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Abstract. Tumours that grow locally, but do not invade the surrounding tissue are called
benign. Such benign tumours are characterized by the presence of a surrounding band of
connective tissue called a capsule. In some cases, the tumours are also broken into a number
of discrete nodules. In this paper the authors use a partial differential equation model to study
the interactions of a growing tumour with the surrounding tissue. They predict mechanisms for
both capsule formation and nodularity. The former has the mathematical form of bifurcation
from travelling waves to aggregating waves of connective tissue, resulting in the accretion of
connective tissue in a manner corresponding to capsule formation. The cause of multilobularity
in tumours is currently not known. Using their model, the authors are able to predict lobulation,
when tumour cell motility is retarded by aggregating connective tissue. In the final part of the
paper, the authors introduce an enlarged model, and use it to demonstrate both capsule formation
and the possible dissolution of the capsule following a mutation resulting in the production of
proteases by the cancer cells.

AMS classification scheme numbers: 92, 35

1. Introduction

The presence of a capsule around a tumour is the most significant gross morphological
feature determining the clinical outcome. Tumours that are encapsulated (that is, having a
dense band of surrounding connective tissue) have a favourable prognosis and only produce
symptoms related to pressure effects on surrounding tissue [3]. Such tumours are known as
benign. Malignant tumours, on the other hand, do not have a well circumscribed capsule;
the cancerous cells invade neighbouring tissue and are carried far from their primary site
by the metastatic cascade [2]. Malignant tumours are potentially lethal and may either arise
de novoor in existing benign tumours which may be encapsulated. In the latter case the
cancerous cells have to disrupt the capsular barrier before spreading further.

Any normal tissue in the body may be viewed simplistically as a collection of different
types of cells anchored into position by the presence of intervening extracellular matrix.
Among other elements, this extracellular matrix is composed of strands of connective tissue
fibres such as collagen, elastin, fibronectin, etc [25]. A tumour arises when one of the
cells (or sometimes a few) proliferates more rapidly than its neighbours. This aggressive
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Figure 1. Schematic representation of two morphological variants of benign tumours. (a) The
gross appearance of an encapsulated but non-lobulated tumour. Typical tumour capsules range
from 0.13 to 3.09 mm in cross section (mean± standard deviation = 0.87± 0.59 mm) [18]. (b)
A multilobulated tumour in which the different lobules are separated by intervening strands of
connective tissue. The cause of lobulation in tumours is not known; in section 5 we describe a
mechanism by which such lobulation can arise. A typical tumour capsule shows wide variability
in its thickness. In a clinico-pathologic study on patients with hepatocellular carcinomas, Ng
et al [18] reported that the tumour capsule ranged from 0.13 to 3.09 mm (mean± standard
deviation = 0.87± 0.59 mm).

proliferation may be the result of a mutation which encourages division, or one that makes
the cell deaf to the inhibitory growth signals from its neighbours [20]. In any case the
result is a group of cells proliferatively outpacing the neighbouring cells and producing a
localized growth—a benign tumour. The pathological hallmark of such a benign tumour is
the presence of a dense band of connective tissue around it—the capsule. The capsule
is composed chiefly of matrix fibres; we use the term ‘connective tissue’ throughout,
following convention. In this paper we begin by considering the mechanism of capsule
formation, using a mathematical formulation of existing ideas on encapsulation. We will
use a combination of analytical and numerical techniques to describe the mathematical
analogue of encapsulation as a bifurcation from a constant shape wave to an aggregating
wave of connective tissue.

An unsolved problem in tumour biology is the cause of multinodularity in some benign
tumours. Benign tumours may either be a single mass with a surrounding capsule (non-
lobulated), or may be broken into nodules of varying size with additional intervening strands
of connective tissue (multilobulated); this is schematically shown in figure 1. In the second
part of the paper, we use the model to study the effect of a progressively thickening capsule
retarding the movement of the tumour cells and show that this provides a simple explanation
for the transformation of a simple non-lobulated tumour into a multilobulated form. We
also suggest an experimental approach to testing our explanation.

Many tumour cells secrete enzymes that degrade components of extracellular matrix. For
example, squamous cell carcinomas, particularly from the cervical lymph nodes, can digest
the capsular collagen through proteases synthesized by the tumour and tumour-associated
stroma [8]. In the final part of the paper, we use an enlarged model to demonstrate the
transcapsular spread of cancer cells caused by a mutation resulting in the production of
a protease in the cells of a pre-existing benign tumour. The clinical implications of such
a transcapsular spread have long been recognized and it is now regarded as an important
prognostic factor, in particular for local recurrence of tumours in the neck [28].
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2. Theories of capsule formation

Traditionally, there have been two schools of thought about the formation of a tumour
capsule. According to theexpansive growth hypothesis, a benign tumour becomes
surrounded by a capsule when the adjoining connective tissue is passively convected by
the expanding tumour and the cellular elements undergo pressure atrophy; the extracellular
collagenous matrix becomes condensed into a circumferential capsule. Berenblum [6]
observed that tumours growing within the lumen of a hollow organ, or on the surface
of the body, do not become encapsulated, a finding that Berenblum suggests confirms the
hypothesis that capsules can only be formed in situations where a tumour can exert pressure
on surrounding tissue. According to the expansive growth hypothesis, the appearance of a
fibrous capsule is essentially a passive phenomenon, and the capsular collagen is derived
from mature pre-existing collagen rather than being newly deposited. The aggregation of
connective tissue represents the cumulative effect of a series of lower level interactions at
the interface of the expanding tumour and the convected connective tissue.

Another school of thought about the mechanism of capsule formation is theforeign-body
hypothesis. This view is essentially of an active process where the body mounts a response
akin to inflammation to create a fibrous barrier. Ewing [10] wrote of the ‘controlling
influence of encapsulation’, suggesting that the encapsulated tumours may ‘thus be shielded
from cellular attack’. Similarly, Enneking [9] wrote of the hosts attempt to ‘encapsulate and
contain tumours’. However, evidence from various sources suggests that the foreign-body
hypothesis is unlikely. For instance, none of the human tumours in which tumour-specific or
tumour-associated antigens have been identified are associated with an encapsulated growth
edge [4]. Hence, at best the foreign-body hypothesis has limited application. Barret al [5]
gave a detailed review of the mechanisms of encapsulation and also suggested a compromise
hypothesis embodying both of the above mechanisms.

3. Formulation of the model

We derive a model for the growth of a benign tumour based on a continuum approach, in
which m(x, t) and c(x, t) represent the concentrations of the tumour cells and connective
tissue respectively. Herex and t are the space and time coordinates. The model studies
the averaged behaviour of the tumour cells in the direction of expansion only, and ignores
variations in the plane perpendicular to the direction of growth.

In the absence of any surrounding connective tissue we describe the local proliferation
of the benign tumour cells byf (m) and the flux of the cells byJm, say. However, the
presence of connective tissue will influence the movement of the benign tumour cells. We
describe the effects of connective tissue on the motility of tumour cells byθ(c), and model
the overall flux of the tumour cells by the productθ(c)Jm. Based on the expansive growth
hypothesis stated earlier, we model the connective tissue flux as being proportional to the
flux of the cells, that is,θ(c)Jm. This is the appropriate flux term since the density of
connective tissuec is measured per unit volume rather than per cell. In practice, there
should be a separate saturation term, in addition toθ(c), representing the limitation on
matrix reorganization potential per cell. However, since we already have a saturation effect
via θ(c), we omit this term for simplicity. Under these assumptions we write the model for
benign tumour growth as

∂m

∂t
= f (m)+ ∂

∂x
[θ(c)Jm] (1a)
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∂c

∂t
= k ∂

∂x
[cθ(c)Jm]. (1b)

Our approach is based on the prediction of Sherratt and Nowak [21] that the early
growth of a tumour has the form of a travelling wave moving outwards from an initial
site of disease into the surrounding normal tissue. The increase in tumour size is primarily
driven by cell division; cell movement is just local random motion at the tumour edge. We
use simple functional forms off andJm which give travelling wave solutions reminiscent
of those demonstrated by Sherratt and Nowak [21]. The advantage of such a generic model
approach is that the ensuing simplicity allows an analytical appraisal of the equations while
retaining the necessary qualitative features. Throughout, we describe the proliferation of
tumour cells using the logistic growth model which Vaidya and Alexandro [24] established
as an appropriate model for tumour cell growth. Under an appropriate rescaling of tumour
cell densitym and timet , this givesf (m) = m(1−m).

We assume that the boundary does not have any significant bearing on the evolution
of the tumour and hence study the case of an infinite domain, which in our numerical
simulations is represented by a large finite domain with zero derivative conditions on the
boundary. We assume that at timet = 0, the tumour cell population is zero except in a small
region centred atx = 0. We take the initial connective tissue densityc(x, 0) to be zero
near this region, and a non-zero constant (set arbitrarily to 0.2) away from it. The results
of the simulations are not sensitive to the details of these initial conditions. To reduce the
simulation time, we solve only on the regionx > 0, using a symmetry boundary condition
at x = 0.

4. Connective tissue waves and capsule formation

We begin by considering model (1) in the simple case ofθ(c) ≡ 1, that is, changes in
connective tissue density have no effect on cell motility. This case will be relevant during
the early stages of tumour growth, in which connective tissue accretion on the surface of
the tumour is too low to significantly restrain its expansion. Moreover, study of this simple
case gives important mathematical insights into the behaviour of more general forms of
θ(c).

We have solved equations (1) numerically withθ(c) ≡ 1 for two different forms for the
cell flux. The first case isJm = ∂m/∂x, in which case (1a) becomes the very well studied
Fisher equation [17]. Standard theory [14] shows that for this equation, initial conditions of
the form we are using form evolve to a travelling wave, moving with constant shape and
with speed 2. Secondly, we have consideredJm = m∂m/∂x, giving the nonlinear Fisher
equation, for which our initial conditions evolve to a sharp-front travelling wave, moving
with speed 1/

√
2 [16, 22]. Our interest is in the way in which connective tissue is convected

by these waves of cell density.
Numerical simulations show that for both flux terms, the solution forc depends critically

on the parameterk, which reflects the strength of connective tissue convection. Whenk is
small, a wave of connective tissue moves in parallel with the wave of tumour cells, with
the effect that a constant band of connective tissue is pushed ahead by the growing tumour
(figure 2). However, whenk increases above a critical value, the form of the solution alters
significantly, and the peak in thec-wave increases with time, corresponding to a gradually
increasing intensity of the predicted capsule (figure 3).

Before launching into a detailed mathematical analysis of these results, we present a
simple intuitive explanation for the change in behaviour. In equation (1b) with θ(c) ≡ 1,
kJm is the velocity at which connective tissue is being convected, whilea is the speed of the
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Figure 2. Numerical solutions of equations (1) withk = 3.8, θ(c) ≡ 1, andJm = m∂m/∂x. In
this case the bifurcation value ofk is 4. We plotm andc as functions of space at equal intervals
of time. Both them andc waves eventually evolve into constant shape travelling waves.

tumour cell wave. When the velocity of the connective tissue wave is slower than that of the
cell wave, we expect only a fleeting ripple to be produced in the solution forc. However,
whenkJm > a at some points, the ECM at these points is actually convected faster than the
speed at which the cell wave moves, causing a build up of connective tissue. An analogous
physical situation is the difference between the rippling of the surface of a cornfield by
wind (small k) and a gust of wind blowing loose strands of hay into a pile (largek). In
the following analysis, we will show that the bifurcation value ofk, at which thec-wave
changes from a constant shape wave to an aggregating wave, is indeedk = a/max{Jm}.

We will study this case ofθ(c) ≡ 1 analytically, with two key objectives: to determine
the value ofk at which thec-wave changes form, and the rate at which the peak ofc

increases whenk is above this value. We denote byM(z) the sharp front travelling wave
solution of (1a) that evolves from our initial conditions; herez = x−at wherea is the speed
of this cell wave. In the case of the nonlinear Fisher equation, a closed form expression for
M(z) exists, but not for the Fisher equation. In either case,Jm depends only onM and its
derivatives, and can thus be written as a function ofz, sayJ (z).

Rewriting (1b) in terms of coordinatesτ = t andz = x − at gives

∂c

∂τ
+ [kJ (z)− a]

∂c

∂z
= −kJ ′(z)c. (2)
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Figure 3. Numerical solutions of equations (1) withk = 4.05, θ(c) ≡ 1, andJm = m∂m/∂x.
In this case the bifurcation value ofk is 4. We plotm and c as functions of space at equal
intervals of time measuring 1.9. The solution has the form of a constant shape travelling wave
for m and an aggregating wave forc. We usedc(0) ≡ 0.2 as the initial condition forc to best
illustrate the mathematical properties of the solution, as described in the main text. In the case
of a step function form ofc0(.), which is the initial condition used in figure 2, this multiplication
by c0(θ) would have the effect of removing the trough in the solution forc(z, τ ), although the
growing peak remains.

This first-order partial differential equation can be solved exactly using the method of
characteristics, and we will use this method to determine the qualitative form of the solution
for c(z, τ ) for generalJ (·). Of course, in practice the solution form(x, t) only approaches
M(z) asymptotically ast →∞, and thus our solution forc will also only be exact in this
limit.

The qualitative form ofJ (z) is illustrated in figure 4, and is the same for any realistic
flux expression. Crucially, we will assume thatJ (z) > 0 for all z, with J (z) → 0 as
z→±∞, andJ ′(z) non-zero except at the unique local maximum, at whichJ (z) = Jmax,
say. In the case of nonlinear cellular diffusion,J (z) is identically zero for sufficiently large
z, since them-wave is of sharp-front type, but this will not be significant in our calculations.
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Figure 4. The qualitative form of the cell fluxJm = J (z) when cell movement is not hindered
by extracellular matrix levels.

The characteristics of (2) are given by solving

dτ = dz

kJ (z)− a =
−dc

kJ ′(z)c
which gives the two characteristic functions

C1(c, z) = c/ctw(z) and C2(τ, z) = τ −G(z)
where

ctw(z) = 1/[a − kJ (z)] and G(z) = −
∫
ctw(z) dz.

Thus, the solution forc is given by eliminating the parameterθ , say, from

c

ctw(z)
= c0(θ)

ctw(θ)
and G(z)− τ = G(θ). (3)

Here c0(x) ≡ c(x, t = 0). The key determinant of the form of this solution is the sign of
kJmax− a. If this expression is negative, thenC1(c, z) is finite for all z, so that a possible
solution isc(z, τ ) = ctw(z), independent ofτ . This is a travelling wave solution forc, and
it is straightforward to show, using the method of characteristics, that all bounded initial
conditions evolve to this solution, multiplied byc0(θ), asτ →∞.

The casekJmax > a is more complicated, however (figure 5). Thenctw(z) has the
qualitative form illustrated in figure 5(b), with infinities at the points,z1 andz2 say (z1 < z2),
at whichkJ (z) = a. Thus, the solution forc cannot be of travelling wave form, and must
be determined from (3). Integratingctw shows thatG(z) has the qualitative form illustrated
in figure 5(c), also with infinities atz1 and z2. In order to use solution (3), we require
the parameterθ , which is given byθ(z, τ ) = G−1 [G(z)− τ ]; hereG−1 denotes the local
inverse. The qualitative form ofθ as a function ofz at successively increasingτ is illustrated
in figure 5(d). Crucially θ(z1, τ ) ≡ z1 andθ(z2, τ ) ≡ z2.

For simplicity, we begin by considering the casec0(x) ≡ 1, so that (3) implies
c(z, τ ) = ctw(z)/ctw(θ(z, τ )). The qualitative form ofctw(θ) as a function ofz at increasing
τ is illustrated in figure 4(e), and compared withctw(z). However, from these sketches alone
it is not possible to determine the form of the ratioctw(z)/ctw(θ), since the behaviour near
z = z1 andz = z2 is not clear, and requires detailed analysis.

For z close toz1, kJ (z) − a ≈ λ(z − z1), whereλ = kJ ′(z1); our assumption that
J ′(z) 6= 0, except at the unique maximum, implies thatλ > 0. Thus, to leading order near
z = z1,

G(z) = λ−1 log |z− z1|
⇒ G−1(ξ) = z1+ exp(λξ)sign(z− z1)

⇒ θ ≡ G−1[G(z)− τ ] = z1+ exp{λ[λ−1 log |z− z1| − τ ]}sign(z− z1)
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Figure 5. The qualitative form of the various functions involved in the solution of (2) using
the method of characteristics. The explanation for these forms is given in the main text. (a)
illustrates the form ofkJ (z) − a. We are considering the casekJmax > a, in which case this
function has two isolated zeros, atz1 andz2, say. (b) shows 1/[kJ (z)− a], and (c) shows its
integral,G(z). (d) illustrates the form ofθ(z, τ ) as a function ofz as τ increases; the broken
sloping line isθ = z, which applies whenτ = 0. (e) showsctw(θ) (full curve) compared with
ctw(z) (dashed curve); the difference between these curves increases withτ . Finally, (f ) shows
the ratioctw(z)/ctw(θ) at one value ofτ ; this is the solutionc(z, τ ) in the casec0(x) ≡ 1.
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= z1+ (z− z1)e
−λτ

⇒ c(z, τ ) ≡ ctw(z)/ctw(θ) =
[

1

−λ(z− z1)

] [
1

−λ(θ − z1)

]−1

= e−λτ .

Thus the solution forc nearz = z1 decreases to zero exponentially in time. Moreover, this
calculation is valid whenever bothθ andz are close toz1, so that the region in whichc is
close to zero remains finite asτ increases.

A similar calculation shows thatc(z2, τ ) = e+µτ , whereµ = −kJ ′(z2) > 0, so thatc
has a maximum atz = z2, whose height increases exponentially with time. However, the
width of the peak decreases at a corresponding exponential rate, so that the net amount of
connective tissue within this peak (∝ is its area) is roughly constant. This is because the
calculation of the solution form nearz = z2 is only valid provided 1� |θ−z2| = |z−z2|eµτ ,
that is, provided|z− z2| � e−µτ .

Putting these various calculations together implies that the qualitative form ofc(z, τ )

when kJmax > a and c0(x) ≡ 1 is as illustrated in figure 5(e). There is a peak inc at
z = z1, whose height and width increase and decrease exponentially in time, respectively,
and a trough inc centred atz = z1, whose width increases with time.

For the purposes of illustration, we consider the particular case of nonlinear cellular
diffusion, Jm = m∂m/∂x. In this case, standard analysis [16] shows that the travelling
wave solution for cell density that evolves from our initial conditions has the form

M(z) =

 1− exp

[
z− zc√

2

]
z < zc

0 z > zc

⇒ J (z) =


1√
2

(
exp

[
z− zc√

2

]
− exp[(z− zc)

√
2]

)
z < zc

0 z > zc.

Solving the equationkJ (z) = 1/
√

2 shows that

z1, z2 =
√

2 log

(
1±√1− 4/k

2

)
.

Whenk < 4, these roots are complex, and the travelling wave solution forc exists and is
the long-term solution: this solution is

c(z) =


√

2
√

2− k√2 exp
(
z−zc√

2

)
+ k√2 exp(

√
2(z− zc))

z < zc

1 z > zc

for c0(x) ≡ 1. Whenk > 4, however, the solution forc has the aggregating wave form
described above; straightforward calculation shows that

λ = (k/4)
√

1− 4/k
[
1−

√
1− 4/k

]
µ = (k/4)

√
1− 4/k

[
1+

√
1− 4/k

]
.

These results are confirmed by numerical simulations of (1); the example ofk = 4.05 is
illustrated in figure 3.

When c0(x) is not constant, the solution forc is given by multiplyingctw(z)/ctw(θ)
by c0(θ). Moreover, this solution is then only exactly valid whenm(x, 0) is exactly in
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travelling wave shape, although sincem evolves to the travelling wave shape quite quickly
(figures 2(a) and 3(a)), we expect the analysis to determine the key qualitative features of
the solution forc. In the case of the step function form ofc0(.), this multiplication byc0(θ)

has the effect of removing the trough in the solution forc(z, τ ), although the growing peak
remains.

5. Predicting lobulation: the caseθ(c) 6= 1

In order to study the effects that the accumulation of connective tissue produces on the
movement of cells, we choose a suitable functionθ(c) which describes the changes in
tumour cell flux owing to the aggregating connective tissue. At low levels, connective
tissue does not produce any appreciable effect on the motility of the cells. However, when
there is a large amount of accumulated connective tissue this will restrain cell movement.
We represent this feature in the form of a decreasing linear ramp function forθ(c):

θ(c) =


1 0< c < c1

c2− c
c2− c1

c1 < c < c2

0 c2 < c.

(4)

This piecewise-linear form means that for concentrations above the threshold levelc2,
cell movement is not possible, while for concentrations below the thresholdc1, there is
no impediment to movement arising from connective tissue; this form has no particular
mathematical significance other than its simplicity.

When k is sufficiently small, the equations withθ(c) non-constant have a simple
travelling wave solution. This is entirely expected, since ifc remains belowc1, there
is no inhibition of cell movement. However, ask becomes larger, the solution alters to a
new and rather remarkable form, as illustrated in figure 6. The advancing wave of tumour
cells is rapidly retarded by the aggregating connective tissue. This aggregating connective
tissue wave consequently slows down in parallel, leading to further aggregation, until in the
end the waves come to a complete stop. Of course, once the connective tissue concentration
has reached the critical valuec2 the area behind this does not show any further change,
except due to cell division. However, there is a small residual number of tumour cells
ahead of the connective tissue peak at which the waves stop, even though the cell wave
is of sharp-front type, and that then restarts the whole process again. This continues until
connective tissue once again builds up, and the process is indefinitely repeated, leading to a
periodic pattern of tissue. This is analogous to a tumour from which nodules successively
bud.

Appealing to the analysis in the previous section, it is easy to see why the tumour
cell wave restarts in the form of a nodule. In the solution of (1) withθ(c) constant, the
leading edge of them wave is atz = zc, while the peak inc occurs atz = z2 < zc.
Thus, there is always a small number of tumour cells ahead of the peak concentration of
connective tissue, and we expect this to also be the case for non-constantθ(c). It is these
cells that are responsible for the restarting of the tumour cell wave. However, by comparing
the simulation in figure 6 with the caseθ(c) = 1, we observe that the progression of the
lobulating wave is slower than when unimpeded by connective tissue. This implies that
encapsulated tumours grow more slowly as compared with unencapsulated tumours, an
observation that agrees well with the biology of tumours [15].

In figure 7 we show the long-term behaviour of the solution. The continued presence
of the proliferative ability in the tumour cells, via the source termf (m), causes the cell
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Figure 6. Numerical solutions for (1) withθ(c) from (4) andJm = m∂m/∂x. Initially the wave
behaves as in figure 3. However, when the concentration ofc crosses the valuec1 the wave
slows down as shown by the immediately succeeding plots which are at equal intervals of time
measuring 1.2. However, the process starts again. The various curves in the first plot show the
contours of differentm values. The parameter values used in this simulation arek = 5, c1 = 3
andc2 = 5.

density to increase so that adjacent nodules eventually coalesce to form larger ones. Small
amounts of connective tissue persist within these nodules. This agrees well with the known
morphology of multilobular tumours, as schematically illustrated in figure 1.

A central feature of the solution illustrated in figure 7, and of all solutions of our model,
is that the simulated tumour actually continues to grow forever. In practice, of course,
tumour growth ceases at a finite tumour size. This cessation of growth has in fact been very
well studied and is primarily due to the limited rate at which nutrients can diffuse into a
solid tumour [13]. Following this initial diffusion-limited phase of growth, tumours become
quiescent until the onset of angiogenesis [11], leading to vascularized (and potentially lethal)
growth. The diffusion-limited cessation of avascular tumour growth has been modelled by
a number of previous authors over many years [12, 1, 7, 26]. Our philosophy is to exclude
this factor, since it is already understood and effectively modelled: consequently our model
does not contain a nutrient variable. The resulting simple model has the major advantage
of facilitating mathematical analysis.

6. Discussion

The modelling in this paper has demonstrated a novel bifurcation of a travelling wave into
a more general wave form, not of constant shape. It also presents a succinct model for the
accretion of connective tissue on the surface of a growing tumour.

A new biological mechanism brought to light through this modelling pertains to the
formation of tumour nodules. There is currently no satisfactory understanding of why
some tumours are multinodular while others are not. The results of this modelling
suggest that when the growth of a tumour is unimpeded by any restraining force, it grows
without nodularity. However, when accumulating connective tissue significantly inhibits
cell motility, the tumour breaks up into nodules. This novel mechanism could be tested
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Figure 7. Long-term behaviour of the solutions shown in figure 6 which shows the adjacent
nodules growing and coalescing. The various curves in the first plot show the contours of
differentm values. Since the equation form(x, t) has a source termm(1− m), representing
cell division, the concentration tends to a value 1. The three frames show the solutions for the
tumour cell wave starting fromt = 0 to t = 80, 150 and 250 respectively with each curve
plotted at equal intervals measuring 13.9.

in the laboratory by growing tumour nodules in different concentrations of matrix proteins,
which are commercially available as matrigel. Thus, the work described in this paper thus
provides an example of a potentially testable biological hypothesis arising from theoretical
modelling.

The model equations (1) are of course extremely simplistic and neglect a great many
features of real tumour growth. A tumour cell interacts with the connective tissue in several
ways, depending on the range of mutations it has undergone [2]. Benign tumour cells
merely advect and compress surrounding connective tissue, thereby causing encapsulation
[8]. Further mutations can make the cells invasive. These mutations can cause the cells
to produce large amounts of proteases leading to the digestion of the connective tissue,
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or can make the cells sensitive to connective tissue gradients (chemotaxis and haptotaxis)
[2] or alter their adhesiveness [19]. These phenotypic changes in a cell allow it to invade
neighbouring tissue and to be carried away far from its primary site [23].

When malignant transformation occurs in an encapsulated benign tumour, the capsule is
at first disrupted by the action of proteases and the cells can then escape into the surrounding
tissue [8]. Clinically, this transcapsular spread represents a crucially important point in the
evolution of the tumour. Before transcapsular spread the prognosis for a malignant tumour
is favourable, since the tumour can be completely removed by surgery. However, once the
capsule has been disrupted, more aggressive forms of surgery (for example, wide dissection)
will be required, often in combination with other forms of treatment such as chemotherapy or
radiotherapy. More importantly, the final outcome of treatment in patients with transcapsular
spread compares poorly with tumours that are confined by the capsule [3].

We conclude this paper by describing the results of simulations of an improved version
of the model (1), which incorporates some of the features discussed above. The model
includes a study of the behaviour of normal cells which sets the background within which
the tumour cells invade. Tumour cells differ from normal cells both in their local behaviour
(for example, the loss of contact inhibition and the ability to produce proteases) and in their
spatial behaviour (for example, enhanced chemokinesis, chemotaxis and haptotaxis). Here
we describe the consequence of a mutation resulting in the loss of contact inhibition and
another resulting in the production of a protease by the cancer cells.

When a malignant tumour produces proteases (for example matrix metalloproteases), this
typically occurs at the growing edge of the tumour which is in contact with the surrounding
connective tissue [27]. The body produces other proteins called antiproteases that have the
ability to neutralize the effects of the proteases. Also, as proteases are small biochemicals
they can diffuse into the surrounding tissue. This results in the digestion of surrounding
connective tissue, providing a mechanism for the possible disruption of the capsule. To
study the occurrence of such capsular disruption we expand the model in (1) to incorporate
the dynamics of the proteases. The new model has the form

∂n

∂t
= k1n(k2− n−m)+ k3

∂

∂x

[
n
∂n

∂x

]
(5a)

∂m

∂t
= k4m(k5− n−m)+ k6

∂

∂x

[
m
∂m

∂x

]
(5b)

∂c

∂t
= −k7pc + k ∂

∂x

[
cm
∂m

∂x

]
(5c)

∂p

∂t
= k8uc − k9p − k10up − k11pc + k12

∂2p

∂x2
(5d)

wheren(x, t) is the concentration of the normal cells andp(x, t) is the concentration of the
protease. Here theki ’s are all positive constants.k1 andk4 represent the linear growth rates
of the normal cells and the tumour cells andk2 and k5 represent their maximum carrying
capacities. Thus, the differencek5 − k2 is a measure of the loss of contact inhibition.k3

and k6 represent the effective diffusion coefficients of the normal and tumour cells. The
interpretation of the various terms in equations (5c) and (5d) are as follows.
−k7pc represents the degradation of connective tissue by the protease
k8uc represents the production of the protease at the interface of the tumour and the

surrounding tissue
−k9p models the natural degradation of the protease
−k10up and −k11pc represent the neutralization of the protease by the action of
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Figure 8. Numerical solution of equation (5) showing the replacement of normal tissue by
tumour cells and an incipient capsule being degraded by the action of a protease produced by a
mutation in the tumour cell. The occurrence of this mutation is shown in the box below. (a)
The spatial distribution of the tumour cells with a wave of cells moving to the right. (b) The
normal cells in a receding wave that is being replaced by the tumour cells. (c) The formation
of a capsule initially, which is eventually degraded once the mutation has occurred. (d) The
spatial distribution of the protease. The parameter values used in this simulation arek1 = 5,
k2 = 1, k3 = 1, k = 5, k4 = 1, k5 = 1.5, k6 = 1, k7 = 5, k = 5, k9 = 3.1, k10 = 0.1, k11 = 0.1,
k12 = 0.1. The arrows show the direction of increasing time.

antiproteases. The constantk12 is the diffusion coefficient of the protease.
In figure 8 we illustrate a typical numerical solution of the improved model (5). In this

simulation, we begin solution withk8 = 0, that is, no protease is produced. This results
in the formation of a capsule in a manner very reminiscent of the solutions discussed in
section 4. Note, however, that in this case there are also the dynamics of the normal cell
population to consider; the receding wave of these cells corresponds to their out-competition
by the tumour cells. Part-way through the simulation, we alterk8 to have a positive value,
which crudely simulates the occurrence of a mutation resulting in the production of protease
by the tumour cells. Once this mutation has occurred and protease production starts, the
capsule is disrupted, as shown by the absence of increasing waves ofc. In this second part
of the solution, the cancer cells can spread unhindered by the capsule.

The simulation illustrated in figure 8 has two key implications. First, it demonstrates
capsule formation via the mechanism described earlier in the paper, but in an enlarged and
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somewhat more realistic model, adding to the credibility of this mechanism. Secondly,
it shows that the mechanism is consistent with postulated methods of capsule disruption.
However, it must be stressed that for cancer cells to spread aggressively they need additional
mechanisms of motility such as chemotaxis and haptotaxis, and alterations in adhesivity.
Work is currently in progress in our group to understand the contribution of these various
interactions to cancer invasion.

Appendix: numerical methods

We solved (1) with the functional forms in the three cases using an explicit finite
difference scheme. Equations (1) are a mixed hyperbolic-parabolic system of PDEs and
appropriate attention must be paid to the differing stability criteria in the two equations.
The discretization for (1a) must satisfy the condition1tm 6 0.5(1x)2, where1tm is the
parabolic time step and1x is the spatial step size. The discretization of (1b) must satisfy
the CFL condition, that is,1tc 6 1x/b whereb = θccJ + θJ , and1tc is the hyperbolic
time step. We solved the two equations simultaneously using the same step size for the
whole system as1t = min(1tm,1tc).

Appropriate upwinding is crucial for the solution of (1b). In solving the caseθ(c) 6= 1,
note must be taken that appropriate upwinding requires consideration of the sign of
(θccJ + θJ ), and not just the coefficient ofcx in (1b).
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