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CELLULAR GROWTH CONTROL AND TRAVELLING WAVES
OF CANCER*

JONATHAN A. SHERRATTY

Abstract. One of the major differences between cancer cells and normal cells is an increase in cell prolif-
eration, caused by the escape of cancer cells from the normal biochemical regulation of mitosis. This increased
proliferation results from genetic mutafidns causing the exptession of oncogenes, or the loss of anti-oncogenes.
A reaction diffusion model is developed for the initial growth of a tumour following an oncogenic mutation of
a single cell. This model incorporates thespossibility of an immune response to the cancer cells. Numerical
solutions of the mode! rapidly evolve into an advancing wave of tumour cells and a receding wave of normal
cells. The author analyses the ordinary differential equation system governing these travelling wave solutions
and obtains a lower bound on the wave speed. Under biologically relevant approximations, a necessary and
sufficient condition is derived for the existence of a travelling wave solution, and it is shown how the qualitative
form of the wave fronts of normal and mutant cells depends on the parameter values. Finally, an analytic
approximation for the wave fronts in the case of small mutations is derived. Biologically, these results suggest
that, for certain types of mutations, which are quantified, growing tumours can initially contain a significant
proportion of normal cells. Moreover. this'model predicts that there is a critical level of immune response,
which again is quantified. above which the immune system prevents the initial growth of the tumour.
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1. Introduction. Cancer cells and normal cells differ genetically, due to mutations
that are often caused by carcinogenic agents. This genetic difference is reflected in a
number of phenotype differences, and perhaps the most notable of these is a marked
increase in the rate of cell division. Over the last decade, experimental research has led
to the characterization of a number of oncogenes, whose expression in tumour cells
promotes cell proliferation [16], [26], [27]. More recently, anti-oncogenes have been
discovered, whose role in normal cells is to suppress excessive cell proliferation and whose
loss can give rise to a tumour cell [15], [21].

Both oncogenes and anti-oncogenes affect cell division via growth regulatory chem-
icals [1]. [14, Chap. 9], [28]. The growth of cells in a normal tissue is controlied by a
number of such chemicals, which either activate or inhibit cell proliferation. This complex
regulatory system stabilizes a normal tissue while allowing increased cell division when
appropriate, for example, in wound healing [22], [23]. However, oncogenic and anti-
oncogenic mutations remove a cell from these growth controls, so that the mutant cell
may divide uncontrollably, giving rise to a tumour. In this paper, we use a mathematical
model to investigate the breakdown of growth control in a tumour cell and the extent
to which the expansion of the tumour can be checked by an immune response to the
mutant cells.

During the 1970s, a number of theoretical studies of growth control in cancer were
published. These divide broadly into two categories: those considering the expansion of
a tumour in the presence of biochemical regulators of mitosis and those investigating
possible instabilities in normal proliferative control. In the first category, Greenspan
[12]. [13] presented a detailed model for tumour growth based on the availability of
nutrients and growth regulators, while Glass [11] and Shymko and Glass [24] showed
that the growth of a tumour could be limited or unlimited, depending on parameters
affecting the concentration of a biochemical inhibitor of cell division. Adam [2]-[5]
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subsequently extended the work of Glass [1 1] to consider the effects of tumour geometry
and spatial nonuniformity. Recently, Michelson and Leith [17] investigated the role of
autocrine and paracrine regulators in tumour growth, by varying the parameters in a
simple logistic model for cell proliferation. A similar approach was used by Albert, Freed-
man, and Perelson [6 ], who considered the effects of time-varying coefficients in a pred-
ator-prey model for the immune response to cancer cells; these variations were attributed
to changes in the concentrations of mitotre-regulators.

However, our work in this paper is more closely related to the second category of
study. In particular, Wheldos [29] showed that mutations affecting the control of cell
growth by a single biochemical inhibitor are of two distinct types, depending on whether
the production of, or response to, the chemical is affected by the mutation. In a similar
study, Bell [8] used a stochastic model to derive the probability of a mutant cell giving
rise to a macroscopic tumour. Both of these studies consider cell growth regulated by a
single biochemical inhibitor in a spatially homogeneous tissue. Subsequent experimental
work has shown the importance of both biochemical activators and inhibitors of cell
division and has enabled the various types of mutations to be characterized in terms of
the corresponding oncogenes and anti-oncogenes. We will build on these experimental
results to develop a reaction diffusion model in which cellular growth control results
from the interaction of a number of biochemical regulators. Moreover, we will investigate
the stabilizing effect of an immune response to the tumour cells.

2. The governing equations. We consider mixed populations of normal and mutant
cells, with densities n(x, ) and m(x, t) per unit volume; here x and ¢ denote space and
time coordinates. Our model is intended to be a generic representation of the competition
between normal and mutant cells. For simplicity, we consider only a single cell type and
we neglect the details of interactions between the cells and the extracellular matrix. We
suppose that both cell types are motile and, following a number of previous authors (see
[19] for review), we represent their movement by linear diffusion with diffusion coefficient
D in both cases. In reality, the mutant cells may have increased motility due to mutations
affecting cell-cell adhesion, but we neglect such effects to focus specifically on mitotic
regulation. We suppose that cell growth is regulated by j chemicals, which are produced
by the cells on which they act. We take the rate of production of each chemical per
normal cell to have the constant value Ac{, while the division rate per normal cell is
Ror(n + m)si(cy) - -si(¢cj). Here ¢i(x, 1), ..., c{x, t) are the concentrations of the
chemical growth regulators, and the function s; is strictly increasing if chemical / is an
activator of cell division and strictly decreasing if chemical / is an inhibitor. The constant
Ry is the growth rate in normal tissue, for whichn =n‘, m =0, ¢; = ¢{ (1 <i <j), and
therefore r(n¢)s,(c$)---s{ cf) = 1; we assume that the chemicals control cell division
independently, so that r(n°) = s;(c{) = 1 for all i. This growth rate will normally be
balanced by a corresponding rate of cell death. The function r reflects the physical con-
straints on the growth of the total cell population, and we take r(n) = (N — n)/
(N — n“); here N is the maximum possible density of cells.

There are three possible mutations that a cell can undergo with respect to growth
control.

1. The mutant cell detects extracellular chemical concentration incorrectly. We
suppose that chemical | is detected to have concentration £c, (x, ¢) by the mutant cells,
where the positive constant £ is greater than 1 if chemical ! is a mitotic activator, and
less than | if chemical | is an inhibitor.

2. The mutant cell produces chemical at an inappropriate rate. We suppose that
chemical 1 is produced at rate Phc{ per mutant cell, where the positive constant P is
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greater than 1 if chemical 1 is an activator, and less than 1 if chemical 1 is an inhibitor.
(Recall that Ac; is the rate of chemical production per normal cell.)

3. The mutant cells partially escape from their dependence on biochemical regu-
lators. We suppose that the rate of mutant cell division is increased by the additive factor
sor(n + m) per cell, where s is a positive constant.

Oncogenes and anti-oncogenes corresponding to each of these three types of mutation
have been characterized in recem experiments [27] [28].

Our model equations are conservatlon equatlons for normal cells, mutant cells, and
each associated chemical, in a spatlally heterogeneous mixture of normal and mutant
cells, and have the following form:

(2.1)
Cell Biochemically regulated Cell Immune
migration cell division death response
an ———— -~ - — ls A~ N —
i DVln  + Ronr(ni + m)si(cy)- - -si(¢;) -  dn,
om 2
o = DV'm + mr(n+ m)[Resi(§c))s2(c2) - -s(¢c;))+ 5] — dm — om,
6(‘. 2 ,
M = DV% + hci(n + Pm) - d.,
aC,' 2 g
a5 = DVé, + . hef(n+ m) - d.
it , —_—
Chemical Chemical Chemical
diffusion production decay
by cells

(2 < i < j). Here D, is the chemical diffusion coefficient, which we assume to be the
same for each chemical. We take cell death and chemical decay to be simple first-order
processes, with rate constants 4 and d,, respectively. Since n = n, m = 0, ¢; = c¢¢
(1 < i <j)is an equilibrium state, and r(n¢) = s;(n“) = 1 for all i, we have d = R, and
d. = hne.

We represent the immune response to mutant cells by including an additional first-
order death term, with linear death rate §. In animals, the ability of the immune system
to selectively kill tumour cells has long been realised [7], [10]. Moreover, one of the
most rapidly developing treatments for human cancer is immunotherapy, in which the
natural immune response to cancer is enhanced [181, {20], [25].

We consider these equations in one space dimension, with —o0 < x < 00, and we
take the initial conditions to be

0, —-L<x<L,

n¢, |x|>L,

n., —L<x<L, )
m(x,0) = ¢i(x,0)=ci

n(x,0) =
{ 0, |x|>L,

(1 <i=<j). Here L is half a typical cell diameter, so that these conditions correspond to
the mutation of a single cell, centred at x = 0. The appropriate boundary conditions are
n=n‘ m=0,and ¢; = ¢{ at x = +co. The one-dimensional geometry facilitates
mathematical analysis, and numerical solutions in two and three dimensions with radial
symmetry are qualitatively very similar to these one-dimensional solutions. However,
we have not investigated the effects of asymmetries in these more realistic geometries.
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We nondimensionalize system (2.1) using the following rescalings,” with * denoting a
dimensionless quantity:

n* =n/n‘, m*=m/n‘, ¢ =c/cf, x*=x/L, t*=Ry,
D* = D/(RoL?), ,2: = D(-/(RoLf)_, 5o = So/Ro, h* = h/(Ren),

8 =8/Ry, N*=N/n‘, si(ct)=si(c:), r*(n*)=r(n).

.
Henceforth, we drop the asterisks for notational simplicity. The dimensionless governing
equations are then

d
(2.22) 3;1 = DV + nr(n + m)si(c))- - si(c;) — n,
(2.2b) )
am 2 .~
T DV:m + mr(n + m)s|(kci)s2(c2) - - -si(¢cj) + somr(n+ m) — (1 + &)m,
aC| 2
(2.2¢) E=D"V ¢+ h(n+ Pm— ¢),
6c, 2
(2.2d) < = D¥ i+ h(n+m-—c),
(2 < i <) subject to
[0, -1<x<1, 1, —-l<x<l,
(2.3a) n(x,0)= m(x,0) = ¢i(x,0)=1,
1, |x|>1, 0, |x|>1,
(2.3b) n=1, m=0, ¢i=1 atx=ztow.

Since (2.2d) holds for each ¢; with 2 < i < j, with the same end conditions, the value of
ci(x, 1) is the same for each i = 2. (This assumes uniqueness of solution to (2.2) subject

2.01
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FIG. L. The numerical solution of (2.2) subject 10 (2.3) for parameter values € = 2. P = 2.5 = 2.6 = 1.5,
D=001.D.=1.h=20 k=15 N=10.j, = L. j, = L. with chemical | an activaior of mitosis. We plot n
and m as functions of x at equally spaced times (dimensionless time interval = 1.5). For brevity, we omit the
solutions for ¢, and ¢y; these also have travelling wave form, with ¢, = 12 and ¢; = 6 near the origin, and
o = ¢ = 1 for large |x|. The arrows indicate the direction in which the solution moves as t increases. This
solution corresponds to an advancing wave of mutant cells and a receding wave of normal cells. The growing
tumour is composed entirely of mutant cells, at a density of about six times that of cells in normal tissue. The
solution is qualitatively very similar if more chemicals are introduced.
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FIG. 2. The numerical solution of (2.2) subject 10 (2.3) for parameter values £ = 1, P = 0.2, s = 0,
6=0.D=00L.D.=1.h=20.k =15 N=10j,=1,j; = 1, with chemical | an inhibitor of mitosis. We
plot n and m as functions of x at equally spaced times (dimensionless time interval = 333). For brevity, we
omit the solutions for ¢, and cy; these are very closely approXimated by n + Pm and n + m, respectively. The
arrows indicate the direction in which the solution moves as t increases. This solution corresponds to a rapid
increase in both normal and mutant cell densities near the origin, followed by a very slow. owrward spread of
these cells. The timescale over which the solution evolves is very long compared to that in Figs. t and 3. The
solution is qualitatively very similar if more chemicals are introduced.

to (2.3); see Britton [9, Chap. 5] and papers cited there for the proof of uniqueness.)
Henceforth, we write ¢;(x, t) = ¢(x, t) (i = 2).

It remains to consider the functional forms of s;(c), which are subject to the constraint
si(1) = 1. We suppose that j, of the chemicals are activators of mitosis and that the
remaining j, = j — j; are inhibitors. For the activators, s; must be an increasing function,
and we take s;(c) = c. For the inhibitors, s; must be decreasing, and we take s;(¢) = k/
{1 + (k — 1)c]; for simplicity, we suppose that the positive constant k(>1) is the same
for each inhibitor.

We solved (2.2) subject to (2.3) numerically for a range of parameter values. The
general form of the solutions is as illustrated in Fig. 1: a wave of mutant cells moving
out from the origin, with a corresponding receding wave of normal cell density. In the
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FIG. 3. The numerical solution of (2.2) subject 10 (2.3). The parameter values are as in Fig. | except that
P = 6.5. We plot n and m as functions of x at equally spaced times (dimensionless time interval = 1.5). For
hrevity, we omit the solutions for ¢, and ¢y, these also have travelling wave form ., with ¢, = 30 and ¢; =~ 8 near
the origin, and ¢, = ¢ = 1 for large | x| . The arrows indicate the direction in which the solution moves as
increases. This solution corresponds to an advancing wave of mutant cells and a receding wave of normal cells.
The growing tumour has a cell density of eight times that in normal tissue and is composed of a roughly equal
mixture of normal and mutant cells. The solution is qualitatively very similar if more chemicals are introduced.
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figure, the dimensionless wave speed is about 0.25. This speed increased with [& — 1]
and s, and decreased with 8, but seemed essentially independent of P. Indeed, when
£ =1 and s, = & = 0, so that the mutation was only with respect to the production of
chemical 1, the solution did not have travelling wave form, but rather there was a very
slow diffusion of mutant cells out from the origin, as illustrated in Fig. 2. This marked
qualitative difference between mutations affecting the response to, and production of,
mitotic regulators was notéd ) previously by Wheldon [29] in a simpler, spatially homo-
geneous model for tumour growth. In most cases, we found that behind the wave front
n=0and m> I, asin Fig."'(, with the value of m increasing with {§ — 1|, | P — 1],
and sp, and decreasing with 8. However, for certain parameter values, both n and m were
nonzero behind the front, as illustrated in Fig. 3; this case only arose for fairly large
values of | P — 1|. The analysis we present below predicts all of these phenomena.

3. Steady states. We begin our analysis of (2.2) by considering the spatially ho-
mogeneous steady states. These satisfy ¢, =n+ Pmandc=n+m, with

n=nr(n+ m)s;(n+ Pm)s,(n+ m)---s(n+m),
(1 + 8)m = somr(n + m) + mr(n + m)s (én + EPm)sy(n + m)- - -s(n + m).

We divide the steady states into four categories.
(i) n=m=0.
(ii) m =0, n # 0. Then n must satisfy

N-n\ . k h=l
(N—l)n [+(k—Dn

— 1/ja — 1/ Jja
‘=tn=(N l) ’[l+(k l)n]” = R.(n).

(3.1)

N—n k

One solution of this is clearly n = 1, which is the dimensionless cell density in normal
tissue. When m = 0, a biological requirement of the model is that this solution n = | is
stable to small, local perturbations in 7 or ¢;, and straightforward linear analysis shows
that this holds if and only if /(1) + s(1) + --- + 5j(1) <0, that is,

(3.2) L+N%T>h+%.
This is independent of the diffusion coefficients since the spatially homogeneous mode
is the most unstable. In particular, since we anticipate that N > 1, this implies that
ji = ja. In this case, straightforward calculation shows that R, is a strictly increasing
function with strictly increasing derivative on (0, N). Moreover, R,(0) > 0 and R,(n) =
+00 as n = N~. Therefore (3.1) has exactly two roots on (0, N): the stability condition
(3.2)-implies that R,(1) > 1, so that n = 1 is the larger of these two roots.

(iii) n =0, m # 0. We first consider the case of chemical | being a mitotic activator.

The corresponding equation for m is then

1+8\"a[N=1 s "1+ (k—1)m
Pt N-m 1+56 k

Again, R,, is a strictly increasing function with strictly increasing derivative on any regions
of (0, N) in which R,,(m) > 0, and R,,(m) = +co as m = N~ . Moreover, R, (m)=0
on (0, N) & so/(1 +8)> 1 — 1/N <8 <5oN/(N — 1) — 1. In this case, (3.3) will have
exactly one root on (0, N), while, if 8 > soN/(N — 1) — |, there will be either two roots
or no roots (Fig. 4). Since, for each m € (0, N), R,,(m) increases with §, the condition

j1/ja
(3.3) mé( T’ERMmy
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(a)

Rp,(m)
Ry (m)

Rp(m)
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FI1G. 4. The qualitative forms of the function R,,(m), defined in (3.3), for different values of 8. (a) 6 < soN/
(N—1)— L:(b)soN/(N — 1) <86 <8P, £ 50): () 6> 8P, &, 50). The number of roots of (3.3) on (0, N)
is 1,2, and 0, respectively. The solid line represents y = R,(m), and the dotted line represents vy = m.

for there to be no roots has the form & > 6.(P, £, so). It is straightforward to show that
the analogous results hold when chemical | is an inhibitor.
(iv) n, m # 0. In this case, the values of n and m must satisfy

si(v)f(u) =1,
sor(u) + si(gv)f(u) = 1 + 4,
where t=n+ m,v=n+ Pmand f(u) = r(u)s,(u) - - - s;(1t). Suppose first that chemical
1 is an activator. Then s,({v) = £s,(v), so that
1+6—¢

sor(u)=l+5-£=zt=N—(N—l)( p
0

) = Ug, Say
1
S(uy)
Therefore, provided that P # 1, there is a unique solution for n and m, given by n =
n,=(Pu,— 0,)/(P—1),m=m,=(v,— u,)/(P~—1).(If P= |, we have two independent

equations for # = v, and thus there are no steady states off the coordinate axes.) We
require both n, and m, to be positive, and thus this solution is relevant if and only if

=7 = v,, say.

v,>u, and Pu,>vi=u,>0 and P>v,/u,> 1.
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When chemical 1 is an inhibitor, we have v, = s7'[1//(u)], V\;here Us .satisﬁes

a4 1+ 6 = sor(us) + f(u)si (&s7' (1/f(us))
‘ _ (N-u, kf(w)
—f"( N-1 ) tékf(u,) o P

The number of roots of this equation depends on the form of . When Ja=0, fisstrictly
decreasing, and thus & is alse strictly décreasing, with ®(N) = 0, so that (3.4) has either
zero or one root, depending on ®(0). When j, > 0, the form of & is more difficult to
determine. In this case,

_(N-u\ k =1
f(“)'(zv—n)“_/[u(k—l)u] ’

which can easily be shown tq have a unique maximum on (0, N), say at ¥ = u,,, with
J(0) = 0 and f( N) = 0. Therefore kf(u;)/[Ekf(us) + | — €] = F(uy) also has a unique
maximum at u, = u,,, with F(0) = F(N) = 0. Moreover, F'(0) is strictly positive if

(a) (b)

o(u,)
é(uy)

#(u,)

U,

FIG. 5. The qualitative form of the function ®(u,). defined in (3.4). on the interval (0, N), when the
parameter so is sufficienth small. (a) j, = 0. (b) jq = 1:(c) ja = 2. In(c). we have shown a case for which the
value of & at its unigue local maximum is greater than &(0): however, the value can also be less than ®(0).
depending on the parameter values. Although we have only proved these to be the qualitative forms of  when
so is sufficiently small, numerical investigation suggests that they hold for a wide range of values of s,.
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Jja = 1 and zero if j, = 2. The function & is given by adding the linear term so(N — u;)/
(N — 1) to F(uy), so that ® = F' — 50/(N — 1). To calculate the general form of ¥, it
is therefore necessary to find the zeros of F”, which is algebraically unfeasible, and,
moreover, we will not require the full detail of ® in what follows. However, from the
form of F, it is clear that for sufficiently small 5o, the qualitative features of ® are as
illustrated in Fig. 5. Numerical investigation suggests that these qualitative forms hold
for a wide range of values of s, Therefore, when chemical 1 is an inhibitor, there can
be up to three steady states with n, m # 0, c_lepénding on the parameter values.

In summary, the model has two nontrivial steady states on the n axis, at n = 1 and
n € (0, 1). There will also be at least one steady state on the m-axis, provided that § is
sufficiently small, and, in addition, there may be off-axis equilibria, depending on the
parameter values.

4. Travelling wave solutions. The partial differential equation solutions discussed
above appear to evolve rapidly to waves moving with constant shape and speed. We
therefore look for solutions of the form n(x, t) = Ai(z), m(x, t) = rﬁ(z), c(x,t)=¢é(z2),
where z = x + at is the travelling wave variable, with a the dimensionless wave speed.
Henceforth, we will only be considering these travelling wave solutions, and we drop the
tildes for notational simplicity. Substituting these solution forms into (2.2) gives the
following system of ordinary differential equations:

(4.1a) an' = Dn" + nr(n + m)s,(c;)sz2(c)- - -s;(¢) — n,

(4.1b) am' = Dm" + mr(n + m)s,(&c,)s2(c) - - -si(c) + somr(n + m) — (1 + 8)m,
(4.1¢c) acy ="D.c + h(n + Pm — ¢),

(4.1d) ac' = D.c"+ h(n+ m—¢)

(2 < i <j), where prime denotes d/dz.

A solution of (4.1) corresponding to a travelling wave solution of (2.2) must originate
from the steady state n = ¢; =c=1,m=m' = n' = ¢} = ¢’ = 0, and, to investigate the
trajectories leaving this equilibrium point, we consider linear stability. Calculation of the
stability matrix at this steady state shows that an eigenvector (A, #A', m, W', ¢, ¢, ¢, ¢')
corresponding to an eigenvalue A must satisfy i’ = M, m' = A, &) = A, and &' = A¢,
with

(4.2a) [DA2 —a\ + F())A+ r(1)m + s\ (1)é + s'(1)é =0,
(4.2b) [DA? + a\ + A} = 0,

(4.2c) hii + Phrit + {D\? — a\ — h]é, = 0,

(4.2d) hii + hiit + [DA% — a\ — h)é = 0.

Here A = 5, + 5,(§) — 1 — é and s(c) = s2(¢) - - *55( ¢). This implies that A must satisfy
either

(4.3) DN2—ax+A=0
or
(4.4) Q(N)=(DA?—ax — h)(DA\* —a\ — /(N — 1)) — h[s'(1) + s\ (1)] = 0.

Therefore, for all parameter values, there is an eigenvalue with positive real part; the
trajectory corresponding to the travelling wave solution will leave this equilibrium point
along the eigenvector corresponding to the eigenvalue with smallest positive real part.
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TABLE |

The comparison between numerical solutions of (2.2) and the model prediction (6.2) of the lower limit on
D for the wave of normal cell density to have a bump. For four sets of parameter values, we list the critical value
of D, given by (6.2) and the value of max_q, < x <o N(x, t = 100) when this value of D, is used in a numerical
solution of (2.2). The fact that, at this critical value, n is slightly greater than | even at a large time such as t =
100 is expected intuitively: The peak in n gradually reduces in height as t increases, and in the critical case its
height decreases 1o 1| only in the limit as t — . For each of the four parameter sets, condition (6.2) is valid,
since (4.6) is satisfied at the critical value of D.. In the table, we also list the predicted wave speed Gypeo, =
2VD(so + si(&) — | — 8) and the sive speed dow in Phe numerical solution of (2.2) at ¢ = 100 in each case, the
comparison is very good. The third column indicates whether chemical 1 is an activator or inhibitor of mitosis
(denoted by A and 1, respectively). , "

Ja - B Chem. | P 3 So ] Qiheor Aobs Crit. D, Ninax

| i A 1.0 20 1.0 1.5 0.2 0.1999 0.44 1+64x10°%
] 3 A 2.7 2.0 20 20 0.283 0.287 0.99 I4+9.1x%x10°%
1 2 1 0.1 0.65 1.0 1.0 0.197 0.1967 1.32 1496x10°
1 1 1

1.0 0.8 0.2 0.1 0.162 0.159 0.65 1+12x107

.

Now the root of (4.3) with the smallest (positive) real part is

a—Va® - 44D

(4.5) A= >D

Suppose first that this has a smaller real part than any of those roots of (4.4) that have
positive real part. Then, since m = 0 and the eigenvector corresponding to A has a
nonzero m component, we require that A € R, that is, a > 2VaD. (We will show in §5
that 4 > 0 is a necessary condition for our model to predict tumour growth.) Numerical
simulations suggest that, in solutions of the partial differential equations, waves in fact
move with the minimum possible speed, 2%, whenever the parameter values are
such that A is the eigenvalue with the smallest positive real part (see Table 1); this
phenomenon is familiar from scalar reaction-diffusion equations such as the Fisher equa-
tion (see [19] for review). Therefore, we assume that a = 2VAD = A = VA/D. Now
both of the bracketed quadratics in (4.4) have one positive and one negative real root,
and Q(0) =j; —j.+ 1 /(N —1)—ji/k = 0, from (3.2). Therefore (4.4) has exactly two
roots with positive real part, and these real parts are greater than A if and only if
Q'(VA/D) < 0 and Q(VA/D) > 0 when a = 2VAD. Straightforward calculation shows
that these inequalities hold if and only if

D, Al si(D) +s(1)
(4.6) D<2+A[| A+l/(N—-l)]

and D. > D (note that s\(1) + s'(1) = j, — j; + ji/k, which can be either positive or
negative). The second of these will obviously hold for biologically relevant parameter
values, so that (4.6) is a necessary and sufficient condition for A to be the eigenvalue
with smallest positive real part. When this condition is not satisfied, the travelling wave
speed in numerical solutions of (2.2) appears to always be greater than ZVZ_D, typically
by about 10% or 20%; however, we have been unable to investigate the wave speed
analytically in this case.

5. A simplified travelling wave system. Cells in vivo move at speeds of only a few
cell diameters per hour, while the cell division cycle lasts several days, and thus we
anticipate that the dimensionless cell diffusion coefficient D < 1. Also, we expect the
kinetics of the regulatory chemicals to be very fast compared to cell division, so that
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h > 1. Thus, to a first approximation, we can assume D = 0 and & = co. System (4.1)
then reduces the following two coupled ordinary differential equations for n(z) and
m(z):

(5.1a) dnfdz = nf(n+ m)s;(n + Pm) — n,
(5.1b)  dm/dz = mf(n + m)si(én + EPm) + somr(n + m) — (1 + 8)m,
e~ -,
where 7 = z/a, and, as previously, /' = r-s;* -+ -5;. We look for a solution of this
system subject to the initial conditjon n = 1,m =0at Z = —cc.

The steady state values of n and m for (5.1) are the same as for the full system
(2.2). In particular, (1, 0) is a steady state. (Here we use coordinates (ng, m,) to denote
the point n = ny, m = my in phase space.) The stability matrix of (5.1) at this steady
state is given by

[/”(l)+s’.(l) f'(l')‘*'PS'l(l)]
0~ so+si(§)—1-8}

Now (3.2) implies that /(1) + s(1) < 0, and thus a necessary and sufficient condition
for the existence of a solution satisfyingn =1, m=0atZ = - is

(5.2) sot+ si(§)>1+a.

Provided that this condition is satisfied, there is a unique trajectory originating from
(1, 0), which corresponds to a travelling wave solution of (2.2). We now consider where
this trajectory terminates. We have /( N) = 0, so that n’ and m’ are both nonpositive on
n+ m= N, and similarly ' = 0, m' > 0 on n + m = |, provided that (5.2) holds, since
si(§ + E(P — 1)m) > s,(¢) for m > 0 when chemical | is either an activator or an
inhibitor. Also, n' = 0 on the m-axis and m' = 0 on the n-axis, so that the trapezoid
enclosed by n + m = 1, n + m = N, and the coordinate axes is a confined set, .# say.
Moreover, for the trajectory leaving (1, 0),

dm|  _setsi(§)—1-8—/(1)=si(1)
dn S'(1) + Psi(1)

(1.0)

€[—o0, —1)U (0, o],

since when chemical 1 is either an activator or an inhibitor, (P — 1)s}(1) = 0. Therefore
this trajectory enters %, and thus terminates at some equilibrium point in .%.
Condition (5.2) has important implications for the remaining equilibrium points.
We have shown that when chemical | is an activator, there is a steady state with n = 0,
provided that § < §.( P, £, 5u), and that this steady state then satisfies m = R,,(m), defined
in (3.3). Now R,,(1) = [(1 + & — 50)/(P%)]'"4, and thus (5.2) and the fact that P > |
together imply that R,,(1) < 1. Therefore é. > so + 5,(£) — 1, and there is exactly one
steady state on the m-axis with m > 1, say m = M, whenever (5.2) holds; if § > soN/
(N — 1) — 1, there will be another solution on the m-axis with m < | (see Fig. 4). A
similar argument shows that this result is also true when chemical 1 is an inhibitor.
The stability matrix at (0, M) is

J(M)s (PM) ~ 1 0
M[f"(M)s(¢PM) ML [ (M)s\(¢PM)
+ E/(M)s\(§PM) + sor'(M)]  + EPS(M)s'(EPM) + sor'(M))

Now, when chemical | is an activator, [/"(M)s,(EPM) + EPS( M) s\ (EPM) + sor'(M)] <
0, since R!,(M) > 1, and a similar argument holds in the inhibitor case: Intuitively,
these inequalities both hold because m = M is stable to small perturbations in m when



1724 JONATHAN A. SHERRATT

n is constrained to be zero. Therefore, if f( M)s,(PM) < 1, (0, M) is a stable node, while,
if s)(PM)f(M) > 1, (0, M) is a saddle point, with stable manifold along the m-axis.

Consider now steady states off the coordinate axes. When chemical | is an activator,
we have shown that there is exactly one such steady state, and that it lies in the positive
quadrant, provided that u; > 0 and P. > v,/u, > 1. Here v; = 1/f(u;) and r(u,) =
(1 + 8 — §)/s5. Condition ( ,Q@) therefore qnphes that r(u) < 1, so that u; > 1; also, u;

<Ner(u)>0e 1 +6> & Now v,/us = 1/[us f(us)] = [Ra(us)/us]’#, where R, is

defined in (3.1), and we havg shown that R 2(Us) > us when 1 < ug < N. Thus, when
chemical 1 is an activator, this steady state is located within & ifand only if 1 + 6 > £
and P> v,/ u,.

Continuing the case of chemical 1 being a mitotic activator, (0, M) is an equilibrium
point, so that £PM f( M) + sor(M) = | + é. Therefore

(0, M) is a saddle point < | > 5,(PM)f(M) = PM f( M)
T e r(M)> (1 + 8- £)/s =r(u)
=M< u,

since r is a decreasing function. Now, when P = v,/u,, Pu,f(u,) = 1. Therefore
Ptu, f(us) + sor(ug) = £+ sor(ug) = 1 + 6, so that (0, u,) is an equilibrium point of (5.1).
However, u, > 1, and (0, M) is the unique equilibrium point on the portion | <m < N
of the m-axis. Therefore, when P = v,/usand | + & > £ (so that u, < N), M = u,. How-
ever, 1, is independent of the parameter P while M increases monotonically with P. Thus
(0, M) is a saddle point if and only if P> v,/u,and | + & > &; that is, if and only if (n;,,
my)e L. If (n,, my) € %, the trajectory leaving ( I, 0) must terminate at (0, M). Straight-
forward calculation shows that (n,, m,) is a stable steady state whenever it lies in ..
This suggests that, in this case, the trajectory leaving (1, 0) terminates at (n,, m,), since
it cannot terminate at (0, M). Formally, there remains the outstanding possibility of a
semistable limit cycle in %, but extensive numerical solution suggests that such a limit
cycle never exists.

When chemical | is an inhibitor, we have shown that for steady states off the co-
ordinates axes, ¥ = n + mand v = n + Pm satisfy ®(u) = 1 + 8, v = s7'[1/f(u)]; the
function ® is defined in (3.4). Now ®(1) = 5o + 5,(£), and thus (5.2) implies that
®(1) > 1 + 8. Moreover, /(1) =1 + j,— ji + (i — 1)/k — 1 /(N — 1). We antici-
pate that k will be large, while j; will be relatively small, so that t > 1 /(N — 1) > j,/k.
Thus, if j; > j,, f'(1) < 0, while if j; = j,, f'(1) > 0. In the former case, we thus have
U, < 1 (u,, is the unique maximum of fand F on [0, N]), so that ® = F + sor is
monotonically decreasing on [1, N], with &(1) > 1 + § and ®(N) = 0. Therefore there
is a unique root, ¥ = u, say, on (1, N).

When j; = j,, a straightforward calculation shows that /* < 0 on [1, N], provided
that 1/(N — 1) > j,/k is satisfied. Then F” = f*/[1 + f)? — f*2/[1 + f]? is strictly
negative on [|, N]. Thus F' decreases monotonically on [1, N], as does ' = F' — 5o/
(N — 1). Thus & either decreases monotonically on [1, N] or has a unique maximum
on [1, N]. In either case, since ®(1) > 1 + é and ®(N) = 0, there is exactly one root for
u, u,, say, on [I, N].

The values of n and m corresponding to the root i, are given by n = n, = (v; — Pug)/
(1 — P), my = (u; — v,)/(1 — P), where v, = s7'[1/f(u)]. Since n, + m, = u, €
(1, N), this point lies in % if and only if P < v,/u, < 1. Now u = 1 is the largest root
of f(u)s,(u) = 1, and f( N) = 0. Therefore

uy > 1= fu)si(u) < 1= s,(u;) < 1/ f(us) = u;> sy [1/ /()] = v,
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since s, is a decreasing function. Therefore the steady state (n,, m,) lies in .¢ if and only
if P < v,/u,. Now

(0, M) is a saddle point < | > 5,(PM)f( M)
= si'[1//(M)] < PM
;(I/E)sl"[{%l%jl-é—sor(M)}/f(M)]
< si(EsT /M) > {1 +8 = sor(M)} [ /(M)
c=&M)> 1 +6=®(u,)
= M <u,,

since both 1, and M are >1, and (1) > 1 + 6, §(N) = 0, with ®(u) = $(u;) on (1, N) =
u = u,. From the definition of (0, M) as a steady state, it follows that when P = v,/u,,
®(M) = ®(u,), and thus M = u,. However, 1, is independent of P, while M increases as
P decreases below 1. Thus (0, M) is a saddle point if and only if P < v,/u,, that is, if
and only if (n,, m,) € <. These conditions may not hold for any positive value of P,
since it may happen that f(1,) > k, in which case v; = s7'[1/f(u)] < 0. As in the
activator case, (n,, m,) is a stable steady state whenever it lies in .&.

We have shown the following:

(i) System (5.1) has a solution of the form required for a travelling wave if and
only if so + 5,(§)> 1 + §;

(i) When chemical 1 is a mitotic activator, the trajectory corresponding to this
solution is a heteroclinic connection between the equilibrium points (1, 0) and (0, M)
if | + & < £. Otherwise, the trajectory connects these points if and only if P < v,/u,, and,
for larger values of P, the trajectory links (1, 0) with (n,, m,);

(iii) When chemical | is a mitotic inhibitor, the trajectory corresponding to the
solution connects ( I, 0) and (0, M) if and only if P > v,/u,, and for smaller values of
P, the trajectory links (1, 0) with (n;, my).

Typical phase portraits in the various parameter regimes are illustrated in Fig. 6.
For given values of the other parameters, as P increases above v,/ u; in the activator case
or decreases below v,/ 1, in the inhibitor case, n, increases from zero, while m;, decreases
from u,, with n, + m, having the constant value u. In the activator case, both the trace
T and the determinant A of the stability matrix at (n,, m,) increase linearly with
1/(P — 1). Moreover, the trace is always strictly negative, while the determinant is
zero at P = v,/ u,. Therefore (T2 — 4A) decreases monotonically from a strictly positive
value as P increases above v,/ 1,. Now (ng, m;) is a node or a focus according to the sign
of (T2 — 4A). Thus, for given values of the other parameters, (n,, m,) will either be a
stable node for all P or will change from a node to a focus as P increases, according to
whether limp_., (T2 — 4A) is positive or negative. Explicit calculation of the stability
matrix shows that the condition for (n,, m;) to be a focus for sufficiently large P is

. dsott,
[0, + & = (8 = Duef ()P < 225 [1 = wf(w)).

In the inhibitor case, (n,, m,) can also be either a node or a focus, but the way in which
this depends on the parameter values is not so simple.

These results only apply to the travelling wave differential equations under the ap-
proximations # = ov and D = 0. However, they are all confirmed in numerical solutions
of the full partial differential equation system (2.2), provided that 4 is fairly large and
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FIG. 6. Typical phase portraits of (5.1) in the various parameter regimes, when chemical 1 is a mitotic
activator; (a) so + £ < 1 + 8. Here (1, 0) is a stable node, and there is not a trajectory corresponding to a
travelling wave solution 0f (2.2):(b) so + £> 1 + 8 > £, P < v,/ u,. Here (1. 0) is a saddle point, and the unique
trajectory leaving (1, 0) terminates at (0, M), which is a stable node. The steady state (n,, my) is not in the first
quadrant; (c) so + £> 1 + 8> &, P> v,/u,. Here (1, 0) is a saddle point, and the unique trajectory leaving
(1. 0) terminates at (ng, m,), which is a stable node; the steady state (0. M) is also a saddle point. The actual
parameter values used in (b) and (c) are the same as in Figs. | and 3, respectively; in (a), the parameter values
aret =2 P=2s5=18=3k=15N=10j,=j;= 1.

D is fairly small (see §2 and Figs. 1-3). Moreover, the results do not depend on the value
of the wave speed a, which was discussed in §4. Conclusion (i) has particularly important
biological implications, since it suggests that a critical level of immune response is required
to prevent a tumour developing after an initial mutation. Moreover, when the mutation
is only with respect to chemical production, any level of immune response is sufficient,
since the critical level is zero.

6. The wave shape. One of the most striking features of the partial differential
equation solutions illustrated in Figs. | and 2 is that the wave of normal cells increases
above 1 before decreasing again to its steady state value of 1. Under the approximation
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h = oo and D = 0, such a “bump” will occur if and only if dn/dm| 4, > O for the
solution trajectory. The analysis of the previous section shows that this condition is
simply Ps(1) + /(1) > 0, so that the difference between the chemical production rate
in normal and tumour cells must be sufficiently great for a bump to occur. Intuitively,
such a bump occurs because the density of biochemical regulators within the growing
tumour is such as to promote celi growth, and thus the growth of normal cells near the
edge of the tumour is also proffoted. Thus, wé'anticipate that the existence of a bump
will depend crucially on the chemical dlffusmn coefficient D, as well as the parameter P,
and numerical solutions confirm that, for any given values of the other parameters, there
will be a bump for sufficiently large D,. To investigate this further, we return to the
behaviour of the full travelling wave equations (4.1) near z = —oo.

We suppose that (4.6) is satisfied and a = 2VA_D, so that the solution emerges from
the initial steady state along the eigenvector corresponding to eigenvalue A, defined in
(4.5). The validity of the approximation a = 2VAD was discussed in §4. Equations (4.2)
then imply that the ratio of the components /i and 1 of the eigenvector satisfy

[A=r)+ {si(1)+s'(D)}la+ [=r(l) + {Ps\(1)+ s'(1)}¢]m = 0,

where y = h/(AD./D — 24 — h). Now we require that m = 0, so that r7 > 0, while the
wave of normal cell density has a bump if and only if i > 0. Therefore the solution has
such a bump if and only if

(6.1)  [A—r(1)+ {s\(1)+s'(D}Y]-[-r'(1) + {Psi(1) + s'(1) }¥] <O.

Now, if ¢ > 0, (4.6) implies that A4 — r'(1) + {s(1) + s'(1)}y¢] < 0, while, if ¢ <0,
(4.6) implies that [4 — r'(1) + {s'(1) + s'(1) }¥] > 0. In either case, (6.1) holds if and
only if r'(1)/y < Psy(1)+ s'(1). Therefore, when (4.6 ) holds, the wave of n has a bump
if and only if

(6.2) D.> 2D+ (hD/A)[1 — (N — 1){Ps' (1) + s'(1)}]

since r'(1) = —1/(N — 1). We must stress that this result does rely on taking the wave
speed a = 2VAD, which is an approximation based on the observed wave speed in
numerical solutions; analytically, we have only shown that a = 2VAD. However, the
result (6.2) agrees very well with numerical solutions of the full partial differential equation
system (2.2), as illustrated in Table 1.

7. The wave form. When the mutations giving rise to tumour cells result in only
small differences in the growth control parameters, we can derive an analytical approx-
imation to the functional form of the wave fronts. Specifically, we suppose that £ = 1 +
et., So = es.,and P = 1 + ¢P,, where ¢ < 1. When chemical 1 is an activator, £ and P,
are positive, and, when it is an inhibitor, they are negative; in both cases, s, is positive.
Condition (5.2) then implies that § = O(e) as ¢ = 0, say & = ¢d,. In terms of these
parameters, (5.1) has the form

(7.1a) %g=n[f(n+m)s,(n+m+eP,m)— 1].
(7.1b) - m[f(n+ m)s)(n+m+ek.n+ eP.m+eb.m+ e2P.t.m)

dz
+esr(n+ m)—1—¢b.].

We reformulate these equations in terms of the dependent variables ¥ = n + m and
w = n/m, and we use the rescaled independent variable { = ¢Z. Substituting (7.1a),
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(7.1b) into these expressions and simplifying gives

(7.2a) ¢ -Ji—' B
P+ g,)f(z:)s'l(‘zz)z: + s.r(u) = 8.] + O(e?),
dw . o
7 = TMESESI 0w+ s = 8]

(7.2b)
— &Un

{ cgtj(u){ I( )+ us (u)} + - Ezllf(ll)s (ll) + 0(82)

The rescaling of the independent variable that we have used is the only one giving w
nonconstant to leading order. We consider these equations on —oo < { < ov, with initial
conditions u(—o0) = 1, w(—o00) = 0 and, to avoid arbitrary translations in {, we specify
w(0) = 1. We look for a solution of (7.2) as a power series in ¢, that is,

u($se) = uo(§) + ewr (§) + () + -+,

w({; e) = wo($) + ew(§) +ewal(§) + -+

Substituting these into (7.2) and equating coefficients of % gives
0 = ol f(uo)s1(110) — 1],

dwg

ds

These zeroth-order equations are subject to tp(—o00) = 1, wo(—o0) = 0, and wo(0) = I,
and thus writing v = s, + £,57(1) — 4., we have

(7.3a) u($) =1,
(7.3b) wo($) = e "%

Using these solutions and equating coefficients of ¢ in (7.2) gives

= —%[ £ (uo)s' (1p) g + sor(ag) — 6.

0= w[/ (1) +si(D]+ (P + E)sU(D) + 5. = 8] = -

Dy = {ELS(D)sH(1) + 55(1) + sTD] + sr(1)} ey

_ ,E,_.{S|(|)+S|(l)} ,, -t
[ e + = s "(1)e ]

These equations are subject to #;(—00) = w;(—o0) = w;(0) = 0, which gives

(P +E)si(1)+s.—8 1
(D) + s (1) 1+e™ "’

(7.4a) w0y ($) = —

wi(§) = [{(P >+ £)s1(1)+5s.— 4. }{s,[f(l)s.(l)+s.(l)+s.(l)]+s,r(l)}
" S +s0(1) ‘

+of
(7.4b) —Pc&{s'n(l)’fs'n'(l)}]e_'flog(l+2e )

2.”
+£csl(l)[e_2,;_ l]
2v
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FIG. 7. The zeroth-order and first-ordér approximations to the travelling wave solutions for n and m. The
approximations are calculated as n = uw/(1 + w), m = u/(1 + w), with the zeroth- and first-order approximations
to u and w as ¢ = 0 given by (1.3) and (7.4), and with the wave speed taken to be 2VAD. These are compared
1o the solution of the partial differential equation system (2.2) at a large time (, with the origin of space translated
so that n = m at the origin. The first-order approximation agrees very well with this partial differential equation
wave front. The parameter values are ¢ = 0.3, £, = 0.5,5, = 1, P, = 1.5, 5, = 0.5, k = 15, N = 10, D = 0.01,
D.=1,h=20,j,=1,j; = 2, with chemical 1 an activator of mitosis. The dotted line represents the zeroth-
order approximation; X represents the first-order approximation; the solid line represents the partial differential
equation wave front.

Higher-order terms can be derived in the same way. However, (7.3) and (7.4) together
already give a very good approximation to the full partial differential equation wave
front, as illustrated in Fig. 7. To plot the analytical approximation in this figure, we
require an expression for the wave speed a, since { = ¢Z = ez/a. However, A = O(e),
and thus for sufficiently small ¢, (4.6) will be satisfied, so that we expect that to a good
approximation, a = 2VAD. One simple consequence of the analytical approximations
(7.3) and (7.4) is the following expression for the total cell density in the tumour that
forms behind the front:

(P¢+£¢)sll(l)+s¢_
J'(1) + 5(1)

this is not dependent on our approximation for the wave speed a.

S,
u(+o)=1—c¢ + 0(e?);

8. Conclusions. We developed a reaction diffusion model for the initial growth of
a tumour following a mutation that affects the biochemical control mechanisms of cell
division. Numerical solutions of the model rapidly evolve into an advancing wave of
tumour cells and a receding wave of normal cells. We analysed these travelling wave
forms under biologically relevant approximations and derived a necessary and sufficient
condition for the existence of a travelling wave solution. We proceeded to predict the
qualitative form of the wave fronts in the various parameter domains and we estimated
the wave speed. Finally, we derived an analytic approximation for the wave fronts in the
case of small mutations. Biologically, our results suggest that, for certain types of mu-
tations, which we quantified, growing tumours can initially contain a significant proportion
of normal cells. Moreover, our model predicts that there is a critical level of immune
response, which we quantified, above which the immune system will prevent the initial
growth of the tumour.
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