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Abstract. Vegetation stripes (“tiger bush”) are a characteristic feature of semi-arid envi-
ronments. The stripes typically lie along the contours of gentle slopes, and some authors
report a gradual uphill migration. A previous mathematical model (Klausmeier, Science,
284:1826, 1999) has shown that this phenomenon can be explained relatively simply by
the downhill flow of rainwater coupled with the diffusive spread of the plant population.
This paper presents a detailed analysis of pattern formation in the Klausmeier model. The
author derives formulae for the wavelength and migration speed of the predicted patterns,
and systematically investigates how these depend on model parameters. The results make
new predictions and suggest possible approaches to testing the model.

1. Introduction

Banded patterns of vegetation are a characteristic feature of many semi-arid areas.
They occur in regions of low woodlands or tall shrublands, on gentle slopes of about
0.25% gradient. Vegetation is concentrated into bands running along the contours
of the hill, typically 100m–250m wide. These stripes of vegetation are separated by
gaps, typically of width 200m–1km, in which vegetation is sparse or absent. This
phenomenon is often undetectable on the ground, and its initial identification was
via aerial photography in Africa (MacFadyen, 1950; Hemming, 1965; Wickens &
Collier, 1971), where it is known as “tiger bush”. Subsequently, vegetation stripes
were also discovered in semi-arid regions of Australia (Mabbutt & Fanning, 1987;
Dunkerley & Brown, 2002) and Mexico (Montaña et al.,, 1990; Montaña, 1992).
Some authors report a slow uphill migration of the bands (Worrall, 1959; Hemming,
1965; Montaña, 1992), although this aspect of vegetation stripes remains contro-
versial (Dunkerley & Brown, 2002), due primarily to the limited long-term data.

There is a continuing debate on the mechanism responsible for vegetation
stripes; however, it is generally agreed that competition for water is a key fac-
tor. In simple terms, rainfall onto an area without vegetation runs downhill into a
region with vegetation, where it is absorbed. This enables vegetation stripes to be
maintained, and the moist soil on the uphill side of a stripe creates a tendency for
the stripes to gradually migrate uphill. Various computer-based simulation mod-
els representing this process were developed in the 1990s (Thiéry et al.,, 1995;
Mauchamp et al.,, 1994; Dunkerley, 1997). Klausmeier (1999) then proposed a
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relatively simple partial differential equation model, with equations for vegetation
U(X, Y, T ) and surface water W(X, Y, T ):

∂U/∂T =

plant
growth
︷ ︸︸ ︷

k1U
2W −

plant
loss
︷︸︸︷

k2U +
dispersal

︷ ︸︸ ︷

k3

(

∂2U/∂X2 + ∂2U/∂Y 2
)

(1a)

∂W/∂T = k4
︸︷︷︸

rainfall

− k5W
︸︷︷︸

evaporation

− k6U
2W

︸ ︷︷ ︸

uptake
by plants

+ k7 (∂W/∂X)
︸ ︷︷ ︸

flow
downhill

. (1b)

Here k1, . . . , k7 are positive constants. By numerical solution of these equations,
Klausmeier (1999) showed that the model predicts both vegetation stripe formation
and the uphill migration of the stripes, for appropriate parameter values.

More recently, a number of authors have proposed expanded versions of this
model. HilleRisLambers et al. (2001) incorporated the diffusion of water within
the soil, with separate variables for water on the surface and in the soil. Rietkerk
et al. (2002) performed a detailed numerical bifurcation study on a minor variant
of the HilleRisLambers model, showing that the bifurcations leading to pattern-
ing are subcritical, and van de Koppel et al., (2002) added herbivore grazing to
Klausmeier’s (1999) model, showing that this can significantly modulate the pat-
terning potential. The model of von Hardenberg et al., (2001) and Meron et al.
(2004) also focusses on ground water, in this case without a variable for surface
water. They include a more complex term for ground water flow, based on Darcy’s
Law, which yields patterns even on flat ground. An alternative modelling approach
has been developed by Lejeune and coworkers (Lefever & Lejeune, 1997; Lejeune
& Tlidi, 1999; Couteron & Lejeune, 2001). They have developed a more generic
modelling framework of “propagation–inhibition” type, in which the slope of the
hill acts as a selector of the spatial pattern, rather than the initiator.

In this paper, I return to the original model of Klausmeier (1999), and inves-
tigate its potential for pattern formation analytically, for the first time. The main
objective is to determine how patterning varies with model parameters. To facilitate
this, I rescale the system (1a) as follows:

u=Uk1/2
6 /k

1/2
5 w=Wk1/k

1/2
5 k

1/2
6 x=Xk1/2

5 /k
1/2
3 y=Yk1/2

5 /k
1/2
3 t = T k5

A = k4k1/k
3/2
5 k

1/2
6 B = k2/k5 ν = k7/k

1/2
3 k

1/2
5 .

These rescalings are taken from Klausmeier (1999), although my notation is differ-
ent. The resulting dimensionless equations are

∂u/∂t = wu2 − Bu+ ∂2u/∂x2 + ∂2u/∂y2 (2a)

∂w/∂t = A− w − wu2 + ν∂w/∂x. (2b)

In applications, the main dimensional parameters of interest are the rainfall k4,
plant loss k2 and gradient of slope k7; note that plant loss will vary depending on
the extent of grazing. These three parameters appear (linearly) in the dimensionless
quantities A, B and ν respectively. Therefore in the remainder of the paper I study
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the dimensionless equations (2a), focussing on the conditions for patterning, and
the way in which the patterns vary with these three parameters. An indication of the
typical values of these parameters is given by Klausmeier’s(1999) estimates, which
are ν = 182.5 for a typical slope with vegetation stripes, with A = 0.077 – 0.23,
B = 0.045 for trees, and A = 0.94 – 2.81, B = 0.45 for grass.

In §2 I use linear analysis to determine conditions for stripe formation. In §3 I
calculate the predicted wavelength of the stripes, and how this varies with model
parameters, and in §4 I investigate the speed of migration of the stripes.

2. Conditions for Pattern Formation

The first step in investigating the pattern-forming potential of the model (2) is
to determine the spatially homogeneous steady states. Straightforward calculation
shows that whenA < 2B, the only steady state is u = 0,w = A (no plants), which
is linearly stable. Intuitively, plants cannot survive in this parameter regime because
the rainfall is too low in comparison to plant loss. When A ≥ 2B, two other steady
states develop, one of which is linearly unstable to homogeneous perturbations.
The other is given by

u = us ≡ 2B

A− √
A2 − 4B2

, w = ws ≡ A− √
A2 − 4B2

2

which is linearly stable whenever B < 2, and for A sufficiently large when B > 2.
Intuitively, this means that the rainfall is large enough to sustain plant growth. Real-
istic parameter values for plant growth in semi-arid environments imply B < 2,
and we assume henceforth that u = us , w = ws is linearly stable to homogeneous
perturbations. This raises the possibility of Turing-type patterns. Linearizing the
model equations (2) about this steady state gives

ũt = aũ+ bw̃ + ũxx + ũyy

w̃t = cũ+ dw̃ + νw̃x

where ũ = u− us , w̃ = w −ws , and the linear coefficients a, b, c, d are given by

a = B (3a)

b = A+ √
A2 − 4B2

A− √
A2 − 4B2

(3b)

c = −2B (3c)

d = −2A

A− √
A2 − 4B2

. (3d)

Klausmeier’s (1999) parameter estimates, given at the end of the introduction, imply
that for trees a = 0.045, b = 1 – 24, c = −0.09, d = (−2) – (−25), while for grass
a = 0.45, b = 1.8 – 37, c = −0.9, d = (−2.8) – (−38). In the former case, these
ranges for b and d exclude the smallest values of A, which are less than 2B. Note
that b and (−d) are both increasing functions of A, so that their absolute values
vary in parallel.
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To consider pattern formation, we look for solutions proportional to exp(ikx+
ily + λt); here the wavenumbers k and l are real, but the growth rate λ may be
complex. Nontrivial solutions of this form are possible provided

λ2 + λ
(

k2 + l2 − a − ikν − d
)

+ (a − k2 − l2)(ikν + d)− bc = 0

which gives the dispersion relation

λ = 1
2

[

(a − l2 + d + ikν − k2)±
√

α + iβ
]

(4)

where α = (a − l2 + d − k2)2 − k2ν2 − 4(a − l2d − bc − dk2) and β =
2kν(k2 − a − l2 + d). Straightforward manipulation of (4) yields

Re λ = 1
2

[

a − l2 + d − k2 + j

{

1
2

(
√

α2 + β2 + α

)}1/2
]

(5)

Im λ = 1
2

[

kν + j sign(β)

{

1
2

(
√

α2 + β2 − α

)}1/2
]

(6)

where j = ±1.
The condition for a spatial mode (defined by k and l) to be unstable and thus grow

into a pattern is that Re λ > 0. Therefore, pattern formation will occur if Re λ > 0
for any values of k and l. For general advection-diffusion equations this was first
investigated by Jorné (1974), with a number of subsequent studies. In particular,
Perumpanani et al., (1995) showed that patterning occurs if the advection rate (ν in
(2a)) is above a critical value, but were unable to obtain an analytical expression for
this critical value. However for the particular problem of vegetation stripes, a sig-
nificant simplification can be achieved by making use of the large (dimensionless)
value of ν in comparison to the other parameters: recall that Klausmeier (1999) esti-
mates ν = 182.5 for a typical slope with vegetation stripes, withA = 0.077 – 0.23,
B = 0.045 for trees, and A = 0.94 – 2.81, B = 0.45 for grass. Therefore I expand
(5) as a power series in ν � 1. In due course I will consider both k = Os(1/ν)
and k = Os(1/ν1/2), but to begin with I assume that k = Os(1). (The notation
k = Os(1) means that k = O(1) and k �= o(1).) For any given k and l, the fastest
growth rate has j = +1, and is given by

Re λ = a − l2 − k2 +O(1/ν2) (7)

when k2 < a − l2 − d , with Re λ < 0 for all k2 > a − l2 − d. Since d < 0, this
shows that any mode with 0 < k2 + l2 < a is unstable for sufficiently large ν.

There is an apparent discrepancy between (7) and my earlier statement that
the steady state u = us , v = vs is stable to homogeneous perturbations, since (7)
implies that Re λ > 0 at k = l = 0. This is because (5) has boundary layer type
behaviour near k = 0, which is revealed by assuming ν � 1 with k = Os(1/ν),
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say k = k̂/ν. Expanding (5) as a power series in ν under this assumption and with
j = +1 gives

Re λ= 1
2

[

a − l2+d+
{

1
2

(
[
{

(a − l2 − d)2 + 4bc − k̂2
}2+ 4k̂2(a − l2 − d)2

]1/2

+(a − l2 − d)2 + 4bc − k̂2

)}1/2


 . (8)

This is an increasing function of k̂, negative at k̂ = 0, and approaching a − l2

asymptotically as k̂ → ∞. Figure 1 illustrates the comparison between (7), (8) and
the full expression (5) for Re λ.

On their own, neither (7) or (8) are very informative about the pattern forming
potential of (2a). It is possible to combine them into a “composite” approximation
for Re λ, but this is not much simpler algebraically than the full expression (5). In
order to obtain a more informative approximation to (5), an intermediate expansion
is needed, in which ν � 1 with k = Os(1/ν1/2), say k = k̃/ν1/2. Expanding (5)
as a power series in ν, again with j = +1, this gives

Re λ = a − l2 − 1

ν

{

(−bc)(a − l2 − d)

k̃2
+ k̃2

}

+ o(1/ν) . (9)

This has its largest value when l = 0 and when

k̃ = k̃max ≡ [(−bc)(a − d)]1/4 (10)

with Re λ = �max ≡ a − 2

ν

√

(−bc)(a − d) . (11)

The condition for diffusion driven instability is that �max > 0. Since a > 0,
this will clearly occur for any values of a, b, c and d, provided that ν is sufficiently
large. However, in applications to vegetation stripes, not only is ν large, but |d|
and |bc| can also be large, while a is typically small. Therefore, diffusion driven
instability is not automatic for realistic parameters, and requires investigation.

The formulae (10) and (11) were derived under the assumption that ν � 1 with
all other parameters Os(1). However, the derivation is unaffected if in addition
(−d) � 1 and/or (−bc) � 1 and/or a � 1, provided that ν � (bc/d)1/2 and
ν � (d3/bc)1/2; details of this are given in Appendix A. These conditions are
reasonable for realistic parameters for vegetation stripe formation. For example the
parameter estimates of Klausmeier (1999), discussed previously, imply that for trees
(bc/d)1/2 = 0.2–0.3 and (d3/bc)1/2 = 9.4–85 while for grass (bc/d)1/2 = 0.76–
0.94 and (d3/bc)1/2 = 3.7–41; these compare with ν = 182.5. The formula (11)
implies that the condition for vegetation stripe formation is

ν > 2
√

(−bc)(a − d)/a .
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Fig. 1. Caption on next page
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Fig. 1. An illustration of the dispersion relation and various approximations to it, for param-
eter values corresponding to (a) grass and (b) trees, based on the parameter estimates of
Klausmeier (1999). The solid curve is (5), the actual dispersion relation. The open circles
(◦) show the approximation (7), given by assuming ν � 1 with k = O(1). The filled circles
(•) show the approximation (8), given by assuming ν � 1 with k = O(1/ν). Finally the
stars (∗) show (9), given by assuming ν � 1 with k = O(1/ν1/2). The position of kmax ,
given in (10) is also shown. The parameter values are ν = 182.5 and (a) A = 1, B = 0.45;
(b) A = 0.1, B = 0.045

Substituting (3) into this gives

ν2 > 8
A+ √

A2 − 4B2

A− √
A2 − 4B2

+ 16

B

A2 + A
√
A2 − 4B2

(A− √
A2 − 4B2)2

= 8
(

ψ2/B − ψ/B + ψ − 1
)

(12)

where ψ = 2/

(

1 −
√

1 − 4B2/A2

)

.

In applications to vegetation stripe formation, ν2 is usually much greater than 1/B.
For example, Klausmeier (1999) estimates 1/B = 22 for trees and 1/B = 2.2 for
grass, while ν2 = 3.3 × 104. Therefore condition (12) is always satisfied unless
ψ � 1, which requires B � A. The right hand side of (12) will then be dominated
by 8ψ2/B, so that to leading order (12) simplifies to

ν >
√

8A2/B5/2 . (13)

This condition is satisfied throughout the parameter range estimated by Klausmeier
(1999) for grass, with

√
8A2/B5/2 = 18−164, while ν = 182.5; however for trees,

his estimates imply
√

8A2/B5/2 = 39 − 348 (again ν = 182.5), predicting that
stripes will only form at lower levels of rainfall.

The model (2a) predicts that vegetation stripes will occur when A is small
enough to satisfy condition (13), but larger than 2B. Specifically, the (approxi-
mate) condition for pattern formation is

2B < A < 8−1/4ν1/2B5/4 . (14)

Figure 2 illustrates the comparison between the approximate condition (14) and
a numerical calculation of stability, obtained by computing the maximum of Re λ
directly from the formula (5). The comparison is very good for a large value of ν
such as that estimated by Klausmeier (1999) (ν = 182.5), and is fairly good even
for a lower value of ν such as 50. Intuitively, one expects a condition of the form
(14) for stripe formation. Recall that A reflects the rainfall, while B is a measure
of plant loss, and ν indicates the steepness of the slope. If the rainfall A is too
small compared to plant loss B, then vegetation will simply die out. On the other
hand, if rainfall A is sufficiently large, then the competition amongst plants for
water will not be very strong, resulting in homogeneous vegetation. However, for
intermediate levels of rainfall, vegetation can survive but with a strong competition
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Fig. 2. An illustration of the comparison between the approximate condition (14) for vege-
tation stripe formation, and a numerical calculation of stability. The condition (14) implies
stripe formation for parameters between the two solid curves (—). Numerical calculation of
Re λ from (5) implies that stripes will form for parameters indicated by a filled circle (•).
Therefore the figure shows that (14) is a very good approximation for the value of ν = 182.5
estimated by Klausmeier (1999) as being typical for vegetation striping, and the approxima-
tion remains fairly good even for smaller values of ν. As indicated in the figure, when the
rainfall is too low for vegetation stripe formation, vegetation is absent; when the rainfall is
too high for stripes, there is a homogeneous level of vegetation
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amongst plants for water, leading to vegetation stripes. The dependence of the upper
threshold on ν occurs because on steeper slopes rainfall will run off more quickly,
increasing the competitive advantage of areas of high plant density over those of
lower density. However the whole model assumes that the slope is not too steep,
otherwise the water will not flow downhill as a sheet, and instead will form gullies.

3. The Wavelength of Vegetation Stripes

A key issue for vegetation stripes is to determine their wavelength, and the way in
which this varies with model parameters. This is a property of the nonlinear system
(2), and detailed investigation would require nonlinear analysis that is beyond the
scope of this paper. However some insight into the wavelength can be obtained from
the linear analysis in the previous section. When patterns occur, one expects that
these will be dominated by the fastest growing mode – this will hold sufficiently
close to the Turing bifurcation curve defined by (12). Because the fastest growing
mode has l = 0, the corresponding pattern will have the form of stripes along the
contours of the slope (i.e. parallel to the y-axis), with wavelength

2π/kmax = 2πν1/2/[(−bc)(a − d)]1/4. (15)

This leading order approximation to the fastest growing mode compares well with
numerical plots of (5), as illustrated in Figure 1.

From an ecological viewpoint, a key issue is the way in which the predicted
spatial wavelength (15) varies with the model parameters A and B. Klausmeier
(1999) hypothesises that the wavelength is a decreasing function of water input A
and an increasing function of mortality B; I investigate this systematically using
(15). Substituting (3) into (10) gives the following expression for the fastest growing
wavenumber:

k̃max=
{[

A4+A2B3−3A2B2−2B5 + A(A2−B2+B3)
√

A2 − 4B2
]

/B3
}1/4

.

(16)

Explicit differentiation, followed by extensive algebraic simplification, gives

∂k̃max

∂A
= 1

2k̃3
maxB

3
√
A2 − 4B2

[

A
√

A2 − 4B2
{

2(A2 − 4B2)+B2(B + 5)
}

+(A2 − 4B2)(2A2 + B2 + B3)+ 2B4(B + 3)
]

and
∂k̃max

∂B
= −1

4k̃3
maxB

4
√
A2 − 4B2

[√

A2 − 4B2
{

3(A2 − 4B2)(A2 + 3B2)

+4B4(B + 9)
}

+ A
{

3(A2 − 4B2)(A2 + B2)+ 4B4(B + 3)
}]

.

Recall that A > 2B is a necessary condition for the existence of the steady state
(us, ws), which is required for spatial patterning. Therefore pattern wavelength
decreases with A and increases with B, as hypothesised by Klausmeier (1999)
and as illustrated in Figure 3. Note that because this prediction comes from linear
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Fig. 3. An illustration of the variation in pattern wavelength with (a) rainfallA and (b) plant
loss B. As shown in the main text, my linear analysis predicts that the wavelength decreases
with A and increases with B. The wavelength is calculated using the formula (15). The
parameter values are ν = 182.5 and (a) B = 0.45, (b) A = 1. In both (a) and (b), the plots
cover the full parameter ranges giving pattern formation; these are defined by the conditions
A < 2B and (13)

analysis, it only applies sufficiently close to the Turing bifurcation curve; neverthe-
less, both of the parameter variations are supported by the limited field data that is
available (White, 1971; Wickens & Collier, 1971; Mabbutt & Fanning, 1987).

4. Pattern Speed

The fact that λ is a complex number means that the striped pattern predicted by the
above calculations is not stationary, but rather moves over time. Some field stud-
ies report such movement, with typical speeds being 0.15 – 0.3 m yr−1 for trees,
and 0.3 – 1.5 m yr−1 for grass. The speed of movement predicted by my linear
analysis is |Im λ|/k. To simplify this, I expand (6) as a power series in ν, again
with k = k̃/ν1/2 and j = +1: note that (9) implies that β < 0 whenever pattern
formation occurs. This implies that the speed s is given by

s = (−bc)/k̃2 + o(1) . (17)

Thus to leading order when ν � 1, the fastest growing mode has speed

smax =
√

(−bc)/(a − d)

=






B
[

A2(1 + B)− 2B3 + A(1 + B)
√
A2 − 4B2

]

A2(1 + B)+ B4







1/2

. (18)

Here I have used the formulae (3) for the linear coefficients a, b, c and d.
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One immediate implication of (16) is that to leading order, the speed is inde-
pendent of ν, and thus of the gradient of the slope. I am not aware of field data
addressing this issue, but it provides a natural test for the model. There is also
ecological interest in the way in which the speed varies with the parameters A and
B. Direct differentiation of (16) gives

∂smax

∂A
= B3(1 + B)

smax
[

A2(1 + B)+ B4
]2 √

A2 − 4B2

{

(A2 − 4B2)(B2 + 2B + 2)

+2B2(B + 2)2 + AB(B + 2)
√

A2 − 4B2
}

∂smax

∂B
= A

2smax
[

A2(1 + B)+ B4
]2 √

A2 − 4B2

{

(A2 − 4B2)2(B + 1)2

−(A2 − 4B2)B4(2B + 3)− 4B4(B + 1)(B + 2)2

+A
[

(A2 − 4B2)(B + 1)2 − B2(2B3 + 5B2 − 4)
]√

A2 − 4B2
}

.

Recalling that A > 2B for patterning to be possible, these show that smax is an
increasing function of the water inputA (illustrated in Figure 4a), but that the depen-
dence on mortality B may be increasing or decreasing, depending on parameters
(Figure 4b).

In Appendix B, I show that ∂smax/∂B > 0 if and only

⇔ A > Acrit ≡ 2B(B + 2)√
2B + 3

. (19)

The parameter estimates of Klausmeier (1999) imply that for trees Acrit = 0.1,
which compares withA = 0.077−0.23; for grassAcrit = 1.1, withA = 0.94−2.81.

Fig. 4. An illustration of the variation in the speed of vegetation stripe migration with rain-
fall A and plant loss B, as predicted by linear analysis. As shown in the main text, the speed
increases with A; as B increases, the speed initially increases, reaches a maximum, and
then decreases. The speed is calculated using the formula (16).The parameter values are (a)
B = 0.45, (b) A = 1.5. In both (a) and (b), the plots cover the full parameter ranges giving
pattern formation; these are defined by the conditions A < 2B and (13)
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This suggests that as plant loss increases, both increases and decreases in the speed
of pattern migration may occur. However, because the decrease in wave speed with
plant loss occurs for parameters some distance from the Turing bifurcation curve,
it requires confirmation by nonlinear analysis, which is outside the scope of this
paper.

5. Discussion

Vegetation stripes are an intriguing natural phenomenon, widespread in semi-arid
regions. Using a model proposed previously by Klausmeier (1999), I have pre-
sented the first systematic analysis of the dependence of these striped patterns on
key ecological parameters. I have determined an approximate condition on param-
eters for vegetation stripes to form. Further, I have shown that pattern wavelength is
a decreasing function of rainfall, and an increasing function of plant loss and of the
gradient of the slope on which the stripes form. These dependencies are expected
intuitively and are consistent with the numerical simulations of Klausmeier (1999).
Finally I have shown that an uphill migration of the stripes is expected, at a speed
that decreases with rainfall, and can increase or decrease with plant loss, according
to parameter values.

From the viewpoint of testing the model, the most significant predictions con-
cern the variation with ν, which is approximately proportional to the gradient of the
hill. My analysis predicts that the wavelength of the vegetation stripes is propor-
tional to the square root of the gradient, with their speed of migration unaffected by
the slope. Because any geographical area will typically contain slopes of different
gradients but with broadly similar vegetation and grazing levels, these predictions
are definitely testable; however I am not aware of suitable existing data. Three
caveats must be added to these predictions. Firstly, like the model itself, my predic-
tion assumes gentle slopes (gradient less than about 1%). On steeper gradients, the
water does not flow as a sheet but rather gullies form, leading to different behav-
iour. Vegetation stripe formation is a phenomenon associated primarily with gentle
slopes. Secondly, the movement of the stripes remains a controversial aspect of
the phenomenon, with very limited data, some of which appears to show a static
pattern (Dunkerley & Brown, 2002). One possible explanation for this is that when
the soil is of certain types, its structure may be altered in the presence/absence of
vegetation in a manner that immobilises the patterns. However, this effect would
not depend on gradient, and thus the independence of migration speed on gradi-
ent would remain true. The final caveat is that my predictions are based on linear
analysis. Therefore, one expects them to hold for parameters close to the Turing
bifurcation curve, where the patterns will be of low amplitude. However for larger
amplitude patterns, nonlinear effects will be important and may alter the parameter
dependencies.

Pattern formation caused by the combination of diffusion and advection has
been best studied in the context of chemical systems. Here it is usually known as
“differential flow-induced instability” (Jorné, 1974; Rovinsky & Menzinger, 1993;
Satnoianu et al.,, 2001), and the advection term is due simply to fluid flow in the
aqueous system of reactants. The approach used in this paper would apply equally
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to these chemical systems at large flow speeds. Moreover, because these systems
are more amenable to systematic experiment, the resulting predictions would be
relatively easy to test. In the context of vegetation stripes, however, experiments
are not possible, so that one must rely on the gathering of additional field data in
order to test model predictions.
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from EPSRC.

Appendix A

In this Appendix, I give the derivation of the intermediate expansion for Re λ,
from which I have calculated leading order approximations for the fastest grow-
ing mode (10) and the conditions for diffusion driven instability (13). Specifi-
cally, I derive an approximation to the formula (5) for Re λ when ν � 1, with
1 = O(−d), 1 = O(−bc), and a = O(1), subject to the conditions ν � (bc/d)1/2

and ν � (d3/bc)1/2. For notational ease, I write p = a − d and q = −bc, so that
ν � 1, 1 = O(p) and 1 = O(q), with ν � (q/p)1/2 and ν � (p3/q)1/2. Further
I assume that k = Os(p

1/4q1/4/ν1/2), say k2 = κp1/2q1/2/ν. Then

α =
(

κp1/2q1/2/ν − p
)2 − κνp1/2q1/2 − 4q

β2 = 4κνp1/2q1/2
(

κp1/2q1/2/ν − p
)2
.

From these, α2 + β2 can easily be determined. It contains 16 terms, but it will
become clear later in the calculation that terms smaller than p2q can be neglected.
This leaves 6 significant terms:

α2 + β2 = κ2ν2pq + 2κνp5/2q1/2 + 8κνp1/2q3/2 + p4 + 16q2

−(4κ2 + 8)p2q + o(p2q)

= κ2ν2pq

[
(

1 + p3/2

κνq1/2 + 4q1/2

κνp1/2

)2

−4p(κ2 + 4)

ν2κ2 +o(p/ν2)

]

⇒ (α2 + β2)1/2 =
(

κνp1/2q1/2 + p2 + 4q
)
[

1−4p(κ2 + 4)

κ2ν2 + o(p/ν2)

]1/2

= κνp1/2q1/2+p2+4q−2p3/2q1/2ν−1(κ+4/κ)+o(p3/2q1/2/ν).

Therefore

α +
(

α2 + β2
)1/2 = 2p2 − p3/2q1/2

ν
(4κ + 8/κ)+ o(p3/2q1/2/ν)

⇒
{

1
2

[

α +
(

α2 + β2
)1/2

]}1/2

= p

[

1 − q1/2(2κ2 + 4)

κνp1/2 + o(q1/2/p1/2ν)

]1/2

= p

[

1 − q1/2(κ2 + 2)

κνp1/2 + o(q1/2/p1/2ν)

]

.
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Finally, this gives

Re λ = a − p1/2q1/2

ν

(

κ + 1

κ

)

+ o(p1/2q1/2/ν) .

Therefore to leading order, Re λ has a maximum value of a − 2p1/2q1/2/ν, when
κ = 1.

Appendix B

In this Appendix, I determine the conditions for the speed smax of the fastest grow-
ing mode (defined in (16)) to be increasing or decreasing as a function of B. To
investigate this, it is convenient to work in terms of ξ ≡ A2 − 4B2 rather than A;
note that ξ > 0 is necessary for patterns. In terms of ξ and B,

∂smax/∂B|A const > 0 ⇔ f (ξ, B) > g(ξ, B)

where f (ξ, B) = (ξ2 + 4B2ξ)1/2 ·
[

ξ(B + 1)2 − B2(2B3 + 5B2 − 4)
]

and g(ξ, B) = −ξ2(B + 1)2 + ξB4(2B + 3)+ 4B4(B + 1)(B + 2)2 .

It is easy to see that f (ξ = 0, B) < g(ξ = 0, B), while f (ξ = ∞, B) > g(ξ =
∞, B). Therefore there is at least one positive ξ for which f = g. Moreover,
f 2 = g2 is a cubic in ξ that can be solved exactly, and has a unique positive root
at ξ = 4B2(B + 1)2/(2B + 3). Therefore ∂smax/∂B|A const > 0 if and only if

ξ > 4B2(B + 1)2/(2B + 3)

⇔ A > Acrit ≡ 2B(B + 2)√
2B + 3

.

This is the condition given in (19).
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