
 2006 Royal Statistical Society 1369–7412/06/68259

J. R. Statist. Soc. B (2006)
68, Part 2, pp. 259–280

Generalized linear array models with applications to
multidimensional smoothing

I. D. Currie,

Heriot-Watt University, Edinburgh, UK

M. Durban

Universidad Carlos III de Madrid, Spain

and P. H. C. Eilers

Leiden University Medical Centre, the Netherlands

[Received October 2004. Revised October 2005]

Summary. Data with an array structure are common in statistics, and the design or regression
matrix for analysis of such data can often be written as a Kronecker product. Factorial designs,
contingency tables and smoothing of data on multidimensional grids are three such general
classes of data and models. In such a setting, we develop an arithmetic of arrays which allows
us to define the expectation of the data array as a sequence of nested matrix operations on
a coefficient array. We show how this arithmetic leads to low storage, high speed computation
in the scoring algorithm of the generalized linear model. We refer to a generalized linear array
model and apply the methodology to the smoothing of multidimensional arrays.We illustrate our
procedure with the analysis of three data sets: mortality data indexed by age at death and year
of death, spatially varying microarray background data and disease incidence data indexed by
age at death, year of death and month of death.

Keywords: Arrays; B-splines; Generalized linear models; Kronecker products; Mixed models;
Penalties; Smoothing;Yates’s algorithm

1. Introduction

Data arise naturally in the form of arrays: factorial designs and contingency tables are two
general classes of such data. There are also many specific examples: mortality data consist of
two data matrices, one for deaths and one for exposures, image data and multidimensional
optical spectra often consist of data matrices of millions of points, and in health studies we may
have disease incidence data classified by age, year and month. Gower (1982) gave an example
of a 2 × 3 × 4 factorial design in his paper on Yates’s algorithm. In this example, the data are
arranged in a 2 × 3 × 4 array. A regression analysis involves flattening the data array to a vec-
tor, declaring three factor variables each of length 24 and fitting the model with the standard
regression algorithm. This is an attractive recipe since all such models can be fitted with the
same procedure, regardless of the number of dimensions in the data array. However, two things
are lost. First, the array structure of the data and of the model have been discarded; second, the
computational method fails to take advantage of the array structure of the data and the model.

Address for correspondence: I. D. Currie, Department of Actuarial Mathematics and Statistics, Heriot-Watt
University, Riccarton, Edinburgh, EH14 4AS, UK.
E-mail: I.D.Currie@hw.ac.uk

260 I. D. Currie, M. Durban and P. H. C. Eilers

It was this second point that Yates (1937) exploited when he proposed his efficient method of
calculating the treatment effects.

In this paper we propose a new approach to generalized linear models (GLMs) when data
are in array form and the regression or design matrix can be expressed as a Kronecker product,
as in the case of a factorial design. We express the linear predictor as a sequence of nested
matrix operations on an array of coefficients, thus preserving the array structure of the data
throughout. With this approach, Yates’s algorithm results naturally, not just as a computational
device, but as the way to calculate the treatment effects. However, our methods have a very much
wider application than Yates’s original proposal: our algorithms can be applied in the setting
of GLMs and in particular the smoothing of data in multidimensional arrays, which was our
original motivation for this work.

One common way to extend one-dimensional smoothing to higher dimensions is to construct a
basis in higher dimensions as the Kronecker or tensor product of the marginal basis for each vari-
able. Smoothness can then be achieved by marginal penalization; see, for example, the R package
mgcv as implemented by Wood (2000, 2004). However, the Kronecker product is very memory
hungry and so storage and computational time quickly become important with this approach;
the use of increasingly lower dimensional marginal bases is not a satisfactory solution to the
problem. The approach that is described in the present paper offers a way round this problem.

We shall refer to a GLM where the data are in the form of an array and where the model
matrix can be expressed as a Kronecker product as a generalized linear array model (GLAM).
To be precise, we suppose that we have data Y that are arranged in a d-dimensional array,
n1 × n2 × . . . × nd . The corresponding data vector y of length n = n1n2. . . nd consists of the
elements of Y arranged in a vector with the first dimension of Y varying fastest, the second
dimension varying next fastest, etc.; this corresponds to how R stores an array (R Development
Core Team, 2004). We suppose that the model matrix X can be written as Xd ⊗ . . .⊗X1 where Xi,
ni × ci, is the model matrix for the ith marginal variable and ⊗ denotes the Kronecker product.
The model can be fitted as a standard GLM with data vector y and model matrix X by repeated
evaluation of the scoring algorithm

X′W̃δXθ̂=X′W̃δ z̃ .1:1/

where the tilde represents an approximate solution, as in θ̃, and θ̂ is an improved approximation;
here the weight matrix Wδ is diagonal with elements

w−1
ii = .@ηi=@µi/

2 var.yi/,

z=η+W−1
δ .y−µ/ is the working variable, η=g.µ/=Xθ is the linear predictor, g.·/ is the link

function and µ= E.y/. However, unless the dimensions of the component model matrices Xi

are small there are computational challenges in this approach: we must evaluate

(a) linear functions, Xθ and X′Wδz, and
(b) inner products X′WδX;

in addition we usually require

(c) variances of Xθ̂ which need the diagonal elements of X.X′WδX/−1X′.

Conceptually and computationally our approach is different. Conceptually, we maintain the
array structure of the problem throughout: we replace y by the data array Y, the coefficient vec-
tor θ by a coefficient array Θ, c1 ×c2 × . . .×cd , whose dimensions are induced by the marginal
matrices Xi, the diagonal weight matrix Wδ by a weight array W and the working variable z by
a working array Z; both W and Z have the same dimensions as Y. Computationally, we eval-

Array Models 261

uate the linear functions and inner products that are required to evaluate algorithm (1.1) by a
sequence of nested matrix operations on a d-dimensional array, i.e. without the construction of
the model matrix. The sequential approach solves the storage problem; it is also extremely fast
with gains in speed of orders of magnitude over a direct evaluation. The same sequential algo-
rithm also gives the variances of fitted values, thus unifying the calculation of linear functions,
weighted inner products and variances.

It is straightforward to apply these ideas to the smoothing of multidimensional arrays. We
take the marginal model matrix Xi to be Bi, the smoother matrix for the ith marginal variable.
In this paper we take Bi to be a regression matrix of B-splines but other bases, such as truncated
polynomials, are equally possible. The overall smoother matrix B is then constructed as the
Kronecker product of the Bi. We assume that the number of B-splines in the basis is sufficiently
‘rich’ that the fitted surface is overfitted. Smoothness is then achieved by penalization. We shall
discuss the detail of this in the remainder of the paper but for the moment we observe that if P
is the penalty matrix then algorithm (1.1) becomes

.B′W̃δB+P/θ̂=B′W̃δ z̃, .1:2/

the penalized scoring algorithm (Eilers and Marx, 1996). None of our remarks on the structure
of a GLAM or on the computations that are required to solve algorithm (1.1) is affected by the
insertion of P in equation (1.2).

Eilers et al. (2006) contains some of the computational ideas in the present paper; however,
the formulation in terms of arrays is new and both simplifies and unifies this earlier work.

Efficient computation with Kronecker products has been the subject of intense activity. Yates
(1937) is an early paper in this area, as Gower (1982) pointed out. de Boor (1979) gave a gen-
eral algorithm for the efficient computation of Xy and in particular the solution of Xθ = y.
Van Loan (2000) is an excellent general reference to the Kronecker product and its role in fast
computation.

The plan of the paper is as follows. In Section 2.1 we introduce the ideas of a GLAM by con-
sidering one dimension; we shall see that even here there are some important differences from
the usual approach. In Section 2.2 we consider two dimensions and use some mortality data to
illustrate our methods. Section 3 is the heart of the paper and we describe the general procedure
in d-dimensions for computing linear functions, weighted inner products and variances of fitted
values; proofs are provided in Section 4 and associated software details in Section 5. In Section 6
we show that a GLAM has a mixed model representation which retains the array features, i.e.
it can be regarded as a generalized linear array mixed model. In Section 7 we give two further
examples:

(a) an additive model for microarray data in which each component has the GLAM structure
and

(b) a model for a large data set on disease incidence indexed by age at death, year of death
and month of death.

This second example illustrates interpolation and extrapolation in the GLAM setting. The paper
concludes with a short discussion.

2. Generalized linear array model in one and two dimensions

In this section we consider a GLAM in one and two dimensions. In one dimension an array is
a vector and in two dimensions it is a matrix so in these cases we can develop the basic ideas of
a GLAM with ordinary matrix multiplication alone and without the general array arithmetic

262 I. D. Currie, M. Durban and P. H. C. Eilers

that is required in higher dimensions. In one dimension we define the function which sets up our
sequential approach to computation and in two dimensions we use a well-known Kronecker
product identity to motivate our sequential formulae. We discuss the one- and two-dimensional
cases in turn.

2.1. Generalized linear array model in one dimension
We start with a GLAM in one dimension. At first sight, this may seem odd but a GLAM in one
dimension is not the same as an ordinary GLM although they do share the common feature
that in both cases a linear function is computed as Xθ, a single matrix transformation of the
vector of coefficients. We mention two differences: first, in a GLM we have a diagonal weight
matrix Wδ which, in a GLAM, becomes a one-dimensional array or vector of weights w; second,
neither the inner product X′WδX nor the diagonal elements of X.X′WδX/−1X′ are computed
in a sequential fashion but require successive operations involving X. We now show how each
of these expressions can be rewritten as a single matrix transformation of a vector, in the same
fashion as the linear function.

We start with the inner products X′WδX. Let X = .x1, . . . , xc/, n× c, and w be the vector of
weights, i.e. w is the vector consisting of the diagonal elements of Wδ. Then the .j, k/th element
of X′WδX is given by

.X′WδX/jk =
n∑

i=1
wixijxik

= .x1jx1k, . . . , xnjxnk/w = .xj Å xk/′w .2:1/

where the asterisk denotes element-by-element multiplication. Expression (2.1) suggests an alter-
native way of evaluating X′WδX. We need to define a c2 ×n matrix whose .j, k/th row consists
of .xj Å xk/′. This is not well defined but a convenient ordering is given in terms of the following
definition.

Definition 1. The row tensor of a matrix X with c columns is defined as

G.X/= .X ⊗1′/ Å .1′ ⊗X/ .2:2/

where 1 is a vector of 1s of length c.
The operation (2.2) is such that row i of G.X/ is the Kronecker product of row i of X with

itself; the corresponding operation on the columns of X is known as the Khatri–Rao product
(Brewer, 1978). For our purpose it is easy to see that the columns of G.X/ consist of the pairwise
element-by-element products xj Å xk of the columns of X, and so, from equation (2.1), G.X/

has the property that

X′WδX, c× c≡G.X/′w, c2 ×1, .2:3/

as desired; here ‘≡’ means that both sides have the same elements, although their dimensions,
as indicated, are different. Moreover, since

vec.X′WδX/=G.X/′w,

our target matrix X′WδX can be recovered simply by redimensioning G.X/′w (here vec.M/

means stack the columns of a matrix M on top of each other to give a vector).
We note that the nature of the calculations X′WδX and G.X/′w is very different: first, G.X/′w

computes the inner product as a single matrix transformation of a vector, as required; second,
in the direct calculation, the products of the columns of X must be obtained at each iteration of
algorithm (1.1), whereas in the array calculation the products can be stored before iteration. We

Array Models 263

do not make any claim that a GLAM is a sensible way of fitting a GLM since, although com-
putational times are similar, the method is space inefficient since G.X/, n× c2, must be stored.
However, in two and more dimensions a GLAM is superior in both computational efficiency
and storage requirements.

We close the discussion of the one-dimensional case by considering computation of the vari-
ances of the fitted values Xθ̂. Let Sm = var.θ̂/ = .X′ŴδX/−1, c × c. Then it is easy to show
that

diag{var.Xθ̂/}=diag.XSmX′/
=G.X/s .2:4/

where s =vec.Sm/, c2 ×1, and G.·/ is the row tensor function in equation (2.2).
We emphasize that the three formulae Xθ, G.X/′w and G.X/s for the linear function, for the

inner product and for the diagonal function respectively all have the same form, a single matrix
transformation of a one-dimensional array (vector).

2.2. Generalized linear array model in two dimensions
Let Y, n1 ×n2, be a data matrix and let y=vec.Y/ be its vector equivalent. We consider a GLM
for y with model matrix X and suppose that X = X2 ⊗ X1 where Xi is ni × ci, i = 1, 2. Let θ,
c1c2 ×1, be the vector of regression coefficients. We use a well-known identity of the Kronecker
product (Searle (1982), page 333) to write the linear predictor as

.X2 ⊗X1/θ, n1n2 ×1≡X1ΘX′
2, n1 ×n2, .2:5/

where Θ, c1 × c2, is the coefficient matrix corresponding to θ, i.e. vec.Θ/ =θ. Conceptually,
expression (2.5) allows us to think of the linear predictor as X1ΘX′

2, a matrix which corresponds
to data Y. Computationally, expression (2.5) has two important properties: first, the right-hand
side avoids the computation of the potentially large matrix X and, second, the number of multi-
plications on the right-hand side is very much less than that on the left-hand side. For example
if X1 and X2 are both 103 × 102 then the left-hand side requires 1010 multiplications whereas
the right-hand side requires just over 108 multiplications. We can then recover the left-hand side
by redimensioning, which is a very efficient operation. Expression (2.5) also enables efficient
computation of X′W̃δ z̃ in algorithm (1.1).

We continue with the computation of the inner products X′WδX. We define W to be the
n1 ×n2 matrix of weights, i.e. vec.W/=diag.Wδ/. The following formula is suggested by expres-
sions (2.3) and (2.5):

.X2 ⊗X1/′Wδ.X2 ⊗X1/, c1c2 × c1c2 ≡G.X1/′W G.X2/, c2
1 × c2

2, .2:6/

where G.·/ is the row tensor function that is defined in equation (2.2). This achieves efficient
computation of the entries in X′WδX. A proof is given in a general setting in Section 4 and
details of the rearranging and redimensioning of the right-hand side that are required to give
the left-hand side are given in Section 5. Some insight into expression (2.6) is provided by noting
that the columns of G.X2 ⊗X1/ are the same as the columns of G.X2/⊗G.X1/ but in a different
order. Hence

.X2 ⊗X1/′Wδ.X2 ⊗X1/≡G.X2 ⊗X1/′w by expression .2:3/

≡ .G.X2/⊗G.X1//′ w

≡G.X1/′W G.X2/ by expression .2:5/

and this is the right-hand side of expression (2.6).

264 I. D. Currie, M. Durban and P. H. C. Eilers

Finally, variances are computed by using the two-dimensional version of equation (2.4). First,
we note that in equation (2.4) the elements of .X′WδX/−1, a c × c matrix, are reorganized into
a c2 ×1 array (or vector). In a similar fashion, in two dimensions we reorganize the elements of
Sm = .X′WδX/−1, a c1c2 ×c1c2 matrix, into S, a c2

1 ×c2
2 matrix; details of how the reorganization

is achieved are given in Section 5. Then

diag{var.Xθ̂/}=diag.XSmX′/, n1n2 ×1≡G.X1/SG.X2/′, n1 ×n2: .2:7/

An attractive point is that this n1 ×n2 matrix has exactly the same structure as the data matrix Y
and so all variances are in their correct place. We note that the linear function in expression (2.5),
the inner product in expression (2.6) and the variances in expression (2.7) are each computed by
two successive matrix transformations of a two-dimensional array, which is a natural extension
of the remark on the one-dimensional computation at the end of the previous section. In the
next section we extend these formulae to d-dimensions. First we illustrate the GLAM in two
dimensions.

2.3. Example: smoothing mortality data
We consider data on the mortality of assured lives in the UK insurance market. The data set
consists of the number of policy claims (deaths) and the number of years lived (exposure) for
each age, 12–96 years, and each calendar year, 1951–1999; see Currie et al. (2004) for more
information on these data. The claims and exposures are arranged respectively in matrices Y
and E, with rows indexed by age and columns by year. We model Y with a two-dimensional
GLAM with Poisson errors and log-link

E.Y/=E ÅΓ,

log.E ÅΓ/= log.E/+BaΘB′
y, .2:8/

where Ba = Ba.xa/ and By = By.xy/ are marginal model matrices of B-splines for age xa =
.12, . . . , 96/′ and year xy = .1951, . . . , 1999/′; the term log.E/ is a matrix offset. We have used
cubic B-splines and one knot every 4 years in defining both Ba and By so Ba is 85×24 and By

is 49×15. As a GLM, the regression matrix B=By ⊗Ba is 4165×360 and has nearly 1:5×106

entries. Fig. 1 gives an idea of what a Kronecker product basis of B-splines looks like. The
full basis of 360 functions results in a rather crowded plot so only a very small subset of basis
functions is shown. Smoothness of the fitted surface is ensured by penalization but note that
smoothness at the edges of the data region is ensured by the penalty as opposed to modification
of the B-spline basis, as in natural splines for example (Green and Silverman (1994), page 12).
Each regression coefficient in Θ is associated with the peak of a basis function so a smooth
surface results if the coefficients are themselves smooth; this is the P-spline method of Eilers
and Marx (1996). In two dimensions smoothness of the fitted surface is achieved by placing
penalties on the columns and rows of Θ. Let Θ= .θ1, . . . , θcy / and Da be a difference matrix
acting on a column of Θ. Then an appropriate penalty on the columns of Θ is

cy∑
j=1

θ′
jD′

aDaθj =θ′.Icy ⊗D′
aDa/θ .2:9/

where θ=vec.Θ/. A similar argument shows that the corresponding penalty on the rows of Θ
can be written θ′.D′

yDy ⊗ Ica/θ and so the penalty matrix is given by

P=λaIcy ⊗D′
aDa +λyD′

yDy ⊗ Ica .2:10/

where λa and λy are the smoothing parameters for columns and rows respectively.

Array Models 265

5

10
15

20

x1
2

4
6

8
10

12
14

16

x2

 0
0.

1
0.

2
0.

3
0.

4
0.

5
2-

d
B

-s
pl

in
e

Fig. 1. Subset of a two-dimensional Kronecker product B-spline basis

egA
0

(a) (b)

2

04

06
08

raeY
0691

0791
0891

0991

Lo
g(

m
or

ta
lit

y)

Lo
g(

m
or

ta
lit

y)

6−

4−

2−

ega rof stonK
02

04
06

08
001

raey rof stonK

0591

0691
0791

0891
0991

0002

6−

4−

2−

Fig. 2. (a) Fitted log-mortality surface and (b) fitted regression coefficients plotted at knot positions

There are several criteria for choosing the smoothing parameters: the Akaike information
criterion (Akaike, 1973), the Bayesian information criterion (Schwarz, 1978) and generalized
cross-validation (Craven and Wahba, 1979) are three possibilities. The present paper describes
efficient model fitting for a certain class of models and so can be applied whichever criterion is
adopted. Fig. 2(a) shows the fitted surface that results when the Bayes information criterion is
used; Fig. 2(b) shows the smooth surface of regression coefficients, the result of the penalization.
The sharp decline in mortality over the last 50 years that is shown in Fig. 3 has major conse-
quences for insurance companies and policy-holders alike. Using a Bayesian approach, Wahba

266 I. D. Currie, M. Durban and P. H. C. Eilers

000209910891079106910591

−
5.

0
−

4.
8

−
4.

6
−

4.
4

−
4.

2

ra

(a) (b)
eY

lo
g(

M
or

ta
lit

y)

000209910891079106910591

−
3.

0
−

2.
8

−
2.

6
−

2.
4

−
2.

2

raeY

lo
g(

M
or

ta
lit

y)
Fig. 3. Fitted log-mortality with 95% probability intervals: (a) age = 60 years; (b) age = 80 years

(1983) and Silverman (1985) estimated a posterior covariance for the vector of parameters, θ, by

Sm = .BŴδB+P/−1

so approximate probability intervals for the curves in Fig. 3 were computed from expression (2.7)
and are also shown.

3. Generalized linear array model in d-dimensions

We consider a GLAM in d dimensions with data Y, n1 × . . .×nd , and model matrix

X =Xd ⊗ . . .⊗X1 .3:1/

where the marginal model matrix Xi is ni × ci, i = 1, . . . , d. The dimensions of the Xi induce
an array structure on the vector of regression coefficients, θ, which becomes the d-dimen-
sional array Θ, c1 × . . . × cd . Suppose that the link function is g.·/. We need to generalize
the one-dimensional expression, g.µ/ = Xθ, E.y/ = µ, and the two-dimensional expression,
g.M/ = X1ΘX′

2, E.Y/ = M. The idea is to transform Θ successively by the marginal model
matrices Xi, i = 1, . . . , d, and for this we need to define premultiplication of d-dimensional
arrays, such as Θ, by a matrix.

Definition 2. The H-transform of the d-dimensional array A of size c1 × c2 × . . . × cd by the
matrix X of size r × c1 is denoted H.X, A/ and defined as follows: let AÅ be the c1 × c2c3. . . cd

matrix that is obtained by flattening dimensions 2–d of A; form the matrix product XAÅ of size
r × c2c3. . . cd ; then H.X, A/ is the d-dimensional array of size r × c2 × . . . × cd that is obtained
from XAÅ by reinstating dimensions 2–d of A.

In one dimension A=a, so H.X, a/=Xa, whereas in two dimensions H.X, A/=XA. Thus, the
H-transform generalizes premultiplication of vectors and matrices by a matrix. Expression (2.5)
also suggests that we need to generalize the transpose of a matrix.

Definition 3. The rotation of the d-dimensional array A of size c1 × c2 × . . . × cd is the
d-dimensional array R.A/ of size c2 ×c3 × . . .×cd ×c1 that is obtained by permuting the indices
of A.

Array Models 267

Table 1. Comparison of computation in GLMs and one- and two-dimensional
GLAMs

Function GLM 1-dimensional 2-dimensional
GLAM GLAM

Linear Xθ X1θ .X2.X1Θ/′/′
Inner product X′WδX G.X1/′w .G.X2/′.G.X1/′W/′/′
Diagonal diag.XSmX′/ G.X1/s .G.X2/.G.X1/S/′/′

It is convenient to combine these two definitions in the following definition.

Definition 4. The rotated H-transform of the array A by the matrix X is given by

ρ.X, A/=R{H.X, A/}:

We can now write down the GLAM for Y in d dimensions. If E.Y/=M then

g.M/=ρ[Xd , . . . , ρ{X2, ρ.X1,Θ/}. . .], .3:2/

where g.·/ is the link function. In addition, we require an array computation of

(a) the inner product X′WδX so that the scoring algorithm may be evaluated and
(b) the diagonal of XSmX′ so that variances of fitted values may be found.

Table 1 summarizes the results from Sections 2.1 and 2.2. In two dimensions we operate succes-
sively on a two-dimensional array either with the marginal regression matrices Xi or with the
row tensor G.Xi/; after each transformation the dimensions are rotated (transposed) to bring
the next dimension into line. This suggests the following general formulae.

(a) Linear functions: the elements of Xθ (and similarly for X′Wδz) are given by the d-dimen-
sional array

ρ[Xd , . . . , ρ{X2, ρ.X1,Θ/}. . .]: .3:3/

(b) Inner products: the elements of the inner product X′WδX are given by the d-dimensional
array

ρ.G.Xd/′, . . . , ρ[G.X2/′, ρ{G.X1/′, W}]. . ./: .3:4/

This c2
1 × . . . × c2

d array must now be reorganized into X′WδX, a square matrix of size
c1c2. . . cd ; efficient software to achieve this reorganization is given in Section 5.

We give the formula for the diagonal elements of var.Xθ̂/ in its general form. Let Sm be a
square matrix of size c1c2. . . cd and let S, c2

1 × . . .×c2
d , be the d-dimensional array of reorganized

elements of Sm; see Section 5 for details of the reorganization. Then we have the following.

(c) Diagonal function: the diagonal elements of XSmX′ are given by the d-dimensional array

ρ.G.Xd/, . . . , ρ[G.X2/, ρ{G.X1/, S}]. . ./: .3:5/

It is worth emphasizing that expression (3.5) holds for any square matrix Sm, not necessarily
symmetric. The diagonal elements of var.Xθ̂/ are obtained by setting Sm equal to .X′ŴδX/−1.

The array arithmetic that is defined in expression (3.3) unifies the calculation of linear func-
tions, weighted inner products and diagonal values. An alternative way of describing expres-
sions (3.4) and (3.5) is to say that both X′WδX and diag.XSmX′/ can be written as a Kronecker

268 I. D. Currie, M. Durban and P. H. C. Eilers

Table 2. Number of multiplications that are required to compute Xθ,
X0WδX and diag.XSmX0/ with Xi , n � c, c < n < c2, φ1 D n=c, φ2 D c2=n
and φÅ

i D1� .1=φi /
d �1

Function GLM GLAM Ratio: n=50,
c=10, d =3

Xθ ndcd nd+1φÅ
1 =.φ1 −1/≈nd+1=.φ1 −1/ 81≈80

X′WδX ndc2d c2d+2φÅ
2 =.φ2 −1/≈ c2d+2=.φ2 −1/ 1429≈1250

diag.XSmX′/ ndc2d c2d+2φÅ
2 =.φ2 −1/≈ c2d+2=.φ2 −1/ 1429≈1250

product times a vector, and hence expression (3.3) may be applied to both these functions. We
make the following definitions.

Definition 5. Let Xi, ni ×ci, i=1, . . . , d, be matrices and X=Xd ⊗ . . .⊗X1; let A, c1 × . . .×cd ,
be an array and a =vec.A/. Then we say

(a) the vector Xa is in Kronecker product form or K-form,
(b) the array ρ[Xd , . . . , ρ{X2, ρ.X1, A/}. . .] is in array form or A-form.

With this terminology we can say that Xθ, X′WδX and diag.XSmX′/ have both K-form and
A-form representations. The interface between X′WδX and its A-form, and between diag.XSmX′/
and its A-form, is described in Section 5. However, the outputs from the A-form calculations
of expressions (3.3) and (3.5) are d-dimensional arrays whose format matches that of the data
array Y, and hence give fitted values, confidence intervals and graphical summaries directly.

Our method uses a nested approach with each dimension processed in turn and this explains
the speed of our algorithms. Table 2 compares the number of multiplications that are required
in a d-dimensional GLAM by expressions (3.3), (3.4) and (3.5) with the corresponding matrix
evaluation. In constructing Table 2 we have

(a) assumed that each marginal matrix Xi is n× c, c<n<c2,
(b) ignored the multiplication by Wδ in the matrix evaluation of the inner product and
(c) computed diag.XSmX′/ by equation (2.4), the formulae for a one-dimensional GLAM.

Table 2 also uses the ratio of the number of multiplications to compare GLM and GLAM
computation; the efficiency of the GLAM is evident. As an aside, we note that the number of
multiplications for each of X′WδX and diag.XSmX′/ is exactly the same.

Our method has an overhead of rearrangement and redimensioning, but these are both very
efficient operations. In Section 7 we smooth count data that are arranged in a 105 × 40 × 12
array. The most demanding component of algorithm (1.2) is the repeated calculation of X′WδX
which requires the multiplication of two large matrices. Table 3 gives some comparative figures

Table 3. User central processor unit times to calculate X0WδX

Coefficient Number of Times (s) Times (s) Ratio
array coefficients for the GLM for the GLAM

6×6×6 216 8.5 0.0165 500:1
7×7×7 343 20.9 0.0305 700:1
8×8×8 512 46.5 0.0717 650:1
9×9×9 729 91.7 0.1403 650:1

Array Models 269

on timing for various sizes of the coefficient array for this data set. The GLAM is so quick that
it was necessary to use a loop to obtain accurate timings, a device which paradoxically will have
degraded its performance. The results reinforce the conclusions of Table 2.

We can now make some connections between our work and earlier work. Yates’s (1937) well-
known algorithm computes the treatment effects in a 2k factorial experiment; this algorithm
extends to more general factorial experiments, as described in Gower (1982). In a d-dimensional
factorial experiment the design matrix X can be written as the Kronecker product of d orthog-
onal matrices. It is easy to check that X′X= Ic where c is the number of parameters, so there is no
need to evaluate the inner products: the treatment effects are estimated directly from X′y, which
may be calculated by expression (3.3). The intermediate output arrays from expression (3.3)
correspond to the intermediate output vectors from Yates’s algorithm. Furthermore,

X.X′X/−1X′ = I

so variances of fitted values are immediately available. Thus, the special structure of the factorial
experiment leads to a very simple analysis where only expression (3.3) is required.

In an important paper, de Boor (1979) gave an algorithm for the efficient solution of the
linear equation Xθ=y where X is the Kronecker product of d invertible matrices. Since X−1 =
X−1

d ⊗ . . .⊗X−1
1 we obtain from expression (3.3)

Θ̂=ρ[X−1
d , . . . , ρ{X−1

2 , ρ.X−1
1 , Y/}. . .], .3:6/

which is equivalent to de Boor’s result. de Boor (1979) also discussed the evaluation of Xy for
general marginal matrices, Xi; expression (3.3) is equivalent to his result. From this perspective,
our methods show how efficient computation can be extended to matrix functions other than
Xy. Of course, since both X′WδX and diag.XSmX′/ can be written in K-form any K-form com-
putational scheme other than expression (3.3) could equally be applied to these two functions.

In the case of general regression with independent identically distributed normal errors we
solve X′Xθ=X′y where X is the Kronecker product of marginal regression matrices Xi, ni × ci.
Without the presence of the weight matrix Wδ, we have

.X′X/−1X′ = .X′
dXd/−1X′

d ⊗ . . .⊗ .X′
1X1/−1X′

1 .3:7/

so the normal equations can be solved efficiently with expression (3.3). Moreover, since

X.X′X/−1X′ =Xd.X′
dXd/−1X′

d ⊗ . . .⊗X1.X′
1X1/−1X′

1 .3:8/

the standard errors are computed directly as the Kronecker product of the diagonal elements
of the Xi.X′

iXi/
−1X′

i (each of which may be computed with equation (2.4) if appropriate).

4. Generalized linear array model: algebraic details

We have developed an array arithmetic for the efficient evaluation of linear functions, inner
products and variances; the formulae are given in expressions (3.3), (3.4) and (3.5). The follow-
ing formal derivations of our results lead to the efficient software that is presented in the next
section; the proofs also demonstrate the nested nature of our algorithms and thus explain the
gains in speed that are achieved. The main idea is the use of array indexing to index vectors
and matrices; thus in a d-dimensional problem a vector becomes a d-dimensional array and a
variance matrix becomes a 2d-dimensional array.

We prove first expression (3.3), the formula for the linear function Xθ. The elements of the
coefficient array Θ are θ.i1,i2,:::,id / and we use this d-tuple index to index the elements of the coeffi-
cient vector θ. Similarly, we let x.k1,k2,:::,kd/,.i1,i2,:::,id / denote the ..k1, k2, . . . , kd/, .i1, i2, . . . , id//

270 I. D. Currie, M. Durban and P. H. C. Eilers

entry in X, i.e.

x.k1,k2,:::,kd/,.i1,i2,:::,id / = ξ.1/k1,i1 ξ.2/k2,i2 . . . ξ.d/kd ,id .4:1/

where ξ.t/k,i is the .k, i/ entry in Xt . Hence, the .k1, k2, . . . , kd/ entry in Xθ is

cd∑
id=1

. . .
c1∑

i1=1
x.k1,k2,:::,kd/,.i1,i2,:::,id /θ.i1,i2,:::,id / .4:2/

=
cd∑

id=1
. . .

c1∑
i1=1

ξ.1/k1,i1 ξ.2/k2,i2 . . . ξ.d/kd ,id θ.i1,i2,:::,id /: .4:3/

Now consider the array evaluation of Xθ with expression (3.3). The .k1, . . . , kd/ entry of ρ[Xd ,
. . . , ρ{X2, ρ.X1,Θ/}. . .] is

cd∑
id=1

ξ.d/kd ,id

(
. . .

[
c2∑

i2=1
ξ.2/k2,i2

{
c1∑

i1=1
ξ.1/k1,i1θ.i1,i2,:::,id /

}]
. . .

)
.4:4/

which is expression (4.3). Expression (4.4) shows Xθ ‘as a nested set of sums of products’ (Gower,
1982).

We next show that X′WδX can be evaluated with expression (3.4). The proof is similar
to that given for expression (3.3). The elements of the array of weights W are w.k1,k2,:::,kd/

and we use this d-tuple index to describe the elements of the diagonal matrix Wδ. Hence the
..i1, i2, . . . , id/, .j1, j2, . . . , jd// entry in X′WδX is

nd∑
kd=1

. . .
n1∑

k1=1
x.k1,k2,:::,kd/,.i1,i2,:::,id /w.k1,k2,:::,kd/x.k1,k2,:::,kd/,.j1,j2,:::,jd/ .4:5/

=
nd∑

kd=1
. . .

n1∑
k1=1

ξ.1/k1,i1 ξ.2/k2,i2 . . . ξ.d/kd ,id w.k1,k2,:::,kd/ ξ.1/k1,j1 ξ.2/k2,j2 . . . ξ.d/kd ,jd
: .4:6/

Now consider the array evaluation of X′WδX with expression (3.4). Let Ti =G.Xi/ be the row
tensor of Xi as in equation (2.2). Then T′

i is a c2
i ×ni matrix whose ..j, k/, l/ entry is ξ.i/lj ξ.i/lk.

Then ρ[T′
d , . . . , ρ{T′

2, ρ.T′
1, W/}. . .] is a d-dimensional array of size c2

1 × c2
2 × . . . × c2

d whose
..i1, j1/, .i2, j2/, . . . , .id , jd// entry is

nd∑
kd=1

ξ.d/kd ,id ξ.d/kd ,jd

(
. . .

[
n2∑

k2=1
ξ.2/k2,i2 ξ.2/k2,j2

{
n1∑

k1=1
ξ.1/k1,i1 ξ.1/k1,j1 w.k1,k2,:::,kd/

}]
. . .

)

.4:7/

which is expression (4.6). Again, the nested nature of expression (4.7) is evident.
Finally we show that the diagonal elements of XSmX′ can be evaluated by expression (3.5).

Let Sm be a c1c2. . . cd × c1c2. . . cd matrix with entries s.i1,i2,:::,id /,.j1,j2,:::,jd/; as an aside, we note
that there is no requirement that Sm be symmetric. The diagonal elements of XSmX′ are a vector
of length n1n2. . . nd whose entries are indexed by the d-tuple index .k1, k2, . . . , kd/. Hence the
.k1, k2, . . . , kd/ entry is given by

cd∑
jd=1

cd∑
id=1

. . .
c1∑

j1=1

c1∑
i1=1

x.k1,k2,:::,kd/,.i1,i2,:::,id /s.i1,i2,:::,id /,.j1,j2,:::,jd/x.k1,k2,:::,kd/,.j1,j2,:::,jd/ .4:8/

=
cd∑

jd=1

cd∑
id=1

. . .
c1∑

j1=1

c1∑
i1=1

ξ.1/k1,i1 ξ.2/k2,i2 . . . ξ.d/kd ,id s.i1,i2,:::,id /,.j1,j2,:::,jd/

× ξ.1/k1,j1 ξ.2/k2,j2 . . . ξ.d/kd ,jd
: .4:9/

Array Models 271

Now consider the array evaluation of the diagonal of XSmX′ with expression (3.5). Let S be
the c2

1 × c2
2 × . . . × c2

d array with entries s.i1,j1/,.i2,j2/,:::,.id ,jd/ corresponding to the matrix Sm,
i.e. the ..i1, j1/, .i2, j2/, . . . , .id , jd// entry in S is the ..i1, i2, . . . , id/, .j1, j2, . . . , jd// entry in Sm.
Then ρ[Td , . . . , ρ{T2, ρ.T1, S/}. . .] is a d-dimensional array of size n1 × n2 × . . . × nd whose
.k1, k2, . . . , kd/ entry is

cd∑
jd=1

cd∑
id=1

ξ.d/kd ,jd
ξ.d/kd ,id

[
· · ·

{
c1∑

j1=1

c1∑
i1=1

ξ.1/k1,j1 ξ.1/k1,i1s.i1,j1/,.i2,j2/,:::,.id ,jd/

}
· · ·

]
.4:10/

which is expression (4.9) and, once more, the nested form of expression (4.10) is clear.
These proofs establish the element-by-element equality between the three matrix functions Xθ,

X′WδX and diag.XSmX′/ and their corresponding A-forms but it is important to realize that the
gains in speed that are achieved by the A-form calculation come from the array form itself, i.e. the
nesting in expressions (3.3)–(3.5) is at the array level, and not just at the element-by-element level.

5. Software considerations

We fit a GLAM by using expressions (3.3) and (3.4) to evaluate algorithm (1.1), the scoring
algorithm. However, the outputs of these algorithms are d-dimensional arrays, so these must be
redimensioned and rearranged to give the vector and matrix forms that are required in algorithm
(1.1). The redimensioning and rearranging that are required are provided by the details of the
proofs of the previous section but we feel that a much clearer picture is provided by presenting
some illustrative software. We work in S-PLUS or R and MATLAB, but the code should be
accessible to someone who is unfamiliar with these languages. We use the case d =3 to illustrate
the general method. Eilers et al. (2006) gives MATLAB code; the code below is in S-PLUS or R.

For completeness, we start with code for the row tensor function and the rotated H-transform.
Below, an asterisk means element-by-element multiplication, ‘% Å %’ means matrix multiplica-
tion, t()means transpose and aperm()permutes the dimensions of an array.

Row tensor of a matrix X
Rten = function(X){

one = matrix(1, 1, ncol(X))
kronecker(X, one) Å kronecker(one, X)

}
H-transform of an array A by a matrix X
H = function(X, A){

d = dim(A)
M = matrix(A, nrow = d[1])
XM = X % Å % M
array(XM, c(nrow(XM), d[-1]))

}
Rotation of an array A
Rotate = function(A){

d = 1:length(dim(A))
d1 = c(d[-1], d[1])
aperm(A, d1)

}
Rotated H-transform of an array A by a matrix X
RH = function(X, A) Rotate(H(X, A))

272 I. D. Currie, M. Durban and P. H. C. Eilers

The output of expression (3.3) is an array (which is denoted here by A) and this is converted to
a vector (denoted here by a) (and vice versa) simply by redimensioning, as in

a = as.vector(A)

A = array(a, c(c1, c2, c3))

where c1, c2 and c3 are the number of columns in the marginal regression matrices X1, X2
and X3 respectively. The inner product X′WδX is found from expression (3.4). If RT1, RT2 and
RT3 are the row tensors of X1, X2 and X3 then

XWX = RH(t(RT3), RH(t(RT2), RH(t(RT1), W)))

dim(XWX)= c(c1, c1, c2, c2, c3, c3)

XWX = matrix(aperm(XWX, c(1, 3, 5, 2, 4, 6)), nrow = c1 Å c2 Å c3)

Finally we calculate the diagonal of XSmX′ with expression (3.5) where Sm is any square matrix
of size c1c2c3.

S = array(S.m, c(c1, c2, c3, c1, c2, c3))

S = aperm(S, c(1, 4, 2, 5, 3, 6))

S = array(S, c(c1ˆ2, c2ˆ2, c3ˆ2))

Diag = RH(RT3, RH(RT2, RH(RT1, S)))

an n1 ×n2 ×n3 array which matches the data array Y.

6. A mixed model representation

The link between mixed model methodology and smoothing is well known, at least in one
dimension. Green (1985) referred to trend as ‘incorporating fixed and random effects’. Ver-
byla et al. (1999) showed that the cubic smoothing spline could be expressed as the sum of a
fixed linear effect and a random effect; Eilers (1999) gave a mixed model representation of
P-splines with a B-spline basis in the discussion of Verbyla et al. (1999). Wand (2003) and
Ruppert et al. (2003) gave thorough reviews of the mixed model approach and provided exten-
sive bibliographies.

We begin with the mixed model with normal errors and make the extension to the generalized
linear mixed model at the end of this section. In one dimension our model is

y =Bθ+ε, ε∼N .0, σ2I/ .6:1/

where B is a regression matrix of B-splines; smoothness is obtained via a penalty matrix P=λD′D
where D is a difference matrix acting on the coefficients θ. The aim is to look for a new basis
which allows the representation of model (6.1) with its associated penalty as a mixed model:

y =Xβ+Zα+ε, α∼N .0, G/, ε∼N .0, σ2I/, .6:2/

where G is a diagonal matrix which depends on λ. Note the change of notation: here Xβ rep-
resents the fixed component; the full model matrix is B.

We seek a mixed model representation (6.2) in higher dimensions which will be computable
using the low storage, high speed algorithms that were described earlier. Our method is perfectly
general but for simplicity we consider two dimensions with cubic B-splines and a second-order
penalty. We have B=B2 ⊗B1 with penalty matrix P, as in equation (2.10), given by

Array Models 273

P=λ1 Ic2 ⊗D′
1D1︸ ︷︷ ︸

P1

+λ2 D′
2D2 ⊗ Ic1︸ ︷︷ ︸

P2

: .6:3/

The expression P1 +P2 (and similarly for P in higher dimensions, as in equation (7.4) later) is
known as a Kronecker sum. The singular value decomposition of such sums allows the simul-
taneous diagonalization of P1 and P2 (Horn and Johnson, 1991) and enables us to obtain a
mixed model which can be fitted by using the array methods that were laid out earlier. The
representation results in a diagonal variance G. This has two advantages: first, computation is
efficient and, second, a diagonal penalty is interpretable in terms of shrinkage of the regression
coefficients.

We define the quantities X, Z and G in model (6.2). The idea is to use the singular value
decomposition of P to partition the difference penalty into a null penalty (the fixed part) and a
diagonal penalty (the random part). We first take the singular value decomposition of D′

1D1 into
V1Σ1V′

1. Now D′
1D1 has rank c1 −2 (D1 is .c1 −2/× c1) and so Σ1 =diag.τ11, . . . , τ1c1−2, 0, 0/,

say, and the non-zero eigenvalues are arranged in descending order; similarly, we write

D′
2D2 =V2Σ2V′

2:

Let Ṽ1, c1 × 2, and Ṽ2, c2 × 2, be the matrices corresponding to the zero eigenvalues of D′
1D1

and D′
2D2 respectively. Then we may take the fixed part to be

X =B.Ṽ2 ⊗ Ṽ1/

=B2Ṽ2 ⊗B1Ṽ1: .6:4/

We now define the random part. Let

Σ= .Ic2 ⊗Σ1/+ .Σ2 ⊗ Ic1/,

a diagonal matrix with entries τ1i +τ2j, i=1, . . . , c1, j =1, . . . , c2. We remove the four 0 elements
on the diagonal of Σ corresponding to X to leave Σ̃; this can be achieved by writing Σ̃=U′ΣU
where U′U is an identity matrix of dimension c1c2 −4. With these definitions in place we define

Z=B.V2 ⊗V1/UΣ̃
−1=2

= .B2V2 ⊗B1V1/UΣ̃
−1=2

: .6:5/

We note that both X and Z have a Kronecker product structure; it is this structure which allows
the array algorithms to be used. Now let

T= .Ṽ2 ⊗ Ṽ1 : .V2 ⊗V1/UΣ̃
−1=2

/

⇒T−1 = .Ṽ2 ⊗ Ṽ1 : .V2 ⊗V1/UΣ̃
1=2

/′ .6:6/

and then BT= .X : Z/ so we may reparameterize as Bθ=Xβ+Zα where

β= .Ṽ2 ⊗ Ṽ1/′θ,

α= ..V2 ⊗V1/UΣ̃
1=2

/′θ:
.6:7/

Lastly, we consider the penalty. The penalty term θ′Pθ=ω′T′PTω where ω′ = .β′, α′/. Now
P.Ṽ2 ⊗ Ṽ1/=0 so the penalty becomes α′Fα for some F. Further, since

.V2 ⊗V1/′P.V2 ⊗V1/=λ1Ic2 ⊗Σ1 +λ2Σ2 ⊗ Ic1 .6:8/

274 I. D. Currie, M. Durban and P. H. C. Eilers

it follows that F =λ1Ψ1 +λ2Ψ2 where Ψ1 = Σ̃
−1=2

U′.Ic2 ⊗Σ1/UΣ̃
−1=2 =diag{τ1i=.τ1i + τ2j/}

and Ψ2 = Ic1c2−4 −Ψ1. So F is diagonal and depends on the smoothing parameters λ1 and λ2.
We note that when λ1 =λ2 =λ, say, the isotropic case, then F =λI.

With the new basis and new penalty we minimize the following penalized sum of squares:

S.α, β; y, λ1, λ2/= .y −Xβ−Zα/′.y −Xβ−Zα/+α′Fα .6:9/

from which it is easy to show that α̂ and β̂ satisfy(
X′X X′Z
Z′X Z′Z+F

)(
β̂
α̂

)
=

(
X′
Z′

)
y, .6:10/

the mixed model equations corresponding to model (6.2) with G=σ2F−1; see Searle et al. (1992),
page 276. Estimates of β and α now follow from standard mixed model theory:

β̂= .X′V−1X/−1X′V−1y, .6:11/

α̂=GZ′V−1.y −Xβ̂/ .6:12/

where V = σ2I + ZGZ′. Smoothing parameters may be selected by maximizing the residual
log-likelihood

l.σ2, λ1, λ2/=− 1
2 log |V|− 1

2 log |X′V−1X|− 1
2 y′.V−1 −V−1X.X′V−1X/−1X′V−1/y: .6:13/

It remains to show that equations (6.11)–(6.13) can be computed with the array algorithms
(3.3) and (3.4). The matrix V =σ2I + ZGZ′ is an example of a Schur complement and so its
determinant and inverse can be written (Searle et al. (1992), page 453)

|V|=σ2n|G||G−1 + 1
σ2 Z′Z|, .6:14/

V−1 = 1
σ2 {I −Z.σ2G−1 +Z′Z/−1Z′}: .6:15/

The array computations are now readily obtained. For example, to compute |V| we need the
array computation of Z′Z. From equation (6.5) it is sufficient to compute

.B2V2 ⊗B1V1/′.B2V2 ⊗B1V1/≡ρ[G.B2V2/′, ρ{G.B1V1/′, W}] .6:16/

where W = 11′, n1 × n2, is the identity weight matrix. Of course, with normal errors, we may
compute Z′Z directly from V′

2B′
2B2V2 ⊗ V′

1B′
1B1V1. The remaining quantities, X′X, X′Z, Z′y

and X′y, are computed in a similar fashion; see Durban et al. (2005) for further details and
examples.

In the generalized linear mixed model case we use the penalized quasi-likelihood of Bres-
low and Clayton (1993) and iterate between equations (6.11) and (6.12) on the one hand and
equation (6.13) on the other; in a generalized linear mixed model, V =W−1

δ +ZGZ′ where Wδ

reduces to diag{exp.Xβ+Zα/} in the Poisson case; here, we need expression (6.16) to compute
Z′WδZ etc.

7. Further examples of smoothing with generalized linear array model

We have used our method in several areas. One important area is the construction of multi-
dimensional histograms. Eilers et al. (2006) give an example in two dimensions with scattered
data. We cover the area with a fine mesh of rectangular bins and compute two matrices: W
holds the number of observations in each bin and M holds the average of the observed values

Array Models 275

in each bin (or 0 if there are none). We then smooth M with weights W. Eilers et al. (2006) also
deal with the smoothing of two-dimensional scattered data with P-splines. However, the array
approach in the present paper is not available in the general case; see Dierckx (1993) for a full
discussion. We illustrate our method with two further examples: in the first example we use an
additive model to analyse some microarray data where each component has a GLAM form,
and in the second example we consider a large regression problem in three dimensions with data
on the incidence of respiratory disease.

7.1. Example: an additive model with two generalized linear array model components
This example comes from microarray technology. Microarrays carry a grid of thousands of tiny
spots, each specific for a unique complementary deoxyribonucleic acid (DNA) fragment. When
a specially prepared fluid containing these fragments is put on the surface of a microarray for
several hours, complementary DNA fragments hybridize (stick to) their ‘own’ spot. The amount
that hybridizes is (approximately) proportional to the concentration in the fluid. The comple-
mentary DNA molecules have been labelled with a fluorescent dye so that, when the microarray
is scanned with a laser, an image is obtained in which the brightness of each spot denotes the
concentration of the corresponding complementary DNA.

Unfortunately, the surroundings of the spots are not completely dark. They also show fluo-
rescence, which is known as the background. One way of correcting for the background is to
measure it in the surroundings of a spot and to subtract it from the brightness of the spot itself
(the foreground). Fig. 4(a) shows the background for a microarray with a 72 × 128 grid. We
see three components: a smooth spatial trend, sudden changes at the boundaries of subgrids
and noise. The subgrids stem from the way that a microarray is produced: the spots have been
printed with a set of pins, arranged in two rows and four columns. Apparently each pin has a
different influence on the background.

We could simply ignore the pin effects and use the GLAM to smooth the matrix of back-
ground values. However, the pin effects can also be modelled within the GLAM framework. We
introduce a second Kronecker product basis using B-splines of zero degree (piecewise constant):
B0, 72×2, for the first dimension (rows) and B̆0, 128×4, for the second (columns). If C, 2×4,
is the matrix of pin coefficients, then the model becomes

E.Y/=B3AB̆′
3 +B0CB̆′

0, .7:1/

where now we indicate the degree of a B-spline basis by a subscript. The first term represents the
cubic B-splines for the smooth trend; the second term covers the pin effect. We have the usual
roughness penalties on (the rows and columns of) A, but not on C.

As it stands, this model is not identifiable, because adding an arbitrary constant to A and
subtracting it from C will give the same values for E.Y/. Instead of trying to deflate one of the
bases to correct for this, we use a small ridge penalty (the sum of the squares of the elements)
on A and C. This gives the unique minimum norm solution.

Equation (7.1) expresses the mean of Y as a sum, where each part is computed by using GLAM
arithmetic. We also need to compute the matrix of inner products and for this we extend the
definition of the row tensor G.X/ of a matrix X to the following.

Definition 6. The row tensor of the matrices X1, n× c1, and X2, n× c2, is defined as

G2.X1, X2/= .X1 ⊗1′
c2

/ Å .1′
c1

⊗X2/ .7:2/

where 1c1 and 1c2 are vectors of 1s of lengths c1 and c2 respectively. We note that G2.X, X/=G.X/.

276 I. D. Currie, M. Durban and P. H. C. Eilers

20 40 60

(a) (b)

(c) (d)

80 100 120

10

20

30

40

50

60

70

20 40 60 80 100 120

10

20

30

40

50

60

70

20 40 60 80 100 120

10

20

30

40

50

60

70

20 40 60 80 100 120

10

20

30

40

50

60

70

Fig. 4. Smoothing of background measurements on a microarray: (a) data; (b) fitted surface, consisting of
a smooth trend and eight rectangles for pin effects; (c) pin effects; (d) smooth trend

The matrix of inner products for the penalized normal equations for the elements of A
and C can be partitioned into four parts. On the diagonal we find the reshuffled elements
of G.B3/′W G.B̆3/ and G.B0/′W G.B̆0/. The off-diagonal submatrices contain the reshuffled
elements of G2.B3, B0/′W G2.B̆3, B̆0/ and its transpose. Here W is a matrix of the size of Y
containing 0s and 1s, indicating the absence or presence of a measured background. Thus, the
GLAM algorithm also applies to additive models with multiple Kronecker product bases.

The four panels of Fig. 4 show the data, the fitted smooth surface with jumps between sub-
grids, the pin effects and the estimated spatial component.

As a final remark on this example we note that the pin effects are modelled with only eight
parameters. An alternative approach to fitting model (7.1) is to use backfitting where we iterate
between fitting the smooth component as a GLAM and the pin component as an ordinary
regression. We do not recommend this approach in the present example but it could be used
to fit non-rectangular block effects. One application is the study of the effect of influenza epi-
demics on the shape of the mortality surface, where theory indicates raised mortality in certain
triangular regions, defined by cohorts, of the mortality surface (Oeppen, 2004). These regions
may have been observed empirically (Richards et al., 2005).

Array Models 277

7.2. Example: a generalized linear array model in three dimensions
Our final example uses American data on the number of deaths from respiratory disease. The
data array Y = Y [i, j, k] is indexed by age at death, i = 1, . . . , 105, year of death, j = 1, . . . , 40
(1959–1998), and month of death, k =1, . . . , 12. Thus Y has 50400 points arranged in a 105×
40 × 12 array. We model the number of deaths Y [i, j, k] with a GLAM with Poisson error and
log-link; the logarithm of the number of days in a month is used as an offset. The regression
matrix B is defined via the marginal regression matrices of B-splines for age, Ba, year, By, and
month, Bm. We chose equally spaced knots as follows: at 1 and 105 with 11 internal knots
for age, at 1 and 40 with six internal knots for year and at 1 and 12 with three internal knots
for month. With cubic B-splines this gives Ba, 105 × 15, By, 40 × 10, and Bm, 12 × 7. The full
regression matrix B = Bm ⊗ By ⊗ Ba has 1050 parameters arranged in a 15 × 10 × 7 array, Θ.
This is a large regression problem: the regression matrix B alone has over 5×107 elements. The
GLAM form for the mean of Y is

E.Y/=M ÅΓ, log.Γ/=ρ[Bm, ρ{By, ρ.Ba,Θ/}] .7:3/

where M is the 105×40×12 array which holds the number of the days in the month.
It remains to define the penalty matrix P. We penalize each dimension of Θ in turn, i.e. we

place penalties on the columns (dimension 1), rows (dimension 2), etc., of the array. We find

P=λ1Ic3 ⊗ Ic2 ⊗D′
1D1 +λ2Ic3 ⊗D′

2D2 ⊗ Ic1 +λ3D′
3D3 ⊗ Ic2 ⊗ Ic1 .7:4/

where D1, D2 and D3 are difference matrices; this generalizes equation (2.10); see Currie et al.
(2004) and Wood (2004) for further discussion of penalties with Kronecker product bases.
Expression (7.4) indicates the general formula in d dimensions.

The parameters are estimated by using second-order penalties and the Bayesian information
criterion. The fitted model has effective degrees of freedom of 305. Fig. 5 gives an idea of how
the numbers of deaths vary with age, year and month. Fig. 5(b) suggests that the number of
deaths in 1972 is an extreme outlier. We dealt with this by defining a diagonal weight matrix Vδ

with 0s for data corresponding to 1972 and 1s elsewhere and modifying the penalized scoring
algorithm (1.2), as follows:

.B′VδW̃δB+P/θ̂=B′VδW̃δ z̃: .7:5/

The penalty function bridges the gap between 1971 and 1973. More generally, interpolation and
extrapolation are achieved by defining the appropriate diagonal matrix Vδ or its array equiva-
lent V. This device may also allow us to use a GLAM with d-dimensional data which do not lie
in an array, provided that we can fill in the missing part of the array with dummy data values.
For example, suppose that a number of scattered data values are missing from the 105×40×12
data array. The data do not lie in an array but can be made to do so by defining dummy data
values and the appropriate weight matrix or array.

The choice of initial values for the solution of algorithm (1.2) is extremely important. We use
a two-stage approach. We use log{.Y+0:5/=M} as an initial estimate of ρ[Bm, ρ{By, ρ.Ba,Θ/}]
and this in turn gives an initial estimate of Θ. We set λa =λy =λm = 1, say, and then iterate
algorithm (1.2) until convergence. This gives a second and much improved initial estimate of Θ
which is used in the subsequent search for optimal values of λa, λy and λm; this simple device
alone cuts computer time by around 75% in this example.

The order of the storage of the variables makes a difference to GLAM performance. The data
should be stored with the largest variable (here age) varying fastest to smallest variable (here
month) varying slowest; in our example, this ordering of the data implies that the regression
matrix is Bm ⊗ By ⊗ Ba. We conjecture that this order is optimal in the sense that the number

278 I. D. Currie, M. Durban and P. H. C. Eilers

Age
(a)

(b)

(c)

) ya
D/shtae

D(gol

0 20 40 60 80 100

2
2-

6-
•

•

•
• • • •

•
•

•
• •

•
•

• •
•

•
• • •

• • • •
•

• •
• • • •

• •
• • •

•
• • • •

Year

)ya
D/shtae

D(gol

1960 1970 1980 1990 2000

8.2
4.2

0.2

•
• • •

•
•

•
• •

•
•

• •

•

•

•

•
•

•

• • •

•
•

•
•

•
•

•

•

•

•
• •

•

•
• •

•

•

Month

)ya
D/shtae

D(gol

0 5 10 15

0.3
7.2

•

•
• •

•

•

•
•

•
•

•
•

Fig. 5. Observed (�) and smoothed () numbers of log(deaths/day) by age, year and month (regres-
sion coefficients Θ̂[i, j , k] plotted against knot position (ı)): (a) January 1959, Θ̂[i, 2, 2], i D 1, . . . , 15; (b) age
53 years, January, Θ̂[8, j , 2], j D1, . . . , 10; (c) age 53 years, 1959, Θ̂[8, 2, k], k D1, . . . , 7

of multiplications that are performed to calculate the elements of B′WδB is minimized. The
algorithm takes about 25% longer to run with the variables in the reverse order.

Performance may also be improved by noting that each row of the row tensor function of X,
n× c, in equation (2.2) contains c2 elements of which only c.c+1/=2 are distinct. It is possible
to discard the duplicate elements in each row tensor function and then to apply expression (3.4).
The number of multiplications is cut by a factor of about 2d ; an additional overhead is required
to restore the missing output to give B′WδB. It will also be possible to take advantage of the
sparse form of both the B-spline matrices Bi and their row tensor G.Bi/; see de Boor (1979).

We have programmed our method in both S-PLUS or R and MATLAB and the simple form
of expressions (3.3)–(3.5) means that this is straightforward. The method is also available for
low level languages (C, Fortran, etc.) where the twin benefits of low storage and high speed
apply equally.

8. Concluding remarks

In the example in Section 7.1 we used equation (7.1) to describe some microarray data. This
model has one smooth (two-dimensional) term and one regression (two-factor) term where each
component has the form of a GLAM and the components are combined additively. We also
described a model for the effect of influenza on the mortality surface in terms of an additive
model with one smooth two-dimensional GLAM term and one ordinary regression (factor)
term. These examples illustrate how a GLAM can be part of a general model building process.

Array Models 279

In more complex models the GLAM algorithms are used to fit components corresponding to
general (high dimensional) smooth functions; these components are then combined with regres-
sion and/or low dimensional smooth terms. In its most general form we envisage an additive
model with regression terms which can be in standard or GLAM form and smooth terms which
may also be in standard or array form. The penalty matrix is block diagonal with a separate
block for each additive smooth term; there is no penalty on ordinary regression terms. We give
one simple example to indicate the possibilities.

The age–period–cohort model (Clayton and Schifflers, 1987) is an additive model for a mor-
tality table. With the same notation as the example in Section 2.3 we write the linear predictor
for the log-hazard as ηi,j = αi + βj + γk where i indexes age, j year and k cohort. A smooth
version of this model can be obtained as follows. Let Ba, na × ca, and By, ny × cy, be marginal
B-spline bases for age and year, and Bc, nany × cc, be a B-spline basis for cohort. Then

η= .1ny ⊗Ba/α+ .By ⊗1na/β+Bcγ .8:1/

is a smooth age–period–cohort model which can be fitted by using GLAM algorithms for the
age and year terms and ordinary regression for the cohort term. This example illustrates a com-
mon feature of models for tables: the age and year terms are each univariate terms and so the
array form has a ‘degenerate’ basis along the ‘other’ dimension. The penalty matrix is block
diagonal with a separate block for each of age, period and cohort. If we replace By with Iny

(which corresponds to B-splines of degree 0) and set the year penalty to 0 then we have a model
with two GLAM terms, one smooth and one discrete, and one smooth regression term. The
original discrete age–period–cohort model is a special case of model (8.1) with all the bases
computed by using B-splines of degree 0 and no penalties.

The outputs of algorithms (3.3) and (3.5) have an attractive geometric interpretation: the
smoothed values and their standard errors are all correctly positioned, as defined by the data
array. Algorithm (3.4) has a similar geometric interpretation. In a univariate scheme the vari-
ance of a vector is a matrix. In our case we have a coefficient array A which sits in d dimensions
so its variance ‘matrix’ should be an array in 2d dimensions; this is exactly what happens since
the output of algorithm (3.4) is a d-dimensional array c2

1 × . . . × c2
d which is reshaped into a

2d-dimensional array c1 × c1 × . . . × cd × cd in the software section. It seems that the GLAM
sits naturally in d dimensions: data, means, variances and standard errors of fitted values.

The GLAM is designed for smoothing multidimensional arrays. It is often appropriate to
use a Kronecker product basis to smooth a multidimensional array but a direct approach using
standard regression algorithms can quickly become unusable when the number of data points
is large, as will usually be the case. The GLAM is conceptually attractive since

(a) data, fitted values and standard errors sit naturally in the correct space and
(b) the coefficient array approximates the smoothed surface when the basis is computed as

the Kronecker product of marginal B-spline bases, as in Fig. 2 and Fig. 5.

Computationally the method has two advantages: low storage and high speed. Complex additive
models with high dimensional smooth terms can be computationally very challenging; GLAM
algorithms will alleviate some of the computational burden and make such models more readily
available.

Acknowledgements

We thank the Continuous Mortality Investigation Bureau for providing the data for the example
in Section 2.3 and for providing financial support to all three authors. We are indebted to Profes-

280 I. D. Currie, M. Durban and P. H. C. Eilers

sor Jim Howie of Heriot-Watt University who first suggested the use of the H-transform and to
Dr Froilan Martinez-Dopico of Carlos III University who drew our attention to the properties
of Kronecker sums. We are also grateful to Roland Rau of the Max Planck Institute of Dem-
ography who provided the respiratory data that were used in the example in Section 7.2. The
work of Maria Durban was supported by Dirección General de Universidades e Investigación,
Comunidad de Madrid, project HSE/0181/2004. Finally we are grateful to the referees for their
most helpful comments.

References

Akaike, H. (1973) Maximum likelihood identification of Gaussian autoregressive moving average models.
Biometrika, 60, 255–265.

de Boor, C. (1979) Efficient computer manipulation of tensor products. ACM Trans. Math. Softwr., 5, 173–182.
Breslow, N. E. and Clayton, D. G. (1993) Approximate inference in generalized linear mixed models. J. Am.

Statist. Ass., 88, 9–25.
Brewer, J. W. (1978) Kronecker products and matrix calculus in system theory. IEEE Trans. Circ. Syst., 25,

772–781.
Clayton, D. and Schifflers, E. (1987) Models for temporal variation in cancer rates: II, Age-period-cohort models.

Statist. Med., 6, 469–481.
Craven, P. and Wahba, G. (1979) Smoothing noisy data with spline functions. Numer. Math., 31, 377–403.
Currie, I. D., Durban, M. and Eilers, P. H. C. (2004) Smoothing and forecasting mortality rates. Statist. Modllng,

4, 279–298.
Dierckx, P. (1993) Curve and Surface Fitting with Splines. Oxford: Clarendon.
Durban, M., Currie, I. D. and Eilers, P. H. C. (2005) Multidimensional P-spline mixed models: an efficient method

for estimation of multivariate densities. To be published.
Eilers, P. H. C. (1999) Discussion on ‘The analysis of designed experiments and longitudinal data by using smooth-

ing splines’ (by A. P. Verbyla, B. R. Cullis, M. G. Kenward and S. J. Welham). Appl. Statist., 48, 307–308.
Eilers, P. H. C., Currie, I. D. and Durban, M. (2006) Fast and compact smoothing on large multidimensional

grids. Comput. Statist. Data Anal., 50, 61–76.
Eilers, P. H. C. and Marx, B. D. (1996) Flexible smoothing with B-splines and penalties. Statist. Sci., 11, 89–121.
Gower, J. C. (1982) The Yates algorithm. Util. Math., 21, 99–115.
Green, P. J. (1985) Linear models for field trials, smoothing and cross-validation. Biometrika, 72, 527–537.
Green, P. J. and Silverman, B. W. (1994) Nonparametric Regression and Generalized Linear Models. London:

Chapman and Hall.
Horn, R. A. and Johnson, C. R. (1991) Topics in Matrix Analysis. Cambridge: Cambridge University Press.
Oeppen, J. (2004) Personal communication.
R Development Core Team (2004) R: a Language and Environment for Statistical Computing. Vienna: R Foun-

dation for Statistical Computing.
Richards, S. J., Kirkby, J. G. and Currie, I. D. (2005) The importance of year of birth in two-dimensional mortality

data. To be published.
Ruppert, D., Wand, M. P. and Carroll, R. J. (2003) Semiparametric Regression. Cambridge: Cambridge University

Press.
Schwarz, G. (1978) Estimating the dimension of a model. Ann. Statist., 6, 461–464.
Searle, S. R. (1982) Matrix Algebra Useful for Statistics. New York: Wiley.
Searle, S. R., Casella, G. and McCulloch, C. E. (1992) Variance Components. New York: Wiley.
Silverman, B. W. (1985) Some aspects of the spline smoothing approach to non-parametric regression curve fitting

(with discussion). J. R. Statist. Soc. B, 47, 1–52.
Van Loan, C. F. (2000) The ubiquitous Kronecker product. J. Comput. Appl. Math., 123, 85–100.
Verbyla, A. P., Cullis, B. R., Kenward, M. G. and Welham, S. J. (1999) The analysis of designed experiments and

longitudinal data by using smoothing splines (with discussion). Appl. Statist., 48, 269–311.
Wahba, G. (1983) Bayesian “confidence intervals” for the cross-validated smoothing spline. J. R. Statist. Soc. B,

45, 133–150.
Wand, M. P. (2003) Smoothing and mixed models. Comput. Statist., 18, 223–250.
Wood, S. N. (2000) Modelling and smoothing parameter estimation with multiple quadratic penalties. J. R. Statist.

Soc. B, 62, 413–428.
Wood, S. N. (2004) mgcv: GAMs with GCV smoothness estimation and GAMMs by REML/PQL. In R Package

Version 1.1-5. Vienna: R Foundation for Statistical Computing.
Yates, F. (1937) The design and analysis of factorial experiments. Technical Communication 35, pp. 1–95. Com-

monwealth Bureau of Soils, Harpenden.

