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A continuum approach to modelling cell–cell adhesion
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Abstract

Cells adhere to each other through the binding of cell adhesion molecules at the cell surface. This process, known as cell–cell adhesion,

is fundamental in many areas of biology, including early embryo development, tissue homeostasis and tumour growth. In this paper we

develop a new continuous mathematical model of this phenomenon by considering the movement of cells in response to the adhesive

forces generated through binding. We demonstrate that our model predicts the aggregation behaviour of a disassociated adhesive cell

population. Further, when the model is extended to represent the interactions between multiple populations, we demonstrate that it is

capable of replicating the different types of cell sorting behaviour observed experimentally. The resulting pattern formation is a direct

consequence of the relative strengths of self-population and cross-population adhesive bonds in the model. While cell sorting behaviour

has been captured previously with discrete approaches, it has not, until now, been observed with a fully continuous model.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. Cell adhesion

Cell–cell adhesion is a fundamental biological phenom-
enon describing the binding of one cell to another through
cell surface proteins known as cell-adhesion molecules
(CAMs). This process is largely responsible for tissue
formation, tissue stability and tissue breakdown. Tissue
and organ formation occurs early in embryo development.
Selective adhesion of embryonic cells allows the cells to
move and organize themselves into the patterns that
develop into tissues and organs. This same process is
responsible for the stability of the tissues post-development
as new cells move in to replace those that have died to
maintain the tissue structure. In addition, selective adhe-
sion is thought to be responsible for certain types of tissue
breakdown, as a change in cell adhesion is recognized as a
factor in the invasion and metastasis of tumour cells.

The dependence of cell sorting on cell–cell adhesion was
shown experimentally several decades ago. The knowledge
that the adhesive bonds between embryonic amphibian
cells break down when placed in alkaline solutions was
exploited by Townes and Holtfreter to conduct experi-
ments with disassociated cells (Townes and Holtfreter,
1955). By mixing disassociated cells of different types and
then returning to a normal pH, they found that not only
do the cells reaggregate, but they also sort such that
cells of the same type are found in the same region. This
rearrangement returned the cells to their original embryo-
nic configuration.
Further experiments by Steinberg (1962a,b,c) showed

that if two embryonic cell types are mixed then they will
always rearrange to the same configuration, but this
configuration will vary according to the cell types. For
example, one cell type might always aggregate centrally
when interacting with a second cell type, but peripherally
when interacting with a third cell type. Moreover if cell
type A always envelops cell type B, and cell type B always
envelops cell type C, then A will always envelop C.
Steinberg proposed the differential adhesion hypothesis to
explain these experimental results.
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This hypothesis is based on a thermodynamic model
which explains sorting of cell populations as a result of
differences in cell surface tensions. These differences are in
turn the consequence of differences in the adhesion
properties of the cells. It suggests that the cells behave like
a mixture of two immiscible liquids, such as oil and
water. In the same way that the relative surface tensions
determine the configuration to which the liquid system will
evolve, the adhesion properties of the cell types will
determine the arrangement to which the cells will evolve.
The differential adhesion hypothesis and evidence for the
model are reviewed by Foty and Steinberg (2004). Other
proposed mechanisms for cell sorting have been investi-
gated but only the differential adhesion hypothesis has
correctly predicted the experimental results (Foty and
Steinberg, 2005).

Cell–cell adhesion is clearly important for understanding
many biological processes. While traditional experiments
offer valuable insight into cellular interactions and their
final outcomes, other important information is harder to
assess. The speed at which sorting occurs, the precise
dependence of interactions and outcomes on individual
cells adhesion properties, and the relationships between all
of the experimental variables are difficult to measure
experimentally. It is here that a theoretical approach can
offer an invaluable addition to experimental work.
Mathematical modelling allows cell properties to be varied
independently of one another, allowing measurement of the
sensitivity of the system to variations in parameters. It also
allows the interactions of any combination of cell types to
be investigated. In addition, theoretical models allow
parameters such as speeds and rates of change to be
measured far more easily. Given these benefits and the
importance of cell–cell adhesion and cell sorting there is a
clear argument for the mathematical modelling of this
behaviour (Fig. 1).

1.2. Previous modelling work

The experimental evidence summarized above indicates
that cell–cell adhesion is intrinsically linked to the cell
sorting behaviour fundamental to many biological pro-
cesses. Mathematical modelling can be used as a tool to
further understand these processes. The experimental
results show that the configuration to which a mixture of
two cell types may evolve is directly related to the relative
self-adhesive and cross-adhesive strengths of the cells
(Steinberg, 1962c). Replication of these results has
previously been successfully achieved with discrete models,
but to the authors’ knowledge not with a continuous
model. Before we discuss our new model we give an
overview of some of those in the current literature.
A variety of discrete approaches have been developed, a

large proportion of which are based on some form of the
extended Potts model. A population of cells is arranged on a
grid with rules imposed to govern the movement of each cell
according to the cell density at surrounding positions. These
models have been used to show cell sorting, replicating some
of Steinberg’s experimental findings (e.g. Glazier, 1996;
Glazier and Graner, 1993; Graner and Glazier, 1992;
Mombach et al., 1995; Stott et al., 1999; Sulsky, 1984).
A second discrete method is to employ a Lagrangian
approach in which each cell is tracked as it moves through
continuous space. This approach was employed by Palsson
and Othmer (2000) to replicate cell sorting by modelling each
cell as a deformable ellipsoid responding to the adhesive
interactions with neighbouring cells.
The success of discrete models in replicating the

dynamics of adhesive populations has led to a number of
applications, for example the modelling of tumour cell
invasion into the surrounding tissue through altered
cell–cell/cell–matrix adhesion (Turner and Sherratt, 2002;
Turner et al., 2004a), the modelling of aggregation and slug

ARTICLE IN PRESS

Fig. 1. Illustrative figures of cell adhesion and sorting showing aggregations observed in experiments mixing seven-day old chick embryo neural retinal

cells (light cells) and pigmented retinal epithelial cells (dark cells). (a) After 5 h cells form randomly mixed aggregates. (b) After 19 h the pigmented retinal

cells are almost exclusively located in the interior of the aggregates. (c) After two days the pigmented retinal cells have formed central masses, completely

surrounded by the neural retinal cells. The few pigmented cells seen on the surface are thought to be dead cells. (From Armstrong (1971), courtesy of P.B.

Armstrong.)
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development in the cellular slime mould Dictyostelium

discoideum (Palsson and Othmer, 2000; Maree and Hogeweg,
2001) and the early morphogenesis of embryonic cell
populations (Drasdo and Forgacs, 2000). While discrete
models of cell adhesion offer a number of distinct advantages,
for example the ease of incorporation of specific movement
‘‘rules’’ and the ability to track individual cells, there are two
main reasons for a continuous mathematical model being
desirable. Firstly, solving large-scale discrete models is
computationally intensive, leading to a limitation on the
scale of the problem that can be explored. Secondly, for
realistic numbers of cells, analytical results are difficult, if not
impossible, to obtain from a discrete model. A continuum
model, in principle at least, can allow the calculation of
quantities such as cell group velocity without the need for
numerical solutions.

Despite this, modelling cell–cell adhesion with a continuum
approach is problematic and there are relatively few papers
on the subject. One method is to take a discrete model to its
continuous limit, the route taken by Turner et al. (2004b).
While the authors show that this method is possible, the
resulting model is too complicated to be feasibly applied in
specific applications. An alternative approach was employed
by Byrne and Chaplain (1996), who modelled the influence of
cell adhesion on the growth of a solid tumour. They modelled
adhesion phenomelogically by considering the surface forces
on a tumour spheroid; however, it is unclear whether their
model is capable of replicating the behaviour of the sorting
experiments. Another continuous method used by several
authors is to employ a non-linear diffusion term in which cells
have restricted movement in regions of high density (e.g.
Perumpanani et al., 1996). This approach only reflects one
aspect of cell adhesion, such approaches do not show the
active aggregation required for cell sorting.

A final approach found in the literature is to combine
discrete and continuous methods. Recognizing the need for
a continuous model while acknowledging the importance
of the behaviour of individual cells, Anderson (2005) uses a
hybrid discrete-continuum model for cell adhesion. This
involves a discrete representation of cell behaviour and a
continuous approach for other factors in the system such as
chemical concentration. Fundamentally though this is still
a discrete model of cell adhesion and as such is still limited
for the reasons discussed above.

In this paper we take a continuous approach and
consider the force balance of adhesive forces acting on
the cells. This approach leads to a non-local term for the
directed movement of cells due to cell–cell adhesion. The
resulting model presented in this paper provides a method
of modelling cell adhesion which is applicable on a
macroscopic scale and still replicates the behaviour seen
experimentally and in discrete models.

1.3. Layout of the paper

We begin in Section 2 by describing the derivation of the
model investigated throughout the paper. We consider the

behaviour of the model for a single adhesive population in
one space dimension in Section 3 and demonstrate the
ability of the model to form cell aggregations. In Section 4
we extend the model to consider multiple populations with
different adhesive interactions, and demonstrate its ability
to predict different types of sorting. The model is extended
again in Section 5 to consider cell–cell adhesion in two
dimensions and in Section 6 we discuss our findings,
applications and our plans for future work. For reference
we include an appendix which summarizes each variation
of the model and gives a description of the parameters.

2. Derivation of the model

Cells are known to move in response to chemical stimuli
(chemotaxis) and in response to fixed environmental
factors such as the extracellular matrix (haptotaxis). They
may also move due to adhesive forces between the cells.
The latter is the behaviour we will be concerned with here
as we assume that the breaking and forming of adhesive
bonds exert forces on the cells. To derive our model for
cell–cell adhesion we first consider the movement of a
single and uniform population of cells in one dimension
although generalization to multiple populations and higher
dimensions is straightforward. We follow an approach
employed by Pate and Othmer (1986) to describe Dictyos-

telium cell interactions.
We can derive the model by considering the forces acting

on the cells in a conservative system. If we assume there is
no cell birth or death in our system, then mass conservation
implies

quðx; tÞ

qt
¼ �

qJ

qx
, (2.1)

where uðx; tÞ is the population density at time t and position
x, and J is the flux of the cells. Assuming there is some
random movement of the cells as well as the movement due
to adhesive forces, the total flux will be

J ¼ Jd þ Ja, (2.2)

where Jd is the flux due to diffusion and Ja is the adhesive
flux.
We expect that cells experiencing cell–cell adhesion are

less likely to be able to move in regions of high cell density.
Therefore an appropriate form of diffusive flux may be
non-linear and decreasing with cell density. However, we
find that the results reported in this paper are the
consequence of the adhesion term and are not greatly
affected by the form of diffusive flux used, to the extent
that the results can be obtained even without a diffusion
term in the model. Since our results do not appear to
depend on a realistic form of diffusive flux we assume
Fickian diffusion, i.e. Jd ¼ �Dðqu=qxÞ where D is the
diffusion coefficient. This has the advantage of not
requiring any specific assumptions on a non-linearity, as
well as making the numerical calculations significantly
more straightforward.
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Movement due to adhesion occurs as a result of the
forces produced when adhesive bonds between cells are
formed or broken. We therefore assume that the adhesive
flux is proportional to the density of the cells and the forces
between them are inversely proportional to cell size, such
that

Ja ¼
f
R

uF , (2.3)

where f is a constant of proportionality related to
viscosity, F is the total force acting on the cells and R is
the sensing radius of the cells. The notion of a sensing
radius will be discussed later; for now we can consider it to
be a measure of cell size. This form of adhesive flux follows
from Newton’s law on assuming that inertia is negligible
and that drag is proportional to velocity and cell size, both
of which are reasonable assumptions for cell movement at
low speeds.

The total force, F, acting on cells at position x will be the
sum of local forces, f, created by cells at position x with
cells a distance x0 away. We term the maximum x0 the
‘‘sensing radius’’, R, of the cells. Biologically this represents
the range over which cells can detect their surroundings.
For adhesion, forces are created through the binding of
adhesion molecules at the cell membrane and the sensing
radius would therefore represent the physical extent of the
cell, although this may be greatly larger than the average
radius through the extension of cell protrusions such as
filopodia. The magnitude of the local forces will depend on
the number of adhesive attachments made, and hence the
local cell density. The direction of the local forces will
depend on the position of the cells at x0 with respect to x.
Thus, we assume

f ¼ agðuðxþ x0ÞÞoðx0Þ,

where gðuðxþ x0ÞÞ describes the nature of the forces and
their dependence on the local cell density, oðx0Þ describes
how the direction and magnitude of the force alters
according to x0 and a is a positive parameter reflecting
the strength of adhesive force between the cells. Examples
of each of these functions will be given later. The total
force, F, is therefore

F ¼

Z R

�R

agðuðxþ x0ÞÞoðx0Þdx0. (2.4)

Substituting this into (2.3), the equation for the adhesive
flux is

Ja ¼
f
R

u

Z R

�R

agðuðxþ x0ÞÞoðx0Þdx0 (2.5)

and our mass conservation equation (2.1) is given by

qu

qt
¼ D

q2u
qx2
�

q
qx
ðuKðuÞÞ, (2.6a)

where

KðuÞ ¼
f
R

Z R

�R

agðuðxþ x0ÞÞoðx0Þdx0. (2.6b)

To consider suitable forms for gðuðxþ x0ÞÞ, consider the
configuration shown in Fig. 2. Both the magnitude and the
direction of the force generated by the cells at x1 on the cell
at x may depend on the cell density at x1, depending on the
physical forces present. For example, to model an adhesive
force, we would assume the force is directed towards x1 and
increasing with the cell density (this simple assumption
would reflect the attractive nature of the adhesive force and
the increased likelihood of making adhesive bonds at
higher densities). At its simplest, we could assume a linear
form

gðuðxþ x0ÞÞ ¼ uðxþ x0Þ. (2.7)

However, if we also want to include a ‘‘population
pressure’’ in which cells are only attracted to regions below
a threshold density, then we would instead expect the force
to eventually decrease as the cell density increases, using
for example the following logistic type function

gðuðxþ x0ÞÞ

¼
uðxþ x0Þð1� uðxþ x0Þ=MÞ if uðxþ x0ÞoM ;

0 otherwise;

(
ð2:8Þ

where M represents the crowding capacity of the popula-
tion.
Let us now consider the form of oðx0Þ. For convenience,

let us suppose that gðuðxþ x0ÞÞ is given by (2.7) above. The
force generated at position x1 will be positive while that at
x2 will be negative due to the ‘‘pulling’’ nature of the
adhesive force. Further, the size of the force may vary
according to the distance of x1 and x2 from x—cells further
away may generate a weaker force as a result of a
diminished possibility of forming adhesive bonds with
distance. Thus oðx0Þ should be an odd function of x0 with
oðx0Þ40 for x40 and oðx0Þo0 for xo0. At its simplest
we could assume a step function

oðx0Þ ¼
�1; �Rox0o0;

1; 0ox0oR;

(
(2.9)

though as we remark above, more realistic forms may vary
smoothly with x0.
Finally we rescale to give a nondimensional model. We

let

x� ¼
x

R
; t� ¼ t

D

R2
; u� ¼

u

û
and a ¼

a
â
,

where û and â are determined by the form of gðuÞ. If gðuÞ is
given by (2.7) then â ¼ 1 and û ¼ D=Rf. If gðuÞ is given by
(2.8) then â ¼ D=MRf and û ¼M. Using these rescalings,
dropping the stars for notational convenience, the
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Fig. 2. A schematic illustration of cell movement under an attractive force

towards cells at position x.
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nondimensional model for the movement of a single
population in one dimension, due to diffusion and cell–cell
adhesion is

qu

qt
¼

q2u
qx2
�

q
qx
ðuKðuÞÞ, (2.10a)

where

KðuÞ ¼ a
Z 1

�1

gðuðxþ x0ÞÞoðx0Þdx0, (2.10b)

under the condition that oðx0Þ is an odd function. We note
that a is now a nondimensional parameter representing the
adhesion strength of the cells and gðuðxþ x0ÞÞ is the
rescaled version of the force function. After rescaling the
linear form of gðuÞ remains as (2.7), however, the logistic
form (2.8) will become gðuÞ ¼ uð1� uÞ.

Here we have derived only the simple one population
model, but the derivation of higher-dimensional models is
straightforward: see Hillen et al. (2006) for the derivation
and analysis of such a model in the context of chemotaxis.

3. One population model

We begin by considering a single cell population with
uniform adhesive properties. For an initially dispersed
population of cells with sufficiently strong cell–cell adhe-
sion, we expect to observe the formation of cell clusters or
aggregations (see Fig. 1). Thus our basic model should
demonstrate the formation of cell aggregations from an
initially randomly distributed population. To model this
behaviour we use the simple model derived in Section 2,
that is

ut ¼ uxx � ðuKðuÞÞx, (3.1a)

where

KðuÞ ¼ a
Z 1

�1

gðuðxþ x0ÞÞoðx0Þdx0. (3.1b)

Here uðx; tÞ is the population density at time t and position
x and KðuÞ is the non-local adhesion term. a represents the
adhesion strength of the cells. In Section 2 we showed that
KðuÞ describes the movement of cells through adhesive
forces acting on the cells. In this section we assume the
simple linear form for gðuÞ as given by (2.7). The
model equations and parameters are summarized in
Appendix A.1.

3.1. PDE approximation

The novelty in our model lies in the non-local advection
term, KðuÞ. Although non-local terms have been used in the
modelling of other areas of biology, their effects are not
immediately obvious. To obtain some intuition we can
approximate the model by a partial differential equation
(PDE). This approximation can then be compared to PDE
models whose behaviour has been previously studied.

A PDE approximation to the model can be achieved by
expanding the density term within the integral, uðxþ x0Þ,
as a Taylor series. We let

uðxþ x0Þ ¼ uðxÞ þ x0ux þ
x2
0

2
uxx . . .

and substitute this into the adhesion term (3.1b) with (2.7)

ut ¼ uxx � Aa½uux�x � Ba½uuxxx�x þØðx5
0Þ, (3.2)

where A ¼
R 1
�1

x0oðx0Þdx0 and B ¼ 1
6

R 1
�1

x3
0oðx0Þdx0 are

both positive. We note that terms with odd order
derivatives in (3.2) disappear since oðx0Þ is odd.
In the second order term of (3.2) there is a dependence

on the first spatial derivative, ux, showing similarity with
PDE models of taxis. It indicates directed movement up
gradients of cell density, thus implying that aggregating
behaviour may be possible in this model. However, a
second order PDE model for cell–cell adhesion based on
such terms is impractical due to their tendency to form
singularities. The fourth order term has a dampening
effect, and we can therefore speculate that the effect of the
non-local term will be to allow aggregations to form
without blow-up. This is supported by the results in Hillen
et al. (2006), where a non-local model for chemotaxis was
demonstrated to have globally existing solutions.

3.2. Stability

As we discussed previously, a model for cell–cell
adhesion should demonstrate evolution of a randomly
distributed cell population into a pattern of aggregations.
To indicate whether this is possible in the model, we
perform a standard linear stability analysis about the
homogeneous steady state U. Specifically, we let uðx; tÞ ¼
U þ ūðx; tÞ where ū is a small perturbation. Substituting
this into our governing equation (3.1), and neglecting non-
linear terms in ū, our linearized model becomes

ūt ¼ Dūxx � aU

Z 1

�1

ūðxþ x0Þoðx0Þdx0

� �
x

. (3.3)

Substituting solutions of the form ū / eikxþlt into (3.3),
where k and l are the wave number and frequency,
respectively, yields the dispersion relation

lðkÞ ¼ �k2
� iaUkŵðkÞ, (3.4)

where ŵðkÞ ¼
R 1
�1 e

ikx0oðx0Þdx0.
For aggregations to develop we require ReðlðkÞÞ40 for

some k. The wave numbers, k, for which this occurs will
clearly depend on the form of wðx0Þ. Assuming the simple
form for oðx0Þ given by (2.9) the dispersion relation now
becomes

lðkÞ ¼ �k2
� 2aUðcosðkÞ � 1Þ. (3.5)

For ReðlðkÞÞ40, we have the condition

1� cosðkÞ4
1

2aU
k2. (3.6)
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The inequality, (3.6), highlights that the magnitude of the
adhesion strength, a, is critical in determining whether
aggregations are possible. We can explore the possibility of
aggregations by evaluating both sides of (3.6) for different
values of a. In Fig. 3 we plot the two sides of (3.6) for three
values of a. Clearly, for certain a wave numbers exist for
which ReðlðkÞÞ40. The figure suggests the existence of a
minimum strength of adhesive force below which aggrega-
tions do not occur. This is in fact the case and aggregating
behaviour is possible in the model when a4acrit where acrit

is the smallest value of a at which the two sides of (3.6)
touch when considered as functions of k. Straightforward
calculation gives

acrit ¼
1

U cos2ðkcrit=2Þ
,

where kcrit is the first non-zero solution to tanðk=2Þ ¼ k=2.

3.3. Numerical simulations

Having confirmed analytically that the model may
display aggregating behaviour we investigate this further
through numerical simulation. The numerical scheme
employs an explicit finite volume method to discretize the
PDEs into a system of ODEs. We use a central differencing
scheme for diffusion and high order upwinding with flux
limiting for the advection term. The integral is calculated
directly by summing over the enclosed points and the time
integration uses an explicit trapezoidal scheme. The choice
of boundary conditions is dependent on the cell types and
problem in question. Here we are investigating a modelling
technique and so we have only considered generic cell
populations. As the domain over which these cells interact
is unknown we assume periodic boundary conditions for
numerical simplicity.
From (3.6) and Fig. 3 we expect aggregating behaviour

to occur when the adhesion strength, a, is greater
than some critical value. Fig. 4 shows a time evolution of
our model for a cell population with adhesion strength
a ¼ 10. The population of cells is initially assumed to be
uniformly distributed, perturbed by a small amount of
noise. Over time the population develops a number of
peaks in cell density. As time progresses, these peaks
are seen to coarsen, becoming steeper and more widely
spaced. The numerics clearly confirm the ability of the
model to produce cell aggregations in certain parameter
regimes.

4. Two interacting populations

Having confirmed that aggregations are possible in the
model for one population, we now consider the modelling
of two populations, u and v, interacting through adhesion.
The derivation follows directly that for a one population
model in Section 2, with the exception that we must now
consider the different types of adhesive interactions. For
each of the cell types, we assume two types of adhesive
force: one representing adhesion between cells of the same
type (self-population adhesion) and the other representing
adhesion between cells of different type (cross-population
adhesion). Biologically, these different types may arise
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Fig. 3. An illustration of the inequality, (3.6). We let the initial population

density across the domain be U ¼ 1. The solid line curve is the right-hand

side of (3.6), 1� cosðkÞ. The other three lines are plots of the left-hand side

of (3.6), k2=2aU , for three values of a. We can see that for a ¼ 0:5 there is

no region where the inequality holds and so aggregations will not occur.

When a ¼ 5:0 and 50:0 aggregations are possible for wave numbers in

regions where the solid line is above the dotted and dash-dotted line,

respectively. This indicates the importance of the adhesion strength on the

model behaviour.
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Fig. 4. Confirmation that aggregating behaviour can be seen in this model under certain parameter assumptions. The model, (3.1), is solved on a domain

of length 20 discretized into 200 mesh points. Here we choose a ¼ 10. Initially the cell population is distributed evenly across the domain. With time the

system evolves into a pattern of peaks showing aggregations of cells.
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through different levels and types of cell adhesion molecule
at the cell membrane.

Thus we assume that the diffusion terms remain as for
the one population case, but that adhesion terms will now
be replaced by the sum of two terms representing self-
population and cross-population adhesion. We will make
no initial assumption about adhesion dependence on cell
density and so for now all adhesion terms will include a
function of both cell densities. The extended nondimen-
sional model equations are therefore

ut ¼ uxx � ðuKuðu; vÞÞx, (4.1a)

vt ¼ vxx � ðvKvðu; vÞÞx, (4.1b)

where

Kuðu; vÞ

¼ Su

Z 1

�1

guuðuðxþ x0Þ; vðxþ x0ÞÞouuðx0Þdx0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
u2u adhesion

þ C

Z 1

�1

guvðuðxþ x0Þ; vðxþ x0ÞÞouvðx0Þdx0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
u2v adhesion

ð4:1cÞ

and

Kvðu; vÞ

¼ Sv

Z 1

�1

gvvðuðxþ x0Þ; vðxþ x0ÞÞovvðx0Þdx0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
v2v adhesion

þ C

Z 1

�1

gvuðuðxþ x0Þ; vðxþ x0ÞÞouvðx0Þdx0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
v2u adhesion

. ð4:1dÞ

Here uðx; tÞ and vðx; tÞ are the population densities of the
two cell types at time t and position x; and Ku;vðu; vÞ are the
adhesion terms, encompassing both self-population adhe-
sion and cross-population adhesion. Su, Sv and C represent
the self-adhesive strength of population u, self-adhesive
strength of population v, and the cross-adhesive strength
between the populations, respectively. Note that both cells
are assumed to have the same sampling radius, however,
population variations due to differences in cell geometry
can be modelled through the choices of Su, Sv, C,
guu; gvv; guv and ouu;vv;uvðx0Þ. To describe the varying
strengths of self- and cross-population adhesion, Su, Sv

and C should clearly be distinct. C appears in both (4.1c)
and (4.1d) to reflect the anticipated symmetry of the u–v

and v–u bonds. The model equations and the parameters
are summarized in Appendix A.2.

4.1. Are aggregations possible?

In the one population case we investigated the possibility
of aggregating behaviour in the model by considering both
a PDE approximation and a stability analysis. We can use

the same techniques to investigate possible behaviour in the
model for two interacting populations, (4.1).
We begin by making the simplifying assumption that

each of the force functions are given by linear forms

guu ¼ u; gvv ¼ v; guv ¼ v; gvu ¼ u. (4.2)

This implies that the strength of the adhesive forces will
increase linearly with cell density and so adhesive forces are
stronger where cell density is greater. This simplifies the
adhesion terms (4.1c) and (4.1d) to

Kuðu; vÞ ¼

Z 1

�1

Suuðxþ x0Þouuðx0Þ þ Cvðxþ x0Þouvðx0Þdx0

(4.3a)

and

Kvðu; vÞ ¼

Z 1

�1

Svvðxþ x0Þovvðx0Þ þ Cuðxþ x0Þouvðx0Þdx0.

(4.3b)

Using the technique described in Section 3.1 we can find
the PDE approximation to this model. We find that, as in
the one population case, there is a dependence in the
advection terms on the first spatial derivatives of both cell
populations, indicating directed movement along popula-
tion gradients. As before we speculate that singularities are
avoided through the damping effect of higher order terms.
The second technique we use to investigate possibilities

of aggregating behaviour is to look at the model’s stability.
We follow the method described in Section 3.2 to find the
dispersion relation, lðkÞ, for the system. To simplify the
analysis of the dispersion relation we consider the case
where ouu;vv;uvðx0Þ are all equal and are given by the simple
step function form (2.9). In addition we assume that both
cell types have the same homogeneous steady state,
U ¼ V ¼ N. The condition for instability, ReðlÞ40, is
then

�ðSuSv þ C2ÞX 2 �NðSu þ SvÞX � 140, (4.4)

where

X ¼
1

k2
ðcos k � 1Þ.

While it is difficult to obtain a firm grasp on the parameter
regions for which aggregations are possible, we can use the
above to provide some broad predictions on the effect of
Su, Sv and C on patterning instability. Clearly, since Xp0,
patterning is only possible for a sufficiently large Su þ Sv.
Further, increasing C decreases the first term, and thus we
can predict that a sufficiently large cross-population
adhesion should prevent aggregations from forming.
Fig. 5 shows the left-hand side of inequality (4.4) as a
function of k, the wave number, for a specific set of
parameter values. We can see that for this set of parameter
values there is a range of k for which aggregating
behaviour is possible in the model.
To confirm this we solve the model numerically using the

method described in Section 3.3. Typical numerical
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solutions are shown in Fig. 6. We can see that, as in the one
population case, time evolution of the numerical solutions
shows a pattern of peaks developing across the domain.
The two rows in the figure demonstrate the behaviour for
zero cross-population adhesion, (Fig. 6(a)), and non-zero
cross-population adhesion (Fig. 6(b)). With no interac-
tions, the two populations form separate peaks: effectively
they are unaware of each others existence. With the
inclusion of cross-population adhesion, the peaks that
form are a mixture of both cell types. These numerics
clearly demonstrate that the model displays aggregating
behaviour and that the relative sizes of the different
adhesion strengths in the model can be linked to different

types of pattern formation. We investigate this further in
the following section.

4.2. Numerical simulation of the Steinberg experiments

Numerical methods allow us to use our model to
investigate the outcome of interactions between cell
populations with different adhesion properties. Experi-
mental evidence shows that a mixture of two cell types may
evolve to one of four configurations depending on the
relative strengths of self-adhesion and cross-adhesion of
the cell populations (Steinberg, 1962c). In Fig. 7 we show
the configurations that are seen experimentally and
summarize the adhesion properties of the experimental cell
types whose interactions result in the formation of each
pattern.
In Section 4.1 we solved the model numerically, both for

a system with no interaction between cell types (Fig. 6(a)),
and with an interaction between cell types (Fig. 6(b)). The
cell types used in these simulations obey the conditions
C ¼ 0 and SvoCoSu corresponding to scenarios D and B
detailed in Fig. 7, respectively. While the pattern formation
seen in Fig. 6(a) matches that seen experimentally for these
cell types, (part D, Fig. 7), the pattern formation seen in
Fig. 6(b) represents a ‘‘mixing’’ scenario, A, rather than the
engulfment scenario B. To model all types of configura-
tions we consider the assumptions made in developing the
model.
For mathematical simplicity, thus far we have assumed

linear forms for the functions guu;vvðu; vÞ and guv;vuðu; vÞ.
These are somewhat unrealistic since they imply that higher
cell densities always generate stronger adhesive force,
leading to the sharp aggregation peaks seen in the numerics
so far. A more realistic assumption would be to assume
that at higher cell densities, population pressure limits the
ability to aggregate, see (2.8). Thus we replace our
linear functions by nondimensional logistic equations of
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Fig. 5. A plot of the left-hand side of inequality (4.4) as a function of k

showing that there are values of k where the inequality holds and hence

wave numbers for which aggregations are possible. The initial cell density

is taken to be N ¼ 1, and the adhesion parameters are Su ¼ 3:0, Sv ¼ 1:0
and C ¼ 0:3.
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Fig. 6. Confirmation of aggregations in the two population model in one dimension. The model is solved on a domain of length 20, discretized into 200

mesh points. The model parameters are set at Su ¼ 25, Sv ¼ 7:5 and (a) C ¼ 0:0, (b) C ¼ 12:5. We can see in (a) that separate aggregations occur when

there is no interaction between cell types. In (b) there are interactions between cell types. Aggregations occur but we are unable to distinguish between the

cell populations as all cells aggregate in the same spatial regions.
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the form

guuðu; vÞ ¼ gvuðu; vÞ ¼
uð1� u� vÞ if uþ vo1;

0 otherwise;

(

gvvðu; vÞ ¼ guvðu; vÞ ¼
vð1� u� vÞ if uþ vo1;

0 otherwise:

�
To demonstrate the effect of introducing the logistic
functions, we repeat the numerical simulations described
in Section 4.1 using the above logistic functions together
with (2.9) for each of the o-functions in (4.1c) and (4.1d).
Fig. 8 shows the equivalent results to Fig. 6(a) when
logistic functions are taken instead of the linear form.
A comparison of Figs. 8 and 6(a) shows that the introduc-
tion of the logistic term results in aggregations which cover
a larger spatial area but with a lower maximum cell density.
This is more biologically realistic than the small, high
density aggregations seen in Fig. 6. Separate aggregations

are seen once again but this is now a genuine cell sorting as
the cells are aware of each other’s existence.
We now test the ability of the model to reproduce the

experimental findings outlined in Fig. 7 by choosing the
relative values of the adhesive strengths, Su;v and C, in line
with the properties of the experimental cells used in each
scenario from Fig. 7. The results of these simulations are
shown in Fig. 9. With the introduction of a logistic
function into the model, we can replicate each of the four
types of pattern formation seen experimentally with
equivalent relations between the strengths of self- and
cross-population adhesion. We therefore have a model
capable of replicating the experimental cell sorting results,
something not previously achieved with a continuum
model.

5. Two dimensions

In Section 4 it was shown that for two interacting
populations in one dimension, our model can reproduce
Steinberg’s experimental results on cell sorting. In this
section, we extend our model to investigate whether these
results extend to the two-dimensional scenario more
relevant to the actual biological process. We begin by
extending the one population model and then consider
interacting populations with different adhesion properties.

5.1. Extension of the model to two dimensions

Derivation of the equations in two dimensions is
reasonably straightforward extension of the method used
in one dimension and described in Section 2. Our two-
dimensional governing equation is given by

ut ¼ r
2u� r � ðuKðuÞÞ (5.1)

(after nondimensionalization).
For the adhesion term, KðuÞ, we apply the same

biological considerations as for the original derivation in
Section 2. Cells will be affected by the forces generated
through adhesive binding with other cells within a circle of
sensing radius R, scaled to be 1, and thus the integral now

uses
R 1
0

R 2p
0 rdydr. Within the integral, cells now have a
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Fig. 7. The possible configurations to which a system of two cell

populations may evolve. The more cohesive population, u, is shown here

in black and the less cohesive population, v, in white. Su, Sv and C

represents the cohesive strength of population u, the cohesive strength of

population v and the cross-population adhesive strength, respectively. (a)

Mixing (preferential cross-adhesion). The cross-adhesion strength of the

cells is greater than the average of the two self-adhesion strengths,

C4ðSu þ SvÞ=2. The cells form mixed population aggregates. (b)

Engulfment (intermediate cross-adhesion). The cross-adhesion strength

is greater than the self-adhesion strength of the less cohesive population

but less than the self-adhesion strength of the more cohesive population,

SvoCoSu. The more cohesive population is engulfed by the less cohesive

population. (c) Partial engulfment (relatively weak adhesion). The cross-

adhesion strength is less than both the self-adhesion strengths, CoSu and

CoSv. More cohesive population is partially engulfed by the less cohesive

population. (d) Complete sorting (no cross-adhesion). If there is no cross-

adhesion between the two populations and C ¼ 0 the two cell types form

separate aggregations. (Figure adapted from Foty and Steinberg, 2004.)

0 10 20
0

1

t = 0

u
(x

,t
)

x

 

 

u(x,t)
v(x,t)

0 10 20

t = 5

x
0 10 20

t = 10

x
0 10 20

t = 500

x

Fig. 8. Aggregations in the two population logistic model in one dimension. Parameters are set at Su ¼ 25, Sv ¼ 7:5 and C ¼ 0:0, corresponding to

scenario D in Fig. 7. The model is solved on a domain of length 20, discretized into 200 mesh points. This is a repeat of the simulation shown in Fig. 6(a)

with the introduction of a logistic form for gðu; vÞ. By comparison the aggregations are smoother, cover a larger spatial area and have a lower maximum

density than those in Fig. 6(a). In addition cell sorting is now seen.
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two-dimensional position, x. The position of other cells
within the sensing radius can be specified by xþ Z r, where
Z is the outer unit normal to the circle. Thus, the adhesive
strength is now determined by gðuðxþr ZÞÞ, while we
replace oðx0Þ by ZOðrÞ, where Z is the direction and OðrÞ
the dependence of the adhesion strength on the radial
distance. a remains the nondimensional adhesive strength
parameter. The adhesion term therefore reflects the
dominant direction of movement due to adhesive forces:

KðuÞ ¼ a
Z 1

0

Z 2p

0

gðuðxþr ZÞÞOðrÞ Z rdydr. (5.2)

To demonstrate the capabilities of the model we initially
choose gðuÞ ¼ u, and OðrÞ ¼ 1. Analytical investigation of
this model gives similar criteria for aggregations as were
derived in Section 3. The model equations and parameters
are summarized in Appendix A.3.

5.1.1. Numerical solutions

The numerical scheme is adapted from the method
used by Hillen et al. (2006). To summarize, we discretize
the diffusion and advection terms in conservative flux
form, employ a second order central differencing scheme
for the diffusion term and a high order upwinding
method with a flux limiting function for the advection
term. The non-local advection term requires calculation

of the integral over the circle of radius 1, centred on the
mid-point between adjacent mesh points. To do this we
first discretize the radial component to give concentric
circles of radius r, 0oro1. We then discretize each circular
surface into grid points and use linear interpolation from
the surrounding domain grid points to find the densities
at the surface. The time integration uses an explicit
trapezoidal scheme and we assume periodic boundary
conditions.
Numerical results for the simplified model are given in

Fig. 10 for a ¼ 1. Solutions evolve from an initially random
distribution and cluster together forming high density
aggregates, confirming the aggregative capability of the
model.

5.2. Two interacting populations

Having confirmed that aggregating behaviour is possible
in the two-dimensional model we extend the model (5.1) to
consider interacting populations. The two population
model is

ut ¼ r
2u� r � ðuKuðu; vÞÞ (5.3a)

and

vt ¼ r
2v� r � ðvKvðu; vÞÞ, (5.3b)
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Fig. 9. The results of numerical simulations in one dimension using adhesive strengths relating to the experiments by Steinberg (1962c). In each case the

model is solved on a domain of length 20, discretized into 200 mesh points. Initial conditions are shown along with the pattern formation seen at time steps

t ¼ 5, 10 and finally at t ¼ 500. Results (a)–(d) use the adhesion properties detailed in Fig. 7. (a) Mixing, Su ¼ 25, Sv ¼ 7:5 and C ¼ 22:5. (b) Engulfment,

Su ¼ 250, Sv ¼ 25 and C ¼ 50. (c) Partial engulfment, Su ¼ 25, Sv ¼ 25 and C ¼ 12:5. (d) Complete sorting, Su ¼ 25, Sv ¼ 7:5 and C ¼ 0:0.
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where

Kuðu; vÞ ¼

Z 1

0

Z 2p

0

r Z½Suguuðuðxþr ZÞ; vðxþr ZÞÞOuuðrÞ

þ Cguvðuðxþr ZÞ; vðxþr ZÞÞOuvðrÞ�dydr ð5:3cÞ

and

Kvðu; vÞ ¼

Z 1

0

Z 2p

0

r Z½Svgvvðuðxþr ZÞ; vðxþr ZÞÞOvvðrÞ

þ Cgvuðuðxþr ZÞ; vðxþr ZÞÞOuvðrÞ�dydr. ð5:3dÞ

Here uðx; tÞ; vðx; tÞ are the cell densities at position x and
time t; and Ku;v are the non-local adhesion terms. As before
the functions Ouu;vv;uv represent the dependence of the
strength of adhesive binding on the radial distance and Su,
Sv and C are the self-adhesive strength of population u,
the self-adhesive strength of population v and the
cross-adhesive strength between the populations, respec-
tively. For simplicity we shall assume Ouu;vv;uv ¼ 1. The
model equations and parameters are summarized in
Appendix A.4.

We omit the details of the stability analysis for brevity.
The methods used follow from those employed in the one-
dimensional investigation and result in a complicated
dispersion relation for the system. The important implica-
tion of the expression is that aggregations are possible in
this case and again this can be confirmed by numerical
means. For the adhesive strength functions, we use the
same nondimensional logistic equations as applied

previously:

guuðu; vÞ ¼ gvuðu; vÞ ¼
uð1� u� vÞ if uþ vo1;

0 otherwise;

(

gvvðu; vÞ ¼ guvðu; vÞ ¼
vð1� u� vÞ if uþ vo1;

0 otherwise:

�
Typical numerical solutions are shown in Fig. 11.

5.3. Two-dimensional numerical simulations of the Steinberg

experiments

The final test of our model is to determine whether we
can reproduce the different types of configurations from
Steinberg’s cell sorting experiments shown in Fig. 7 in the
two-dimensional model. To summarize, these experiments
show the following patterning types according to the
relationship between Sv; Su and C:

C4ðSu þ SvÞ=2 ) mixing, (5.4a)

SvoCoSu ) engulfment of population u

by population v, ð5:4bÞ

CoSu and CoSv ) partial engulfment of population

u by population v, ð5:4cÞ

C ¼ 0 ) complete sorting. (5.4d)
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Fig. 10. An illustration of the aggregating behaviour in the two-dimensional model for one cell population. The model is solved on a domain of size 5� 5

which is discretized into 50� 50 mesh points. The adhesion strength of the cells is assumed to be linear with respect to cell density, gðuÞ ¼ u, and constant

with respect to radial distance, OðrÞ ¼ 1:0. We choose the adhesion strength parameter to be a ¼ 1. In these panels cell density from 0 to 2 is shown on a

scale running from white to black. All densities greater than 2 are shown in black. We can see that with time the system evolves from an almost

homogeneous distribution to a pattern of aggregations.
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We simulate our model with values of Su, Sv, and C

corresponding to those in conditions (5.4). The results of
these numerical simulations can be seen in Fig. 12.
Clearly, we can demonstrate excellent agreement between

our model and the cell sorting experiments. We can
thus conclude that our model is able to successfully
capture this important characteristic of adhesive popula-
tions.
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Fig. 11. Confirmation that aggregating behaviour is possible in the model for two populations in two dimensions. The model is solved on a domain of size

10� 10, discretized into 50� 50 mesh points. Here u density is shown in blue, v density is shown in red and regions where both cell types are present are

green/yellow depending on the relative densities of u and v. At t ¼ 0 there is a mixture of cells across the domain. At t ¼ 3:75 some reorganization of cells

can be observed. At t ¼ 25 there is evidence of pattern formation and by t ¼ 125 the cells have sorted into two overlapping aggregations. The adhesion

strength parameters here are set at Su ¼ 10, Sv ¼ 10 and C ¼ 5, corresponding to scenario C in Fig. 7.

Fig. 12. The results of numerical simulations in two dimensions using adhesive strengths relating to the experiments by Steinberg (1962c). In each case the

model is solved on a domain of size 10� 10, discretized into 50� 50 mesh points. Results (a)–(d) use the adhesion properties detailed in Fig. 7. (a) Mixing,

Su ¼ 10, Sv ¼ 3 and C ¼ 9. (b) Engulfment, Su ¼ 100, Sv ¼ 10 and C ¼ 20. (c) Partial engulfment, Su ¼ 10, Sv ¼ 10 and C ¼ 5. (d) Complete sorting,

Su ¼ 10, Sv ¼ 3 and C ¼ 0.
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6. Discussion

In this paper we have presented a new continuum model
for cell–cell adhesion. We assume that adhesion creates an
active directed movement in response to the bonds formed
between nearby cells. Our derivation results in an integro-
PDE in which adhesion is modelled by a non-local term. We
employ both analytical and numerical methods to demon-
strate the ability of the model to replicate fundamental
behaviour associated with cell–cell adhesion in biology,
namely, the ability of disassociated cells to ‘‘aggregate’’ and
the active sorting process of two or more cell types from a
randomly distributed mixture. As far as we are aware, no
continuous model has previously captured this behaviour.

A number of discrete approaches have replicated the
sorting dynamics of adhesive cell populations (e.g. Palsson
and Othmer, 2000; Glazier, 1996; Glazier and Graner,
1993; Graner and Glazier, 1992; Mombach et al., 1995;
Stott et al., 1999; Sulsky, 1984). While these models have
proved an important tool for modelling, there are two main
reasons why a continuous approach is desirable. Firstly,
solving discrete models can be computationally prohibitive
for large cell numbers. Secondly, continuous models admit
a degree of analytical insight that is difficult, if not
impossible, to obtain from a discrete model. For example,
through application of standard stability techniques in this
paper, we have determined the dependence of aggregating
behaviour on different model parameters.

This model has been developed primarily in response to
the lack of a technique for including cell–cell adhesion in a
continuous model for interacting cell populations. As such,
the main thrust of the paper has been to elucidate the
modelling approach with a subsequent simplification of
many terms. We have chosen just two forms for the
dependence of the size of force on cell density. In the first
we assumed the adhesive force increases linearly with cell
density. While the resulting analysis and numerics clearly
demonstrated the ability to predict aggregations, the peaks
were extremely sharp and we were unable to resolve the
different types of sorting patterns observed experimentally.
To overcome this, we considered a logistic function in
which the force becomes repulsive above a critical density.
A natural interpretation for this would be adhesion
dominating at low densities while population pressure
dominates at high densities. In this case, the resulting
aggregations plateau at a maximum density. Importantly,
by solving the model numerically, we can reproduce
Steinberg’s cell sorting results with equivalent relations
between the relative strengths of self-population and cross-
population adhesion.

A second assumption was to consider very simple
functional forms for the adhesive force variation with
distance. Naturally, these functions may be considerably
more complicated, for example due to the reduced
likelihood of making contact with more distant cells.
Further, while we considered our different cell populations
to be of similar type, cells may show considerable physical

variation according to the range and type of cell processes
(e.g. lamellipodia, filopodia) they extend.
A natural extension on the modelling side would be to

include other cues affecting cell movement, for example
chemotactic and cell-matrix interactions. A non-local
model similar to the one studied here has previously been
developed to model chemotactic cell movement (Hillen
et al., 2006). Combining the different types of interactions
that influence cell movement may help us to analyse their
relative importance under different conditions and indicate
the circumstances under which terms can safely be
neglected. Further work may include the extension to
three dimension and the inclusion of cell kinetics.
Clearly, there is great scope for the application of the

methods developed here to specific biological applications.
Cell–cell adhesion is essential for both embryonic develop-
ment and subsequent tissue homeostasis. During embryonic
development, regulated control of the adhesive properties of
cells has been implicated in a variety of processes, including
gastrulation, neural crest migration and vasculogenesis
(Thiery, 2003). Furthermore it plays a key role in the
malignant progression of cancers. Numerous studies have
implicated altered cell–cell and cell–matrix adhesion proper-
ties with an increased ability to invade surrounding tissue (e.g.
Mareel and Leroy, 2003). Previous continuous mathematical
models have largely neglected the role of cell–cell adhesion in
areas such as cancer invasion, although a number of discrete
approaches have been employed (e.g. Anderson, 2005; Turner
and Sherratt, 2002; Drasdo and Hohme, 2005). Largely, the
omission is a result of the difficulties in modelling this type of
behaviour, rather than the assumption that cell–cell adhesion
is unimportant. The cell populations we have considered here
are generic and do not relate to a specific application. Clearly
for specific cell types alterations would be required to account
for other mechanisms involved in cell movement. Changes
may also be required in the assumptions underlying the
choice of force functions used here. We acknowledge that
there are adjustments to be made which will be dependent on
the application but we hope that this model may provide a
basis for introducing cell–cell adhesion into mathematical
models in these areas.
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Appendix A

Here we summarize each of the models discussed in this
paper along with parameters used in each case.

A.1. One population in one dimension

qu

qt
¼

q2u

qx2
�

q
qx
ðuKðuÞÞ, (A.1a)
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where

KðuÞ ¼ a
Z 1

�1

gðuðxþ x0ÞÞoðx0Þdx0. (A.1b)

See Table A1 for model parameters for one population
in one dimension.

A.2. Two populations in one dimension

ut ¼ uxx � ðuKuðu; vÞÞx, (A.2a)

vt ¼ vxx � ðvKvðu; vÞÞx, (A.2b)
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Table A1

Model parameters for one population in one dimension

Description

uðx; tÞ Density of population u at position x and time t

KðuÞ Non-local adhesion term

a Adhesion strength coefficient

� Taken to be a non-negative constant

gðuÞ This function defines the dependence of the adhesive force on cell density

� To represent an attractive force we require that gðuÞ is non-negative

� For simplicity we assume gðuÞ ¼ u

oðx0Þ This function defines the dependence of the adhesive forces on the position of the cells

� The direction of the force will depend on the relative positions of the cells

� To model an attractive force we require oðx0Þ is an odd function and oðx0ÞX0 for 0ox0o1

� It is reasonable that the magnitude of the force may also depend on the distance between cells but for simplicity we assume this is

not the case and take

oðx0Þ ¼
�1; �1ox0o0;

1; 0ox0o1

(

Table A2

Model parameters for two populations in one dimension

Description

uðx; tÞ, vðx; tÞ Population densities at position x and time t

Kuðu; vÞ,
Kvðu; vÞ

Non-local adhesion terms

Su, Sv, C Self-population adhesion strength coefficient of population u, self-population adhesion strength coefficient of population v and

cross-population adhesion strength coefficient, respectively

� Each taken to be a non-negative constant

guuðu; vÞ,
guvðu; vÞ,
gvvðu; vÞ,
gvuðu; vÞ

These functions define the dependence of the adhesive force on cell density

� To represent attractive forces we require that gðu; vÞ are non-negative

� We consider two simple forms,

ð1Þ guu ¼ gvu ¼ u; gvv ¼ guv ¼ v

ð2Þ guu ¼ gvu ¼
uð1� u� vÞ; 0oðuþ vÞp1;

0; ðuþ vÞ41;

(

gvv ¼ guv ¼
vð1� u� vÞ; 0oðuþ vÞp1;

0; ðuþ vÞ41

(

� We find that the linear form (1) permits aggregating behaviour but that the density limiting form (2) is required to show cell

sorting

ouuðx0Þ,

ouvðx0Þ, ovvðx0Þ

These functions define the dependence of the adhesive forces on the position of the cells

� The direction of the force will depend on the relative positions of the cells

� To model an attractive force we require oðx0Þ is an odd function and oðx0ÞX0 for 0ox0o1

� The magnitude of the force may depend on the distance between cells but for simplicity we assume this is not the case. We

assume that ouu;uv;vvðx0Þ all take the same form,

oðx0Þ ¼
�1; �1ox0o0;

1; 0ox0o1

(
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where

Kuðu; vÞ ¼ Su

Z 1

�1

guuðuðxþ x0Þ; vðxþ x0ÞÞouuðx0Þdx0

þ C

Z 1

�1

guvðuðxþ x0Þ; vðxþ x0ÞÞouvðx0Þdx0

ðA:2cÞ

and

Kvðu; vÞ ¼ Sv

Z 1

�1

gvvðuðxþ x0Þ; vðxþ x0ÞÞovvðx0Þdx0

þ C

Z 1

�1

gvuðuðxþ x0Þ; vðxþ x0ÞÞouvðx0Þdx0.

ðA:2dÞ

See Table A2 for model parameters for two populations
in one dimension.

A.3. One population in two dimensions

ut ¼ r
2u� r � ðuKðuÞÞ, (A.3a)

KðuÞ ¼ a
Z 1

0

Z 2p

0

gðuðxþr ZÞÞOðrÞ Z rdydr. (A.3b)

See Table A3 for model parameters for one population
in two dimensions.
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Table A3

Model parameters for one population in two dimensions

Description

uðx; tÞ Density of population u at position x and time t

KðuÞ Non-local adhesion term

a Adhesion strength coefficient

� Taken to be a non-negative constant

gðuÞ This function defines the dependence of the adhesive force on cell density

� To represent an attractive force we require that gðuÞ is non-negative

� For simplicity we assume gðuÞ ¼ u

OðrÞ This function defines the dependence of the adhesive strength on the position of the cells

� To model an attractive force we require OðrÞ is a positive function

� For simplicity we assume OðrÞ ¼ 1:0

Z The outer unit normal, Z ¼ ðcos y; sin yÞ
� Inclusion ensures force has direction

Table A4

Model parameters for two populations in two dimensions

Description

uðx; tÞ, vðx; tÞ Population densities at position x and time t

Kuðu; vÞ, Kvðu; vÞ Non-local adhesion terms

Su, Sv, C Self-population adhesion strength coefficient of population u, self-population adhesion strength coefficient of population v and

cross-population adhesion strength coefficient, respectively

� Each taken to be a non-negative constant

guuðu; vÞ, guvðu; vÞ,
gvvðu; vÞ, gvuðu; vÞ

These functions define the dependence of the adhesive force on cell density

� To represent an attractive force we require that gðu; vÞ are non-negative

� We consider the density limiting functions,

guu ¼ gvu ¼
uð1� u� vÞ; 0oðuþ vÞp1;

0; ðuþ vÞ41;

(

gvv ¼ guv ¼
vð1� u� vÞ; 0oðuþ vÞp1;

0; ðuþ vÞ41

(
OuuðrÞ, OuvðrÞ,

OvvðrÞ

These functions define the dependence of the strength of the adhesive forces on the position of the cells

� To model an attractive force we require that OðrÞ are positive functions

�For simplicity we assume that OuuðrÞ ¼ OuvðrÞ ¼ OvvðrÞ ¼ 1:0

Z The outer unit normal, Z ¼ ðcos y; sin yÞ
� Inclusion ensures force has direction
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A.4. Two populations in two dimensions

ut ¼ r
2u� r � ðuKuðu; vÞÞ (A.4a)

and

vt ¼ r
2v� r � ðvKvðu; vÞÞ, (A.4b)

where

Kuðu; vÞ ¼

Z 1

0

Z 2p

0

r Z ½Suguuðuðxþr ZÞ; vðxþr ZÞÞOuuðrÞ

þ Cguvðuðxþr ZÞ; vðxþr ZÞÞOuvðrÞ�dydr ðA:4cÞ

and

Kvðu; vÞ ¼

Z 1

0

Z 2p

0

r Z ½Svgvvðuðxþr ZÞ; vðxþr ZÞÞOvvðrÞ

þ Cgvuðuðxþr ZÞ; vðxþr ZÞÞOuvðrÞ�dydr. ðA:4dÞ

See Table A4 for model parameters for two populations
in two dimensions.
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