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SUMMARY 

We develop a mathematical model for the initial growth of a tumour after a mutation in which either an 
oncogene is expressed or an anti-oncogene (i.e. tumour suppressor gene) is lost. Our model incorporates 
mitotic control by several biochemicals, with quite different regulatory characteristics, and we consider 
mutations affecting the cellular response to these control mechanisms. Our mathematical representation 
of these mutations reflects the current understanding of the roles of oncogenes and anti-oncogenes in 
controlling cell proliferation. Numerical solutions of our model, for biologically relevant parameter values, 
show that the different types of mutations have quite different effects. Mutations affecting the cell response 
to chemical regulators, or resulting in autonomy from such regulators, cause an advancing wave of 
tumour cells and a receding wave of normal cells. By contrast, mutations affecting the production of a 
mitotic regulator cause a slow localized increase in the numbers of both normal and mutant cells. We 
extend our model to investigate the possible effects of an immune response to cancer by including a first 
order removal of mutant cells. When this removal rate exceeds a critical value, the immune system can 
suppress tumour growth; we derive an expression for this critical value as a function of the parameters 
characterizing the mutation. Our results suggest that the effectiveness of the immune response after an 
oncogenic mutation depends crucially on the way in which the mutation affects the biochemical control 
of cell division. 

1. INTRODUCTION 

Cell division in vivo is carefully regulated. The physical 
proximity of neighbouring cells and changes in cell 
shape both have direct effects on the progression 
through the cell cycle (Stebbing & Heath 1984; 
Folkman & Moscona 1978), but the primary control 
mechanism is biochemical. The extracellular space in a 
normal tissue contains a wide range of growth- 
regulating chemicals, and each stage of the cell cycle 
occurs at a rate dependent on the concentrations of 
these chemicals (Baserga 1985, chapters 10 and 11). 
Such a complex control mechanism ensures a rapid 
response to changes in cell density, such as occurs in 
wound healing (Sprugel et al. 1987 ; Sherratt 8z Murray 
1990, 1991, 1992). 

Growth-regulating chemicals can be of several types. 
Firstly, they can be either activators or inhibitors of cell 
division. In addition, their action can be autocrine or 
paracrine, that is, they can be produced either by the 
cell type on which they act or only by other cell types. 
At a greater level of detail, different chemicals affect 
different portions of the cell cycle. Homeostasis 
therefore requires a wide range of mitotic regulators. 

One of the characteristics of cancer cells is their 
escape from these biochemical control mechanisms. 
Such escape is probably not sufficient to generate 
cancer: in particular, the cells of benign tumours often 
express oncogenes (Balmain et al. 1984; Ananthaswamy ----- - - ---- - 
& Pierceall 1990; Nicolson 1991). Rather, cancer 

results from a number of genetic mutations, one of 
which (in many cases, probably the* first) affects the 
control of cell division (Weinberg 1989a; Fearon & 
Vogelstein 1990; Volpe 1990). Over the last decade, an 
intensive programme of experimental research has led 
to a partial understanding of the genetic mechanisms 
by which cancer cells escape from biochemical growth 
control, namely mutations which cause the expression 
of oncogenes or the loss of anti-oncogenes. The former 
are genes causing excessive cell proliferation, whereas 
anti-oncogenes act to limit the division rate of normal 
cells. In either case, mutation results in a cell with a 
proliferative advantage compared with the normal 
cells around it. These rapidly dividing mutant cells are 
often the first step in a series of genetic transformations 
which result in cancer. 

The role of biochemical regulators of mitosis in 
tumour growth has been investigated in several 
theoretical studies. Several authors have incorporated 
chemical inhibitors of cell division into models of 
tumour growth that is limited by the uptake of 
nutrients, showing that the growth rate and diffusion- 
limited size of a tumour (typically a few millimetres in 
diameter) both depend on the parameters of this 
mitotic inhibition (Greenspan 1972, 1974; Bhargava 
1977 ; Tarumi & Schwegler 1983). Glass (1973) focused 
on the inhibition aspect and developed a simple model 
which suggested that proliferative inhibition alone 
could be sufficient to limit tumour growth, depending 
on the mitotic parameters. This work has recently been 
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extended to include more general geometries and 
spatial non-uniformities (Shymko & Glass 1976; Adam 
1986, 1987 a, 6). These models of diffusion-limited 
growth can also be applied to in vitro multicell spheroids 
(Durand 1990 ; Swan 1992). The role of mitotic control 
in carcinogenic mutations was considered by Wheldon 
(1975), who divided such mutations into two types, 
according to whether the detection or production of a 
mitotic inhibitor was affected. Also, Bell (1976) used a 
stochastic model to investigate the possible failure of 
mutant cells to secrete a mitotic inhibitor, and derived 
an expression for the probability of a single mutant cell 
giving rise to a macroscopic tumour of a given size. 
More recently, Michelson & Leith ( 199 1) have 
compared the effects of autocrine and paracrine growth 
factors by varying the parameters in a logistic model 
for tissue growth. 

2. MODELLING THE ESCAPE FROM 
MITOTIC CONTROL 

The division of normal cells is regulated both directly 
by the local cell density and by the combined effect of 
a number of synergistic growth factors. We model this 
by taking the division rate per cell to be given by 
&I r(n) $1 (Cl) . . . s,(c,), where n(x, t) is the cell density, and 
cf(x, t) (1 < i <j] are the concentrations of the j mitotic 
regulators, with x and t denoting space and time 
coordinates. Thus we approximate the real situation of 
an integer number of cells by a continuum variable for 
cell density. The decreasing function r(n) reflects the 
effect of crowding on cell density, which we include 
although it is not essential feature of the model, and 
sf(cr) represents the effect on the cell division rate of 
chemical i. Thus si. is an increasing function if chemical 
i is a mitotic activator, and a decreasing function for a 
mitotic inhibitor. In normal tissue, the cell density and 
chemical concentrations are in an equilibrium state, 
which we assume to be spatially homogeneous, with 
the growth rate R, balanced by an equal rate of cell 
death. We denote this equilibrium state by n = n’, 
Cf = ci (1 < i <j), and we assume that r(n’) = sf(cf) = 
1 (1 d i <j). 

Oncogenic mutations can modify this division rate in 
several ways. 

1. Increased response to a mitotic activator. This 
can result from the expression of an oncogene such as 
erb B, whose oncoprotein is a truncated version of the 
receptor to the mitotic activator epidermal growth 
factor (Downward et aZ. 1984). Another possible cause 
is the loss of an anti-oncogene such as the neuro- 
fibromatosis tumour suppressor gene, which in normal 
cells produces a protein inhibiting ras-mediated mitotic 
activation (Xu et al. 1990). We model such a mutation 
by assuming that mutant cells detect the extracellular 
concentration of the activator to be 5 times its real 
value, with t > 1. 

cell migration 
/ * -, 

2. Decreased response to a mitotic inhibitor. This 
can be caused by the loss of an anti-oncogene, for 
example, the RB (retinoblastoma) gene, whose ex- 
pression in normal cells reduces the responsiveness to 
the mitosis-inhibiting effects of type p transforming 
growth factor (Kimchi et al. 1987; Parkinson & 
Balmain 1990). A second example is the DCC (deleted 
in colon carcinoma) gene, whose product is the 
receptor for a mitotic inhibitor, although the inhibitor 
itself has not yet been identified (Fearon et al. 1990). 
We model a mutation of this kind by again assuming 
that the mutant cells detect the concentration of the 
inhibitor to be g times its real value, but with 5 < 1 in 
this case. 

3. Increased production of a mitotic activator. Two 
types of mutation have this effect. The first is typified 
by the ras gene, whose cytoplasmic oncoprotein 
stimulates the production of several different growth 
activators (Jakowlew et al. 1988; Rayter et al. 1989). 
The second is the expression of an oncogene whose 
oncoprotein is very similar to a particular mitotic 
activator. Examples of this are sis, whose protein is very 
similar to platelet-derived growth factor (Doolittle 
et al. 1983), and int-2, whose protein is related to basic 
fibroblast growth factor (Dickson & Peters 1987). In 
our model, such mutations do not have a direct effect 
on the cell growth rate: rather, they affect the equation 
for chemical conservation. 

4. Decreased production of a mitotic inhibitor. If a 
cell produces an auto-inhibitor of cell division then the 
gene corresponding to this inhibitor is clearly a 
potential anti-oncogene, and, in our model, the 
chemical conservation equation is again affected. The 
existence and properties of such mitotic auto-inhibitors 
are very well documented (see Iversen (1981) for 
review), but the corresponding genes remain to be 
characterized. 

5. Escape from biochemical dependence. The ex- 
pression of oncogenes can stimulate intracellular signals 
that normally occur only in response to a mitotic 
activator. Such oncogenes are of two types. The first 
have oncoproteins that act within the cell cytoplasm: 
an example of this is the abl gene, which triggers signals 
normally generated by the growth-activating chemical 
GM-CSF (Kelly 1985 ; Cook et al. 1985). The second 
type act within the nucleus to remove cell division from 
its dependence on cytoplasmic signals : an example is 
the myc gene (Eisenman 1989). We model mutations of 
this kind by adding a constant term s0 to the product 
Jl (Cl> . . . s, (c,) in the division rate per mutant cell. 

Detailed reviews of the mechanisms by which 
oncogenes promote cell division are given by Weinberg 
( 1989 6) and Aaronson ( 199 1) ; anti-oncogenes have 
been reviewed by Sager ( 1989) and Weinberg ( 199 1). 

We denote by m(x, t) the density of mutant cells. In 
a mixed population of normal and mutant cells, the 
crowding term in the mitotic rate depends on the sum 
of these cell densities, so that the conservation equations 
for normal and mutant cells have the following form: 

biochemically regulated cell division cell death 
/ \ I . 

ih/CQ = DV% + R,nr(n+m) s1 (c,) . ..s. (c,) - Ron 
am/& = DV2m +R,mr(n+m)[s,+s,(~c1)s~(c2)...sj(c,)]- R,m. (1) 
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Here we assume that any mutation in the response to 
extracellular regulators occurs with respect to chemical 
1. Following a number of previous studies (Murray 
1989; Sherratt & Murray 1990), we use linear diffusion 
to model cell migration, and we take cell death to be a 
first order process. This representation of cell growth 
takes no account of possible limits on the supply of 
nutrients, and is thus only applicable to very early 
stages of tumour growth. 

The remaining model equations are conservation 
equations for the concentrations of the j chemicals. The 
form of these depend on whether the chemical is an 
autocrine or paracrine regulator, and we consider the 

n* = n/n’, m* = m/n’, ct* = CJCf, X* 
. . 
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ditions to correspond to the mutation of a single cell at 
the origin, so that 

n(x,O) = 
i 
0, I4 < L 
ne 1x1 > L 

m(x,O) = 
{ 

ne, 1x1 < L 
0 Ix1 > L Cf (4 0)  = 6, 

(1 d i < j), where L is half a typical cell length. As the 
size of the tissue is very large compared with the 
submacroscopic tumours we are considering, we take 
the spatial domain to be infinite. Moreover, there will 
be no disturbances far from the site of mutation, so that 
the appropriate boundary conditions are n = ne, m = 0, 
c = cf at x = + oo (1 d i < j). We non-dimensionalize 
this system by using the following resealings: 

= x/L, t* = R,t, D” = D/(RO L2), 0; = Df/(RO L2), 
PF = e/R,, r*(n*) = r(n), sT(cT) = sf (cJ, p,*(n*+m*) = pf (n+m) n”/(cfR,,). 

Henceforth we omit the asterisks for notational 
simplicity. The dimensionless governing equations can 
then be written in the following general form: 

an/at = D(a2n/ax2) +nr(n+m) sl(c,) . ..s~(c.) -n, (34 
am/at = D(a2m/ax2) +mr(n+m)[s,+s, (&,) s2(c2) . ..s.(c,)]-m, (34 
ac,/at = D,(~2c,/~x2)+P,+(n+m)p,(n+m)+Hmp,(n+m)-[~~+p1(1)Jcr, (3~) 

and 

&,/at = D,(~2cf/~x2)+P,+(n+m)pf(n+m)-[~+pf(1)Jcf, (3d) 

subject to 
general case in which chemical i is produced at a 
constant rate pt, independent of cell density, and also at 
a rate pi (ti + m) per cell. Intuitively, we expect Pr to be 

n(x,O) = 
1 
0, I4 < 1 

1 
LIXI < 1 

1, lx1 > 1 m(-% 0) = 0, Ix1 > 1 %(X9 0) = 1 

either constant or increasing if chemical i is a mitotic (44 
inhibitor, and constant or decreasing for a mitotic 
activator. If chemical i is normally produced in a 

and 

purely autocrine way, then pt = 0, whereas if it is a n=l, m=O, cl=l at x= &oo, (44 
purely paracrine factor, pf z 0. Thus we have 

chemical diffusion chemical production by cells constant chemical production chemical decay 
c , 

ac,/at = DfV2ct + G 

Here we take the decay of active chemical to be a 
simple first order process, with rate constant df ; the fact 
that n = ne, m = 0, cf = cr (1 < i <j) is an equilibrium 
state in the absence of mutations implies that dt = 
(P,+pf(ne) ne)/c:. The positive constant D, is the 
chemical diffusion coefficient. 

In either the autocrine or paracrine case, a mutation 
which affects the production of chemical i has the effect 
of adding the term Hmp, (n+m) to the right-hand side 
of the conservation equation. In the activator case, 
H > 0, and the mutation causes either increased pro- 
duction of an autocrine factor or the triggering of the 
auto-production of a paracrine chemical that is 
normally produced only by other cell types. In the 
inhibitor case, this mutation is only relevant for an 
autocrine factor and corresponds to a reduced pro- 
duction rate of this chemical, so that 0 > H > - 1. 

The equations (1) and (2) constitute our model. We 
consider these equations in one space dimension, which 
renders the system amenable to mathematical analysis. 
Numerical solutions in two and three dimensions with 
radial symmetry are qualitatively very similar to these 
one-dimensional solutions; we have not investigated 
the effects of asymmetries. We take the initial con- 
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P% + pr - 
df Cf l (2) 

(2 < i < j). As previously, we assume that any 
mutation affecting the response to, or production of, 
chemicals by the cells occurs with respect to chemical 
1. Usually, only one of (5 - 1 ), s,, and H will be non- 
zero, although an oncogene whose protein is a 
truncated growth factor receptor, such as erb B, might 
result in 6 > 1 and s0 > 0 (Downward et al. 1984). 

3. PARAMETER VALUES AND MODEL 
SOLUTIONS 

In addition to a number of parameters, the system 
(3) depends on the functions r(n), sf(cf) and p,(n) (1 d 
i < j), which remain undetermined except for the 
constraint that r( 1) = sf( 1) = 1, for all i. The function 
r(n) is strictly decreasing, and we take r(n) = 
(N--n)lW- I>, so that the dimensionless quantity N is 
an upper bound on the cell density, due to crowding 
effects. If chemical i is an activator of cell division, then 
sf(cf) is strictly increasing, whereas p,(n) is either 
constant or decreasing, because an increase in cell 
density will result in either no change or a decrease in 



264 J. A. Sherratt and M. A. Nowak Oncogenes and immune response to cancer 

the production rate per cell of a mitotic activator. In 
this case, following Sherratt & Murray (1990, 1991, 
1992), we take s&c{) = a,+ (1 -a,) cr, and p,(n) = 
Ml +A>/(1 +An2L where a,E (0,l) and /z,,/?~E(O, 
a). In the inhibitor case, ~~(6,) is strictly decreasing, 
whereas p,(n) is either constant or increasing, and we 
take So = k,/[l + (k,- 1) ct], and/+(n) = h, (1 +/$n)/ 
(1 +pi), where kit (1,~) and, as above, hi,BrE (0, m). 

A simple biological requirement of the model is that, 
when n = ct = 1 and m = 0, as in normal tissue, the 
system should be stable to small local perturbations in 
the cell density n. In Appendix 1, we discuss the 
constraints that this imposes on the kinetic parameter 
values. Several of the model parameters can be 
estimated biologically. Equation (3a) gives a cell cycle 
time of Ri’ log 2 in normal tissue, for which a typical 
order of magnitude is about 100 h. We therefore take 
R, = (l/100) log2 h-’ x 7 x 1 OS3 h-‘. Previous model- 
ling experience (Murray 1989; Sherratt & Murray 
1990; Sherratt et al. 1992) suggests that a typical order 
of magnitude for a cell diffusion coefficient in uiuo is 

1.0 

10-l’ cm2 s-r or lo-l1 cm2 s-l. With a cell length of 
10 pm and the above value for R,, this gives D GZ 0.01. 
Biochemicals of fairly large molecular mass, such as 
growth factors, will have a diffusion coefficient about 
100 times larger than that of cells in z&o (Sherratt & 
Murray 1990 ; Sherratt et al. 1992), so that Di will for 
each i have an order of magnitude of about 1. A final 
restriction is that we anticipate the chemical kinetics to 
be fast compared with cell division, so that h, % 1 when 
chemical i is an au tocrine regulator, and 4 $ 1 in the 
paracrine case. However, beyond these intuitive 
considerations, which have been used previously (see, 
for example, Wheldon 1975), we are not aware of 
experimental data that would enable these production 
rates to be estimated quantitatively. 

We have solved the model equations (3) subject to 
(4) numerically for a wide range of parameter values 
within these constraints. Our simulations show that the 
different mutations discussed above give quite different 
types of behaviour. Mutations affecting the response to 
a mitotic regulator (I[- 11 > 0), or giving an escape 

Figure 1. The initial growth of a tumour cell population after a mutation which causes increased response to a mitotic 
activator, decreased response to a mitotic inhibitor, or partial escape from biochemical regulation of mitosis. We plot 
the density of (a) normal and (6) mutant cells (n and m, respectively) and (c) and (6) the concentrations of the 
corresponding regulatory biochemicals (cr and c,& as functions of distance x from the site of the mutation, at equally 
spaced times (dimensionless time interval = 3) ; the arrows indicate the way in which the solution changes as t 
increases. The solution has the form of an advancing wave of tumour cells and a receding wave of normal cells, with 
associated waves of regulatory chemicals. This is the qualitative form of the solution whenever s0 > 0 or It- 11 > 0. 
The dimensionless parameter values are so = 2, 6 = 2.5, D = 0.01, N = 10, j = 2. Chemical 1 is a mitotic activator, 
with 01~ = 0.1, h, = 18, /3, = 10, PI = 0 and D, = 1.2. Chemical 2 is a mitotic inhibitor, with k, = 15, h, = 22, 8, = 
0.1, pz = 10 and D, = 2. Thus, chemical 1 is produced in a purely autocrine way, whereas the production of chemical 
2 is part autocrine and part paracrine. The solution is obtained by solving (3) subject to (4) numerically, using a finite 
difference scheme. 
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(4 
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Figure 2. The initial growth of a tumour cell population after a mutation which causes increased production of an 
autocrine mitotic activator, decreased production of an autocrine inhibitor, or which initiates auto-production of a 
mitotic activator that is normally produced only in a paracrine way. We plot the density of ((I) normal and (b) mutant 
cells (n and m, respectively) and (c) and (d) the concentrations of the corresponding regulatory biochemicals (cl and 
cz) as functions of distance x from the site of the mutation, at equally spaced times (dimensionless time interval = 300) ; 
the arrows indicate the way in which the solution changes as t increases. The solution has the form of an increase in 
both normal and mutant cell densities near the origin, followed by a gradual spread outwards of both cell types. Note 
the long timescale compared with that in figure 1. The dimensionless parameter values are the same as in figure 1, 
except that s, = 0, 5 = 1 and H = 4. The solution is obtained by solving (3) subject to (4) numerically, using a finite 
difference scheme. 

from biochemical dependence (s,, > 0), result in an 
advancing wave of mutant cells and a receding wave of 
normal cells, as illustrated in figure 1. Such a solution 
corresponds to a rapidly growing tumour with the cell 
density in the tumour greater than that in normal cells. 
The value of the tumour cell density increases with 
both s,, and It- 11, as does the speed with which the 
tumour grows. We should stress that, well before the 
tumour becomes macroscopic, the equations (3) cease 
to be an adequate representation of the factors 
controlling tumour growth because the supply of 
nutrients and the development of a necrotic core 
within the tumour become crucially important (see 
Wheldon (1988, chapter 5) for review). Here we are 
only concerned with the very early stages after 
transformation. 

In sharp contrast, mutations affecting the pro- 
duction of a mitotic regulator do not result in an 
advancing wave of mutant cells. Rather, the density of 
both normal and mutant cells increases near the origin, 
and there is then a gradual spread outwards of both 
cell types (figure 2). This marked qualitative difference 
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between mutations affecting the response to, and 
production of, mitotic regulators was noted previously 
by Wheldon (1975) in a simpler, spatially homo- 
geneous model for tumour growth. The difference is 
clearly illustrated in figure 3 by plotting the total 
number of normal and mutant cells in a given region of 
the tissue, as a function of time, in the two cases. In the 
former case, the number of normal cells decreases as 
they are replaced by a higher density of mutant cells ; 
in the latter, the number of both cell types increases 
much more slowly. 

4. THE EFFECT OF AN IMMUNE RESPONSE 

The ability of the immune system to selectively kill 
the cells of at least some experimental cancers has long 
been recognized (Foley 1953 ; Baldwin 1955)) and the 
very rare spontaneous disappearance of human cancer 
is often attributed to a successful immune response 
(Kaiser 1989). Despite recent research work on the 
characterization of tumour antigens (Sikora 8z James 
199 1 ), many aspects of the immune response to cancer 
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Figure 3. The variation with time of the number of normal cells (dashed line), mutant cells (dotted line) and total 
number of cells (solid line) in the region 20 cell lengths either side of the site of the mutation (that is, -40 < x < 
40). (a) A mutation affecting the response to a mitotic regulator, or causing partial escape from biochemical control 
of mitosis (parameter values as in figure 1). (6) A mutation affecting the production of a mitotic regulator (parameter 
values as in figure 2). In the former case, there is a rapidly growing tumour, with normal cells being replaced by a 
higher density of mutant cells. In the latter case, there is a much slower increase in the number of both cell types. 
This figure clearly illustrates the totally different consequences of the different types of mutation. The solutions are 
obtained as in figures 1 and 2. 

remain poorly understood (Naftzger & Houghton 
199 1) . Nevertheless, immunotherapy, in which the 
natural immune response is enhanced, is one of the 
most rapidly developing cancer treatments (Rosenberg 
1988 ; Topalian & Rosenberg 1990 ; Morton & 
Economou 1990). Experience with immune suppressed 
and AIDS patients suggests that a significant immune 
response may occur only for a minority of tumours 
(Beral et al. 1991), although the short life expectancy of 
these patients means that this does not exclude the 
importance of immunosurveillance more generally. 

Several mathematical models have been proposed 
for this immune response. DeLisi & Rescigno (1977) 
and Rescigno & DeLisi (1977) developed a deter- 
ministic ordinary differential equation model for 
tumour cells and ‘immune cells’, based on an 
ecological predator-prey model. Grossman & Burke 
(1980) used a similar approach to show that both small 
and large tumours can escape immune surveillance, 
and Albert et al. (1980) determined the conditions for 
immune suppression of cancer in a predator-prey 
model with time-varying parameters. More recently, 
Hiernaux & Lefever ( 1988) proposed a model in which 
proliferating tumour cells compete with immuno- 
competent killer cells. The model predictions include 
the possibility of dormancy and of stimulation of 
tumour growth by the immune system. 

Here, we use a very simple representation of the 
immune response to cancer, by assuming that mutant 
cells are subject to an additional first order death rate, 
with dimensionless rate constant 6. Thus, we add the 
term- 6m to the right-hand side of equation (3 6). 
Numerical solutions of this amended model suggest 
that for mutations affecting the response to, or causing 
autonomy from, biochemical regulators, there is a 
critical value of S above which the immune response 
prevents the growth of the tumour and causes the 
number of mutant cells to decay rapidly to zero, after 
a short initial burst of proliferation (figure 4). However, 

Proc. R. Sot. ~2nd. B (1992) 

for mutations affecting only the production of chemical 
regulators, any positive value of 6 causes the number of 
mutant cells to rapidly decrease to zero (figure 5). In 
Appendix 2, we present analysis which suggests that, 
for any model of the form (3), with biologically 
appropriate parameter values, the condition for the 
immune system to overcome the oncogenic mutation is 

s ’ scrit =s~(5)+w-L (5) 

and this is confirmed by our extensive numerical 
simulations. In terms of dimensional parameters, this 
condition is 6> [s~+~~(&)s~(c~)...~,(c~)]-[si(c:)... 
sI (ci)]. The biological interpretation of this is that, for 
immunosuppression of cancer, the immune system 
must remove mutant cells at a rate greater than the 
excess proliferation rate of the mutant cells over 
normal cells. In particular, when the mutation only 
affects the production of regulators, this excess pro- 
liferation rate is zero, so that Scrit = 0. This explains the 
result obtained in the previous section, that when 6 = 
0, mutations affecting the response to, and production 
of, growth regulators have quite different effects. In the 
former case, the system is at the critical value of 6 when 
d = 0. Indeed, whenever 6 = aCcrit the solutions have a 
form that is qualitatively very similar to that shown in 
figure 2. Moreover, when 5 = 1 and s0 = 0 with ]H- 11 
> 0, a negative value of 6 induces an advancing wave 
of tumour cells; this is a mathematical observation 
with no biological relevance. 

One aspect of the condition (5) that is intuitively 
surprising is that Scrit is independent of the number of 
growth regulators and of whether they act in an 
autocrine or paracrine way. Moreover, in the autocrine 
case, hit is independent of the functional forms of/+(n), 
so that auto-regulation of growth control makes no 
contribution to the suppression of the advancing wave 
of mutant cells. These factors do, however, affect the 
cell density within the tumour, as illustrated in figure 
6. The tumour cell density decreases as the number of 
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Figure 4. The initial growth of a tumour cell population in the presence of an immune response, after a mutation 
affecting the response to a mitotic regulator, or causing partial escape from mitotic control. In (u), the immune 
response is not quite sufficient to suppress tumour growth, and there is an advancing wave of mutant cells and a 
corresponding receding wave of normal cells. In (6), the immune response is strong enough to suppress tumour 
growth, and the mutant cell density rapidly decreases; the ‘gap’ is rapidly filled by normal cells. We plot the density 
of normal and mutant cells (n and m, respectively) as functions of distance x from the site of the mutation, at equally 
spaced times (dimensionless time interval = 7.5) ; the arrows indicate the way in which the solution changes as t 
increases, The increase in tl above zero near the origin is a purely transient phenomenon. For brevity, we omit the 
concentrations of the corresponding regulatory biochemicals. The parameter values are s0 = 1.5, 5 = 2, H = 0, D = 
0.01, N = 10,j = 3. The value of accrlt is then 2.3. In (a), 6 = 2.2, and in (b), 6 = 2.4. In both cases, chemical 1 is a 
purely paracrine mitotic activator, with a, = 0.2, h, = 0, 4 = 20 and D, = 1.5. Chemical 2 is also an activator, with 
&B=0.1,h,=5,fi,= l,P,=OandD,= 1.3. Chemical 3 is an inhibitor, with k, = 15, h, = 30, & = 0.5, P3 = 0 and 
4 = 0.9. The solutions are obtained as in figures 1 and 2. 
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-4 -2 0 2 4 -4 -2 0 2 4 

x x 

Figure 5. The immunosuppression of a tumour cell population after a mutation affecting the production of a mitotic 
regulator. For this type of mutation, any positive immune response is sufficient to rapidly remove the mutant cells. 
We plot the density of (a) normal and (6) mutant cells (n and m, respectively) as functions of distance x from the site 
of the mutation, at equally spaced times (dimensionless time interval = 15) ; the arrows indicate the way in which the 
solution changes as t increases. For brevity, we omit the concentrations of the corresponding regulatory biochemicals. 
The parameter values are the same as in figure 2, but with S = 0.0 1. The solutions are obtained as in figures 1 and 
2. 
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Figure 6. The effect of mitotic regulation on tumour cell density. We show the initial growth of a tumour cell 
population after the same mutation in two cases. (a) Weak mitotic regulation: two regulatory chemicals with 
production rates independent of cell density. (b) Strong mitotic regulation: seven regulatory chemicals whose 
production rates depend steeply on cell density. The tumour cell density is much higher in (a) than (6) because of 
the weaker mitotic control. However, the growth rate of the tumour is approximately the same in both cases: this is 
a function of the mutation only. We plot the density of normal and mutant cells (n and m, respectively) as functions 
of distance x from the site of the mutation, at equally spaced times (dimensionless time interval = 3) ; the arrows 
indicate the way in which the solution changes as t increases. For brevity, we omit the concentrations of the 
corresponding regulatory biochemicals. The parameter values are as follows. In both (a) and (6), s,, = 3, 5 = 5, 6 = 
1.‘5, D = 0.01, N= 10. In (a), chemical 1 is a mitotic activator, with ai = 0.1, h, = 20, /?r = 0, PI = 0 and D, = 1.2; 
Chemical 2 is an inhibitor, with k, = 15, h, = 20, p, = 0, Pz = 0 and D, = 2. In (6), chemical 1 is an activator, with 
a,=0.1,h,=25,#?,=60,P,=OandD1= 1.2 ; chemical 2 is an inhibitor, with k, = 15, h, = 60, be = 2, Pz = 0 and 
D, = 2; chemical 3 is an activator, with a3 = 0.3, h, = 20, r6, = 50, P3 = 15 and D, = 1; chemical 4 is an inhibitor, 
with k, = 20, h, = 40, /?, = 1, 4 = 10 and D, = 0.8 ; chemical 5 is an activator, with ag = 0, h, = 18, 8, = 100, 
P5= 10and D,= 1.1; chemical 6 is an inhibitor, with k, = 15, h, = 30, /3a = 2, P, = 0 and D, = 1.5; chemical 7 is 
an inhibitor, with k, = 18, h, = 25, & = 4, P, = 20 and D, = 1. The solutions are obtained as in figures 1 and 2. 

growth regulators increases, and also as the control on 
their production (that is, Idp,/dnl) increases. The 
parameter values in figure 6a, b correspond to weak 
and strong biochemical control, respectively, but with 
identical mutations. 

5. CONCLUSION 

Recent experimental research has led to a partial 
understanding of the types of mutations by which 
cancer cells can acquire a proliferative advantage over 
normal cells. We have developed a mathematical 
model for the initial growth of a tumour after such a 
mutation. Our mathematical representation of the 
various types of mutation reflects the current under- 
standing of the roles of oncogenes and anti-oncogenes 

PYOC. R. SOC. Lmd. B ( 1992) 

(i.e. tumour suppressor genes) in controlling cell 
proliferation . Numerical solutions of our model, for 
biologically relevant parameter values, show that the 
different types of mutations have quite different effects. 
Mutations affecting the cell response to chemical 
regulators or resulting in autonomy from such regu- 
lators, cause an advancing wave of tumour cells and 
a receding wave of normal cells. By contrast, mutations 
affecting the production of a mitotic regulator cause a 
slow localized increase in the numbers of both normal 
and mutant cells. Building on this understanding of the 
different types of mutation, we have extended our 
model to investigate the possible effects of an immune 
response to cancer by including a first order removal of 
mutant cells. When this removal rate exceeds a critical 
value, the immune system can suppress tumour 
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growth; this critical value is equal to the difference in 
the mitotic rates of mutant and normal cells when the 
concentrations of regulatory biochemicals are at their 
values in normal tissue. 

One of the roles of theoretical models in cell biology 
is to suggest ways in which experimentally charac- 
terized molecular and genetic mechanisms might 
conspire to cause macroscopic phenomena. In this 
regard, the biological implications of our results are 
twofold. Firstly, our investigation of the effects of 
different types of mutation suggests a possible mech- 
anism by which the expression of different oncogenes, 
or the loss of different anti-oncogenes, could give rise to 
different types of tumour growth. Secondly, our model 
suggests that the immune system may control tumour 
growth by directly counteracting the mitotic advantage 
of the cancer cells. Further investigation of this 
possibility, both experimentally and theoretically, 
could ultimately lead to an understanding of the 
factors responsible for the success or failure of immuno- 
therapy treatments. 

J.A.S. was supported by a Junior Research Fellowship at 
Merton College, Oxford. M.A. N. is a Junior Research 
Fellow of Wolfson College, Oxford. 

APPENDIX 1 

A biological constraint on any model for cell growth in 
uivo is that the normal level of cell density in the tissue 
is stable to small local perturbations in either the cell 
density itself or the concentrations of regulatory 
biochemicals. In this Appendix, we investigate the 
conditions that this imposes on the model parameter 
values. Linearizing the model about the steady state 
n=c f = 1, with m=O and &= 1, s,,=O, H=O (as is 
the case in normal tissue) gives 

aqat = D(a”G/ax’) +r’( 1) fi+si( 1) c;+ . . . +s;( 1) c;, 

and 
(A 14 

ac;/at = D,(a”c;/ax”) + [Pr( 1) +pl( l)] n’- [&+pt( 1)] c;, 
(A 14 
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Now for biologically relevant parameter values, 
pr (n) and 4 are both % 1 (except that one may be zero). 
Writing/+ (n) = dl (n)/e and pt = pt/e, with c + 1, gives 

[DK’ - o---q I)] = s;(l)&(l) +/$(l)J/ 
i-1 

For any given value of K, the roots of this equation all 
have positive real part for sufficiently small values of e 
if, and only if, 

[DK~- ~;lw&wPi (1) +P; Wl/K+P* WI ’ 0. 
1-l 

We therefore require this inequality to hold for all 
K E (w, so that the steady state is stable if, and only if, 

r’(1) +~~s;(l)[P,(l) +P,‘u)llre+P,(l)l < 0. (A 3) 
f-l 

APPENDIX 2 

Numerical solutions of the model equations suggest 
that there is a critical value of the parameter 6, which 
reflects the extent of the immune response to the 
oncogenic mutation, above which the tumour cells 
rapidly die off, but below which the model solutions 
have the form of an advancing wave of tumour cells 
and a corresponding receding wave of normal cells. 
Here we present analysis which suggests that this 
critical value depends on the parameters characterizing 
the mutation in the following way : accrit = s,, + s1 (5) - 1. 

We look for travelling wave solutions of (3), that is, 
waves with constant shape and constant speed. This 
implies that n(x,t) = C(Z), m(x, t) = R(Z), ct (x,t) = 
q (z), where z = x+ at, with a the dimensionless wave 
speed. Substituting these solution forms into (3), with 
an immune response term - 6m added to (3 b), and 
omitting the overbars for notational simplicity, gives 

a(dn/dz) = D(d%/dz2) +nr(n+m) sl (c,) . ..s. (c,) -n, 
(B 14 

a(dm/dz) = D(dgm/dz2)+mr(n+m)[s,+s, (&,)s, (c,) . ..s.(c,)]-(1 +S) m P 14 

a(dc,/dz) = D,(dzc,/dz2)+~+(n+m)p,(n+m)+Hmp,(n+m)-[P,+p,(1)]cl, (B lc) 

and 

a(dc,/dz) = D,(d2c,/dz2) + pi + (n + m) p,(n + m) - [pt +P,( I)] ct. (B 14 

(l<i<j),wheren”=n-1 and&=c,-1 area1141 
in absolute value. We look for plane wave solutions, 5 
cc exp (l/cx--Wl), c;- cc exp (LKx---Ot) (L = -\/ - 1). Sub- 
stituting these expressions into (A 1) and simplifying 
shows that, for non-trivial solutions, we require 

i-j 

[DK~---+)] = c s;( l)j-jr (1) +p;( I)]/ 

‘-’ [D rK2-W+<+pi(l)]. (A 2) 

This is the dispersion relation for O(K) ; the steady state 

is stable if, and only if, g&‘(o) > 0 for all K E Iw. 
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These equations are valid on - co < z < 00, with the 
initial conditions n = ct = 1, m = 0 at z = - 00. As 
discussed in the main body of the paper, we anticipate 
that D < 1, while P,+pr(n+ m) b 1. We can therefore 
assume that, to a first order approximation, D = 0 and 
either 4 = co or h, = 00. The equations (B 1) then 
reduce to a system of two coupled ordinary differential 
equations : 

dn/dc = n{s, Gf(n, m)] * F(n + m) - 1) 

and 
P 24 

dm/dc = m{s, r(n + m) + s1 [$‘(n, m)] . 
F(n + m) - 1 - S), 
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where [ = z/a and f(n, m) = [PI+ (n+m) PI (n+m) 
+Hmp, (n+41/[G+P1(1)l, with 

The stability matrix of (B 2) at the equilibrium point 
n= 1, m=O, is 

[ 

aflan(l,O)+F’(l) i?J/~m(l,O)+F’(1) 
0 s,+s, (5) - l-6 1 

as f(l,O) =F(l) = 1. NOW afl%(l,O)+F’(l) is 
simply the left-hand side of the inequality (A 3), and 
the stability condition for normal tissue implies that 
this is negative. Therefore the equilibrium point (1,O) 
in the n-m phase plane is a stable node if 6 > 
sO+sl(& - 1, and a saddle point if 6 < s,+s, (&- 1. 
Moreover, (B 2) has a solution corresponding to a 
travelling wave solution of (3) if, and only if, there is a 
trajectory emerging from the point ( 1,O) in n-m phase 
space. This suggests that such a travelling wave solution 
exists if, and only if, 6 < s,, + s1 (5) - 1; this solution will 
then correspond to the unique trajectory leaving ( 1,O). 
Moreover, as r(N) = F(N) = 0, the triangular region 
n > 0, m 3 0, n+ m < N is a confined set in the n-m 
phase plane, and thus this trajectory must terminate 
within this region. Further mathematical details of this 
travelling wave form in a simple special case will be 
discussed elsewhere (Sherratt 1992). 
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