
HERIOT-WATT UNIVERISTY

Master Thesis

COMPUTER NETWORK ANALYSIS AND

PERFORMANCE MEASUREMENT

Supervisor: Second Reader:

Idris Skloul Ibrahim Jessica Chen-Burger

Author:

Sidi Sun

A thesis submitted in fulfilment of the requirements

 for the degree of MSc. Data Science

in the

School of Mathematical and Computer Sciences

August 2018

 1

Abstract

NS2 (Network Simulator 2) is a cross-platform discrete-event computer network

simulators that has been primarily used in research and teaching. NS2 provides support

for simulation of TCP, this includes multicast protocols such as AODV, DSDV and etc.

over wired and wireless network.

Despite the rich features NS2 provides, its trace file tends to be very large, complex and

non-human-readable. Moreover, there are not many good tools available to help analyze

the trace file. Most of the available tools are poorly designed and have flaws, such as low

performance, low portability and lack of graphical user interface.

In this master’s thesis, a cross-platform GUI application that uses multithreading

technology to help effectively analyze multiple large data files is designed and

implemented. The aim of this application is to analyze NS2 trace files (old and new

format) effectively in multiple platforms: Windows, Mac and Linux. The application is

also designed as a teaching tool for third year network students.

 2

NOTE:

The following are a few chapters to show you how to download and use this tool cross

different platforms (e.g. Window, MAC and Linus)

 3

Literature Review

This chapter starts with an example of the trace file, illustrates the defect of existed

analysis tools. Finally, there will be a discussion on the technologies used for this project.

2.1 Trace File Format

This application is designed for analyzing both new and old format of trace file over

wired and wireless network. The trace files for wire and wireless network are the same,

however, the old format trace file is different from the new one. One of the objectives to

distinguish the trace file format, and analyze both formats of the trace files.

2.1.1 Old Trace File Format

Figure 2.1 shows an example of the old format trace file. This line represents the

following information:

1. “s” stands for a send event

2. The send event occurs at 21.500275000 second

3. This packet is sent from node “_0_”

4. This event happens on the “_MAC_” layer

5. The packet id is 0

6. The packet type is “AODV”

7. The packet size is “106” bytes

8. The rest of the line are the MAC address and IP address of the source and

destination, which are not essential for calculating the analysis result

Figure 2.1 Old Format Trace File Example

 4

The old trace file format has 12 mandatory fields and some other optional fields based on

the type of protocols [3]. In order to generate an analysis result of the old trace file

format, 6 of the 12 fields are required, which are event, time, trace level, packet id, packet

size, and packet type.

Figure 2.2 Mandatory Fields for Old Trace File

2.1.2 New Trace File Format

The major difference between the old format and the new format is that the new format

has more fields and contains more details [3]. However, for the analyzing purpose, the 6

same fields are required, and the rest of the fields can be ignored. Since new format has

more fields on each line, the position of the 6 fields is different from the old format. To

identify a trace file’s format, the application only has to check the first and second field

in the line. If the second filed of the line is a time flag “-t”, then it’s the new format. If the

first field is a “+”, then the file is written in tagged format, which is not covered by this

project. If it doesn’t meet the pervious conditions, then the file has an old format.

2.1.3 Tagged Format

Even though this application is not designed for analyzing tagged format trace file, it’s

important to know the difference from the tagged trace file and the new, old trace files.

Tagged trace file always starts a line with a “+” or “-” sign [3]. By checking the first

character of each line, tagged trace file can be easily filtered out.

2.1.4 Processing Big Data

 5

Besides the different formats of the trace files, another common problem is the size of the

trace file can be really large, which means that the processing time can be extremely long

if the analyzer is not implemented by using multithreading technology. In fact, the old

NsGTFA is able to process 60MB file in 51 seconds, and 1.2GB file in 4.1 minutes [6].

This will set a standard for the new version of NsGTFA. To implements multithreading

in this application, the main thread will create a worker thread for each trace file. The

analysis of all trace files should start at approximately the same time [22]. Larger trace

file will take long time to analyze, but this is not going to block the analysis process of

other trace files. More details about multithreading will be discussed in the Design

section and Implementation section.

 6

Implementation

7.1 Views

The view module has 4 Java classes and a readme file and it has a file structure shown as

follow:

Views

├── BarChart_AWT.java

├── GraphFactory.java

├── MainFrame.java

├── PieChart_AWT.java

└── readme.html

MainFrame.java is responsible for rendering all the windows. GraphFactory.java,

BarChart.java and PieChart.java are responsible for generating analysis graphs.

7.1.1 Main Panel

One of the requirements is to develop a simple and intuitive user interface for this

application. The first design of the GUI was inspired by the previous versions of

NsGTFA.

 7

Figure 7.2 GUI Version 1.0

The problem of this design is obvious. The GUI is too narrow; there is not enough space

to show all the buttons and labels. The text of the labels is shown crossed the subpanel

border, and buttons are squeezed into random places. The second problem is that there is

no place to show the analysis result and the progress of the analyzing process.

To tackle these problems, GUI version 2.0 was designed. One the left side of the GUI, it

remains the same layout but has a wider width. One the right side of the GUI there are

two new subpanels: Analysis Result Panel and File Information Panel. The result of each

trace file will be shown as a single tab in the Analysis Result Panel. File Information

Panel will show the text line while analyzing the trace file. To let the user see the

progress of the analysis, on the bottom of the GUI, a progress bar is added.

 8

Figure 7.3 GUI Version 2.0

The second design of the GUI meet all the requirements, however, there was an issue

when running the program on laptops that are smaller than 15-inch. On the vertical level,

the GUI is too high. Laptops that are smaller than 15-inch usually don’t have the screen

size to show the entire GUI. Although the GUI is resizable, resizing will hide some of the

components and cause inconvenience while using the application.

Therefore, a third version of GUI was made. Since most of the users will only pay

attention to the analysis result, File Information Panel was removed from the GUI. By

removing the File Information Panel, it saves more space for other components and cut

the height of the window. This revised GUI window can be successfully displayed on

most of the modern computers.

 9

Figure 7.4 GUI Version 3.0

7.1.2 Graph Window

When user clicks on the “Chart/Graph” button, MainFrame.java will trigger the

setupGraphPanel() method to generate all the graphs. There are three Java classes that

are involved in the generation of graphs. GprahFactory.java will feed the data into

BarChart.java and PieChart.java. These two Java files use the JFreeChart library to help

generate the bar chart and pie chart.

 10

Figure 7.5 Class Diagram of the GraphFactory Class

 11

By selecting from a dropdown list, user can decide to see the bar chart or pie chart.

Figure 7.6 Bar Chart

 12

Figure 7.7 Pie Chart

7.1.3 User Manual Window

When developing a tool to help user do the analysis, it’s important to make tool easy to

pick up by the user. One way to do this, as already mentioned, is to make the GUI as

simple as possible. Another way is to create a user manual to describe the running steps

in details.

 13

User can find the user manual by click the “Help” button on the menu bar, and a User

Manual Window will show up.

Figure 7.8 User Manual Window

The user manual is shown in a JEditorPane instead of a JTextArea, and the original text

is saved in the readme.html file. The reason to use a JEditorPane is that it can read a

HTML file and display the HTML tag in a proper format. For example, the crossed line

in the user manual is created by using the <strike> tag:

<p>

 <stri ke>Cl i ck <i >Load a Fol der </i ></ b> t o sel ect a f ol der. Ns GTFA wi ll try t o anal yze all

t he trace fil es i n t he sel ect ed f ol der. (Not support ed i n thi s ver si on)

 </ stri ke>

</ p>

 14

7.2 Models

Models are the core files for this application that help manipulate data in the desired way,

this includes reading data from files, analyzing data, formatting data and exporting data.

Underneath the model folder, there are 4 Java files:

Models

├── FileAnalyser.java

├── FileLoader.java

├── Helper.java

└── ModelAnalysisResult.java

Following is the class diagram of the model files:

Figure 7.9 Class Diagram of the Models

7.2.1 Loading Files into Application

FileLoader.java implements JFileChooser object to open a file selection window. The

default file format is filtered by using a FileNameExtensionFilter, which only allows the

user to select files with “.tr” extension:

JFi l eChooser fil eChooser = new JFi l eChooser(def aul tPat h);

fil eChooser. set Accept All FileFi lt er Used(f al se); Fil eName Ext ensi onFi lt er filt er = new

Fi l eNa meExt ensi onFil t er("Ns2 Tr ace Fil es Onl y", "tr"); fil eChooser. addChoosabl eFi l eFi lt er(filt er);

 15

The default path of the file chooser is the user’s root directory. After selecting a trace file,

the default path will be set to that trace file’s parent directory. This will help the user to

select multiple file in the same folder. The selected trace file will then be returned as a

File object, and saved in an ArrayList. In this way, the user can select multiple trace files

and be ready to do the analysis.

Figure 7.10 File Selection Window

7.2.2 Analyzing the File

The core functionality of this application is to analyze NS2 trace files. This analyzing

process is fully handled by the FileAnalyser class. FileAnalyser extends the abstract

SwingWorker class, and implements the following methods:

publi c cl ass Fil eAnal yser ext ends Swi ng Wor ker <Model Anal ysi sResul t, I nt eger > {

 @Overri de

 pr ot ect ed Model Anal ysi sResul t doI nBackgr ound() thr ows Excepti on {

 whil e ((t hi sLi ne = br.readLi ne()) ! = null) {

 // Anal yze t he li ne...

 publ i sh((i nt) Mat h.r ound(readLengt h / fil eSi ze * 100));

 }

 }

 @Overri de

 16

 pr ot ect ed voi d done() {

 try {

 get();

 }

 cat ch (Executi onException e) {

 e. pri nt St ackTr ace();

 }

 }

 @Overri de

 pr ot ect ed voi d pr ocess(Li st <I nt eger > chunks) {

 i nt i = chunks. get(chunks. si ze() - 1);

 pr ogr essBar. set Val ue(i);

 }

}

The doInBackground method executes in a worker thread. This method handles all the

analyzing work. First, the trace file format has been determined. According to the format,

old or new, each line of the trace file is tokenized into pieces. The corresponding token

value that is involved in the analyzing process is then save into memory, and will be used

to analyze the file. The doInBackground method will also output the analysis result to a

text file when the calculation is done.

The publish method inside the doInBackground method updates the intermediate result to

keep track of the analyzing progress. Every time the application reads a single line, the

line size will be summed up to calculated the total size of file that has been already

analyzed. Then the application can use this value to divide the total size of the trace file

to obtain the progress of the analysis.

The process method is used to get the intermediate result that is passed in by the publish

method. Every time the publish method updates a result, it will push the result into the

chunk list. In order to get the latest result, the process method can simply get the last

element in the list and then update the progress bar value.

When all the calculation is done, the final result can be obtained by calling the get

function inside the done method, and this result is ready to be updated.

 17

7.2.2.1 Error Handling

Besides analyzing the trace file, FileAnalyser will also handle two types of error: Format

Error and Export Error. When user trying to analyze a trace file that doesn’t follow the

old or new format, the application will threw an exception and a pop-up window will

appear to notify the user.

Figure 7.11 Format Error

The second type of error, Export Error, is caused by unsuccessfully writing analysis

result into a text file. Similar to the Format Error, a pop-up window will show a warning

to the user.

Figure 7.12 Export Error

7.2.3 Saving Analysis Result

The analysis result is a combination of different types of variables; it includes Strings,

Integers and Floats. Therefore, there is no good data structure to store all these values

together. This is why it’s necessary to create a special object to hold all the results.

ModelAnalysisResult.java is designed to hold all three types of variables into their

corresponding HashMap, and easy to format and export these results.

pri vat e Li nkedHash Map<Stri ng, Stri ng> stri ngMap;

pri vat e Hash Map<St ri ng, Int eger > i nt Map;

pri vat e Hash Map<St ri ng, Fl oat > fl oat Map;

 18

7.2.4 Helper Functions

The Helper class is a utility class that helps to measure the execution time of each

analysis. There are two static functions inside this class:

publi c st ati c voi d st art Perfor manceTest () {

 st art Ti me = Syst em. curr ent Ti me Mi lli s();

 Syst em. out. pri ntl n(" St art at: " + st art Ti me);

}

publi c st ati c voi d endPerfor manceTest () {

 l ong endTi me = Syst em. curr ent Ti me Mi lli s();

 l ong execTi me = (endTi me - st art Ti me) / 1000;

 Syst em. out. pri ntl n(" End at : " + endTi me);

 Syst em. out. pri ntl n(" Perf ormance: " + execTi me + "s");

}

Static function is a good approach when there is no instance object required, and they can

be easily used in any other class to serve as a helper function.

7.3 Controller

ControllerMainFrame.java is the main class of this application. It initiate the program by

invoking SwingUtilities.invokeLater():

Swi ngUtiliti es.i nvokeLat er(() -> {

 try {

 Mai nFr ame v = new Mai nFr ame();

 Fil eLoader f = new Fi l eLoader();

 Contr oll er Mai nFr ame c = ne w Cont r oll er Mai nFr ame(v, f);

 c. acti onLi st ener();

 } cat ch (Excepti on e) {

 e. pri nt St ackTr ace();

 }

});

SwingUtilities.invokeLater() will properly schedule the tasks in event dispatch thread.

The controller then can add event listener to the GUI components:

publi c voi d acti onLi st ener() {

 vi ew. get Bt nNew(). addActionLi st ener(e - > newAnal yse());

 vi ew. get Bt nReset (). addActi onLi st ener(e - > r eset ());

 // Mor e component s t o add event li st ener

 // ...

}

 19

Every time an event is triggered by the user’s gesture, the event will be executed on the

event dispatch thread. If the event is time-consuming, in this case analyzing the trace file,

the event dispatch thread will create a worker thread to do this task in the background:

// The f oll owi ng code cr eat es a wor ker t hr ead f or // each fil e pat h i n t he Arr aLi st <Stri ng>

f or (Stri ng fil ePat h : fil ePat hs) {

 // Fil eAnal yser ext ends Swi ng Woker cl ass

 new Fi l eAnal yser(vi ew, filePat h, t mp). execut e();

}

Each worker thread should start to execute at the time it’s created. Therefore, when

analyzing multiple trace files at the same time, all trace files should get analyzed at the

same time. Based on the size of each trace file, the execution time of the worker thread

varies differently.

The following example shows the analysis of two trace files with different sizes:

1. a2_AODV_new: 350MB

2. a2_DSDV_new: 1GB

Figure 7.13 Example of Multithreading Analysis

 20

8.3 Result Accuracy

One of the most important aspects of this application is to produce an accurate precise

result of the analyzed trace file. To do this, the same trace file is analyzed by using three

different tools or scripts, and the results are compared and verified.

8.3.1 New Format

The new format trace file analysis is conducted by using the older version of NsGTFA

and the new version of NsGTFA.

Figure 8.2 Comparing Analysis Results of New Format Trace File

8.3.2 Old Format

The old format trace file analysis is conducted by using an AWK script (see Appendix)

and the new version of NsGTFA.

 21

Figure 8.3 Comparing Analysis Results of Old Format Trace File

Despite the format difference, these two trace files, a2AODV_new.tr and a2AODV_old.tr

are generated by the same scenario. The analysis results of these two files should be the

same. By comparing the images above, the new version of NsGTFA produces a very

accurate analysis result.

8.4 Cross-platform Portability

To run the application on different platforms, the easy way is to build a jar file and then

run that jar file on the desired computer. Before running the application, it’s important to

make sure the system already installed the Java Runtime Environment (JRE). For this

application, JRE 1.8.0 is required.

As shown in the following image, the JavaNs2.jar file is only 2MB. Nothing else is

required besides the JRE to run this application. The small size of the application makes

it easy to download and transport.

 22

Figure 8.4 JavaNs2.jar

8.4.1 Mac OS

To run NsGTFA on the Mac OS, simply import the JavaNs2.jar to the system, and double

click on it to run.

Figure 8.5 Running NsGTFA on Mac OS

Analyzing trace files on Mac OS:

 23

Figure 8.6 Analyzing Trace Files on Mac OS

Exporting result text files on Mac OS:

Figure 8.7 Exporting Analysis Results on Mac OS

 24

8.4.2 Windows

Running NsGTFA on a Windows computer is similar to running it on the Mac OS.

Importing the JavaNs2.jar file into the system, and double click on it. Following images

show an example of using NsGTFA to analyze trace files on Windows 10.

Figure 8.8 Running NsGTFA on Windows 10

Exporting result to a text file:

Figure 8.9 Exporting Analysis Result on Windows 10

 25

8.4.3 Linux (Centos 7.5)

To run NsGTFA on a Linux machine, follow the steps shown below:

1. Import the JavaNs2.jar file into the desired directory

2. Open Terminal and go to JavaNs2.jar’s parent directory by using change directory

command cd

3. Execute the jar file by using the following command, and this should open the

application window:

j ava -j ar JavaNs2.j ar

Figure 8.10 Terminal Command Line

Application window shows up after entering the Java command:

Figure 8.11 Analyzing Trace Files on Linux

 26

Generating graphs for the analysis result:

Figure 8.12 Graph Result on Linux

 27

Exporting analysis result to a text file:

Figure 8.13 Result Text File on Linux

Overall this application works smoothly on all three platforms. Based on the different

operating system, the GUI displays a little bit different too, but this is not going to affect

the functionality of the application.

However, there is a flaw when compile the application into a jar file. On all three

platforms, the main GUI doesn’t display the HW and DS logo. This is because the paths

of these images are not coded correct when the application is compiled into a jar file.

 28

References:

[1] T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2. Boston, MA:

Springer US, 2012, pp. 1-40.

[2] "The Network Simulator - ns-2", Isi.edu, 2018. [Online]. Available:

https://www.isi.edu/nsnam/ns/. [Accessed: 12- Apr- 2018].

[3] "NS-2 Trace Formats - nsnam", Nsnam.sourceforge.net, 2018. [Online]. Available:

http://nsnam.sourceforge.net/wiki/index.php/NS-2_Trace_Formats. [Accessed: 12- Apr-

2018].

[4] "NS by Example", Nile.wpi.edu, 2018. [Online]. Available: http://nile.wpi.edu/NS/.

[Accessed: 12- Apr- 2018].

[5] "6.Trace file Defnition", NETWORK SIMULATOR 2, 2018. [Online]. Available:

https://cloudns2.wordpress.com/trace-file-defnition/. [Accessed: 12- Apr- 2018].

[6] I. Ibrahim, P. King and H. Loidl, "NsGTFA: A GUI Tool to Easily Measure Network

Performance through the Ns2 Trace File", Journal of Intelligent Systems, vol. 24, no. 4,

2015.

[7]"ns2trana", Sites.google.com, 2018. [Online]. Available:

https://sites.google.com/site/ns2trana/. [Accessed: 12- Apr- 2018].

[8] C. Bouras, S. Charalambides, M. Drakoulelis, G. Kioumourtzis and K. Stamos, "A

tool for automating network simulation and processing tracing data files", Simulation

Modelling Practice and Theory, vol. 30, pp. 90-110, 2013.

[9] "Network Simulations | Research Unit 6", Ru6.cti.gr, 2018. [Online]. Available:

http://ru6.cti.gr/ru6/research-areas/network-simulations#TRAFIL. [Accessed: 12- Apr-

2018].

[10] "AWT vs. Swing", Northstar-dartmouth.edu, 2018. [Online]. Available:

http://northstar-www.dartmouth.edu/doc/idl/html_6.2/AWT_vs._Swing.html. [Accessed:

12- Apr- 2018].

[11] "www.jfree.org", Jfree.org, 2018. [Online]. Available: http://www.jfree.org/.

[Accessed: 12- Apr- 2018].

[12] K. Adam and H. Dorota, "Automated Defect Prevention: Best Practices in Software

Management", Wiley.com, 2018. [Online]. Available:

 29

http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html. [Accessed:

12- Apr- 2018].

[13] "Buffered Streams (The Java™ Tutorials > Essential Classes > Basic I/O)",

Docs.oracle.com, 2018. [Online]. Available:

https://docs.oracle.com/javase/tutorial/essential/io/buffers.html. [Accessed: 12- Apr-

2018].

[14] "Comparison computational complexity", Upload.wikimedia.org, 2018. [Online].

Available:

https://upload.wikimedia.org/wikipedia/commons/7/7e/Comparison_computational_com

plexity.svg. [Accessed: 12- Apr- 2018].

[15] "Google Java Style Guide", Google.github.io, 2018. [Online]. Available:

https://google.github.io/styleguide/javaguide.html. [Accessed: 12- Apr- 2018].

[16] "The MIT License | Open Source Initiative", Opensource.org, 2018. [Online].

Available: https://opensource.org/licenses/MIT. [Accessed: 12- Apr- 2018].

[17] Moran, A. (2014). Agile Risk Management. Springer Verlag. ISBN 3319050079.

[18] A. Jacobs, "The Pathologies of Big Data", Queue, vol. 7, no. 6, p. 10, 2009.

[19] "Byte Streams (The Java™ Tutorials > Essential Classes > Basic I/O)",

Docs.oracle.com, 2018. [Online]. Available:

https://docs.oracle.com/javase/tutorial/essential/io/bytestreams.html. [Accessed: 16- Aug-

2018].

[20] "Buffered Streams (The Java™ Tutorials > Essential Classes > Basic I/O)",

Docs.oracle.com, 2018. [Online]. Available:

https://docs.oracle.com/javase/tutorial/essential/io/buffers.html. [Accessed: 16- Aug-

2018].

[21] M. Sami, "The Waterfall Model, a different perspective - Mohamed Sami",

Mohamed Sami, 2018. [Online]. Available: https://melsatar.blog/2018/02/16/the-

waterfall-model-a-different-perspective/. [Accessed: 16- Aug- 2018].

[22] "Lesson: Concurrency in Swing (The Java™ Tutorials > Creating a GUI With

JFC/Swing)", Docs.oracle.com, 2018. [Online]. Available:

https://docs.oracle.com/javase/tutorial/uiswing/concurrency/index.html. [Accessed: 16-

Aug- 2018].

 30

[23] Georgia Tech, "Using MVC with Swing Components", 2018.

[24] A. Fowler, "A Swing Architecture Overview", Oracle.com, 2018. [Online].

Available: https://www.oracle.com/technetwork/java/architecture-142923.html.

[Accessed: 16- Aug- 2018].

[25] E. Freeman, E. Robson, B. Bates and K. Sierra, Head First Design Patterns.

Sebastopol: O'Reilly Media, Inc., 2008.

 31

Appendices

Appendix A: User Manual

NsGTFA is designed for analyzing old and new trace files.

User can use NsGTFA multiple trace files at the same time and compare the

results.

NsGTFA also supports basic graph generation: Bar chart and Pie chart.

Step 1.

Click New button to start a new analysis.

Step 2.

Click Load a File to select trace file. This can be done multiple times if user is

planning to analyze more than one trace file.

Click Load a Folder to select a folder. NsGTFA will try to analyze all the trace

files in the selected folder. (Not supported in this version)

Step 3.

Use the Metrics Options and Performance Metrics panel to select desired

metrics.

User can click Select All to select all the metrics, or click Most Used to select

the most used metrics.

To clear all the selections, click Clear button.

Step 4.

Click Calculation to analyze the selected trace files.

The progress bar will show the progress percentage of each trace file's analysis.

 32

The analysis result of each trace file will displays in the Analysis Result panel.

User can use left, right arrow to check each result.

If one of the selected trace file doesn't have the correct format (old, or new), a

pop-up window will show up and the Error panel will indicate that there is

a File Read error.

Any trace file that doesn't have a correct format will be skipped, and the rest of

the selected trace files will continue their progress until finish.

Each trace file that has been successfully analyzed will generate a

corresponding result file, which is named as "Result_orignalFileName.txt".

User is supposed to have all their trace files saved in the same folder. This will

help export the result file in an easy and organized way, since all the result files

will be located in the same folder of the first selected trace file.

If NsGTFA is not able to export the result file, a pop-up window will show up

and the Error panel will indicate that there is a File Write error.

Step 5.

To view the graphs, user can click Chart/Graph button to show the Graph

Window. At the top-left of the Graph Window, user can select the graph type,

either a Bar chart or Pie chart.

To start a new analysis, click the Reset button and repeat Step 1-5.

 33

Appendix B: Project Source File and AWK Script

This project can be found on Github at: https://github.com/sunsidi/NsGTFA

The AWK Script used to analyze old trace file:

https://github.com/sunsidi/NsGTFA/blob/master/src/JavaNs2/Extra/Analysis.awk

https://github.com/sunsidi/NsGTFA
https://github.com/sunsidi/NsGTFA/blob/master/src/JavaNs2/Extra/Analysis.awk

