HERIOT-WATT UNIVERISTY

Master Thesis

COMPUTER NETWORK ANALYSIS AND
PERFORMANCE MEASUREMENT

Supervisor: Second Reader:
Idris Skloul Ibrahim Jessica Chen-Burger

Author:
Sidi Sun

A thesis submitted in fulfilment of the requirements
for the degree of MSc. Data Science

in the

School of Mathematical and Computer Sciences

August 2018

HERIOT
S WAT'T

£
‘é,y UNIVERSITY

Abstract

NS2 (Network Simulator 2) is a cross-platform discrete-event computer network
simulators that has been primarily used in research and teaching. NS2 provides support
for simulation of TCP, this includes multicast protocols such as AODV, DSDV and etc.

over wired and wireless network.

Despite the rich features NS2 provides, its trace file tends to be very large, complex and
non-human-readable. Moreover, there are not many good tools available to help analyze
the trace file. Most of the available tools are poorly designed and have flaws, such as low

performance, low portability and lack of graphical user interface.

In this master’s thesis, a cross-platform GUI application that uses multithreading
technology to help effectively analyze multiple large data files is designed and
implemented. The aim of this application is to analyze NS2 trace files (old and new
format) effectively in multiple platforms: Windows, Mac and Linux. The application is

also designed as a teaching tool for third year network students.

NOTE:

The following are a few chapters to show you how to download and use this tool cross
different platforms (e.g. Window, MAC and Linus)

Literature Review

This chapter starts with an example of the trace file, illustrates the defect of existed

analysis tools. Finally, there will be a discussion on the technologies used for this project.

2.1 Trace File Format

This application is designed for analyzing both new and old format of trace file over
wired and wireless network. The trace files for wire and wireless network are the same,
however, the old format trace file is different from the new one. One of the objectives to

distinguish the trace file format, and analyze both formats of the trace files.

2.1.1 Old Trace File Format

Figure 2.1 shows an example of the old format trace file. This line represents the
following information:

1. “s” stands for a send event

2. The send event occurs at 21.500275000 second

3. This packet is sent from node “ 0_”

4. This event happens on the “_ MAC_” layer

5. The packetidis O

6. The packet type is “AODV”

7. The packet size is “106” bytes

8. The rest of the line are the MAC address and IP address of the source and

destination, which are not essential for calculating the analysis result

s 21.500275000 _O0_ MAC --- O RODV 106 [0 £E£f£f£ffff O 800] --—---- [0:255 =1:255 30 0]

Figure 2.1 Old Format Trace File Example

The old trace file format has 12 mandatory fields and some other optional fields based on
the type of protocols [3]. In order to generate an analysis result of the old trace file
format, 6 of the 12 fields are required, which are event, time, trace level, packet id, packet
size, and packet type.

from| to | pkt pkt flags | fid | BES dst | seq | pkt

Bwent | TIMe | yode | node |type | size addr | addr | num | id

Figure 2.2 Mandatory Fields for Old Trace File

2.1.2 New Trace File Format

The major difference between the old format and the new format is that the new format
has more fields and contains more details [3]. However, for the analyzing purpose, the 6
same fields are required, and the rest of the fields can be ignored. Since new format has
more fields on each line, the position of the 6 fields is different from the old format. To
identify a trace file’s format, the application only has to check the first and second field
in the line. If the second filed of the line is a time flag “-t”, then it’s the new format. If the
first field is a “+”, then the file is written in tagged format, which is not covered by this
project. If it doesn’t meet the pervious conditions, then the file has an old format.

2.1.3 Tagged Format

Even though this application is not designed for analyzing tagged format trace file, it’s
important to know the difference from the tagged trace file and the new, old trace files.
Tagged trace file always starts a line with a “+ or “-” sign [3]. By checking the first

character of each line, tagged trace file can be easily filtered out.

2.1.4 Processing Big Data

Besides the different formats of the trace files, another common problem is the size of the
trace file can be really large, which means that the processing time can be extremely long
if the analyzer is not implemented by using multithreading technology. In fact, the old
NSGTFA is able to process 60MB file in 51 seconds, and 1.2GB file in 4.1 minutes [6].
This will set a standard for the new version of NsSGTFA. To implements multithreading
in this application, the main thread will create a worker thread for each trace file. The
analysis of all trace files should start at approximately the same time [22]. Larger trace
file will take long time to analyze, but this is not going to block the analysis process of
other trace files. More details about multithreading will be discussed in the Design

section and Implementation section.

Implementation

7.1 Views

The view module has 4 Java classes and a readme file and it has a file structure shown as

follow:

MainFrame.java is responsible for rendering all the windows. GraphFactory.java,

BarChart.java and PieChart.java are responsible for generating analysis graphs.

7.1.1 Main Panel

One of the requirements is to develop a simple and intuitive user interface for this
application. The first design of the GUI was inspired by the previous versions of
NsGTFA.

File View Help

Ns2 Trace File Analyzer

rChose the Trace File(s)

New Load a File

r Performance

Calculation Data Set

Metrics Options

Select A Most Used

Performance Metrics

rSteps/Monitor
cted
Hit Calculation
Chose Data Set
Select Chart/Grapl

r Error
File Select

Folder Select

March 2014 Ver 3.0 Java GUI

Figure 7.2 GUI Version 1.0

The problem of this design is obvious. The GUI is too narrow; there is not enough space
to show all the buttons and labels. The text of the labels is shown crossed the subpanel
border, and buttons are squeezed into random places. The second problem is that there is

no place to show the analysis result and the progress of the analyzing process.

To tackle these problems, GUI version 2.0 was designed. One the left side of the GUI, it
remains the same layout but has a wider width. One the right side of the GUI there are
two new subpanels: Analysis Result Panel and File Information Panel. The result of each
trace file will be shown as a single tab in the Analysis Result Panel. File Information
Panel will show the text line while analyzing the trace file. To let the user see the

progress of the analysis, on the bottom of the GUI, a progress bar is added.

(@ NsGTFA]
File View Help

rAnalysis Result

Ns2 Trace File Analyzer (61 RECE

e Name test.tr

HERIOT
WATT

JNIVERSITY

rChoose the Trace File(s)

New Load a File Load a Folder

rPerformance

Calculation Chart / Graph

rMetrics Options

Select Al Most Used Clear A

rFile Information

Performance Metrics r Steps /Monitor

Packet Delivery Ratio Select Data First

lit Calculation

Total Sent Packets rError
File Select

Folder Select

‘ March 2014 Ver 3.0 Java GUI |

Figure 7.3 GUI Version 2.0
The second design of the GUI meet all the requirements, however, there was an issue

when running the program on laptops that are smaller than 15-inch. On the vertical level,
the GUI is too high. Laptops that are smaller than 15-inch usually don’t have the screen
size to show the entire GUI. Although the GUI is resizable, resizing will hide some of the

components and cause inconvenience while using the application.

Therefore, a third version of GUI was made. Since most of the users will only pay
attention to the analysis result, File Information Panel was removed from the GUI. By
removing the File Information Panel, it saves more space for other components and cut
the height of the window. This revised GUI window can be successfully displayed on

most of the modern computers.

File Help

NsGTFA

Ns2 Trace File Analyzer

rAnalysis Result

HERIOT

TWAT'T

S uNTVERSITY

rChoose the Trace File(s)

New

rPerformance

Calculation Chart / Graph

rMetrics Options

Select A Most Used Clear A

rPerformance Metrics

Sent Packets

rSteps/Monitor Error
1. Select Data First

Select Metrics

File Read

File Write

Figure 7.4 GUI Version 3.0

7.1.2 Graph Window

generate the bar chart and pie chart.

When user clicks on the “Chart/Graph” button, MainFrame.java will trigger the
setupGraphPanel() method to generate all the graphs. There are three Java classes that
are involved in the generation of graphs. GprahFactory.java will feed the data into
BarChart.java and PieChart.java. These two Java files use the JFreeChart library to help

PieChart AWT BarChart_ AWT

«create» «create»

AN
|
|

«creF—ate»
|

MainFrame

Figure 7.5 Class Diagram of the GraphFactory Class

10

B

8009

Graph

By selecting from a dropdown list, user can decide to see the bar chart or pie chart.

r Performance Charts
PDR

1010 | S
90
B0 1|
7010
60 [
50 1|
40 11
300
2010

0

1.2)
1.1
1.0}
0.9
0.8 |
0.7}
0.6
0.5
0.4 {8
0.3
0.2 1p
o1
0.0

Throughput
35000 f
30,000 - [
00l
20000/
15,000 | ST

10,000 | -cccoooommommccccooznmae

W a2 ADDV_new W azA0DV_old

W a2 AODV_new M aza0DV_old

W a2 ADDV_new W a2A0DV_old

W a2 ADDV_old a2_DSDV_new ||™ a2 AODV_old a2 _DSDV_new |[™ a2 AODV_cld a2 _DSDV_new
EtoED Overhead DP
sy —————
0.26 |[
oo 75000 [0 18000
: 70,000 | (o I 16,000 | (R
0.22 65,000 |
0.20 60,000 || 14,0010 |
0.18 55000 | @ 09090920 |
- 49 12'000 lf
o000
N 10,000 1|
0.14 40,000 [Eil
0.12 35,000 {| 8,000 ||
0.10 30,000 ||
0.08 25,000 {| 6,000 ||
20,000 ||
0.06 N
15,000 [4000
0.04 || 10,000 | 2ao0 |
0.02 5,000 ||
0.00 0 0

B a2 AODV_new B aZA0DV_old
= a2 AODV old a2 _DSDV_new

W a2 AODV_new M aza0DV_old
a2 AODV_old a2_DSDV_new

B a2 AODV new B a2A0DV_old
= a2 AODV old a2 _DSDV_new

Figure 7.6 Bar Chart

11

@0 Graph

rPerformance Charts

PDR

® a2_ADDV_new @ a280DV_old |[® a2_AODV_new ® a280DV_old ||® a2_AODV_new ® a2a0DV_old
® a2_ADDV_old O a2_DSDV_new ||® a2 AODV_old © a2_DSOV_new ||® a2_A0DV_old © a2_DSDV_new

EtoED Overhead DP

® a2 AODV_new ® a2a0DV_old |[@ a2_AODV_new ® a2a0DV _old ||® a2_AODV_new ® a2a0DV_old
® a2 ADDV old O a2 DSDV_new ||® a2 AODV old O a2 DSDV new ||® a2 AODV old O a2 DSDV_new

Figure 7.7 Pie Chart

7.1.3 User Manual Window

When developing a tool to help user do the analysis, it’s important to make tool easy to
pick up by the user. One way to do this, as already mentioned, is to make the GUI as

simple as possible. Another way is to create a user manual to describe the running steps
in details.

12

User can find the user manual by click the “Help” button on the menu bar, and a User
Manual Window will show up.

® ® User Manua

NsGTFA User Mnaual

NsGTFA (NS2 Trace File Analyzer) is designed for analyzing old and new trace
files.

User can use NsGTFA multiple trace files at the same time and compare the results.

NsGTFA also supports basic graph generation: Bar chart and Pie chart.

Step 1.

Click New button to start a new analysis.

Step 2.

Click Load a File to select trace file. This can be done multiple times if user is
planning to analyze more than one trace file.

Step 3.

Use the Mefrics Options and Performance Mefrics panel to select desired metrics.

User can click Select All to select all the metrics, or click Masf Used to select the

Figure 7.8 User Manual Window

The user manual is shown in a JEditorPane instead of a JTextArea, and the original text
is saved in the readme.html file. The reason to use a JEditorPane is that it can read a
HTML file and display the HTML tag in a proper format. For example, the crossed line
in the user manual is created by using the <strike> tag:

<p>

<strike>Qick < >Load a Fd derJi><J b>tosdect afd der. NsGTFA wll tryto and yze dI
thetracefilesinthe sd ected fd der. (Nat supportedinthi s vers on)

o stri ke>
< p>

13

7.2 Models

Models are the core files for this application that help manipulate data in the desired way,
this includes reading data from files, analyzing data, formatting data and exporting data.

Underneath the model folder, there are 4 Java files:

Models

—— FileAnalyser.java

—— FileLoader.java

—— Helper.java

L—— ModelAnalysisResult.java

Following is the class diagram of the model files:

I—
«cregtexl
|

Figure 7.9 Class Diagram of the Models

7.2.1 Loading Files into Application

FileLoader.java implements JFileChooser object to open a file selection window. The
default file format is filtered by using a FileNameExtensionFilter, which only allows the
user to select files with “.tr”” extension:

JHI eChooser fileChooser = new JHI eChooser(def autPat h);
fileChooser. set Accept Al RleRlter Used(fd se); HleNameExt ens onFlter filter = new
FleNameExt ensionFlter("Ns2 Trace FHles Oy, "tr"); fileChooser.addChoosaleH!|eRlte(filter);

14

The default path of the file chooser is the user’s root directory. After selecting a trace file,

the default path will be set to that trace file’s parent directory. This will help the user to

select multiple file in the same folder. The selected trace file will then be returned as a

File object, and saved in an ArrayList. In this way, the user can select multiple trace files

and be ready to do the analysis.

@9 Open
Examples d

Mame ~ Date Modified
B az_A0DV_new.tr Monday, August 13, 2018 1:50 PM
B az_A0DV_old.tr Monday, April 14, 2014 11:41 AM
B az_A0DV_tagged.tr Friday, April 11, 2014 6:30 PM
B a2 _DSDV_new.tr Monday, August 13, 2018 1:58 PM

a2 _DSDV_new_copy.tr Monday, August 13, 2018 2:02 PM
B az_psDv_old.tr Friday, April 11, 2014 6:34 PM
B a?_DSDV_tagged.tr Friday, April 11, 2014 6:32 PM
B azA0DV.1r Monday, June 16, 2014 1:05 PM
B a2 A0DV_new.tr Monday, June 16, 2014 1:10 PM
B 220DV _old.tr Monday, June 16, 2014 1:09 PM
B 220DV _tag.tr Tuesday, Movember 22, 2016 7:22 PM
B Ex7_AOQDV.ir Tuesday, April &, 2014 6:00 PM
B Ex7_AODV_new.tr Wednesday, April 9, 2014 5:48 PM

File Format: =~ Ms2 Trace Files Only d

7.2.2 Analyzing the File

Cancel Ope

Figure 7.10 File Selection Window

The core functionality of this application is to analyze NS2 trace files. This analyzing

process is fully handled by the FileAnalyser class. FileAnalyser extends the abstract

SwingWorker class, and implements the following methods:

public dass HleAnd yser extends Sw ngWorker <Mode And ys sResut, Integer > {

@Overri de

protected Modd Andys sResut dd nBackground() throws Exception {
whil e ((tHsline = br.readli ne()) !'=nul) {

/I And yzetheline..

puldish((irt) Mathround(readLength/ fileSze * 100));

}
}
@Overri de

15

protected va d done() {

try{
get();
}
cat ch (Executi onException €) {

e pint S ackTrace();

}

}

@Overri de

protected va d process(List 4 nteger > chunks) {
irti =chunks. get(chunks.d ze() - 1);
progr essBar. set \V ue(i);

}
}

The doInBackground method executes in a worker thread. This method handles all the
analyzing work. First, the trace file format has been determined. According to the format,
old or new, each line of the trace file is tokenized into pieces. The corresponding token
value that is involved in the analyzing process is then save into memory, and will be used
to analyze the file. The doInBackground method will also output the analysis result to a
text file when the calculation is done.

The publish method inside the doInBackground method updates the intermediate result to
keep track of the analyzing progress. Every time the application reads a single line, the
line size will be summed up to calculated the total size of file that has been already
analyzed. Then the application can use this value to divide the total size of the trace file
to obtain the progress of the analysis.

The process method is used to get the intermediate result that is passed in by the publish
method. Every time the publish method updates a result, it will push the result into the
chunk list. In order to get the latest result, the process method can simply get the last
element in the list and then update the progress bar value.

When all the calculation is done, the final result can be obtained by calling the get
function inside the done method, and this result is ready to be updated.

16

7.2.2.1 Error Handling

Besides analyzing the trace file, FileAnalyser will also handle two types of error: Format
Error and Export Error. When user trying to analyze a trace file that doesn’t follow the
old or new format, the application will threw an exception and a pop-up window will
appear to notify the user.

® Errar

File: a2_AODV_tagged
v Format Error: NsGTFA only supports Old and Mew trace file format.

b

Figure 7.11 Format Error

The second type of error, Export Error, is caused by unsuccessfully writing analysis
result into a text file. Similar to the Format Error, a pop-up window will show a warning
to the user.

O Error

v Export Error: Cannot export analysis result.

Figure 7.12 Export Error

7.2.3 Saving Analysis Result

The analysis result is a combination of different types of variables; it includes Strings,
Integers and Floats. Therefore, there is no good data structure to store all these values
together. This is why it’s necessary to create a special object to hold all the results.
ModelAnalysisResult.java is designed to hold all three types of variables into their

corresponding HashMap, and easy to format and export these results.

privat e L nkedHash Map<String, Sring> stri ng Map;
privat e HashMap<Sring Integer>int Map
private HashMap<Sring Hoa >floa Map;

17

7.2.4 Helper Functions
The Helper class is a utility class that helps to measure the execution time of each

analysis. There are two static functions inside this class:

public static va d start Perfor manceTest() {
gatT me = Systemcurrent T me MIlis();
Systemout. prirtln("Sart at: " + satT nme);
}
public static vd d endPerfor manceTest() {
long endTi me = Systemcurrent T me MIlis();
long execTi me =(endTi me - satT nme) / 1000
Systemott. prirtln("End a: " + endT me);
Systemott. prirtl n(" Perfarmance: " + execTi me +"s");

}

Static function is a good approach when there is no instance object required, and they can
be easily used in any other class to serve as a helper function.

7.3 Controller

ControllerMainFrame.java is the main class of this application. It initiate the program by
invoking SwingUtilities.invokeLater():

Sw ngUilities.i nvokelLat er(() ->{
try{
M nFrame v = new Ma nFrane();
Rl eLoader f = new Hl eLoader();
Contrdl e Mai nFrame ¢ =new Contrdl e Mai nFrame(v, f);
¢ acti onLi st ener();
} catch (Exception e) {
e prirnt SackTrace();
}
i

SwingUltilities.invokeLater() will properly schedule the tasks in event dispatch thread.

The controller then can add event listener to the GUI components:

public va d acti onli stener() {
v ew get B nNew(). addActionl stener(e -> newAnd yse());
view get B nReset(). addActi onli stener(e - >reset());
/I More conponentsto add event lis ener
...

}

18

Every time an event is triggered by the user’s gesture, the event will be executed on the
event dispatch thread. If the event is time-consuming, in this case analyzing the trace file,

the event dispatch thread will create a worker thread to do this task in the background:

/I Thefdlowng code creates a worker thread far // each file pahinthe Aral st <Stri ng>
for (SringfilePat h: filePaths) {

/I RleAnd yser extends Sw ng Woker d ass

new Hl eAnd yser(view filePat h t np). execut &);

}
Each worker thread should start to execute at the time it’s created. Therefore, when

analyzing multiple trace files at the same time, all trace files should get analyzed at the
same time. Based on the size of each trace file, the execution time of the worker thread
varies differently.
The following example shows the analysis of two trace files with different sizes:

1. a2_AODV_new: 350MB

2. a2_DSDV_new: 1GB

Start at: 1534373553372
End at: 1534373581070

Start at: 1534373533372
End at: 1534373563896

Performance: 27s

File Name: a2_DSDV new
Performance: 105

File Format: New

Fila Name: a2_ADDnaw

File Format: New

Recedved Packet Size: \2382080
Dropped Packets: 9980

Sent Packets: 70860

Overhead: 76360

Dropped Bytes: 9524800
Received Packets: 61008

End to End Delay: 0.0038094572
Packet Delivery Ratio: 87.84338
Throughput: 5428.6763
Normalized Routing Load: 1.2518633
Start Time: B8.06447

Stop Time: 99.99417

Dropped Packets: 17784
Received Packet Size: 237938688
Sent Packets: 251550

Overhead: 43992

Dropped Bytes: 17933760
Received Packets: 232596

End to End Delay: 6.676093E-4
Packet Delivery Ratio: 92.46512
Throughput: 35936.33

Normalized Routing Load: 0.1891348

Start Time: 47.02877
Stop Time: 99.99772

Figure 7.13 Example of Multithreading Analysis

19

8.3 Result Accuracy

One of the most important aspects of this application is to produce an accurate precise
result of the analyzed trace file. To do this, the same trace file is analyzed by using three

different tools or scripts, and the results are compared and verified.

8.3.1 New Format

The new format trace file analysis is conducted by using the older version of NSGTFA

and the new version of NsGTFA.

Start at: 1534404370066 #kStartTime .. 12.822363

End at: 1534484378369 X

#k5topTime .. 49.981655
Performance: 0.303s
File MName: a2A0DV_new skSend Packets .. 1562
File Format: New Receive Packets .. 1547
Received Packet Size: 1581056 Lot Packets .. 13

Sent Packets: 1562

No. of dropped data (packets)@

No. of dropped data (bytes) @
Overhead: 8 Routing packets (OverHead) 8
Received Packets: 1547 Normalized routing load ©.0851712994

End to End DElBy: @.25516537 Packet delevery Fraction PDF ..99.83969
Avg End-End delay @.25516537
Packet Delivery Ratio: 99.83969 vg EneTERG ceray

Avg End-End delay (ms)255.16537
Throughput: 333.21885 Average Throughput[kbps] 333.21085

Normalized Routing Load: ©.0051712994 Elapsed Time = 0.37748736000000005
Start Time: 12.022363

Stop Time: 49.981655
= || |'. Orm new Ve ion of recved size =1581856

end_to_end_delay 394.740884

] | M

Figure 8.2 Comparing Analysis Results of New Format Trace File

8.3.2 Old Format

The old format trace file analysis is conducted by using an AWK script (see Appendix)
and the new version of NsSGTFA.

20

Mac-S0% gawk -f Trace_Analysis_Full_prt3.owk aZA0DV_old.tr start at: 1534484370066

Date: Thu Aug 16 08:46:10 2018 @

No. of data send = 3109.80 Result from awk script

No. of data recv = 3089.00

No, of dropped data (packets) = 0
No. of dropped data (bytes) =0
lost = 20.00

No, of routing packets = §.00

No, of Controll packets = 8.00
TP (R ACK TOTAL
1562 0 147 3189
Packet Delivery Ratio = 99.36
Normalized Routing Load = 0.00
E-to-E Delay = 0.00

Throughput = 333,21

Start time = 12,02, End time = 49,98

End at: 1534494370369
Performance: @.383s

File Name: aZA0DV_new

File Format: New

Received Packet Size: 1581056
Sent Packets: 1562

Overhead: B

Received Packets: 1547

End to End Delay: @.25516537
Packet Delivery Ratio: 99.83969
Throughput: 333.21085
Normalized Routing Load: @.8851712994
Start Time: 12.022363

Stop Time: 49.981655
i t from ne

Figure 8.3 Comparing Analysis Results of Old Format Trace File

Despite the format difference, these two trace files, a2AODV_new.tr and a2AODV _old.tr

are generated by the same scenario. The analysis results of these two files should be the

same. By comparing the images above, the new version of NsSGTFA produces a very

accurate analysis result.

8.4 Cross-platform Portability

To run the application on different platforms, the easy way is to build a jar file and then

run that jar file on the desired computer. Before running the application, it’s important to

make sure the system already installed the Java Runtime Environment (JRE). For this

application, JRE 1.8.0 is required.

As shown in the following image, the JavaNsz2.jar file is only 2MB. Nothing else is

required besides the JRE to run this application. The small size of the application makes

it easy to download and transport.

MNarme - Date Modified Size Kind

E JavaNs2.jar Yesterday at 1:14 PM 2 MB Java JAR file

Figure 8.4 JavaNs2.jar

8.4.1 Mac OS

To run NsGTFA on the Mac OS, simply import the JavaNs2.jar to the system, and double

click on it to run.

<

Favorites Name A Date Modified Size Kind
¢ iCloud Drive é JavaNs2.jar Yesterday at 1:14 PM 2MB Java JAR file
[Documents [] NsGTFA
&5 Desktop File Help
n Music
. rAnalysis Result
i@ Pictures =
Ns2 Trace File Analyzer
&} so
H Movies
#3; Applications
Recents
© Downloads rChoose the Trace File(s)
@ AirDrop
New Load a File Load a Folder
E= Google Drive N
: r Performance
Devices
1 SD's MacBook Pro Calculation
@) Remote Disc
= Metrics Options
[sootcamp 2
Select Al Most Used Clear All
Shared
[ciefmat118058 | rPerformance Metrics
dan_buddy Received Packets Dropped Packets
i i Dropped Byt End to End Delay
hprs Throughput Normalized Routing Load
B LYELL-MAC-08 rSteps /Monitor Error
1 MacBook Pro (6) 1. Select Data First) File Read File Write

Tags

& SAMSUNG SSD 2

Figure 8.5 Running NsGTFA on Mac OS

Analyzing trace files on Mac OS:

22

Bar Chart @
rPerformance Charts
PDR NRL Throughput
1.3

100 7,500
o 1.2 7,000
| 1.1 6,500
80 ‘ 1.0 6,000
70 0.9 5300
‘ 0.8 3,000
60 4,500
- ‘ 0:2 4,000
‘ 0.6 3,500
40 ‘ 0.5 3,000

| :
20 1,500

0.2

i | 1,000
‘ 0.1 500
0 0.0 0

W a2 AODV_new W Ex7_DSDV_old
Ex7_AODV_old

W a2 AODV_new W Ex7_DSDV_old
Ex7_AODV_old

W a2 AODV_new W Ex7_DSDV_old
Ex7_AODV_old

EtoED Overhead

110,000

0.13
S 100,000
0.11 90,000
0.10 80,000
0:08) 70,000

0.08
60,000

0.07
0.06 50,000
0.05 40,000
0.04 30,000

0.03
20,000

0.02
S 10,000
0.00 — 0

DP

13,000
12,000
11,000
10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000
0

rAnalysis Result
<

v| File Name

V| File Format
v! Sent Packets
Received Packets

v! Dropped Packets

/| End to End Delay

v| Packet Del

<

Normalized Routin..

a2_AODV_new

Ex7_AODV_old
old
9,745
9,680
0

435

0 bytes
0.12
99.33%
547.16
0.04%

/| Dropped Packets

g Load

| File Write

W a2 _AODV_new W Ex7_DSDV_old
Ex7_AODV_old

W a2_AODV_new W Ex7_DSDV_old
Ex7_AODV_old

W a2 _AODV_new W Ex7_DSDV_old
Ex7_AODV_old

Figure 8.6 Analyzing Trace Files on Mac OS

Exporting result text files on Mac OS:

Result a2 AODV_newtxt

Send
96362

Receive
83875

Drop
12485

Result_Ex7_DSDV_old.txt

Send
3911

Receive
3872

Result_Ex7_AODV.oldtxt

Send
9745

Receive
9680

0/H
105024

[kbps]
7464.431

[kbps]
369.310

[kbps]
547.163

startTime
8.06

NRL EED
0.03 9.13
= Result_Ex7 AODV_old.txt

NRL
0.04

EED
9.12

startTime
64.13

startTime
5.03

stopTime Date /

99.99

stopTime
149.99

Date /!

stopTime
149.95

Date /!

Figure 8.7 Exporting Analysis Results on Mac OS

23

2018/08/16

2018/08/16

2018/08/16

Time
09:22:10

Time
09:22:03

Time
09:22:03

UNREGISTERED

Filename
a2_A0DV_new

UNREGISTERED

Filename
Ex7_DSDV_old

UNREGISTERED

Filename
Ex7_AODV_old

8.4.2 Windows

Running NsGTFA on a Windows computer is similar to running it on the Mac OS.
Importing the JavaNs2.jar file into the system, and double click on it. Following images
show an example of using NsGTFA to analyze trace files on Windows 10.

| P - |2 Graph - %
Analysis Result PDR NRL Throughput
‘ N2 Trave oSfile Analyaer | ("a2_DSDV_old | Ex7_DSDV_New 100

File Name EX7_DSDV_New a0 0.18 350
0.16
File Format New 80 300
0.14
Sent Packets 3911 70 250
. 012
Received Packets 3,872
Choose the T i s0 0.10 200
TRV IR LR Dropped Packets 26
40 0.08 150
Reset Load a File Load a Folder Overhead 123
30 0.06
Dropped Bytes 23,640 bytes 100
E 0.04
End to End Delay 013
Chart/ Graph “ ! 10 0.02 =

[] Packet Delivery Ratio 99.00% ol 0,00 ol

ST DICTT T T = Ex7_DSDV_New = Ex7_DSDV_New = Ex7_DSDV_New
[setlectan |[mostused |[ciearan | Normalized Routing Load 0.03% 22 DSDV_cld =52 DSDV_old =52 DSDV_cld
EtoED Overhead DP
Sent Packets eceived Packets ropped Packets . ES
Overhead ropped Bytes nd to End Delay -
Packet Delivery Ratio Throughput Normalized Routing Load 160 2
140 20
Error 18
e 120

1 Data Selecied O File Read () File Write 16
2. Metrics Selected 100 14
3. Data Calculated =
4. Chart Displayed 80 0

Figure 8.8 Running NsGTFA on Windows 10

Exporting result to a text file:

| Result_a2_DSDV_old - Notepad — [m] by
File Edit Format View Help

Send Receive Drop 0/H [kbps] PDR NRL EED startTime stopTime Date / Time Filename

1875 994 2} 188 153.574 92.47 a.19 0.16 47.93 100.00 2018/08/15 13:37:35 a2 DSDV old

Figure 8.9 Exporting Analysis Result on Windows 10

24

8.4.3 Linux (Centos 7.5)

To run NsGTFA on a Linux machine, follow the steps shown below:
1. Import the JavaNs2.jar file into the desired directory
2. Open Terminal and go to JavaNs2.jar’s parent directory by using change directory
command cd
3. Execute the jar file by using the following command, and this should open the
application window:

java-ja JavaNs2ja

244 /Desktop/N52/

Figure 8.10 Terminal Command Line

Application window shows up after entering the Java command:

NsGTFA ~1 (X
File Help b

rAnalysis Result

Ns2 Trace File Analyzer | | a2psovoid [Ex7 DsDV New |

File Name a2 DDV old
File Format old
Sent Packets 1,075

Received Packets 994

rChoose the Trace File(s) Dropped Packets 0
| Reset || Load a File || Load a Folder Overhead 188
Performance Dropped Bytes 0 bytes
| Calculation || Chart / Graph | End to End Delay 0-16
Packet Delivery Ratio 92.47%
rMetrics Options [¥] Throughput 153.57
| Select All | | Most Used | | Clear All | Normalized Routin... 0.19%

-Performance Metrics

Sent Packets Received Packets Dropped Packets

Overhead Dropped Bytes End to End Delay

Packet Delivery Ratio [v] Throughput Normalized Routing Load
rSteps/Monitor Error

1. Data Selected

2. Metrics Selected
3. Data Calculated
4. Chart Displayed

Figure 8.11 Analyzing Trace Files on Linux

) File Read T File Write

25

Generating graphs for the analysis result:

* Graph @ @
rPerformance Charts
PDR NRL Throughput
100
0.18
Q0
0.1&
B0
0.14
70
50 0.12
50 0.10
an 0.08
30 0.0&
o0 0.04
10 0.02
u] 0.00

W Ex7_DSDVW_MNew
B 32 DE0Y_old

W Ex7_DSDVW_MNew
W2 DsDY_old

W Ex7_DSDVW_New
W52 DEDY_old

EtoED

0.1
0,15
0,14
0,13
0,12
011
0,10
0.09
0.03
0.07
0.06
0.05
0.04
0.03
0.02
0.01
0.00

Overhead

130
150
140
120
100

a0

&0

DP

W Ex7_DSDVW_MNew
B a2 DE0YV_old

W Ex7_DSDVW_MNew
W2 Ds0Y_old

W Ex7_DSDW_New
W52 DEDY_old

Figure 8.12 Graph Result on Linux

26

Exporting analysis result to a text file:

Result a2 DSDV_old.txt (WININSTALL /run/media/ss244/WININSTALL/NS2) - Pluma v) (~) (x

File Edit View Search Tools Documents Help

L Bopen v Ljsave Q¢

|] Result_a2_DSDV_old.txt x

| send Receive Drop 0/H [kbps] PDR NRL EED startTime stopTime Date / Time Filename
1075 994 2] ls8 153.574 92.47 .19 0.16 47.03 108.080 2018/08/15 13:47:22 az_DsDv_old

Plain Text ¥ Tab Width: 4 v Ln 1, Col 1 INS

Figure 8.13 Result Text File on Linux

Overall this application works smoothly on all three platforms. Based on the different
operating system, the GUI displays a little bit different too, but this is not going to affect
the functionality of the application.

However, there is a flaw when compile the application into a jar file. On all three
platforms, the main GUI doesn’t display the HW and DS logo. This is because the paths
of these images are not coded correct when the application is compiled into a jar file.

27

References:

[1] T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2. Boston, MA:
Springer US, 2012, pp. 1-40.

[2] "The Network Simulator - ns-2", Isi.edu, 2018. [Online]. Available:
https://www.isi.edu/nsnam/ns/. [Accessed: 12- Apr- 2018].

[3] "NS-2 Trace Formats - nsnam", Nsnam.sourceforge.net, 2018. [Online]. Available:
http://nsnam.sourceforge.net/wiki/index.php/NS-2_Trace_Formats. [Accessed: 12- Apr-
2018].

[4] "NS by Example™, Nile.wpi.edu, 2018. [Online]. Available: http://nile.wpi.edu/NS/.
[Accessed: 12- Apr- 2018].

[5] "6.Trace file Defnition”, NETWORK SIMULATOR 2, 2018. [Online]. Available:
https://cloudns2.wordpress.com/trace-file-defnition/. [Accessed: 12- Apr- 2018].

[6] I. Ibrahim, P. King and H. Loidl, "NsGTFA: A GUI Tool to Easily Measure Network
Performance through the Ns2 Trace File", Journal of Intelligent Systems, vol. 24, no. 4,
2015.

[7]"ns2trana", Sites.google.com, 2018. [Online]. Available:
https://sites.google.com/site/ns2trana/. [Accessed: 12- Apr- 2018].

[8] C. Bouras, S. Charalambides, M. Drakoulelis, G. Kioumourtzis and K. Stamos, "A
tool for automating network simulation and processing tracing data files", Simulation
Modelling Practice and Theory, vol. 30, pp. 90-110, 2013.

[9] "Network Simulations | Research Unit 6", Ru6.cti.gr, 2018. [Online]. Available:
http://ru6.cti.gr/rué/research-areas/network-simulations# TRAFIL. [Accessed: 12- Apr-
2018].

[10] "AWT vs. Swing", Northstar-dartmouth.edu, 2018. [Online]. Available:
http://northstar-www.dartmouth.edu/doc/idl/html_6.2/AWT _vs. Swing.html. [Accessed:
12- Apr- 2018].

[11] "www.jfree.org", Jfree.org, 2018. [Online]. Available: http://www.jfree.org/.
[Accessed: 12- Apr- 2018].

[12] K. Adam and H. Dorota, "Automated Defect Prevention: Best Practices in Software

Management”, Wiley.com, 2018. [Online]. Available:

28

http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html. [Accessed:
12- Apr- 2018].

[13] "Buffered Streams (The Java™ Tutorials > Essential Classes > Basic I/0)",
Docs.oracle.com, 2018. [Online]. Available:
https://docs.oracle.com/javase/tutorial/essential/io/buffers.html. [Accessed: 12- Apr-
2018].

[14] "Comparison computational complexity", Upload.wikimedia.org, 2018. [Online].
Available:
https://upload.wikimedia.org/wikipedia/commons/7/7e/Comparison_computational_com
plexity.svg. [Accessed: 12- Apr- 2018].

[15] "Google Java Style Guide", Google.qgithub.io, 2018. [Online]. Available:
https://google.github.io/styleguide/javaguide.html. [Accessed: 12- Apr- 2018].

[16] "The MIT License | Open Source Initiative™, Opensource.org, 2018. [Online].
Available: https://opensource.org/licenses/MIT. [Accessed: 12- Apr- 2018].

[17] Moran, A. (2014). Agile Risk Management. Springer Verlag. ISBN 3319050079.
[18] A. Jacobs, "The Pathologies of Big Data", Queue, vol. 7, no. 6, p. 10, 2009.

[19] "Byte Streams (The Java™ Tutorials > Essential Classes > Basic 1/0)",
Docs.oracle.com, 2018. [Online]. Available:
https://docs.oracle.com/javase/tutorial/essential/io/bytestreams.html. [Accessed: 16- Aug-
2018].

[20] "Buffered Streams (The Java™ Tutorials > Essential Classes > Basic I/0)",
Docs.oracle.com, 2018. [Online]. Available:
https://docs.oracle.com/javase/tutorial/essential/io/buffers.html. [Accessed: 16- Aug-
2018].

[21] M. Sami, "The Waterfall Model, a different perspective - Mohamed Sami",
Mohamed Sami, 2018. [Online]. Available: https://melsatar.blog/2018/02/16/the-
waterfall-model-a-different-perspective/. [Accessed: 16- Aug- 2018].

[22] "Lesson: Concurrency in Swing (The Java™ Tutorials > Creating a GUI With
JFC/Swing)", Docs.oracle.com, 2018. [Online]. Available:
https://docs.oracle.com/javase/tutorial/uiswing/concurrency/index.html. [Accessed: 16-
Aug- 2018].

29

[23] Georgia Tech, "Using MVC with Swing Components”, 2018.

[24] A. Fowler, "A Swing Architecture Overview", Oracle.com, 2018. [Online].
Available: https://www.oracle.com/technetwork/java/architecture-142923.html.
[Accessed: 16- Aug- 2018].

[25] E. Freeman, E. Robson, B. Bates and K. Sierra, Head First Design Patterns.
Sebastopol: O'Reilly Media, Inc., 2008.

30

Appendices

Appendix A: User Manual

NsGTFA is designed for analyzing old and new trace files.
User can use NsGTFA multiple trace files at the same time and compare the
results.

NsGTFA also supports basic graph generation: Bar chart and Pie chart.

Step 1.
Click New button to start a new analysis.

Step 2.
Click Load a File to select trace file. This can be done multiple times if user is

planning to analyze more than one trace file.
iles in the sl L folder_{ in thi ion

Step 3.
Use the Metrics Options and Performance Metrics panel to select desired

metrics.
User can click Select All to select all the metrics, or click Most Used to select
the most used metrics.

To clear all the selections, click Clear button.

Step 4.
Click Calculation to analyze the selected trace files.

The progress bar will show the progress percentage of each trace file's analysis.

31

The analysis result of each trace file will displays in the Analysis Result panel.
User can use left, right arrow to check each result.

If one of the selected trace file doesn't have the correct format (old, or new), a
pop-up window will show up and the Error panel will indicate that there is

a File Read error.

Any trace file that doesn't have a correct format will be skipped, and the rest of
the selected trace files will continue their progress until finish.

Each trace file that has been successfully analyzed will generate a
corresponding result file, which is named as **Result_orignalFileName.txt".
User is supposed to have all their trace files saved in the same folder. This will
help export the result file in an easy and organized way, since all the result files
will be located in the same folder of the first selected trace file.

If NsGTFA is not able to export the result file, a pop-up window will show up

and the Error panel will indicate that there is a File Write error.

Step 5.
To view the graphs, user can click Chart/Graph button to show the Graph

Window. At the top-left of the Graph Window, user can select the graph type,

either a Bar chart or Pie chart.

To start a new analysis, click the Reset button and repeat Step 1-5.

32

Appendix B: Project Source File and AWK Script

This project can be found on Github at: https://github.com/sunsidi/NSGTFA

The AWK Script used to analyze old trace file:
https://qgithub.com/sunsidi/NsGTFA/blob/master/src/JavaNs2/Extra/Analysis.awk

33

https://github.com/sunsidi/NsGTFA
https://github.com/sunsidi/NsGTFA/blob/master/src/JavaNs2/Extra/Analysis.awk

