks tend to be
evaluated by other cores and hence fizzle, avoiding the space
leak (but wasting some cycles);
• parallel evaluation itself tends to change the residency profile,

in most cases increasing the residency compared to sequential
execution;
• residency is recorded by sampling and hence the measured

value is noisy.

Speculation: To assess the effectiveness of the garbage collection
policies ROOT and WEAK, described in Section 3, for managing
speculation we use a program that applies drop to a parallelised
list, computing the number of primes up to a given value, thereby
rendering the sparks on the dropped list elements speculative:

sum $ drop ((m1-m0) ‘quot‘ 2) $
([length (primes n) | n <- [m0..m1]]

‘using‘ parList rdeepseq)

With the WEAK policy almost all sparks of the original strategies
are discarded, as expected. With the new strategies 3404 out of
10001 are converted, 32% fewer than with the ROOT policy, al-
though this value changes considerably between executions. Most
importantly, the WEAK policy prunes 4796 sparks, almost all of
the 5000 speculative sparks. In contrast, the ROOT policy prunes
only 3193 sparks, all of them due to fizzling.

Only two of our application kernels use speculation: MiniMax and
Maze. In the case of MiniMax the WEAK policy significantly
reduces the variation of residencies over the number of cores, and
in a 7-core execution residency is reduced by 83.4%. In the case
of Maze residency remains unchanged. In both cases the speedup
improves only slightly when employing a WEAK policy. Of course,
the very inability of reclaiming speculative sparks with the ROOT
policy discouraged any applications using them on a larger scale.

8 http://hackage.haskell.org/trac/ghc/ticket/2185

http://hackage.haskell.org/trac/ghc/ticket/2185

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7

S
pe

ed
up

Number of Cores

Original Strategies

LinSolv
TransClos

Sphere
MiniMax

Coins
Queens
MatMult
Genetic
Hidden

Maze

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7

S
p
ee

d
u
p

Number of Cores

New Strategies

LinSolv
TransClos

MiniMax
Coins

Queens
MatMult
Genetic

Maze

Figure 2. Speedup graphs of the application kernels with original and new strategies.

Speedup Generated Converted Allocated Maximum
Sparks Sparks Heap Residency

Orig. New Orig. New Orig. New Orig. (MB) New ∆% Orig. (KB) New ∆%
LinSolv 6.59 6.44 7562 7562 7562 7562 6050.10 +0.15 7104.70 +3.87
TransClos 6.04 5.81 1041 1041 1041 1040 80174.60 +0.07 108.60 +1.47
Sphere 4.95 5.67 160 160 160 160 8636.40 -1.14 120943.30 -14.53
MiniMax 5.67 5.48 1464 1464 1464 163 30476.85 -0.01 98.05 -7.17
Coins 5.61 5.53 145925 146853 2702 1060 79833.20 +1.59 302.10 +20.36
Queens 4.58 5.49 1589 1563 1589 636 14903.30 -17.52 19134.50 -24.11
MatMult 5.04 5.39 100 100 100 100 109.00 -6.97 12272.80 +102.04
Genetic 4.95 5.02 659 674 659 166 12180.20 -6.75 493.90 +7.88
Hidden 4.66 4.66 324 324 324 324 4805.50 -0.01 2349.80 -0.44
Maze 2.05 2.01 2723 2835 2525 481 194122.00 +7.74 71.20 -33.15
Geom. Mean 4.83 4.96 -2.51 +1.03

Table 2. Speedups, number of sparks and heap consumption on 7 cores.

7. Related Work
Parallel functional languages [Hammond and Michaelson 1999]
typically embed high level coordination languages into high level
computation languages. A range of high level coordination models
have been used [Trinder et al. 2002], and this section relates the
semi-explicit approach adopted by evaluation strategies to other
approaches.

Skeleton based coordination, for instance [Loogen et al. 2005] or
[Michaelson et al. 2005], is popular in both imperative and func-
tional languages, and exploits a small set of predefined skeletons.
Each skeleton is a polymorphic higher-order function describing a
common coordination pattern with an efficient parallel implemen-
tation [Cole 1988]. As polymorphic higher-order functions, eval-
uation strategies are similar to skeletons, but there are some key
differences. Rather than a fixed set of skeletons, evaluation strate-
gies are readily combined to form new strategies. Moreover, where
skeletons are parameterised with computational arguments, a strat-
egy is typically applied to a computation.

Data parallel coordination, as in [Blelloch 1996] or implemented in
Data Parallel Haskell [Chakravarty et al. 2007], supports the paral-
lel evaluation of every element in a collection. This is a good match
with Haskell’s powerful constructs for bulk data types, in partic-
ular lists. Data parallelism is often more implicit than evaluation
strategies: the programmer simply identifies the collections to be
evaluated in parallel. Strategies are more general in that they can
express both control parallelism and data parallelism, although in
terms of performance Data Parallel Haskell is designed to compile

parallel programs down to highly optimised low-level loops over
arrays, and hence should achieve significantly better absolute per-
formance on data-parallel programs than would be possible using
strategies.

Entirely implicit coordination aims to minimise programmer input,
typically using either profiling as in [Harris and Singh 2007] or par-
allel iteration as in [Grelck and Scholz 2003]. Few entirely implicit
approaches other than parallel iteration have delivered acceptable
performance [Nikhil and Arvind 2001]. Evaluation strategies pro-
vide more general parallel coordination than loop parallelism.

Recent work by [Prabhu et al. 2010] has shown that parallelism by
speculating on future data dependencies can be provided as a safe
(correctness-preserving) abstraction to programmers. As one might
expect, their approach translates naturally into Haskell using par.
This approach to speculation is complementary to the speculative
parallelism afforded by strategies.

8. Conclusion
The original strategies were developed in 1996 for Haskell 1.2, i.e.
before monads, and using a compiler with relatively tame optimisa-
tions. The context for the new strategies is radically different. Mon-
ads, supported by rich libraries and syntactic sugar like do-notation,
are now the preferred mechanism for sequencing computations,
and are familiar to the rapidly growing Haskell user community.
Applicative functors elegantly encode data structure traversals.
Finally, the aggressive use of optimisations in mature Haskell im-

plementations like GHC make bespoke efficiency specialisations
unnecessary.

The new strategy formulation capitalises on improved Haskell id-
ioms and implementations to provide a modular and compositional
notation for specifying pure deterministic parallelism. While it has
some minor drawbacks: being relatively complex, providing rela-
tively weak type safety, and requiring care to express control paral-
lelism, the advantages are many and substantial. It provides clear,
generic, and efficient specification of parallelism with low runtime
overheads. It resolves a subtle space management issue associated
with parallelism, better supports speculation, and is able to directly
express parallelism embedded within lazy data structures.

The new strategies are available as part of the Haskell parallel
package (since Version 3); additional code and benchmarks can
be downloaded from http://www.macs.hw.ac.uk/~dsg/gph/
papers/abstracts/new-strategies.html.

We plan to further enhance and formalise the identity safety of the
new strategies, following the direction discussed in Section 5.4.
Moreover the genericity of the new strategies could be improved
by automatically deriving instances of the NFData class.

Acknowledgments
Thanks to Greg Michaelson, Simon Peyton Jones and the anony-
mous referees for constructive feedback. This research is supported
by the EPSRC HPC-GAP (EP/G05553X), and the EU FP6 SCI-
Ence (RII3-CT-2005-026133) projects.

References
M. Aswad, P. Trinder, A. Al Zain, G. Michaelson, and J. Berthold. Low Pain

vs No Pain Multi-core Haskells. In TFP09 — Symposium on Trends in
Functional Programming, Komarno, Slovakia, June 2009.

C. Baker-Finch, D. King, J. Hall, and P. Trinder. An Operational Semantics
for Parallel Lazy Evaluation. In ICFP’00 — Intl. Conf. on Functional
Programming, pages 162–173, Montreal, Canada, Sept. 2000. ACM
Press.

G. Blelloch. Programming Parallel Algorithms. Communications of the
ACM, 39(3):85–97, 1996.

M. Chakravarty, R. Leshchinskiy, S. Peyton Jones, G. Keller, and S. Mar-
low. Data Parallel Haskell: a status report. In DAMP’07 — Workshop on
Declarative Aspects of Multicore Programming. ACM Press, 2007.

M. Cole. Algorithmic Skeletons: Structured Management of Parallel Com-
putation. PhD thesis, University of Edinburgh, 1988.

C. Grelck and S. Scholz. SaC – from High-Level Programming with Arrays
to Efficient Parallel Execution. Parallel Processing Letters, 13(3):401–
412, 2003.

K. Hammond and G. Michaelson. Research Directions in Parallel Func-
tional Programming. Springer-Verlag, 1999.

T. Harris and S. Singh. Feedback Directed Implicit Parallelism. SIGPLAN
Notices, 42(9):251–264, 2007. ISSN 0362-1340.

T. Harris, S. Marlow, and S. Peyton Jones. Haskell on a Shared-Memory
Multiprocessor. In Haskell’05 — ACM SIGPLAN Workshop on Haskell,
pages 49–61. ACM Press, Sept. 2005. ISBN 1-59593-071-X.

D. Jones Jr., S. Marlow, and S. Singh. Parallel Performance Tuning for
Haskell. In Haskell’09 — Symposium on Haskell. ACM Press, 2009.

H.-W. Loidl, P. Trinder, K. Hammond, S. Junaidu, R. Morgan, and S. Peyton
Jones. Engineering Parallel Symbolic Programs in GpH. Concurrency –
Practice and Experience, 11:701–752, 1999.

H.-W. Loidl, P. Trinder, and C. Butz. Tuning Task Granularity and Data
Locality of Data Parallel GpH Programs. Parallel Processing Letters,
11(4), 2001.

R. Loogen, Y. Ortega-Mallen, and R. Peña-Mari. Parallel Functional Pro-
gramming in Eden. J. of Functional Programming, 15(3):431–475,
2005. ISSN 0956-7968.

S. Marlow, S. Peyton Jones, and S. Singh. Runtime Support for Multicore
Haskell. In ICFP’09 — Intl. Conf. on Functional Programming. ACM
Press, August 2009.

C. McBride and R. Paterson. Applicative Programming with Effects. J. of
Functional Programming, 18(1):1–13, 2008.

G. Michaelson, S. Horiguchi, N. Scaife, and P. Bristow. A Parallel SML
Compiler based on Algorithmic Skeletons. J. of Functional Program-
ming, 15(4):615–650, 2005.

E. Mohr, D. Kranz, and R. Halstead Jr. Lazy Task Creation: A Technique for
Increasing the Granularity of Parallel Programs. In LFP’90 — Conf. on
Lisp and Functional Programming, pages 185–197, Nice, France, June
27–29, 1990.

R. Nikhil and Arvind. Implicit Parallel Programming in pH. Morgan
Kaufmann Publishers, May 2001. ISBN 1-55860-644-0.

P. Prabhu, G. Ramalingam, and K. Vaswani. Safe Programmable Spec-
ulative Parallelism. In PLDI’10 — Conf. on Prog. Lang. Design and
Implementation, volume 45, pages 50–61, June 2010.

P. Trinder, K. Hammond, H.-W. Loidl, and S. Peyton Jones. Algorithm +
Strategy = Parallelism. J. of Functional Programming, 8(1):23–60, Jan.
1998.

P. Trinder, H.-W. Loidl, and R. Pointon. Parallel and Distributed Haskells.
J. of Functional Programming, 12(4–5):469–510, July 2002. Special
Issue on Haskell.

http://www.macs.hw.ac.uk/~dsg/gph/papers/abstracts/new-strategies.html
http://www.macs.hw.ac.uk/~dsg/gph/papers/abstracts/new-strategies.html

	Introduction
	Original Strategies
	Strategies

	Space Management: Preserving Parallelism, not Garbage
	Fizzled Sparks
	Speculative Parallelism
	Summary

	A New Formulation of Strategies
	The Evaluation-order Monad
	Eval, applicatively
	Using Strategies
	Compositional Strategies over Data
	Generic Strategies
	Modularity
	Sequential Strategies
	Fusion

	Advanced Strategies
	Embedded Strategies: Rolling Buffers
	Clustering
	A Divide-and-conquer Pattern
	Improving Safety

	Evaluation
	Apparatus
	Sequential Overhead
	Parallel Performance
	Memory Management

	Related Work
	Conclusion

