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Abstract

Reaction—diffusion equations whose kinetics contain a stable limit cycle are an established class of models for a range of
biological and chemical systems. In this paper I construct a family of deterministic cellular automata, with nine states, which
are qualitatively similar to oscillatory reaction—diffusion equations, in that their rules reflect both local oscillations and spatial
diffusion. The automata can be crudely interpreted as models of predator—prey interactions, and I show that the behaviour
following local perturbation of the prey-only state in one space dimension is very similar in the automata and in standard
reaction—diffusion models for predator-prey systems. In particular, in many cases, invasion of prey by predators leaves behind
periodic travelling waves in the wake of invasion. I study in detail these periodic plane waves in the automaton, by explicitly
investigating periodic solutions of the difference equation governing travelling waves. I show that the automaton has many
different periodic wave solutions, and I compare their properties with those of periodic wave solutions of reaction—diffusion
systems. The basic conclusion is that included amongst the periodic waves in the automaton are a family of solutions which

mimic quite closely the properties of reaction—diffusion periodic waves.
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1. Introduction

Cellular automata are now an established class of
mathematical models for a wide range of biological,
chemical and physical systems. However, the rela-
tionship between cellular automata and differential
equation models of related phenomena remains un-
clear. There are two basic approaches to this problem:
firstly the development of formal links between par-
ticular automata and particular differential equations,
and secondly the study of corresponding phenomena
in automata and differential equations with qualita-
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tive similarities, but without any formal relationship.
A number of authors have pursued the first approach
by deriving ordinary differential equations for the
temporal behaviour of the spatially averaged state
of an automaton [1-3]. This has led to important
progress on issues such as the route to chaos in cel-
lular automata; however, it of course gives no insight
into spatial structure. A slight extension which gives
a limited degree of spatial information is the “pair
approximation method”, in which one follows the
temporal evolution of nearest neighbour pairs, again
spatially averaged [4,5].

In this paper, I take the second approach, and con-
sider similarities and differences between oscillatory
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reaction—diffusion equations and a family of cellu-
lar automata, whose rules reflect oscillatory local
dynamics and spatial diffusion. Such models are rel-
evant to a range of applications including oscillatory
chemical reactions [6,7], intracellular calcium waves
[8,9], predator—prey interactions [10,11], and forest
regeneration [12,13]. To be specific, I will phrase
the discussion in terms of predator—prey dynamics,
although the automata I consider deliberately have a
very basic form, which could be interpreted in rela-
tion to any of the other applications. I will focus in
particular on periodic waves in one spatial dimension,
which are the fundamental class of solutions for os-
cillatory reaction—diffusion equations [14,15]. T will
show that the céllular automata I consider also have
a wide range of periodic travelling wave solutions,
and I will compare these with the periodic waves in
reaction—diffusion systems.

Previous work comparing solutions in cellular au-
tomata and reaction—diffusion equations has focused
on planar wavefronts, Turing patterns and waves in
excitable media. Propagation of wavefronts has been
considered in detail in a recent paper by Schonfisch
[16], including an exact derivation of front shape and
speed in a deterministic cellular automaton. Wave-
fronts in automata are dependent on the shape of the
spatial grid, and this has been addressed by Markus
[17] who has used randomly distributed grid points to
eliminate this dependence. Cellular automata refiect-
ing the phenomena of short-range activation and long-
range inhibition have been used to simulate spatial
patterns [18,19] similar to those resulting from a Tur-
ing bifurcation in reaction—diffusion systems [20,21].
Waves in excitable media have been considered in
a series of papers by Tyson and colleagues [22-24].
They have developed a cellular automata model for
excitable media, whose behaviour is strongly similar
to that of reaction—diffusion models. In {24}, they dis-~
cuss periodic plane waves in the automaton, including
numerical calculation of dispersion relations; however
this is quite different from the work in the present
study because excitable and oscillatory systems have
fundamentally different characters.

In Section 2 of the paper, I review previous work
on oscillatory reaction—diffusion equations, in partic-

ular periodic plane wave solutions. In Section 3, I de-
scribe the family of automata that I have studied, and
discuss numerical simulations of invasion processes
which naturally generate periodic waves, in a man-
ner analogous to that in reaction—diffusion systems. In
Section 4, I go on to study these periodic wave so-
lutions of the cellular automata, and in Section S, 1
comment briefly on the stability of periodic waves in
the automata.

2. Periodic waves in reaction-diffusion systems

I use the term “oscillatory” to denote a reaction—
diffusion system whose kinetics have a stable limit
cycle. Such systems have been studied in great detail,
and have a wide range of solution types, including
spiral and scroll waves [25,26], spatiotemporal chaos
[27-29] and periodic plane waves [14,30]. This pa-
per is concerned with periodic plane waves, which are
solutions that move with constant shape and speed,
oscillating periodically in space and time. Kopell and
Howard [14] showed that such solutions exist for wave
speeds greater than a critical value in all oscillatory
reaction—diffusion systems, arising via a Hopf bifurca-
tion in the travelling wave ordinary differential equa-
tions. For speeds close to the critical, minimum speed,
the periodic waves are small amplitude, approximately
sinusoidal functions of ¢ + x/c, where c is the wave
speed, so that both spatial and temporal periods are
O(Q) as c approaches its critical value. In contrast, as
¢ — oo, the waves tend towards the limit cycle of
the kinetics, as a function of ¢ 4 x/¢; thus the tempo-
ral period remains finite, while the spatial period —
0o. It is important to stress that not all of these peri-
odic waves are stable as reaction—diffusion solutions.
In particular, waves with speeds sufficiently close to
the critical, minimum value are unstable, while waves
with sufficiently large speeds are stable; however, a
general stability criterion has not been derived, despite
considerable effort [31-34].

For the benefit of readers unfamiliar with periodic
plane waves, I will illustrate these points by briefly
summarising standard results on periodic waves in A—
o reaction—diffusion systems. This class of equations
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has a simple form, enabling periodic wave solutions to
be calculated explicitly; as such, they have been used
by many authors as a prototype oscillatory reaction—
diffusion system [35-37]. Specifically, the equations
have the form

du/ot = 82u/8x2 + A(ru — w(r)v, (la)
dv/dt = 8%v/3x* + w(r)u + A(r)v, (1b)

where r = (2 + 032, and A(") is a decreasing func-
tion with a simple zero at rg. This system has a one-
parameter family of periodic plane wave solutions,

given by

i = Rcos [w(R)t + A(R)l/zx] ,
' )
v = Rsin [w(R)t + A(R)l/zx]

with 0 < R < rg. As a specific example, consider
A(r) =1—r% w(r) = 1+r, in which case the speed
of periodic waves is ¢ = [(1 + R)/(1 — R)]"/?, with
0 < R < 1. Thus the critical minimum speed is ¢ =
1, and the spatial and temporal periods are given by
Py = n(c+1/c), Py = m(14+1/c?), respectively. The
condition for (2) to be stable as a solution of (1) was
calculated by Kopell and Howard [14], and in this case
reduces to R? > %(«/5—1), orc > 2.058...;however,
it is important to stress that the stability condition does
not always simplify to single inequality on the wave
speed c.

Equations of A—w type are prototype systems, with-
out specific applications. In contrast, practical oscilla-
tory reaction—diffusion systems often contain at least
one steady state outside the limit cycle, in addition to
that from which the limit cycle has bifurcated. A typ-
ical exampie is a predator—prey system, in which case
the kinetics may have a stable limit cycle, correspond-
ing to coexistence behaviour of predators and prey, but
there is also an (unstable) prey-only steady state out-
side the limit cycle. A standard model of this form is

du/ot = 8%u/dx + u(l —u) — auv/(u +c), (3a)
dv/ot = 0%v/3x* + bv(l — v/u) (3b)

(e.g. [38, Ch. 3]). Here u(x, t) and v(x, t) are the pop-
ulation densities of prey and predators respectively; a,
b and d are positive parameters, and the kinetics have

a stable limit cycle for a range of a—b—d values. A
typical phase portrait in such a case is illustrated in
Fig. 1(a). For oscillatory predator—prey systems such
as (3), I have shown in a series of recent papers that a
spatially localised perturbation of the steady state in-
duces a wavefront of invading predators, with periodic
plane waves in both prey and predator populations in
the wake of the invading front [39—41] (Figs. 1(b) and
(c)). The speed of the periodic plane waves is quite dif-
ferent from that of the invading front, and is uniquely
selected by a mechanism described in detail elsewhere
[39,42,43]. In some cases, the selected speed corre-
sponds to an unstable periodic wave, in which case the
solution degenerates into spatiotemporal chaos [29]
(Figs. 1(d) and (e)). This phenomenon of oscillatory
and chaotic wakes behind invasive fronts applies to
a wide range of oscillatory reaction-systems, not just
predator—prey models, and appears to be a general
mechanism [42]. In the cellular automaton I will de-
scribe in Section 3, a very analogous invasion process
occurs, that also gives rise to periodic plane waves.

3. A family of oscillatory cellular automata

I'now introduce a family of cellular automata whose
rules reflect the two basic ingredients of oscillatory
reaction—diffusion systems: spatial diffusion and oscil-
latory local dynamics. The two process are represented
as separate, successive steps within a single time iter-
ation, in a manner familiar from coupled map lattice
models (e.g. [10,11]), and I will consider a number of
different rules for the local oscillations, giving a fam-
ily of automata. The automata are designed to crudely
simulate reaction—diffusion models of predator—prey
dynamics, of the type whose kinetics are illustrated
in Fig. 1(a), and to be specific I consider the case
of three predator and three prey states; this number
has no special significance. Therefore the automata
have a total of nine states, which are conveniently la-
belled as (—1, —1), (—1,0), (-1, 1), (0, —1), (0, 0),
O, ), (1, -1, (1,0), (1, 1). Here the first and sec-
ond components denote the prey and predator states,
respectively. The numbers —1, 0 and 1 correspond to
successively increasing predator and prey population
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densities; note in particular that 0 does not denote an
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absence of predators or prey.

The first part of each time iteration is a step rep-
resenting oscillatory local dynamics. In this step, the
state at each point in the space lattice changes inde-
pendently of neighbouring states, according to rules
that are illustrated in Fig. 2. Thus I will consider
eight different sets of rules, denoted by a code A-H,
and for example the rules corresponding to kinetics
code B are that state (0, 0) changes to state (0, 1),
state (0, 1) changes to (—1,0), (—1,0) changes to
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Fig. 1. An illustration of oscillatory waves behind invasion in
reaction—diffusion models of predator—prey interactions. The so-
lutions I plot are for the system (3) for various parameters sets
for which the local dynamics are oscillatory. A typical phase
portrait for the kinetics is illustrated in (a); there is stable co-
existence limit cycle, enclosing the unstable coexistence steady
state, and another “prey-only” steady state, also unstable. Parts
(b) and (c) illustrate cases in which there are periodic travel-
ling waves behind the invasive front, moving in the same and
opposite directions as the front, respectively. Part (d) illustrates
a case in which there are irregular spatiotemporal oscillations
behind the front; in fact the behaviour is temporally chaotic
[29,41]. Part (e) shows a mixed case, in which there are pe-
riodic waves immediately behind invasion, with irregular spa-
tiotemporal oscillations further back. The parameter values are:
(Aa=35+=02,c=01 b a=35b=01c=01;
c)a=3,b=01,¢c=02;d)a=3,b=002 c=0.1;
(e) a =3, b = 0.03, ¢ = 0.1. The equations were solved nu-
merically using the method of lines and Gear’s method. The
behaviour illustrated here is discussed in much greater detail
elsewhere [41].

(0, =1), (0, —1) changes to (1, 0), (1, 0) changes to
(0, 1), and states (1, 1), (1, —1), (=1, 1) and (—1, —1)
remain unchanged. The key feature of these kinetic
rules is their qualitative similarity to the phase por-
trait illustrated in Fig. 1(a). The state (1, —1) is an



J.A. Sherratt/Physica D 95 (1996) 319-335 323

A E
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c G

Fig. 2. An illustration of the kinetic rules for my family of cel-
lular automata. The nine grid points represent the nine automa-
ton states, labelled in “predator—prey coordinates” as explained
in the text, with the prey state —1, 0, 1 running across the page,
and the predator state —1, 0, 1 running up the page. There
are eight different sets of kinetic rules, labelled by the letters
A-H, which I will refer to as the kinetics codes. During the
local dynamics portion of the time iteration, the state changes
by moving one step in the direction of the arrow; if there is
no arrow leaving a state then it remains unchanged during this
portion of the iteration.

equilibrium state for each set of rules, and corresponds
to a prey-only steady state. However, otherwise I in-
terpret “—1”" as a low but non-zero density; thus the
automaton does not have a state corresponding to the
absence of both populations. The state (0, 0) is roughly
analogous to the unstable coexistence equilibrium in
the reaction—diffusion system, although in the automa-
ton it is not a steady state.

Despite these points of similarity, the discrete
kinetic rules are of course a simplification of the
phase portrait in a number of ways. For example, the
predator—prey oscillation moves round its discrete cy-
cle at a uniform speed, whereas in practice predator—
prey dynamics are slower at low population densities.
Moreover, the particular forms of the various rules
A-H are chosen arbitrarily, and some are more eco-
logically defensible than others. For instance, a state
with high predator and low prey density is unlikely
to be an equilibrium, which argues against rules B,

D, E and F. I consider the full range of kinetic rules
in order to give maximum information about the
non-linear dynamics similarities and differences be-
tween cellular automata of this type and oscillatory
reaction—diffusion equations, focusing in particular
on periodic waves.

The second part of the time iteration is a discrete
representation of spatial diffusion, and in this the prey
and predator populations change independently. I con-
sider only dynamics in one space dimension, with an
infinite linear sequence of spatial patches, and I denote
by h; and p; the prey and predator states in patch i,
prior to the diffusion step. Thus h; and p; have possi-
ble values —1, 0 and 1. My representation of diffusion
is then

R = (L = whi + 3uhist + hi-p),

P = (1 — wpi + u(piv1 + pic1)

which is taken directly from standard coupled map lat-
tice models (e.g. [10,11]). The parameter p € (0, 1]
is a motility coefficient; for simplicity I assume that
this is the same for predators and prey, although this
assumption could easily be relaxed. The quantities
R} and p®¥ are initially calculated as real numbers,
and then truncated to integers, with [—1, —0.5) trun-
cated to —1, [—0.5, 0.5] truncated to 0, and (0.5, 1]
truncated to 1. This truncation means that there is no
continuous dependence on u: specifically, there is no
variation as u changes between critical values given
by

) = (- Wi+ ipd,

where I has any of the values —1, 0 or 1, and J has
any of the values —2, —1, 0, 1, 2. This gives the critical
values as %, %, %, %, and 1; all that is significant is
which of these u lies between.

Finally, in the interests of brevity it will be helpful
when studying travelling waves to represent the nine
automaton states by single digits, and the notation I
use for this, which is quite arbitrary, is shown in Fig. 3.
The numerical values here have no significance; I am
just using the digits 1-9 as symbols.

I have not attempted a detailed study of the evolution
of this family of automata from a range of different
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(-1,1)=4 (0,1)=3 (1,1)=9

(-1,00=5 (0,0)=2 (1,0)=8

(-1,-1)=6 (0,-1)=7 (1,-1)=1

Fig. 3. An illustration of the single digit representation I use for
the automaton states. The numerical values are quite arbitrary:
the digits are used purely as symbols. I use this single digit
representation in the interests of brevity.

initial conditions. Rather, I have focused on a single
initial condition, which mimics the local introduction
of predators into an otherwise uniform distribution of
prey. Solutions of a reaction—diffusion predator—prey
model with such initial conditions are illustrated in
Fig. 1. Specifically I have considered setting each spa-
tial patch in the automata to be in state (1, —1), ex-
cept for the three patches in the centre of the spatial
domain, which are set to (0, 0). Recall that (1, —1)
is an equilibrium state, corresponding to prey and no
predators, while (0, 0) corresponds to a predator—prey
mix. The use of (0, 0) as the perturbing state is arbi-
trary, and different perturbing states do induce differ-
ent behaviour, although all of the observed behaviour
types are given by (0, 0). I consider an infinite one-
dimensional sequence of spatial patches; in simula-
tions, the use of a finite patch number simply limits the
maximum number of time iterations, since the pertur-
bation cannot spread at a rate greater than one patch
per iteration. The end patches are thus maintained at
state (—1, 1) in the simulations.

For u < %, it is easy to see that any localised per-
turbation of the prey-only state (—1, 1) will remain
localised, and not spread into neighbouring patches.
Therefore it is only necessary to consider the cases
JTRS [%, %), JTS [%, 1) and & = 1. For each set of
kinetic rules, the first two cases give only minor dif-
ferences of detail near the site of perturbation, and
the results for the first case are illustrated in Fig. 4.
In each case the initial perturbation moves outwards,
invading the domain at a rate of one patch per time
iteration. Behind the invading front, the solution has
the form of periodic travelling waves, for some ki-
netics moving in the direction of invasion, and for

Fig. 4. Invasion of prey by predators in the cellular automaton
model, with © € [%, %), for each of the kinetics codes A-H. I
show a space~time plot of the automaton state 1-9, which is
represented using grey-scale colouring, as indicated in the key.
The spatial domain is 801 patches wide, although only patches
1-409 are shown in the figure, running from left to right across
the page; 397 time iterations are plotted. Initially every patch is

in state 1 (the “prey-only” state) except patches 400-402, which

are in state 2. The symmetry of these initial conditions means
that the solution is symmetric at all subsequent times. In each
case, the initial perturbation induces an invading wavefront,
with periodic travelling waves behind this; for kinetics G, there
are spatially homogeneous oscillations further back. The details
of the periodic waves are given in Table 1(a).
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Table 1
Detailed forms of the periodic travelling waves generated behind invasion in the cellular automaton
Kinetics Behaviour vs x x period Behaviour vs ¢ t period

@uely. 3
A 3456789 7 3456789 7
B 888777555333 12 3578 4
C 22345 5 22345 5
D 82766256328672 665236 40 35678 5
E 96827652369286725632 40 35789 5
F 998877665533 12 356789 6
G 22345 5 22345 5
H 234567 6 234567 6

by pu=1
A 223355 6 223355 6
C 545343433232322722257524 24 773355224422332233552244 24
G 545343433232322722257524 24 773355224422332233552244 24
H 223355 6 223355 6

Note: The solutions are illustrated in Figs. 4 and 5. For kinetics codes B, D, E and F with ¢ = 1, the behaviour behind invasion
does not have the form of a periodic wave, and is discussed in detail in the text. In the table I am using the single digit representation
of the automaton state, as explained in Fig. 3, and the notation s”, denoting state s repeated n times.

others moving in the opposite direction. For kinetics
G, there is also an expanding region of spatially ho-
mogeneous oscillations further back. These solutions
are very strongly reminiscent of the generation of
periodic waves in the wake of invasion in reaction—
diffusion models, as illustrated in Figs. 1(b) and (c).
Detailed examination of the data files confirms that
in each case the solution is a periodic function of
space and time, that is a periodic travelling wave;
the detailed forms are listed explicitly in Table 1(a).
Note that the integer nature of the calculation means
that in contrast to numerical solution of differential
equations, the results of these automata simulations
are exact, so that the periodic waves given in Ta-
ble 1(a) are exact solutions. In this table I introduce
a notation that I will use frequently, namely s”, de-
noting the state s repeated n times. Thus 93567 de-
notes the sequence 999566 of states, using the single
digit representation of states, which is explained in
Fig. 3.

For i = 1, there is a richer range of behaviour, as
illustrated in Fig. 5. Again the perturbation invades the
domain at a rate of one patch per iteration, and for ki-
netics codes A, C, G and H there are periodic travelling
waves behind the invasion, whose forms are detailed

in Table 1(b). For kinetics code B, there is a steady
spatiotemporal pattern behind the invasion front, with
each patch oscillating between two of the states 3, 5,
7 and 8; these are the states involved in the kinetic os-
cillations. At even numbered patches the temporal se-
quence is 55885588. . ., and at odd numbered patches
it is 33773377. .. This type of solution has no direct
analogue in reaction—diffusion solutions. For kinetics
codes E and F, the behaviour behind the invading front
is irregular and apparently chaotic; this phenomenon
certainly occurs in reaction—diffusion solutions, as il-
lustrated in Fig. 1(d). Finally, for kinetics code D, there
are small scale oscillations immediately behind the in-
vading front, with a very large scale periodic wave be-
hind these; this periodic wave has a very long spatial
and temporal period, and has not exactly repeated it-
self within the time period illustrated in Fig. 5. There
are also some more irregular oscillations in the centre
of the domain, around the initial perturbation site, and
solution over longer times (which requires a greater
number of patches) shows that the region occupied by
these grows very slowly. This solution is somewhat
reminiscent of reaction—diffusion solutions in which
a band of regular oscillations is followed by irregular
behaviour, as illustrated in Fig. 1(e).
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Fig. 5. Invasion of prey by predators in the cellular automaton
model, with ¢ = 1, for each of the kinetics codes A-H. As in
Fig. 4, T show a space—time plot of the automaton state 1-9,
which is represented using grey-scale colouring, as indicated in
the key. The spatial domain is 801 patches wide, although only
patches 1-409 are shown in the figure, running from left to
right across the page; 397 time iterations are plotted. Initially
every patch is in state 1 (the “prey-only” state) except patches
400402, which are in state 2. The symmetry of these initial
conditions means that the solution is symmetric at all subsequent
times. In each case, the initial perturbation induces an invading
wavefront, with a wide range of different behaviours behind
this, which are discussed fully in the main text. For kinetics
A, C, G and H, there are periodic travelling waves behind the
invading front, and the details of these periodic waves are given
in Table 1(b).

4. Analysis of periodic travelling waves

The simulations described above show that in the
cellular automaton, periodic waves arise naturally
in the wake of invasive fronts, in a manner directly
analogous to that in corresponding reaction—diffusion
models. In this section I will describe a method for
analysing periodic travelling wave solutions of the au-
tomata I am studying. The object is to determine the
range of wave solutions that exist, and to investigate
some of their properties; throughout, I will be com-
paring with the properties of periodic wave solutions
of reaction—diffusion systems, which are reviewed in
Section 2. To my knowledge, this is the first study of
periodic waves in oscillatory cellular automata.

In a cellular automaton, a periodic travelling wave is
a solution in which the automaton state s is a function
S(ax £ ft). Here x and ¢ are integers denoting the
patch number and iteration number, respectively, and
a and B are positive integers; for uniqueness, I restrict
a and B to be coprime. The sign (“+") determines the
direction of motion of the wave. The automata I am
considering can be written in the general form

t+1 t t .
Sy = F(Sx’sx—l’sx+l’ﬂ“)‘

The function F depends on the kinetics code as well
as the parameter u; note in particular that the depen-
dence on s! disappears in the special case u = 1,
which will have important implications for periodic
waves. Although the function F cannot be expressed
in a simple formula, it can easily be calculated using
the automaton rules described above. Solutions of the
form 5! = S(ax + Br) therefore satisfy

S+B)=F($@).85z—a), Sz+ o). C)

Here the “+” plays no role because F depends sym-
metrically on s;_ | and s;_,; this corresponds to the
symmetry of positive and negative spatial directions.
The integer variable z is a travelling wave coordinate,
and the difference equation (4) is the travelling wave
equation, analogous to the travelling wave ordinary
differential equation for reaction—diffusion systems.
Periodic travelling waves of the celluiar automaton
therefore correspond to periodic solutions of (4), in the
same way that periodic waves in reaction—diffusion
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systems correspond to limit cycle solutions of the trav-
elling wave ODES.

Therefore, my aim in this section is to investigate
periodic solutions of (4). My investigation is purely
numerical; however, the integer nature of the arith-
metic means that the numerical results are exact. I will
consider only the two cases u € [%, %) and u = 1,
which are exactly the cases illustrated in Figs. 4 and 5.
I must stress at the outset that I have been unable to de-
termine all periodic solutions of (4), and my results are
more in the nature of experimentation, giving a flavour
of the periodic solutions and their properties. The nu-
merical approach is rather different in the cases o < 8
and @ > B, and I will describe these cases separately.

4.1. Periodic waves with ¢ < B

When ¢ < 8, (4) is a straightforward difference
equation, of order o + 8:

S@=FSz—-8),S@—a-8),Sz+a—-p8)).
(5)

Since S(-) has a finite set of possible values, there
are no standard methods available for investigating
periodic solutions of (5). However, the solution is
uniquely determined by a sequence of initial values for
S(1), 8(2), ..., S(x+p), and is easily calculated from
such an initial sequence. Therefore I have approached
the problem of investigating periodic solutions of (5)
by explicitly solving the difference equation for a
range of initial sequences, given a pair of values «,
B. The solution evolves to a periodic solution if any
consecutive sequence of a4 B states is repeated; there-
fore after calculation of each new state S(z), my pro-
gram loops back through all previous states z; =
z—1, z—=2,..., a+ B, and compares the se-
quences S(z), S(z—1),..., Sz—a — B+ 1) and
S(z1), S(z1—=1),..., S(z1 —a — B+ 1). If these are
the same, then the solution has evolved to a periodic
solution with period z — z;, and further calculation is
unnecessary because this periodic sequence will sim-
ply be repeated in subsequent solution.

I have calculated solutions of (5) in this way for
many values of & and 8, both values of u, and many

initial sequences; in every case I have found that the
solution evolves to a periodic solution. Of course,
some initial conditions evolve to constant solutions
(“period 1 solutions™); these trivial “waves” will occur
precisely for the states left unchanged by the kinetics,
and I will exclude them from subsequent discussion.
In most cases, there are a number of different periodic
waves for given values of «, 8 and u, and this num-
ber tends to increase with a + B, as does the period of
the waves. For small values of o and B, it is possible
to loop through all possible initial sequences (a total
of 9°1#), and thereby determine all of the periodic
waves for that o and 8. However, for larger o + 8, the
number of possible initial conditions makes this com-
putationally unfeasible, and I have simply considered
a selection of initial sequences, given by a random
number generator. In Table 2, I list all the periodic
solutions that exist for ¢ = 1 and 8 = 2, 3, for both
values of u (period 1 solutions are omitted). A num-
ber of these solutions were observed as periodic trav-
elling waves behind invasion (listed in Table 1); note
that since & = 1, the spatial sequence is the same as
that of the function S(-). For clarity, let me emphasise
that (as an example) fora =1, 8 =3, u € [%, %)
and with kinetics code E, all 6561 (= 9%) possible ini-
tial sequences ultimately evolve to either the period
15 solution 999333555777888, or to one of the con-
stant solutions 1, 4 and 6. Here I am using the single
digit representation of the automaton state, which is
explained in Fig. 3.

When B is large with @ = 1, there are many periodic
solutions: for example, when 8 = 10, « = 1 with
n e [%, %), there are at least 15 periodic solutions
for each kinetics, and for kinetics code A there are at
least 42 periodic solutions, with periods ranging from
70 to 366. I use the phrase “at least” because I am
only considering a small fraction of the possible initial
sequences. For 4 = 1 with 8 = 10, ¢ = 1, the number
of waves I have found varies more with kinetics: I have
only found three periodic solutions for kinetic codes
D (periods 47, 51 and 379) and E (periods 40, 80 and
147), while for kinetics code H there are at least 50
periodic solutions, all of period 60. It is important to
stress that this does not indicate that in this case there
are more periodic solutions for code H than codes D
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A list of all periodic solutions of the travelling wave equation (3), for @ = 1, 8 = 2, 3, and for both values of x that I am considering

(constant solutions (period 1) are omitted)

Kinetics Period Wave form
@upeld.Ha=1p8=2
A 14 99334455667788
B 8 88335577
C 10 8833445577
D 10 8833556677
E 10 9933557788
F 12 993355667788
G 12 993344557788
H 12 883344556677
®pels.a=1,4=3
A 2 52
21 999333444555666777888
B 12 888333555777
C 15 888333444555777
D 2 52
15 888333555666777
E 15 999333555777888
F 2 52
18 999333555666777888
G 18 999333444555777888
H 2 52
18 888333444555666777
Cu=lLa=18=2
A 3 523
12 722233345556
B 7 5222323
C 8 52223334
8 52323423
D 7 5222323
E 7 5222323
F 7 5222323
G 8 52223334
8 52323423
H 3 523
12 722233345556

and E, since I am only considering a very small set
of the possible initial sequences (which number more
than 31 billion), and I give these figures simply to give
an indication of the range of behaviour that I have
found.

How do these results compare with the properties
of periodic wave solutions of reaction—diffusion sys-
tems? The most striking difference is the existence of
many different periodic waves for a given speed (=
B/a) in the cellular automata. Although this is cer-

tainly possible in reaction—diffusion systems, in most
cases relevant to applications, there is exactly one pe-
riodic wave for each speed greater than the critical
minimum value; this is certainly true for the predator—
prey systems I have worked with, including the sys-
tem used in Fig. 1. However, as in reaction—diffusion
equations, the spatial period of the automaton waves
seems to increase with 8/a, while the temporal period
remains approximately constant. Results suggesting
this for @ = 1 and increasing 8 are described above,
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Table 2
Continued
Kinetics Period Wave form Period Wave form
@Du=lLa=1,8=3
A 18 712121313141515161 18 772222333344555566
18 762722323343545565 18 752627323243535465
18 752526373242535364 9 742525363
B 6 312121 6 332222
3 322 2 41
6 434242 2 61
6 636262 2 91
6 939292 2 64
2 94 2 96
C 12 512121313141 12 552222333344
12 542522323343 12 532425323243
2 61 12 656262636364
2 91 12 959292939394
2 96
D 6 312121 6 332222
3 322 2 41
6 434242 2 91
6 939292 2 94
E 6 312121 6 332222
3 322 2 41
6 434242 2 61
6 636262 2 64
F 6 312121 6 332222
3 322 2 41
6 434242
G 12 512121313141 12 552222333344
12 542522323343 12 532425323243
2 61 12 656262636364
H 18 712121313141515161 18 772222333344555566
18 762722323343545565 18 752627323243535465
18 752526373242535364 9 742525363
2 91 18 979292939394959596

and it is also shown by the (smaller number of) sim-
ulations that T have done for other values of a; note
that the spatial and temporal periods of the wave are
given by P;/a and P, /B, where P is the period of the
travelling wave function S(.).

A powerful general theorem on periodic travelling
waves in reaction—diffusion equations is that as the
speed of the waves — oo, the temporal behaviour of
the waves approaches the limit cycle solution of the
kinetics. Although I cannot make general statements
about this for the cellular automaton, it is certainly true
that when « = 1, there is a family of solutions which
approach the kinetic oscillations as 8 — o0, specifi-
cally the solutions given in Table 3. For 1 € [-5—, %), the
temporal behaviour of the solutions listed in Table 3(a)

is exactly the kinetic oscillations, even for small 8,
but this is not the case for 4 = 1 and the solutions
listed in Table 3(b). For these solutions, straightfor-
ward checking using the automaton rules shows that
as B increases, so that the period 7; increases, there
are a constant number of elements z € {1, ..., 7} for
which S(z+8) # fxinetics(S(2)), where fxinetics(S(2))
denotes the kinetics function defined in Fig. 2. Now
in the periodic wave solution, S(z 4+ ) is the state
following S(z) at the next time iteration in a given
spatial patch, and thus the temporal behaviour of the
periodic wave approaches the kinetic oscillations as
B — o0. Note that, as indicated in Table 3(b), I have
been unable to construct a solution with this property
for kinetics codes E, F and G, although one may exist.
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Table 3
Periodic wave solutions of the travelling wave equation (3) for g large with o = 1
Kinetics Period Wave form

@uely. D
A 8 963848 5P6P7PgH
B a8 88385P78
C 58 883B485P78
D 58 883P 58678
E 58 983B5P78 8k
F 68 9838 5B6A7P8P
G 68 9838458 7PgA
H 68 8F364P5Pgb 7P

by u=1
A 78-3 9B=5 3p+1 4f—1 5P+l gf—1 78-1 92 863 52 32
B 4842 86=7 26 361 22 583 24 785 22 32 2
C 56—1 8F=5 22 38+1 481 561 22 783 74
D 56-3 88—9 22 3B-1 22 583 24 gf—5 92 32 52 767 8
H 68 86—3 22 36+1 4f-1 5p+1 gB—1 75-1 2

Note: There are many other periodic solutions of (3) for large B, but these solutions have the property that as 8 — oo, the
temporal behaviour approaches that of the Kinetics. I have not been able to construct a solution with this property for 4 = 1 and
kinetics codes E, F and G. In (a) the waves are exactly the kinetic oscillations (see Fig. 2), with each state repeated g times.

4.2. Periodic waves witha = =1

When o = 8 = 1, the travelling wave equation
becomes

S(z) = F(8(z), S(z — 1), S(z = 2)). (6)

This is an implicit equation for S(z) as a function
of two previous states. Moreover, the equation has a
very different character in the two cases u € [%, %)
and p = 1, since the dependence of F on S(z — 1)
disappears in the latter case.

I begin by considering this latter case, u = 1, so
that we have

S(z) = F(S(2), S(z —2)). )

Thus, odd and even values of z decouple. Solutions
of (7) can easily be studied by determining, for each
possible state S(z — 2), which of the nine possible
states S(z) will satisfy (7): note that in general there
will be more than one state S(z) satisfying the equation
for given S(z—2). This calculation shows that there are
no non-constant periodic solutions of (7) for kinetics
B—G, and exactly one for kinetics A and H, namely the
period 3 solution 523. There are thus three different

periodic travelling waves of speed 1 in these cases, all
of period 6, corresponding to different interweavings
of the sequence 523 for the odd and even z values:
552233, 532532 and 522335. It is the first of these
waves that is generated behind the invasive front in the
solutions illustrated in Fig. 5 for these kinetics codes.

A peculiarity of the cellular automaton is that waves
with very similar speeds are solutions of quite differ-
ent equations, because of the requirement that ¢ and B
are integers. As an example of this, I consider kinetics
code A with u = 1 and @ = 8 — 1, with 8 large. In-
tuitively, one expects that in this case, periodic waves
will have approximately the same form as one of the
period 6 waves of speed 1 described above. In fact,
for « = B — 1 with 8 large, there are a great many
different periodic solutions of (5), and many of these
do not resemble the speed 1 waves. However I have
been able to construct a solution which does approach
a speed 1 wave as 8 (and @) — 00, namely

7 2(x+ﬂ 30l+ﬁ4 5(1+,56’ (8)

which has period 68. The spatial sequence at a given
time iteration is S(¢), S(t +a), S(t+2w), ..., which
differs from the sequence 552233552233... at only a
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Xi})li‘leljstration of the method used to find periodic solutions of the travelling wave equation (5) fora = 8 =1 when u € [%, %)
1 2 3 4 5 6 7 8 9 10 11
72 723 7234 72345 723452 7234522 72345223 723452234 7234522345 72345223452 723452234522
72345223456 723452234562
723452234566
723452234567
723456 7234562 72345622 723456223 7234562234 72345622345 723456223452
723456223456
7234566 72345666 723456666 7234566066 72345666666 723456666666
723456666667
72345666667 723456666672
7234566667 72345666672 723456666723
723456667 7234566672 72345666723 723456667234
72345667 723456672 7234566723 72345667234 723456672345
7234567 72345672 723456723 7234567234 72345672345 723456723452
723456723456

Note: The table shows the possible solutions for the first 11 iterations, starting from the initial sequence 72, for kinetics G. A
blank entry in the table indicates that the entry is the same as that in the previous row. Sequences that are part of periodic solutions
are underlined; I include in my underlining the period 1 solution 6. This table shows clearly that a single initial sequence can require

many solution sequences to be followed simultaneously.

small number of patches, with this number remain-
ing constant as 8 and « increase. For the temporal
sequence at a given patch, S(x), S(x + B), S(x +
28), ..., the situation is slightly different because the
period P; of S(-) is divisible by 8. Thus the temporal
sequence has period 6 at every patch, and is exactly
552233552233. .. at most patches, the exceptions be-
ing those patches whose x value causes the states 7, 4
or 6 to appear in their sequence. In fact 4 and 6 appear
together if at all, and thus the temporal sequence is
552233552233. .. at a proportion of the patches given
by (68 — 2)/68, — 1 as B — oc. Therefore (8) does
indeed approach the speed 1 wave 552233 as o =
B —1 — oo. The solution (8) is in fact also a solution
for kinetics code H.

I turn now to waves witha = 8 = 1 for u € [%, %).
In this case, the travelling wave equation (6) is a sec-
ond order implicit difference equation. It turns out that
for a high proportion of the 81 possible pairs of states,

S(z—2) and S(z— 1), there are several states S(z) sat-
isfying (6), and thus a systematic appreach is required
to investigate possible periodic waves, rather than the
ad hoc method used for ;& = 1. The method I use is to
start with a given pair of initial values, S(1) and S(2),
and test each of the nine states as a possible solution
of (6) for S(3). Successful triplets are stored, and the
process is repeated for §(4), etc. An example of the
iteration process is given in Table 4. For some initial
pairs of states, this can eventually lead to the follow-
ing of many hundreds of possible solutions; at each
iteration, some of these disappear from consideration
because there is no possible next state, while for oth-
ers there are several next states possible, thus increas-
ing the number of solutions being followed. Periodic
solutions occur when any consecutive pair of states is
repeated, although in contrast to the case of ¢ < S,
the solution must be continued when such a repeti-
tion is detected, because there may be other possible
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subsequent behaviours, including other periodic solu-
tions, in addition to the repeating periodic sequence
that has been found.

Application of this method shows that for each set of
kinetics there are multiple periodic solutions of (6): for
kinetics A, there are at least 400 non-constant periodic
solutions, with periods ranging from 5 to 24. This is in
very sharp contrast to the behaviour for 4 = 1 (three
solutions all of period 6) and for reaction—diffusion
equations (typically one periodic wave for any given
wave speed).

4.3. Periodic waves with « > f8

When @ > f, (4) is again an implicit difference
equation, of order 2«:

S+B-—a)=F(Sz—a),S(z—2a),5@). 9

The implicit nature of this equation makes it consider-
ably more difficult to study than the explicit difference
equation (5) governing waves with « < 8. I have used
essentially the same approach as that described above
for the case « = B, p € [%, %). That is, starting from
a given initial sequence S(1), S(2), ..., S2a), I test
all nine states as possible solutions of (9), storing all
successful sequences S(1), S(2),..., SR« + 1). For
each of these I then proceed with the next iteration.
However, this method has unfortunately had only lim-
ited success.

There are a total of 92 possible initial states for
Eq. (9). Many of these will not generate a long-term
solution, due to the solution reaching a point at which
there is no state S(z) satisfying (9), so that the solu-
tion cannot be continued. However, other initial states
will lead to a rapidly expanding number of solutions to
be followed, because of multiple states S(z) satisfying
(9) at each iteration. The difficulty with the computa-
tion is that some initial conditions can give an expo-
nential rise in the number of solutions being followed
at successive iterations, getting as high as hundreds of
thousands; each of these must be examined at every
iteration, making the computations extremely slow for
even a single initial sequence.

I have successfully determined all periodic solutions
of (9) only for 8 = 1, =2, 3 when p € [1, 3), and

B =1,a =2 when u = 1; these are listed in Table 5.
For clarity, let me emphasise that in these cases, all
initial sequences (a total of 6561 = 9* when o = 2
and 531441 = 9% when « = 3) either fail to gener-
ate a long-term solution, or generate one (or more) of
the solutions listed in Table 5, and/or a constant solu-
tion. The phrases “one or more” and “and/or” in the
last sentence are significant: a single initial sequence
can generate a number of different long-term solutions
(e.g. Table 4).

When « and B are both large, there appear to be
many periodic solutions of (9): for example, when o =
13 and 8 = 12 with i = 1 and with kinetics code A, |
have found more than 40 different periodic solutions,
all with period 72. However, in view of the discussion
in Section 4.2, I should mention that I have not found
a solution which resembles any of the speed 1 waves
with 8 = « — 1 large, although I conjecture that such
a solution does exist.

For large o with 8 = 1, I have had very little success
at finding periodic solutions of (9). It may be that few
such solutions exist; recall that for reaction—diffusion
systems there is a minimum speed below which there
are no periodic waves. However, this cannot be con-
cluded from my computations, which have considered
only an insignificant proportion of the 92% possible
initial states. One notable periodic solution that I have
detected is the following period 24 solution for ¢ = 5,
B =1, u = 1 with kinetics codes C and G:

773355224422332233552244,

which is the wave observed behind invasion in these
cases (see Fig. 5 and Table 1(b)).

In reaction—diffusion systems, as the wave speed
approaches the critical minimum value, periodic
waves become low amplitude oscillations about the
(unstable) coexistence steady state. In the cellular au-
tomaton, there is no corresponding notion of “wave
amplitude”. However, there is a loose correspondence
between the coexistence steady state in the phase por-
trait of Fig. 1(a) and the automaton state 2 = (0, 0)
in the kinetic oscillations shown in Fig. 2. Therefore,
one might expect that for large ¢ with 8 = 1, au-
tomaton waves would contain a large proportion of
entries in state 2, by analogy with the low amplitude
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Table 5
A list of all the periodic solutions of (3) for @ =2, 8 =1, 1 = 1 (constant solutions (of period 1) are omitted)
Kinetics Period Wave form
A 3 532
B 15 753222232322532
4 8753
19 8753222232322532753
C
D 15 653222232322532
E 15 753222232322532
19 8753222232322532753
F 15 653222232322532
G
H 3 532

Note: For kinetics C and G, there are no non-constant periodic solutions. For u € [%, %), there are no non-constant periodic
solutions for @ =2, 8 = 1, while for « = 3, 8 = 1, the only non-constant pericdic solution is the period 2 solution 52, which is a

solution for kinetics codes A, D, F and H.

of low speed reaction—diffusion waves. I have found
only a handful of waves with § = 1 and values of
a > 4, so that I can do little more than speculate, but
the solutions that I have found are consistent with this
hypothesis for 4 = 1 (e.g. for & = 7 with kinetics F, I
have found a period 106 solution in which 46 entries
are state 2), but not for u € [%, %) (eg. fora =5
with kinetics B, I have found a period 5 solution in
which no entries are state 2).

5. Stability of periodic waves

I now consider briefly the stability of the periodic
waves described above, as solutions of the cellular au-
tomaton; again, my study is purely numerical. As dis-
cussed in Section 2, in reaction-diffusion equations,
waves of speed close to the critical minimum value
are unstable as PDE solutions, while high speed waves
are stable. This of course assumes that the limit cy-
cle solution of the kinetics is stable as a (spatially
homogeneous) reaction—diffusion solution; when the
equations have equal diffusion coefficients, as in the
cases I am considering, this is implied by the stability
of the limit cycle as a solution of the kinetic ODES
[14].

Therefore the first task is to consider whether the
spatially homogeneous oscillations of the kinetics are
stable as a solution of the automaton. For a cellular
automaton, there is no notion of “small perturbation”

or “local stability”, since the state space is discrete.
Therefore I must definé my notion of stability for a
solution of the automaton. I consider a perturbation of
a single patch to any of the other eight states. In view
of the large amplitude nature of this perturbation, it
is too restrictive to require the perturbation to decay
completely, and I have found that the most useful defi-
nition of stability is that the perturbed and unperturbed
solutions are identical at all future times, except over
a finite sequence of spatial patches whose length re-
mains bounded. Note in particular that this classifies
a conveéting perturbation as stable; it is quite com-
mon that perturbation of a periodic wave alters the
state at a small number of patches within one spatial
period, and that these then move through space with
the wave. My definition of a stable solution is thus
that the solution is stable (in the sense just described)
to the perturbation of any single patch to any other
state. Thus testing the stability of a periodic wave re-
quires the consideration of 8P; separate perturbations,
since every perturbation of every wave element must
be tested.

Under this definition, the kinetic oscillations are sta-
ble for each of the kinetics when u € [%, %), while
for 4 = 1, only the oscillations of kinetics B, D and
H are stable. For periodic waves, every wave that I
have tested for u € [%, %) and @ < B is stable, with
some of the waves for ¢ > g stable and some un-
stable. This is broadly consistent with the behaviour
in reaction—diffusion equations, for which fast waves
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are stable and slow waves are unstable. However, for
@ = 1, I have been unable to detect any general trend
in the stability of periodic waves.

6. Discussion

In this paper I have compared a family of cellular
automata with qualitatively similar reaction—diffusion
systems. The similarity lies in the fact that the basic
ingredients of both the automata and the PDEs are lo-
cal oscillations and spatial diffusion. I must stress that
there is absolutely no formal relationship between the
automata and the PDEs, only this qualitative similar-
ity in formulation.

In view of this lack of formal relationship, there
is a remarkable similarity between the response to
local perturbation of the “prey-only” state in the two
types of model. The most striking aspect of this is
the generation of periodic travelling waves. Such
waves have been well-studied in reaction—diffusion
equations, and I have gone on to do a corresponding
study in the cellular automata, by explicitly investi-
gating the difference equation governing travelling
wave solutions. My investigation leaves many ques-
tions unanswered, but the basic conclusion is that
the cellular automata have a great many periodic
wave solutions, included amongst which are solutions
which mimic quite closely the properties of reaction—
diffusion periodic waves. The natural next step in
this work would be to consider automata with more
predator and prey states, to study the extent to which
my results translate to these more complex automata.
I have deliberately used reaction—diffusion equations
as my point of comparison, because periodic wave be-
haviour in these equations is well understood. Other
common types of predator—prey model are coupled
map lattice [10,11] and coupled differential equation
models [2,44]; however, periodic wave behaviour
is much more poorly understood in these systems,
despite some recent progress [45].

The rapid increase in the use of cellular automata
and coupled map lattice models in mathematical biol-
ogy has had a tendency to divide the academic commu-
nity into those who use discrete models and those who

use continuous models. This is clearly an unfortunate
and very artificial division, since for many systems,
both discrete and continuous models can be justified.
The work in this paper shows that in the particular
case of oscillatory, diffusing biological systems, the
solutions of the two types of model do have many fea-
tures with very strong qualitative similarities. This in
turn provides very strong evidence that it is these fea-
tures that are genuine consequences of the qualitative
ingredients of the models.
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