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Abstract. The formation of a capsule of dense, fibrous extracellular matrix around a solid
tumor is a key prognostic indicator in a wide range of cancers. However, the cellular mechanisms
underlying capsule formation remain unclear. One hypothesized mechanism is the “expansive growth
hypothesis,” which suggests that a capsule may form by the rearrangement of existing extracellu-
lar matrix, without new matrix production. A mathematical model was recently proposed to study
the implications of this hypothesis [Perumpanani, Sherratt, and Norbury, Nonlinearity, 10 (1997),
pp. 1599–1614]. The model consists of conservation equations for tumor cells and extracellular matrix
and exhibits traveling wave solutions in which a pulse of extracellular matrix, corresponding to a
capsule, moves in parallel with the advancing front of the tumor. In this paper the author presents
a detailed study of traveling wave behavior in the model, deriving conditions for the existence of
traveling waves and their key properties. Numerical methods for solving the model equations are
presented, and numerical simulations suggest that the traveling waves are stable and are the bio-
logically relevant solution form for the model. The analytical results are extended to an improved
model, which includes a saturation in the extent of matrix rearrangement per cell. Finally, the author
discusses the biological implications of the model results.
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1. Introduction. Solid tumors typically undergo an initial period of avascular
growth, after which they become quiescent for a long period. The dormant state is
ended by invasion into surrounding tissue and the onset of angiogenesis, the first
steps in the metastatic cascade. A very significant feature of the quiescent phase is
the presence, in some cases, of capsules of dense, fibrous extracellular matrix around
the tumor (illustrated in Figure 1). For example, in a detailed study of hepatocellular
carcinoma, Ng et al. [12] found that about half (72/154) of tumors were encapsulated.
The presence of a capsule is a key prognostic indicator, and this is thought to be due
to the capsule acting simply as a physical barrier to invasion and angiogenesis. Recent
survival data comparisons for encapsulated and nonencapsulated tumors are available
for a variety of cancers [5], [8], [10], [12]; in particular, in Lai et al.’s [8] data for large
hepatocellular carcinoma, tumor encapsulation was identified as the only important
favorable prognostic feature relating to disease-free survival.

Despite this major clinical significance of tumor encapsulation, the mechanisms
responsible for capsule formation remain unclear. In particular, it is debated whether
remodeling of existing extracellular matrix alone is responsible for the capsule (the
“expansive growth hypothesis”), or whether de novo cellular secretion of collagen plays
a key role (the “foreign body hypothesis”). Evidence on either side of this controversy
comes primarily from pathology data. For example, Wakasa et al. [17] found that
hepatocellular carcinomas were encapsulated more frequently when their diameter was
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Fig. 1. The appearance of an encapsulated hepatocellular carcinoma, which has been removed
surgically from a cirrhotic liver. The tumor is surrounded by a dense fibrous capsule, several mil-
limeters thick (scale in centimeters). This figure is reproduced from Ng et al., Cancer, 70 (1992), pp.
45–49. Copyright c©(1992) American Cancer Society. Reprinted by permission of Wiley-Liss, Inc.,
a subsidiary of John Wiley & Sons, Inc.

greater than 2 cm, which they took as evidence that the capsule forms by compression
of adjacent extracellular matrix. However, Ng et al.’s [12] data showed no correlation
between tumor size and either capsule incidence or thickness. These contrasting results
are hard to evaluate because of the difficulty of performing experimental tests. One of
the few such tests is in the work of Vaage and Harlos [16], who showed that production
of collagen by macrophages is responsible for the encapsulation of tumor implants in
mice; however, this may be different from the mechanisms involved for naturally
arising tumors.

In a situation such as this, where experimental investigation is very difficult,
mathematical modeling provides a convenient way of testing hypotheses. This ap-
proach was first applied to capsule formation in the recent paper of Perumpanani,
Sherratt, and Norbury [14], who developed a model to study the “expansive growth
hypothesis.” Their model consists of conservation equations for the densities of tumor
cells and extracellular matrix, denoted u(x, t) and c(x, t), respectively, where t and x
denote time and space in a one-dimensional spatial domain:

∂u

∂t
= f(u) +

∂

∂x

[
h(c)

∂u

∂x

]
,(1a)

∂c

∂t
= k

∂

∂x

[
ch(c)

∂u

∂x

]
.(1b)

Here the term f(u) represents cell division and death; f(0) must clearly be zero, and
for simplicity I will assume throughout that the cell density is rescaled so that u = 1
is the equilibrium level within the tumor, implying f(1) = 0; Perumpanani, Sherratt,
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and Norbury take f(u) = u(1−u). Random cell movement is assumed, and kinetics of
extracellular matrix are neglected, in keeping with the expansive growth hypothesis,
so that the extracellular matrix density only changes because of convection with the
cells. This convection does not imply large-scale movement of intact matrix by a
cell; rather it is the net result of local matrix movement and remodeling during cell
movement. This will increase with the local matrix density and is represented in the
model as k·c. In practice, this term will saturate at high matrix densities, representing
the limitation on matrix reorganization per cell. Perumpanani, Sherratt, and Norbury
neglected it for simplicity; I will do likewise initially but consider its inclusion later
in the paper.

The function h(c) is decreasing and is included in the model to represent the
reduction in cell motility at high matrix densities. Although Perumpanani, Sherratt,
and Norbury [14] included this function when developing the model, their analysis was
restricted to the case of h(.) being constant, which greatly simplifies (1) by decoupling
the two equations. In this paper, I investigate the case of nonconstant h(.), studying
the existence and form of traveling wave solutions. I begin by summarizing the results
of Perumpanani, Sherratt, and Norbury [14] in section 2. Behavior in the case of
nonconstant h(.) depends on whether h(∞) is zero or nonzero, and I consider these
cases in sections 3 and 4, respectively. In section 5, I discuss numerical methods for
solving (1) and present numerical solutions to illustrate my analytical results. Finally,
in section 6 I consider extending the model to include saturation in the extent of
matrix reorganization per cell.

2. Solutions for constant h(.). When h(.) is constant, (1a) becomes indepen-
dent of c, and for the case f(u) = u(1 − u) considered in [14], it has the form of the
much-studied Fisher equation (see, for example, [7], [9], [1], [15]). In the context of tu-
mor growth, one is concerned with the evolution of (1) from initial data corresponding
to a localized population of tumor cells, and a uniform (nonzero) density of matrix,
which I take to be c ≡ 1. For simplicity, Perumpanani, Sherratt, and Norbury take
this tumor cell population to be at one boundary of a semi-infinite domain, with a no-
flux boundary condition. When u satisfies the Fisher equation, such initial conditions
for u evolve to traveling wave fronts, moving out from the boundary with constant
shape and speed (Figure 2(a)). The details of this evolution are very well known; for
example, analytical expressions for rates of convergence have been calculated [9]. The
wave front itself is of course a function of a traveling wave coordinate z = x − at,
where a is the wave speed (a = 2

√
h when h is constant), although there is no closed

form expression for this wave.

In order to study the long term behavior of (1) with appropriate initial con-
ditions, Perumpanani, Sherratt, and Norbury substituted the traveling wave form
for u, utw(z) say, into (1b), giving a first-order partial differential equation for c.
This equation is most conveniently written using independent variables z and t and
can be solved using the method of characteristics. This shows that the qualita-
tive behavior depends crucially on whether k is above or below the critical value
a/max−∞<z<∞{−hu′tw(z)}. For k below this value, c also evolves to a permanent
form traveling wave solution (Figure 2(b)); the wave form is in fact given by the sim-
ple expression ctw(z) = a/[a+ khu′tw(z)]. However, for c above the critical value, the
solution for c again has a wave form but in this case not of constant shape. Rather,
the height of the peak in this wave front grows, without limit, as time increases (Fig-
ure 2(c)); the analytical solution shows that the rate of growth is exponential. Such
growth is entirely consistent with the assumption of no matrix production: the peak
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Fig. 2. Illustration of the solution types of (1) when h(c) ≡ 1. The cell density u satisfies
Fisher’s equation and evolves rapidly to a traveling wave front for biologically appropriate initial
conditions (a). For k below a critical value (which is approximately 16.1), the extracellular matrix
density c also evolves to a traveling wave form (b), while for k above this critical value, the peak
in c continues to increase in height without limit (c). The solutions plotted are calculated from the
exact solutions derived by Perumpanani, Sherrat, and Norbury in [14] by assuming a permanent
form traveling wave solution for u(x, t), utw(z), say, where z = x − at; a is the wave speed, which
is determined by the u equation, and is 2 for biologically realistic initial conditions. Substitution
of this solution for u into (1b) gives a first-order partial differential for c(x, t), which can be solved
using the method of characteristics. The solution illustrated is for the case c(x, 0) ≡ 1, in which case
the solution derived in [14] is c(x, t) = ctw(θ)/ctw(z), where ctw(z) ≡ a/[a+ ku′tw(z)]. The variable

θ ≡ G−1[G(z) − t], where G(z) ≡ −
∫
ctw(z) dz, with G−1(.) a local inverse. In order to plot this

solution, the traveling wave ODE for u was integrated numerically, enabling numerical integration
of G(.) and hence calculation of ctw, θ, and thus c. The solution is plotted as a function of x at
equally spaced times (t = 1.0, 2.5, 4.0, 5.5, 7.0, 8.5, 10.0, 11.5).

becomes thinner as it grows, so that the total density of matrix within it is constant.
The assumption that h(.) is constant is mathematically very convenient, but

biologically it is unrealistic, since in practice rates of cell movement are significantly
affected by local extracellular matrix [2]. In the next two sections, I consider traveling
wave behavior in the more general case, studying separately the cases of h(∞) zero and
nonzero. My results depend on the assumptions that h(.) and f(.) are continuously
differentiable and satisfy the following conditions:

• f(0) = f(1) = 0 with f(u) > 0 for u ∈ (0, 1);(2a)

• f ′(0) > 0 and f(u) < f ′(0)u for u ∈ (0, 1];(2b)

• f(u) has only one turning point on (0, 1) at u = um, say;(2c)

• h(c) ≥ 0 and h′(c) ≤ 0 for c ≥ 0 with h(1) > 0 .(2d)

Conditions (2a) and (2b) are standard assumptions for cell kinetic terms, made orig-
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inally by Kolmogoroff, Petrovskii, and Piscounoff [7] in their work on scalar reaction-
diffusion equations. The additional constraint (2c) facilitates the calculations in sec-
tion 2, and is not at all restrictive from the viewpoint of applications.

3. Traveling waves when h(∞) = 0. Traveling wave solutions of (1) have
the form u(x, t) = U(x− at), c(x, t) = C(x− at), where a is the wave speed, and thus
satisfy the ordinary differential equations

f(U) + aU ′ + [U ′h(C)]
′

= 0,(3a)

aC ′ + k [CU ′h(C)]
′

= 0 .(3b)

Here prime denotes d/dz, with z = x−at a traveling wave coordinate; the wave speed
a enters the equations as a parameter, and I take a > 0 without loss of generality.
In the context of tumor growth, one is concerned with solutions of these equations
satisfying U → 0, C → 1 as z → ∞, and U → 1, C → 1 as z → −∞ with U ≥ 0
for all z; the wave corresponds to the advancing front of the tumor edge. It is a
solution of this type that is illustrated in Figure 2(a). In this section I will prove that
when h(∞) = 0, and with f(.) and h(.) satisfying conditions (2), equations (3) have a
solution of this type if and only if a ≥ 2[f ′(0)h(1)]1/2; the case h(∞) > 0 is considered
in the next section.

Equation (3b) can be integrated immediately, and since U ′ → 0, C → 1 as
z → ±∞, this gives

U ′h(C) =
a

k

(
1

C
− 1

)
.(4)

To proceed, I must rewrite this to give h(C) as a function of U ′, which can then be
substituted into (3a). Since 1/h(C) and (1 − 1/C) are, respectively, increasing and
strictly increasing functions of C, (4) implies that U ′ is a strictly decreasing function
of C. Moreover, I have U ′|C=0 =∞, U ′|C=1 = 0, and U ′|C=∞ = −∞; the last of these
limits depends on h(∞) being zero (Figure 3(a), (b)). Inverting this implies that C is
a strictly decreasing function of U ′ (Figure 3(c)) and hence (1/C − 1) · a/k ≡ U ′h(C)
is a strictly increasing function of U ′, which I denote by Φ(U ′) (Figure 3(d)). The
precise form of Φ(.) depends on h(.) of course, but in all cases Φ(−∞) = −a/k,
Φ(0) = 0, and Φ(∞) =∞.

Substituting the expression U ′h(C) = Φ(U ′) into (3a) gives

f(U) + aU ′ + Φ′(U ′)U ′′ = 0 .(5)

The form of Φ′(.) is key to subsequent calculations. Differentiating (4) with respect
to U ′ gives

h(C) + U ′h′(C)
∂C

∂U ′
=
−a
k

∂C

∂U ′
1

C2

⇒ ∂C

∂U ′
=

−kC2h(C)

kC2U ′h′(C) + a

=
−kC2h(C)2

ah(C) + aC(1− C)h′(C)
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C

dU/dzh(C)

C

C

dU/dz

h(C)dU/dz

dU/dz
- a/k

(a) (b)

(c) (d)

1

Fig. 3. Schematic illustration of the derivation of the form of U ′h(C) as a function of U ′,
from (4), when h(∞) = 0. (a) The form of h(C) as a function of C. (b) The form of U ′h(C) ≡
(1/C − 1) · a/k as a function of C. (c) The form of C as a function of U ′. (d) The form of
Φ(U ′) ≡ U ′h(C) ≡ (1/C − 1) · a/k as a function of U ′.

using (4). Therefore

Φ′(U ′) ≡ ∂

∂U ′

[
a

k

(
1

C
− 1

)]
=
−a
kC2

{
∂C

∂U ′

}
=

{
1

h(C)
+
C(1− C)h′(C)

h(C)2

}−1

,(6)

where C is determined as a function of U ′ from (4) and has the qualitative form
illustrated in Figure 3(c). In particular, note that Φ′(0) = h(1).

Armed with this formula for Φ′(.), I can now complete the proof of the existence of
a positive traveling wave solution by studying (5) in a phase plane. This next section
of the proof is an adaptation of methods developed in [7] for studying traveling wave
solutions of Fisher’s equation. I rewrite (5) as

U ′ = W/k, W ′ = −γ(W ) [kf(U) + aW ] ,(7)

where γ(W ) = 1/Φ′(W/k). This notation is chosen to make the dependence on
the parameter k clearer—this will be important in the next section. Note that when
written as a function of W, γ(.) has no explicit dependence on k.

It is straightforward to show that for functions f(.) satisfying (2), (7) has two
equilibria: (1, 0) which is a saddle point, and (0, 0), which is a stable node if a ≥
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2[f ′(0)/γ(0)]1/2 = 2[f ′(0)h(1)]1/2, and a stable focus otherwise. Thus there is a unique
trajectory T leaving (1, 0) and entering the lower half-plane. The traveling wave solu-
tions I am considering correspond to connections between the two equilibria and thus
to the trajectory T . Hence there is at most one wave for any given a, with the wave
existing if and only if T terminates at (0, 0); this cannot occur with U ≥ 0 when (0, 0)
is a spiral. When a ≥ 2[f ′(0)h(1)]1/2, there are three possible ways in which T can
leave the lower right quadrant (U > 0, W < 0). First, T can pass through the positive
U -axis. At the point of this crossing, U > 0, W = 0, and W ′ > 0, which contradicts
(7). Second, T can leave the lower right quadrant through the negative W -axis. In
this case, T must first cross the line W = λkU, where λ is one of the eigenvalues at
(0, 0), which are real and negative for a above the critical value. At the point of this
crossing

dW/dU = −akγ(W )− k2f(U)γ(W )/W

< −akγ(W )− k2Uf ′(0)γ(W )/W using (2)

= −akγ(W )− kγ(W )f ′(0)/λ since W = λkU

= λkγ(W )/γ(0)

using the eigenvalue equation λ2 + aγ(0)λ+ γ(0)f ′(0) = 0. The relationship between
C and U ′ implies that C > 1 when W < 0, and since h′(C) ≤ 0, the formula (6)
shows that when C > 1,

γ(W ) ≥ 1/h(C) ≥ 1/h(1) = γ(0) .

Therefore when T crosses the line W = λkU, dW/dU < λk (recall that λ < 0), which
is a contradiction.

Thus only the third possibility remains, namely, that whenever a ≥ 2[f ′(0)h(1)]1/2,
T leaves the region U > 0, W < 0 by terminating at (0, 0), corresponding to a trav-
eling wave solution for U(z), which is monotonically decreasing. The corresponding
solution for C(z) is determined by its relationship with U ′(z), which is illustrated in
Figure 3(c); C(z) is a pulse wave form.

4. Traveling waves when h(∞) > 0. When h(∞) > 0, many of the argu-
ments of the previous section continue to hold. In particular, traveling wave solutions
still correspond to heteroclinic connections in the system (7), and the proof that such
connections exist whenever a ≥ 2[f ′(0)h(1)]1/2 still holds. The key difference lies in the
relationship between U ′ and C, which no longer has the qualitative form illustrated in
Figure 3(c). In this case, 1/h(C) approaches a finite asymptote as C →∞, and thus
U ′ is a strictly decreasing function of C, approaching −a/[kh(∞)] as C → ∞ (Fig-
ure 4(a), (b)). Inverting this implies that C is a strictly decreasing function of U ′ but
is defined only for U ′ > −a/[kh(∞)] (Figure 4(c)); the corresponding form of Φ(U ′) is
illustrated in Figure 4(d). The formula (6), giving the form of γ(.), continues to hold,
and γ may either approach a finite (positive) value or +∞ as U ′ → −a/[kh(∞)] +,
depending on the form of h(C) as C →∞.

The constraint on U ′ for C to be defined means that when h(∞) > 0, the tra-
jectory T in the U–W phase plane only gives a solution of (3) when it lies entirely
above the line W = −a/h(∞). In this section, I will show that this occurs if and only
if k is less than a critical value kcrit, which depends on the details of h(.) and f(.).
To demonstrate this, I will prove the following proposition:

(i) T has a unique minimum in the U–W plane, at the point (Umin,Wmin), say.



TRAVELING WAVES OF TUMOR ENCAPSULATION 399

8h( )

8h( )- a/ [k ]

8h( )- a/ [k ]

8h( )- a/ [k ]

C

dU/dzh(C)

C

C

dU/dz

h(C)dU/dz

dU/dz
- a/k

(a) (b)

(d)

1

(c)

Fig. 4. Schematic illustration of the derivation of the form of U ′h(C) as a function of U ′,
from (4), when h(∞) > 0. (a) The form of h(C) as a function of C. (b) The form of U ′h(C) ≡
(1/C − 1) · a/k as a function of C. (c) The form of C as a function of U ′. (d) The form of
Φ(U ′) ≡ U ′h(C) ≡ (1/C − 1) · a/k as a function of U ′.

(ii) Wmin (< 0) is a strictly decreasing function of k.
(iii) Wmin → 0 as k → 0, and Wmin → −∞ as k →∞.

Here it is implicitly assumed that a ≥ 2[f ′(0)h(1)]1/2, so that T exists. Note that a
simple consequence of this proposition is that the traveling pulse solution for C has a
unique maximum, whose height increases strictly with k, tending to ∞ as k → k−crit.

Proof of (i). I begin by observing that dW/dU > 0 if and only if W lies above
the curve W = −kf(U)/a, which I refer to as C1. Now the eigenvector along which T
leaves (1, 0) has a slope equal to the product of k and the corresponding eigenvalue,
which is equal to

k

a

[
−1

2a
2γ(0) +

√
1
4a

4γ(0)2 − a2γ(0)f ′(1)

]
<
k

a

[
− 1

2a
2γ(0) +

√[
1
2a

2γ(0)− f ′(1)
]2]

= −kf ′(1)/a ,

which is the slope of C1 at (1, 0). Thus T lies above C1 when U is close to 1. T will
have a turning point when it crosses C1, and at such a point, T will be horizontal
in the U–W plane. Hence the first turning point must occur when the slope of C1 is
negative, that is, when U < um; recall that I am assuming that f(U) has a unique
local maximum at U = um. T must have at least one turning point of course, and
I denote the first turning point by (Umin,Wmin). A subsequent turning point would
again require T to cross C1 horizontally. This is impossible since Umin < um, so that
the slope of C1 is positive for U < Umin; recall that U decreases monotonically along
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T . Hence there is a unique turning point, as required.
Proof of (ii). Equation (7) implies that

∂

∂k

[
dW

dU

]
= −γ(W ) [a+ 2kf(U)/W ] ,

which is positive if and only if W lies between the U -axis and the curve W =
−2kf(U)/a, which I refer to as C2. Note that the value of W on C2 is exactly twice
that on C1 for each U . Now consider two values of k, k∗, and k∗∗, say, satisfying
k∗ < k∗∗ < 2k∗; I use the superscripts ∗ and ∗∗ to denote the corresponding curves
and trajectories. Then the minimum of T ∗∗ lies on the curve C∗∗1 , which lies between
the U -axis and the curve C∗2 , since k∗∗ < 2k∗. Thus the portions of the trajectories
T ∗ and T ∗∗ between (1, 0) and their respective minima both lie in a region of the
phase plane within which ∂

∂k (dW/dU) > 0 for k ∈ [k∗, k∗∗]. This implies that this
portion of T ∗ lies strictly between the U -axis and the corresponding portion of T ∗∗,
so that W ∗∗min < W ∗min as required. Since k∗ and k∗∗ are arbitrary within the specified
restrictions, this implies the required monotonicity.

Proof of (iii). This follows immediately from the fact that dW/dU → ∞ as
k →∞, and dW/dU → 0 as k → 0 for all U ∈ (0, 1) and W > 0.

When k ≥ kmin, no traveling wave solution exists. I have been unable to make any
analytical progress in studying equations (1) in this case: in particular, the approach
used by Perumpanani, Sherratt, and Norbury [14], and described in section 2, cannot
be applied when h(.) is nonconstant. Therefore I rely on numerical solutions, which I
will discuss in the next section.

5. Numerical solution of the model equations. The system (1) is of mixed
type, because of the coupling of hyperbolic and parabolic terms, and this makes
numerical solution difficult when h(.) is nonconstant. From a practical viewpoint, the
problem requires particular care because I have found that a number of inappropriate
schemes produces results which, although incorrect, are superficially plausible. The
key to a successful numerical scheme is the spatial discretization, which must involve
upwinding for the convective term in (1b) and must reflect the conservation of c
exactly. I have used a fixed spatial grid, and denoting the values of c at the N grid
points by ci (i = 1, . . . , N), my numerical scheme involves the following system of
coupled ordinary differential equations:

∂ui
∂t

=
1

δ

[
h(ci+1/2)ux,i+1/2 − h(ci−1/2)ux,i−1/2

]
+ f(ui),(8a)

∂ci
∂t

=
k

δ

{
[Γi+1 − Γi] · I

[
H ′(ci+1/2) < 0

]
+ [Γi − Γi−1] · I [H ′(ci−1/2) > 0

]}
.(8b)

Here δ is the grid spacing, H(c) ≡ c · h(c), and Γi ≡ H(ci)ux,i; derivatives of H(.)
can be evaluated analytically for a given form of h(.). I is the indicator function,
defined by I[.true.] = 1, I[.false.] = 0. The subscripts i ± 1/2 are used in the
standard way, to denote average values at the grid points on either side, and the
subscript x denotes a partial derivative, calculated using central differences. The
form of upwinding used in (8b) is standard for scalar equations [11], and the details of
this extension to a coupled system are crucial in order to preserve conservation of c.
This requires particularly careful investigation when H ′(ci±1/2) have different signs:
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To be specific, suppose that H ′(ci−1/2) is positive when i = I, I − 1, I − 2, . . . , and
negative when i = I + 1, I + 2, . . .. Equation (8) then implies

∂

∂t
(· · ·+ cI−2 + cI−1 + cI + cI+1 + cI+2 + · · ·)

= · · ·+ (ΓI−2 − ΓI−3) + (ΓI−1 − ΓI−2) + (ΓI+1 − ΓI + ΓI − ΓI−1)

+(ΓI+2 − ΓI+1) + (ΓI+3 − ΓI+2) + · · · ,
so that c is conserved. Similarly, conservation holds when H ′ changes sign in the
opposite direction. Alternative discretizations of (1b) are possible that give a smaller
bandwidth for ui in the solution matrix, but these give loss of conservation of c at
isolated points, which leads to spurious solutions of (1).

I have solved the system (8) numerically using a standard stiff differential equation
solver [3]. Recall that biologically appropriate initial conditions have c ≡ 1, and
u = 0 except for a local perturbation, corresponding to a small initial tumor, which I
take to be at a boundary with no flux end conditions. Numerical solutions for such
initial data reflect the analytical predictions of sections 2 and 3. When h(∞) = 0,
numerical solutions evolve to traveling wave forms in all cases I have tried (illustrated
in Figure 5(a), (b)). This provides strong evidence for the stability of the traveling
wave forms. Similarly, when h(∞) > 0 with k small, a traveling wave front develops,
while for k above the critical value, the c wave has a peak whose height increases
continually with time, in a manner analogous to the behavior when h(.) is constant
(Figure 5(c), (d)). Although I do not have a formula for kcrit, it is easy to calculate
numerically, as the value of k for which the Wmin = −a/h(∞), and Figure 6 illustrates
the increase in height of the peak in the traveling wave solution C(z) as k increases
toward kcrit for one particular function h(.).

6. Model extension: Saturation in matrix remodeling rate. The model
(1) assumes that the rate of matrix movement and convection per cell is directly
proportional to the local matrix density. This is clearly a simplifying assumption, since
in reality the term will saturate at high matrix densities. In this section I consider the
effects of amending the model to include such saturation, by replacing the constant k
in (1b) by k · θ(c), where θ(c) is a continuously differentiable decreasing function of c,
with θ(1) = 1. This gives the amended model

∂u

∂t
= f(u) +

∂

∂x

[
h(c)

∂u

∂x

]
,(9a)

∂c

∂t
= k

∂

∂x

[
ch(c)θ(c)

∂u

∂x

]
.(9b)

The results proved in sections 3 and 4 can be easily extended to these equations also.
The corresponding traveling wave equations imply

f(U) + aU ′ + [U ′h(C)]
′

= 0,(10a)

aC + kCh(C)θ(C)U ′ = a,(10b)

using notation as in section 3. Thus

f(U) + aU ′ + Φ̃′(U ′)U ′′ = 0,(11)

where Φ̃(.) ≡ U ′h(C), with C defined as a function of U by (10b). Here, and in the
remainder of this section, I adopt the notation of writing with a tilde the amended
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Fig. 5. Numerical solutions of (1) from initial conditions corresponding to a localized population
of tumor cells. The solutions are plotted as a function of space x at equally spaced time intervals (five
dimensionless time units). (a), (b) Solution for a value of k < kcrit: The solution evolves rapidly to
the permanent form traveling wave, except for a localized variation in c near the left-hand boundary.
(c), (d) Solution for a value of k > kcrit: The peak in c increases in height without limit. The values
illustrated are for h(c) = [3− tanh(c/2− 1)]/4, so that h(∞) = 1

2
; for this form of h(.), kcrit ≈ 28.

The values of k are 10 in (a), (b), and 30 in (c), (d). The equations were solved numerically using
the scheme described in section 5.

forms of the various functions in sections 3 and 4. Therefore

Φ̃′(U ′) ≡ ∂

∂U ′

[
a

k

(
1

C
− 1

)
1

θ(C)

]

=
−a

kC2θ(C)

∂C

∂U ′
[1 + C(1− C)θ′(C)/θ(C)]

=
h(C)2θ(C) [1 + θ′(C)C(1− C)/θ(C)]

h(C)θ(C) + [h(C)θ′(C) + h′(C)θ(C)]C(1− C)

=

{
1

h(C)
+

C(1− C)h′(C)

h(C)2 [1 + C(1− C)θ′(C)/θ(C)]

}−1

.(12)

Here ∂C/∂U ′ has been calculated using (10b) in a manner directly analogous to that
used in section 3. Writing W = kU ′ then gives equations directly analogous to (7):

U ′ = W/k, W ′ = −γ̃(W ) [kf(U) + aW ] ,(13)

where γ̃(W ) = 1/Φ̃′(W/k).
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Fig. 6. Illustration of the variation with k of the height of the peak in the pulse wave C(z). This
height → ∞ as k → k−crit. The values illustrated are for h(.) as in Figure 5, for which kcrit ≈ 28.
For k > kcrit there are no traveling wave solutions.

The function γ̃(.) has exactly the same qualitative form as γ(.) and moreover
satisfies the key inequality γ̃(W ) ≥ γ̃(0) when W < 0. Therefore, the proof in section
3 of the existence of a heteroclinic connection between (1, 0) and (0, 0) in the U–W
phase plane holds for this amended system, as does the proof of (i)–(iii) in section 4.
Moreover, since γ̃(0) is independent of θ(.), the minimum wave speed is not affected
by the change in the model. Therefore, for wave speeds greater than or equal to this
minimum value, a traveling wave solution of (9) exists for all values of k when h(.) and
θ(.) are such that C → ∞ as U ′ → −∞, that is, when h(∞) · θ(∞) = 0. Conversely,
when both h(∞) and θ(∞) are nonzero, a traveling wave solution exists for k below
a unique, critical value.

Intuitively, one expects that for given functions h(.) and f(.), and a given value
of k for which traveling waves exist for both (1) and (9), the peak in the C wave form
will be higher for (1) than for (9); recall that the change made to the model in this
section corresponds to limiting the extent of matrix convection. In the remainder of
this section, I will show that this intuitive expectation is indeed correct. The natural
approach to use for this proof would be to compare the two ordinary differential
equation systems (7) and (13). However, I have been unable to make any progress using
this approach because of the difficulty of comparing γ(.) and γ̃(.). Since θ′(C) ≤ 0 for
all C, comparison of (6) and (12) shows immediately that for a given value of C > 1,

[1/Φ′(C)] > [1/Φ̃′(C)]. However, the corresponding inequality cannot be extended to
γ(W ) and γ̃(W ), since these are not necessarily monotonic functions, and this makes
comparison of trajectories difficult in the U–W plane.

Therefore I adopt the different approach of working in the U–C phase plane. This
is a more difficult system to work with when considering the existence of traveling
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waves but makes comparison of wave forms easier. The equations follow directly from
(3) and (10):

U ′ =
−a(1− 1/C)

kh(C)
,(14a)

C ′ =
[
kC2f(U)/a− aC(C − 1)/h(C)

]
(14b)

for the original model (1), and

U ′ =
−a(1− 1/C)

kθ(C)h(C)
,(15a)

C ′ =
[
kθ(C)C2f(U)/a− aC(C − 1)/h(C)

]
/ [1 + C(1− C)θ′(C)/θ(C)](15b)

for the amended model (9). In this system of ordinary differential equations, a trav-
eling wave solution corresponds to a heteroclinic connection between the equilibrium
points (0,1) and (1,1). I am concerned with the comparison of these solutions for given
h(.), f(.), a, and k such that both systems have a traveling wave solution. I denote the

corresponding trajectories in the U–C plane by T for (1) and T̃ for (9), and following
my previous notation, I denote the points on these trajectories at which C has its
(unique) local maximum as Umin and Ũmin, respectively.

I now consider the portion U ∈ (Ũmin, 1) of the trajectory T̃ . Using (15), it follows
that along this curve,

dC

dU
< 0⇒ kθ(C)Cf(U)/a > a(C − 1)/h(C)

⇒ [a(C − 1)/h(C)− kCf(U)/a] < [a(C − 1)/h(C)− kθ(C)Cf(U)/a] < 0 .(16)

This inequality can be used when considering the value of dC/dU in the phase plane
of the original model, (14), for which

dC

dU
=
kC2h(C)

a(C − 1)

[
a(C − 1)

h(C)
− kCf(U)/a

]
.

Therefore along the portion U ∈ (Ũmin, 1) of the curve T̃ (which is of course not a
trajectory for these equations),

dC

dU
<
kC2h(C)

a(C − 1)

[
a(C − 1)

h(C)
− kCθ(C)f(U)/a

]
using (16)

≤ θ(C)kC2h(C)

a(C − 1)

[
a(C − 1)

h(C)
− kCθ(C)f(U)/a

]
/ [1 + C(1− C)θ′(C)/θ(C)] ,

which is the slope of T̃ . Here I am using the conditions θ(C) ≤ 1, C > 1, and
θ′(C) ≤ 0.

Therefore, in the system (14), all trajectories pass through the portion U ∈
(Ũmin, 1) of the curve T̃ in the direction of increasing C. Moreover, U ′ < 0 along

the line U = Ũmin, C > 1, while along C = 1, U ∈ (0, 1), (14b) implies that
C ′ = kf(U)/a > 0. Thus, all trajectories leave the set S, defined as the portion

of the phase plane between T̃ , C = 1, and U = Ũmin. The slopes of T and T̃ are
actually the same at (1, 0) (the eigenvector is independent of θ(.)), but expansion to
quadratic terms near (1,0) shows that T lies outside S for U close to 1. Hence, T must
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Fig. 7. A comparison between the traveling wave trajectories, plotted in the U–C plane, with

(solid line, labeled T̃ ) and without (dashed line, labeled T ) the inclusion of a function θ(C) to
represent saturation in the matrix rearrangement potential of tumor cells. The height of the C wave
is reduced by the inclusion of this saturation effect. The trajectories were determined by numerical
integration of the two sets of traveling wave ODEs with h(C) = [1 − tanh(c/2 − 1)]/2 and θ(C) =
[1− tanh(c/2− 1)]/[1 + tanh(1/2)].

remain outside S for U ∈ (Ũmin, 1) and thus must reach a value of C that is at least

as large as the value of C on T̃ at U = Ũmin. Thus the traveling wave in the original
model, corresponding to T , has a maximum value of C at least as large as that for the
amended model (that is, the wave corresponding to T̃ ). Figure 7 illustrates a typical
comparison between the two trajectories.

7. Discussion. The mechanisms by which many solid tumors acquire a dense,
fibrous capsule remain unknown, despite it being a very prominent morphological
feature with major clinical significance. The model studied in this paper investigates
the “expansive growth hypothesis,” that is, the possibility that the capsule forms by
remodeling of existing extracellular matrix, without any new matrix production. The
model solutions all have the form of a pulse of extracellular matrix moving ahead of the
growing tumor, corresponding to a fibrous capsule. I have shown that the existence of
such a solution is a robust consequence of the expansive growth hypothesis, applying
when the basic model of [14] is extended to include decreases in the cell speed and/or
matrix reorganization capacity per cell, irrespective of the form of these saturation
effects.

Moreover, I have shown that the predicted density of matrix in the capsule corre-
lates directly with the parameter k, which represents the rate of local matrix movement
and remodeling per cell. Very significantly, this implies that the capsule density is not
correlated with either the speed at which the tumor grows (which is independent of
k) or its size. This explains the wide discrepancies between studies attempting to
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correlate tumor size and capsule incidence or thickness [12], [17], [13], [6] and argues
against the conventional intuition that these should be correlated if the capsule forms
without matrix production. The key experimental test of the model would be to study
the correlation between capsule density and some measure of the parameter k. This
is not possible using pathology data alone but may be possible for animal studies
of the encapsulation of tumor implants, of the type performed by Vaage and Harlos
[16]. This would involve culturing cells from the implant in vitro and comparing the
k value of the cultured cells.

Mathematically, the proof of the existence of traveling wave solutions in a system
of equations is unusual and is made possible by the absence of a kinetic term in (1b),
so that the corresponding traveling wave equation can be integrated once exactly. This
avoids the need to work in a phase space of more than two dimensions, where proof
of existence of a heteroclinic connection is notoriously difficult [4]. Generalization
of the analysis to the case of new matrix secretion occurring, which would enable
investigation of the expansive growth hypothesis in a broader context, thus remains
a significant challenge for future work.
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